
Interactive  image 
segmentation for 
radiation  treatment 
planning 

COVIRA (Computer  Vlsion in RAdiology) is a 
project in the European  Community‘s  Advanced 
Informatics in Medicine  program.  The  goal is  to 
improve  the  diagnosis  and  planning  of  treatment 
(radiotherapy) for patients with brain  tumors and 
other  diseases.  The  aim  of  radiotherapy is to 
provide  a  high  dose  of  radiation to a  tumor  while 
sparing as much as possible  of  the  surrounding 
healthy  tissue. A necessary first step is defining 
the  target  volume  and  organs  at risk by  manually 
outlining the  required  contours  on  magnetic 
resonance or  computed  tom0  raphy  scans, For a 
full three-dimensional  plan  th% is time- 
consuming,  as 40 or more  scans  are  used. 
Computer  image  segmentation  speeds up the 
process,  and  a  method  that  combines 
information from edge  and region  detectors is 
described.  Since this method is not  able to 
completely  meet  the clinical requirements,  an 
interactive image  segmentation  algorithm  has 
been  developed that enables the  operator to 
employ clinical judgment.  Probabilities are 
assigned to edges  and  regions  and  presented to 
the user  as a  hierarchy  of  segmentations.  The 
approach is being  subjected to extensive clinical 
evaluation, using ilot applications  running  on 
IBM  RISC SystembP’  worksfWions. 

C OVIRA (Computer VIsion in RAdiology) is 
a  project  sponsored by the Commission of 

the  European Communities under  the  Advanced 
Informatics in Medicine (AIM) research program. 
COVIRA uses  computers to improve the diagnosis 
and planning of treatment for cancer  patients,  es- 
pecially those  with  brain  tumors. 
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The first phase of the AIM program ran from June 
1989 to December 1990. The IBM United Kingdom 
Scientific Centre  took  part in this program, in a 
consortium  with Philips Medical Systems,  a clin- 
ical partner, and two academic  partners. IBM con- 
tributed in the  areas of image segmentation using 
edges and regions, texture analysis of magnetic 
resonance (MR) images, and the provision of a  sta- 
tistical knowledge source related to the MR im- 
aging process. We developed working algorithms 
running on IBM RISC technology (RT*) 6150 work- 
stations. In  an evaluation of the clinical useful- 
ness of the algorithms produced by the  various 
partners in the project, ours  were  preferred  by  the 
clinicians. 

For  the main phase of AIM (January 1992 to De- 
cember 1994), the consortium has  been  expanded 
to include Siemens, the  other major European 
medical equipment manufacturer, in addition to 
other leading academic  partners and a  total of six 
clinics. This reflects the  European Commission’s 
desire for AIM to produce pilot systems  that  are 
subject to extensive clinical evaluation. Our pro- 
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posal was  one of about 200 submitted in Septem- 
ber 1991. Only 36 were  accepted. 

In  the AIM main phase,  the IBM UK Scientific Cen- 
tre  is  concentrating  on  applications in radiation 
therapy planning, in conjunction  with  the Royal 
Marsden  Hospital and Institute of Cancer Re- 
search  (Sutton, UK) and the German  Cancer Re- 
search  Center  (Heidelberg, Germany). These ap- 
plications will run  on IBM RISC System/6000* 
workstations.  Other  partners in the project will 
work  on neuroradiological diagnosis and neuro- 
surgery planning. IBM’s specific contributions  in- 
clude  interactive three-dimensional image seg- 
mentation, three-dimensional visualization, and 
development of the clinical user  interface. We are 
also playing a significant role in the management 
of the COVIRA project. 

The aim of radiation therapy  is  to  provide  a high 
dose of radiation to a  tumor in order  to  eradicate 
it, while sparing  as  much of the  surrounding 
healthy  tissue as possible. Using modern imaging 
techniques  such as CT (X-ray  computed tomog- 
raphy)  and MRI (magnetic resonance imaging), 
new three-dimensional methods of planning and 
applying the  treatment  have  been developed in 
recent  years.  However,  at  present  these  methods 
are restricted to specialist  centers  because  the 
planning stage  is very time-consuming. Within 
COVIRA, a  system will be developed  that signifi- 
cantly  speeds  up  the planning process  through  the 
use of computer visualization techniques to iden- 
tify relevant  structures in the images, together 
with knowledge-based systems  to  assist  the  user 
in generating  the  best  treatment plan. The  reduc- 
tion of planning time and cost will allow many 
more  centers  to use  the  new  techniques. 

It is estimated  that  two-thirds of all tumor patients 
are  referred to radiation therapy.  About 40 per- 
cent of these  can be treated effectively with cur- 
rent  methods.  Another 40 percent are  not  suitable 
for  treatment  because  the  disease  has  spread  too 
far. The remaining 20 percent could be treated if 
the new three-dimensional planning methods 
were  generally available. Therefore,  up to 250 000 
patients  a  year in Europe  and  the  United  States 
could benefit from the  work being done in 
COVIRA. 

In  this  paper,  a brief description of the radiation 
treatment planning process is given. One of the 
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most time-consuming stages, defining the  thera- 
py-relevant  volumes, is done  by manually outlin- 
ing contours in the images; the  current  state of the 
art is described. A method for automatic image 
segmentation,  developed by IBM during the  ex- 
ploratory  phase of COVIRA, is  discussed, followed 
by a detailed description of an  extension of this 
work  that allows the clinical user to interactively 
control  the  segmentation result. 

Radiation treatment planning 

The goal of radiotherapy,  as  stated previously, is 
to eradicate  a  tumor  without causing severe dam- 
age to healthy  tissue.  Computer-assisted radia- 
tion treatment planning (RTP), and especially the 
newly developed three-dimensional treatment 
planning techniques, provide a tool to find the 
optimum configuration of radiation beams for the 
treatment of an individual patient.  In clinical 
practice, RTP has  traditionally  been  based  on  two- 
dimensional sectional  representations of the 
treatment of the  patient.  However,  the  shape of 
the tumor  and  adjacent uninvolved anatomic 
structures  may  vary  substantially from one  sec- 
tion to another.  The  sectional two-dimensional 
planning approach  may lead to  uncertainties in 
localizing the  tumor  volume and target  volume as 
well as internal  organs,  a problem that  can still be 
considered as  one of the largest sources of error 
in the whole radiation treatment  procedure. 

Today,  the  situation  is changing due to several 
technical  developments, among which the  advent 
of whole-body  X-ray  computed  tomography (CT) 
and of magnetic  resonance imaging (MRI)  are  the 
most  important. With the availability of CT and 
MR imaging devices, the ability to visualize  ana- 
tomical structures in detail  has  been  tremen- 
dously  enhanced.  In  order to  take full advantage 
of these  new imaging developments within the 
field of radiation therapy, new tools  have to  be 
developed  and  evaluated  that permit easy and 
precise  extraction of the  therapy-relevant infor- 
mation from three-dimensional images; three- 
dimensional display of anatomical structures;  and 
computer simulation for accurate  placement of 
radiation beams.  This  paper  focuses  on  the ap- 
plication of computers in the  step that is currently 
considered  the  bottleneck of three-dimensional 
treatment planning: segmentation of therapy- 
relevant anatomical structures. 
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The  radiotherapy  planning  procedure. The radio- 
therapy  process  can  be  separated  into  a  number 
of steps,  shown in Figure 1. 

As can  be  seen from Figure 1, the  process  starts 
with an imaging procedure (CT and/or MRI). The 
main steps in the radiotherapy  process are treat- 
ment planning (including segmentation of the 
therapy-relevant  volumes and defining an  ar- 
rangement of radiation  beams to achieve  the  re- 

The main steps of radiotherapy 
are treatment planning, patient 

positioning, irradiation, and 
verification. 

quired  dose),  patient positioning, the  (repeated) 
irradiation of the  patient,  and verification of the 
dose given. Computer  assistance  is  essential in 
most of these  steps. 

The  tumor  volume  includes all the  tissue  that  can 
be recognized and identified as tumor  tissue 
within the  tomographic images. The identification 
of tumor  tissue  may be based  on different criteria: 
e.g., sometimes  enhanced,  sometimes  decreased 
soft tissue  contrast in the MR or CT images, with 
sometimes well-defined, sometimes  blurred or 
even invisible margins (after  subtotal  or  total  tu- 
mor resection). Further  criteria  for  the definition 
of the  tumor  volume  are  the  displacement of 
neighboring anatomical structures  or  the  occur- 
rence of edemous tissue. 

After  the definition of the  tumor  volume,  the  tar- 
get volume  has to  be defined. This is the volume 
that  has to  be completely  covered by  the  thera- 
peutic  dose during the irradiation of the  patient. 
The target  volume  not  only  includes  the  tumor 
volume,  but  also  possible  tumor  extensions, 
possible  sites of metastasation  such as lymphatic 
regions in the vicinity of the  tumor  volume,  pre- 
ferred  paths of further  tumor  growth,  and  a so- 
called “safety region” around  the  tumor.  The  lat- 
ter  takes  into  account  the  uncertainties during the 

irradiation of the  patient  caused by patient  move- 
ment and  inaccurate  patient alignment under  the 
linear accelerator.  The  problematic  nature of tu- 
mor  and  target  volume definition is  due  to having 
to  depend on histology and  surrounding  anatomy 
to determine  tumor margins and  safety margins. 
The goal of radiotherapy is not  only to apply  a 
high radiation  dose to  the tumor  tissue,  but  also 
to avoid the  occurrence of side effects in the  sur- 
rounding healthy  tissue, especially in those  ana- 
tomical structures  that will not  tolerate radiation 
burdens  above  so-called  “critical  doses.” 

The third  important  type of therapy-relevant  vol- 
ume that  has  to  be defined during the  treatment 
planning process  is  the  nontarget  tissue,  the  “or- 
gans  at risk.” Depending on the location of the 
target  volume,  organs at risk in the  brain  may  be 
the  brain  stem,  white  matter, the  optic  nerve,  the 
eyes,  or  the lenses.  There  are  several good rea- 
sons  for  the  complete  and  accurate  segmentation 
of organs  at risk: 

1. The geometrical  shape  and the location of the 
three-dimensional  surfaces of the organs  at 
risk can  subsequently  be  used  to  optimize  the 
position,  shapes,  and  incidence  angles of the 
radiation fields. 

2. It is possible  to  precalculate  the  dose  distri- 
bution within the  target  volumes,  and, by fur- 
ther  changes of the irradiation  technique, min- 
imize the  physical  dose in those  critical  areas. 

3. With the help of radio-biological models, it is 
possible to estimate  the risk of radiation injury 
(the  treatment-related  morbidity probability, 
or TRMP) of the critical  organ  and  the  proba- 
bility for  tumor  control (tumor control  proba- 
bility, or TcP). To  base  the optimization of ra- 
diation  treatment  plans  on TCPs and TRMPs 
seems  much  more promising than  a  pure geo- 
metrical  and  physical  consideration of the 
treatment planning problem. In addition to 
more  elaborate  and  realistic radio-biological 
models,  what will be  needed in the  future  to 
make  this biological treatment planning a  rou- 
tine  tool  are  procedures  for individual three- 
dimensional image segmentation  for  the defi- 
nition of critical organs or  even functional 
subunits of critical organs. 

Tumor  tissue  that  is  not included in the  target 
volume will be  underdosed  with high probability; 
organs  at risk that  are  not included during this 
process will probably  not  be  considered in the 
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evaluation of treatment plans and  eventually be 
overexposed.  Errors,  inaccuracies,  and  over- 
sights  that  are made during the first step of image 
segmentation  dramatically influence the effec- 
tiveness of treatment planning and the  outcome of 
the whole radiotherapeutic  process.  This  shows 
the  importance of optimal treatment planning in 
radiotherapy. 

State-of-the-art  methods in clinical  practice: 
Manual  segmentation  of  target  volumes  and 
organs  at  risk 

Currently,  the  method  used in clinical practice  for 
extracting  three-dimensional information is man- 
ual segmentation of CT and MR data  sets.  The 
number of slices comprising a three-dimensional 
image may vary from 20 to 60. As many as ten or 
more  structures may need to  be outlined  on  each 
of these images. This is a major effort to  be carried 
out  for  each  patient. Until now, there  were  few 
automatic  tools available in clinical practice to 
make  this  process  easier and faster.  However, 
there  are  some  groups developing fast  and  user- 
friendly three-dimensional image segmentation 
and modeling  tool^.^-^ To characterize  the  state of 
the  art in manual segmentation, one of these sys- 
tems is now described in some detail. 

Tool for manual  segmentation. TOMAS (Tool for 
MAnual Segmentation) is an interactive  worksta- 
tion program that  has  been  developed  at  the Ger- 
man Cancer  Research  Center  since 1987.5 It is an 
advanced program for the three-dimensional seg- 
mentation of tumor  volumes,  target  volumes,  and 
organs  at risk and is routinely applied in radiation 
treatment planning. Originally developed  on 
VAX* * workstations  under  the VMS (virtual mem- 
ory system)  operating  system, it has  recently 
been  ported by  the UK Scientific Centre  to run  on 
the IBM RISC System/6000 workstation  under 
AIX*. The  software  is  written in the C program- 
ming language, and the  object-oriented  user in- 
terface  is implemented with X Windows**  and 
OSF/Motif* *. 

The three-dimensional  reconstruction  and  pre- 
sentation of the  contour lines is realized by means 
of PHIGS (Programmers  Hierarchical  Interactive 
Graphics  System). The PHIGS we used conforms 
to  the international PHIGS standard ISO 9592: 
1988(E), which is  device-independent  and prom- 
ises good portability. 
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CT and MR images are  transferred  directly to  the 
workstation through an  internal  data  network 
(Ethernet with Transmission  Control  Protocol/ 
Internet  Protocol, or TCPIIP). 

Functionality of the  manual  segmentation tool. A 
program for manual segmentation of tomographic 
images should  take  the following items  into  con- 
sideration: 

Image presentation 
Efficient segmentation  tools  for drawing on  to- 
mographic images 
Layout of the  user  interface 
Visualization of the segmentation  results 

Image  presentation. Figure 2 shows  the different 
sections  for  tomographic imaging. Three small 
windows  appear at the  top of the  display  screen 
(see  Figure 3, top). One of these small windows 
is used to present  the image data in the original 
form (transversal in CT; transversal, sagittal, or 
frontal  depending  on the image acquisition mode 
in MRI, see Figure 2). The  two  other small win- 
dows  are used for multiplanar reconstructed 
views  of  the image data.  The  user  can  select one 
of the  three  views for presentation in the larger 
working window (see  Figure 3, bottom left). 

The  selection of the  spatial position of an actual 
section is indicated by reference lines in the  two 
other  corresponding  views. The reference lines 
can  also be used to select  an  interesting slice sim- 
ply by moving the line with  the  computer  mouse 
to the  requested position. This  method allows the 
therapist to get an impression of the patient’s 
anatomy in all three dimensions. The working 
window is used for outlining anatomical struc- 
tures  on  the images. For  the  segmentation of 
small structures,  the images can  be enlarged up to 
eight times their original size. The  area  to  zoom 
in upon  is  selected  interactively by moving a  rect- 
angle on  the image. A presentation with a high 
zoom factor  can be smoothed by low-pass filter- 
ing. 

Segmentation  tools. Segmentation of three-dimen- 
sional images into  tumor  volumes,  target  vol- 
umes, and organs  at risk is performed in the  work- 
ing window by contouring  “regions of interest” in 
successive  transversal, sagittal, or frontal  sec- 
tions  with  a  tomographic image as the  back- 
ground. The drawing instrument is the  computer 
mouse. Three different drawing functions  are 
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available: free-hand, polygon drawing, and 
ellipse drawing. 

When drawing free-hand,  a line on  the  screen fol- 
lows the  movements of the mouse. Unwanted 
lines can  be deleted at  any time. It is often nec- 
essary  to  keep  a well-defined security  distance to 
an anatomical structure, e.g., for the definition of 
the  target volumes. For this  purpose  the  cursor 
can be changed to a circle with  the  center being 
the  active point and the  radius  corresponding to 
the desired safety margin. For drawing polygons, 
only  the edge points  have to  be marked. With the 
help of a spline interpolation, additional points 
can  be  computed.  In this way it is quite  easy to 
create naturally formed curves  that approximate 
anatomical structures. To segment structures 
with nearly elliptical shape, e.g., the  eyes  or  the 
lenses, it is  convenient to  use  the circle and el- 
lipse-drawing functions. This significantly re- 
duces  the time needed for outlining these  objects. 

All manually drawn  objects  are mouse-sensitive 
and can be selected simply by clicking with  the 
left mouse  button  on an object’s outline. Selected 
objects  can  be  interactively moved, copied, or 
deleted. It is also possible to scale and edit objects 
by clicking the  mouse  button on special control 
points and moving them to the required position. 

As contours of an anatomical structure  are  often 
similar from one slice to  the  next,  the  copy and 
edit functions are  very convenient for three- 
dimensional segmentation of medical images. Af- 
ter  a region has been drawn manually in the first 
slice that cuts the anatomical structure  under  con- 
sideration, it is copied to a neighboring slice. In 
many cases,  only small parts of the  contours  then 
have to  be edited or redrawn to match the  struc- 
ture of the object in the new slice. (Spacing be- 
tween slices is usually between 2 and 8 mm.) 

Interpolation of contours. Because  the  interac- 
tive delineation of contours is a time-consuming 
task,  a  contour interpolation feature  is included 
that  calculates  the preliminary contour in a slice, 
if contours in adjacent slices have  already  been 
defined. The interpolation algorithm is  based on 
triangulation of the  surface defined by  two  con- 
tours.6 Using this feature,  the definition of vol- 
umes of interest is performed as follows: 

Outline the region of interest in the first, central, 
and last slices of the CT or MRI data  set. 
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The program interpolates preliminary contours 
in  all intermediate slices. 
Check  the  contour in an intermediate slice. If 
the interpolation is unsatisfactory, the  user  can 
edit the  contour  with  the described editing func- 
tions. 
The program interpolates again in  all slices 
where  no user-defined contours exist. 

Contouring  along grey-level thresholds. Besides 
manual segmentation, objects  with sufficient 
grey-level contrast  can  be segmented automati- 
cally using a contouring algorithm that  has  been 
taken from the literature.’ This algorithm has 
been very helpful for the definition of the outline 
contour of the patient and for segmentation of 
bony  structures  or lung tissue in CT images. How- 
ever,  this algorithm completely fails for more 
complex  objects  with  only small grey-level dif- 
ference to the surrounding tissue. 

User  interface. The  interaction is done completely 
with  the  computer mouse. All user  interface ob- 
jects may  be manipulated by  the mouse. Func- 
tions of the program can  be  started simply by 
activating the  mouse  on icons in a  control panel 
or  by selecting entries of pull-down menus. Dia- 
logs with  the  user  are handled with dialog boxes. 
A dialog box  consists of interactive  elements  such 
as text  entry fields, radioboxes, listboxes, and 
scaleboxes.  The  user  has  a good overview of all 
program functions and can fully concentrate on 
the  work on the  screen.  This kind of user  interface 
makes it fast and easy  to  use  the program, a  con- 
sideration that is particularly important for inex- 
perienced users. 

Visualization. During and at  the end of the seg- 
mentation procedure, it is important to have  the 
possibility of checking the  shape and the  consis- 
tency of the  volume  under  consideration,  prefer- 
ably in a three-dimensional view. Currently,  there 
are  three visualization aids implemented in the 
program: 

While drawing a  contour in the working win- 
dow, the  contour is also shown in the  corre- 
sponding small overview window. Further- 
more, all points  where  the  slices perpendicular 
to the slice in the working window cut  the  pre- 
vious and current  contours  are shown in the 
other  two overview windows (Figure 3, top). 
A fifth window may be opened that  shows  a 
selection of up to 16 CT or MRI images with  the 
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contours of the different volumes  that  have 
been segmented previously (Figure 4). 
Another window may  be  opened  that  shows  a 
perspective view of the different contour 
stacks, and thus  provides  a three-dimensional 
impression of the segmented volumes  (Figure 3, 
bottom right). 

Summary. Apart from the simple but limited con- 
touring algorithm mentioned above, it is obvious 
this  procedure is very time-consuming for the  ra- 
diotherapist if the  complete three-dimensional 
picture is to  be built up. There is a clear require- 
ment for more  sophisticated  computer algorithms 
to automate  this  process as far as possible. The 
saving of time that will result will enable more 
patients to benefit from the full three-dimensional 
treatment,  with  consequent improvement in tu- 
mor control and reduction in side effects. 

The remainder of this  paper  reports  on  work  that 
has  been  carried  out toward this goal. A brief 
introduction to computer image segmentation is 
given first, followed by  a description of a method 
for edgehegion-based segmentation that  was pro- 
duced by  the IBM UK Scientific Centre during the 
first phase of COVIRA. This has since been devel- 
oped into an interactive  system for hierarchical 
probabilistic segmentation, which is fully de- 
scribed in the following section. 

Image  segmentation 

Segmentation is an important first step in analyz- 
ing an image. A segmented image represents  the 
information in the image by delineating the 
boundaries  between regions that  correspond to 
different objects.  This allows the amount of in- 
formation to be  reduced, and provides a descrip- 
tion of the image contents  better  adapted  to image 
analysis. The problem of segmenting an image 
into regions bounded by edges is classical in the 
fields of image interpretation and computer  visu- 
alization, and no satisfactory, general solution 
has been found. 

detection  have  been developed, their purpose be- 
ing to describe  the image by  a  set of points that 
constitute  the  boundaries of different objects in 
the image. 

The  second  type identifies homogeneous regions 
in the image. The idea underlying this approach is 
to describe  the image by segmenting it into sets of 
points  that  possess  certain  properties of homo- 
geneity. Different types of homogeneity have 
been used to characterize regions for the purpose 
of detection.  For example, smooth regions can be 
detected on the  basis of their roughly constant or 
perhaps  smoothly varying intensity, while tex- 
tured  regions can  be  detected on  the  basis of the 
similarity of the  texture  across them. The  use of 
texture  detectors is not considered  further here. 

From  a  theoretical point of view,  the two ap- 
proaches (of edge and region detection)  are com- 
plementary, in the  sense  that knowledge of the 
edges allows the regions to be deduced and vice 
versa.  However, in practice  the two methods give 
rise to different algorithms that  produce different 
results,  each having its own peculiarities. Some 
simple images can  be satisfactorily segmented us- 
ing edges alone, although gaps may  be  created 
when imaging noise disrupts  the performance of 
the edge detector.  The  boundaries of smooth re- 
gions may identify edges not detectable  by an 
edge detector;  however,  they may be false bound- 
aries  that  have  no physical significance. 

It is better to combine information from the edge 
and region detectors, in order  to  produce  a  more 
reliable result.  The edge detector  uses informa- 
tion in a small locality to detect  points  at which 
the image intensity gradient is high, whereas  the 
region detector  exploits information gathered 
from many more points (and can, for example, fill 
gaps left by an edge detector).  A  system for 
edgehegion-based segmentation was imple- 
mented by  the IBM UK Scientific Centre for use in 
the first phase of the COVIRA project. 

Two principal methods of image segmentation 
have  been employed, using edges or regions. The 
first type  corresponds to finding the local discon- 
tinuities in the grey-level intensity function of the 
image. These local discontinuities (or  points of 
high gradient)  characterize  the  abrupt  intensity 
variations  that often indicate the  presence of an 
object in the image. Many  techniques for edge 
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Edgelregion-based  segmentation 

A  survey of the  literature has not revealed a  de- 
finitive method for combining edge and region in- 
formation to improve the segmentation. Basi- 
cally, there  are two possibilities to consider: 

To give priority to  the edge information 
To give priority to  the region information 
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It  was decided to take  the edge information first, 
and then use  a region-growing algorithm to fill  in 
the discontinuities in the edge map. The edge de- 
tector  chosen  is described in Reference 8 by 
Canny and is  one of the  most successful edge 
detectors  today.  One of the major advantages of 
using Canny’s method in this application is that it 
gives clean edges with good localization. It  has 
some deficiencies, notably in the area around 
junctions.  However,  this deficiency has  been  rec- 
tified, using the method discussed in Reference 9. 

The  Canny  operator. The  Canny  operator finds 
edges by locating points of maximum gradient 
(edgels) in the grey-level intensity of the image. 
Thresholding is needed to  separate  the useful, 
stronger  edges from weaker edges due to noise in 
the image. A  hysteresis algorithm is used in which 
all edgels above  an  upper threshold are  retained, 
as  are  weaker edgels that  are  connected to  these 
strong edgels, provided that  the  weaker edgels 
exceed  a lower threshold.  The  choice of suitable 
thresholds was originally made  on an empirical 
basis, and later confirmed by a gradient descent 
method.  These  thresholds  proved to give satis- 
factory  results on more  than 20 images from 6 
different patients. 

This  process inevitably leads to gaps in the edges 
where  there  is insufficient contrast in the image. 
A region grower  can be invoked in an  attempt to 
repair these  gaps by using information from a 
wider  area,  not  just locally at  the edge. A state- 
of-the-art region-growing algorithm was used, 
based  on  the  work in Reference 10, in which 
smooth  quadratic  patches  are fitted to the regions. 
(This is  more general than simple thresholding, 
allowing second-order edges, missed by gradient- 
based edge detectors, to  be recovered.)  In prac- 
tice we found that  constant  smooth  patches gave 
better  results  on  our MR images. The edge infor- 
mation is used to generate  seed  points for the 
region grower. It  also limits the growth of the 
regions, thus intimately linking the  two  pro- 
cesses. 

Region  detection  process. There  are  three distinct 
phases in the region detection  process, as follow: 

A  coarse resolution phase in which 2 X 2 pa- 
rameterized patches (mean and variance)  are 
merged on the  basis of the likelihood ratio  de- 
scribed in Reference 10. The  Canny  edges de- 
fine the  starting point for a new region to  be  as 
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far as possible from the end of any edge, thus 
ensuring that  the growing region is as large as 
possible before it encounters  a  broken edge. At 
each stage  the most likely new patch is merged 
into  the region. Regions are not allowed to  cross 
Canny edges, and growth is stopped  when  there 
are  no  more  patches  that  can  be added without 
exceeding a threshold on  the likelihood ratio. 
A  second  phase  extends  the  above  process to 
fine resolution (single pixel), continuing on from 
the first phase  into unvisited areas of the image. 
(The unvisited areas  are  those 2 X 2 patches 
that  contain  Canny edges.) 
It is possible that parametrically homogeneous 
regions of the image are split into  two or more 
regions, for example where  the  Canny edges 
form a  bottleneck through which the region 
grower cannot pass. Therefore we have  a third 
phase in which adjacent regions are merged, 
unless they  have  some small number of Canny 
edgels between them. (This reflects our  strategy 
that  the region grower is used to supplement the 
original edge information.) 

A typical result of this  process  can  be  seen in 
Figure 5. On the left is  a  transversal MR image of 
the brain, in which a tumor is clearly visible. On 
the right is  the  computer segmentation, with  the 
Canny edges shown in green. Gaps in these  edges 
closed by  the region grower are  shown in yellow. 
For  further  details of this  process, refer to Ref- 
erence 11. 

Clinical validation. In  order  to  assess  the clinical 
usefulness of the  results,  the  results  were com- 
pared to manual segmentations provided by ra- 
diologists from the Gregorio Maraiion Hospital, 
Madrid. The radiologists were asked to mark 
boundaries in the images that  they  considered 
useful. Allowing an error of one pixel between  the 
two segmentations, we typically observed  that 85 
percent of the edgels marked by  the radiologists 
were found by the edgehegion segmentation al- 
gorithm. This  is shown in Figure 6,  which shows 
the manual contours from the radiologists. Those 
parts found by  the  computer  are marked in red, 
the remainder in yellow. Note  that  about 35 per- 
cent of the  computer edgels did not correspond to 
any manual edge. It  is clear that  no amount of 
manipulation of the  various  thresholds in the al- 
gorithm would produce 100 percent  correspon- 
dence. This is in part  due to the  fact  that  the ra- 
diologists used their clinical knowledge in 
deciding which boundaries to mark. This knowl- 
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edge is, of course, not available to  our  data-driven 
process. 

Conclusion. We were led to  the conclusion that an 
interactive  process  is required, in which the cli- 
nician is enabled to input clinical expertise in a 

An interactive process is 
required to  input clinical 

expertise. 

simple, straightforward way. The  interest  then 
centers  on how to exploit automatic  methods  for 
detecting  edges and regions in order  to minimize 
the manual interaction required. Ideally, one 
would like the human user to feel that  the inter- 
actions  are a way of exercising professional judg- 
ment-as, for example, adjusting a boundary to 
reduce radiation risk to  the  optic nerve-rather 
than a tedious  chore  that  the machine ought to  be 
able to  carry  out. 

A method developed by  the UK Scientific Centre 
to do  this is described in the  next  section. 

Hierarchical  probabilistic  segmentation 

The  work described above, using a combination 
of edges and regions, gave good results and com- 
pared favorably with other  methods,  but it is not 
fast enough for interactive use. (on  an IBM RT 
6150 Model 135 workstation,  the edge detector 
takes  about  one minute, and the region detection 
up  to 60 minutes for a 256 X 256 image.) Also, no 
account was taken of the edge strength informa- 
tion. In  the new method each edge is given a con- 
fidence in the form of a percentile (between 1 and 
100 percent)  based on its likelihood calculated 
from Bayesian belief updating, an application of 
methods described in Reference 12.  Region vari- 
ance information is  incorporated  into  this likeli- 
hood in addition to edge strength. We have  also 
experimented  with including the  results of sym- 
metry matching and adding the additional infor- 
mation present in a second  sensor  channel in MR 
imaging. 
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The  user  interface exploits the confidence per- 
centile by  means of a slider. By adjusting it using 
the pointer, different segmentations  can be ob- 
tained, as in Figure 7. These  adjustments  can  be 
made in real time using a lookup table. In this 
way, a hierarchy of segmentations  can  be readily 
presented. Figure 7A shows  the slider set  to  the 
lowest probability so that all regions are dis- 
played. Moving the slider to increase  the proba- 
bility causes  more and more regions to be com- 
bined (Figures  7B  and 7C) until only  the  most 
likely are displayed (Figure 7D). The  user  can 
select a region at  any  particular  setting of the 
slider, as in Figure 8. If desired,  the region can  be 
merged with  others.  Once a region is  completed, 
any  interior edges are removed and  they  no longer 
appear  when  the slider is readjusted. 

Bayesian  probabilities. A fundamental question  is 
how information found from different sources us- 
ing automatic  methods  can  be combined in a man- 
ner  that a human user  can readily understand.  In 
fact, integration of information is  an  important 
consideration  whether human interaction is to 
take place or not. It  is a topic of current  research 
in machine visualization and in artificial intelli- 
gence work generally. 

In principle, the method of Bayesian probabilistic 
belief  updating12 appears  to provide a promising 
answer  because it allows the weighing of different 
evidence  strengths. For example, a weakly de- 
tected edge should be  strengthened if there  is  sup- 
porting evidence from the  surrounding regions. 
But it is not a trivial matter to apply the  theory 
efficiently to two-dimensional data. One custom- 
ary approach  is to perform iterative  convergence 
using the  Markov random field model. Such iter- 
ations  are notoriously slow to converge. The dif- 
ficulty lies in the  fact  that belief propagation 
works well in (one-dimensional) chains  but not in 
(two-dimensional) fields. 

It  is  therefore  more  tractable to deal with  the 
edges, since  these  are mostly arranged as one- 
dimensional chains. In Canny’s method, a sim- 
plified form of belief updating takes place in the 
hysteresis algorithm, which propagates  support 
from strong edge points to weaker neighbors. (We 
experimented  with  several  more  sophisticated 
forms of belief propagation but failed to  better  the 
results achieved with  the  standard  hysteresis al- 
gorithm.) 
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Probabilities of edgels. The main result of the 
edge detector  is to determine that  certain  points 
in the image are edge points, or edgels, and to give 
them  a  strength  based on the local intensity gra- 
dient. The  standard  hysteresis algorithm then  re- 
tains edgels that  are  stronger  than an upper 
threshold and also  retains  weaker edgels that  are 
connected to  these  strong edgels, provided that 
the  weaker edgels are  at  least  as  strong  as  a lower 
threshold. 

In  our  experiments,  strengths ranged from 1 to 
over 150 (based on intensity  values of 0 to 255) 
and the  thresholds  were typically 10 and 25. In the 
256 by 256 images we often deal with, one may 
find perhaps 3000 edgels stronger  than 25, another 
2000 or so in the range 10 to 25, and maybe 10 000 
below that  strength.  In  the crucial middle range, 
the  hysteresis algorithm will retain about two- 
thirds of the edgels, and we produced statistics  to 
show  a good correlation  with  results obtained 
manually. Below the threshold, we find a smaller 
proportion of useful edgels. (Some information 
about calibration against manual results  appears 
in the  section on calibration later in this paper.) 

Rather  than discard these useful edgels with  the 
other  weak  ones as the  standard algorithm does, 
we retain them  with low probabilities, so that  the 
information is not lost. Using the  interactive 
slider technique, edges containing these unlikely 
edgels tend to appear  at  the  bottom of the hier- 
archy  (the lowest slider setting) and so may easily 
be discarded if the  user desires. The edge 
strengths  are  converted to probabilities so that 
the information discovered by  the  hysteresis al- 
gorithm can be combined with  the  strength infor- 
mation in a  consistent framework. Hence, edgels 
that  satisfy  the threshold criteria are given higher 
probabilities than  the  others.  The probabilities 
are obtained from a  table  created  by  the calibra- 
tion process  (see  the  later  section). 

Meanings of the  probabilities. The probability 
of an edgel needs to  be defined. We adopt  a 
task-oriented definition, based on the need to 
maximize the productivity of later  processes and 
especially of the human interaction. If the prob- 
ability of an edgel is 10 percent,  this  means  that 
there is a 10 percent  chance  that it  will be retained 
by  later  processes, including the human inter- 
action. 
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Probabilities can  be revised as new evidence is 
considered.  This  is detailed in the  section on com- 
bining information. 

Initial  segmentation. We need to  be able to com- 
bine evidence and weigh alternative  hypotheses 
effectively, avoiding the classical AI bugbear of 
the combinatorial explosion. This  needs  to  be 
done quickly, since  a human user  interaction  is 
also required. The  user interface also  needs  to be 
able to present  choices  without cluttering the 
screen  with  too much derived information. 

In  order for the Bayesian belief updating to work 
within these  constraints,  an initial segmentation is 
carried out automatically. This initial segmenta- 
tion results in a  set of regions, with  each pair of 
regions separated by an edge (made up of edgels). 
The initial segmentation is at  the  bottom of the 
hierarchy of segmentations and is displayed when 
the  user sets  the slider to  the lowest value. Al- 
though the  eventual segmentation will be different 
from the  one produced initially by  this method, 
there is likely to be  a useful number of reliable 
edges and regions detected  that need no  further 
change. For example, in the cranial MR image of 
Figure 7, the major boundaries of the skull and the 
tumor are reliably detected and the  ventricular 
region is  a combination of a small number of 
subregions. 

It  can  be  seen  that, instead of reasoning at  the 
level of pixels, edgels, or patches of an image, 
later processes-including human interaction- 
can  work mainly at the level of regions and edges. 
This is likely to be much more convenient. Two 
regions can  be merged, eliminating the edge that 
separates them. A region can  be split by defining 
a new edge within it. These  later  processes avoid 
a  complex  interaction  with  the  early (low-level) 
edge and region detectors by virtue of the sum- 
marized result provided in the confidence as- 
cribed to each edge, which is calculated from the 
edgel and pixel data. 

Closing gaps. A prerequisite for this  approach  is 
to  be able to find closed boundaries of regions. 
Unfortunately  the edge detection method used 
does not provide closed boundaries. The  detector 
finds edgels that  can  then  be joined into edge seg- 
ments. Further  work  must  be  done  to close the 
gaps between them in order  to find the regions. 
There  are  other  methods  that do find closed re- 
gions, notably  the  one  due  to Marr and Hildreth, l3 

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992 



but  the positional accuracy is poorer  than  is  ob- 
tained with  the method by Canny. 

We have experimented  with  several  ways of clos- 
ing gaps between edges. So far,  the  most  suc- 
cessful has  been  a straightforward search among 
neighboring feature points, followed by straight- 
line interpolation. A feature point may be an iso- 
lated edgel, a  corner, or a terminator; a termina- 
tor is an end of an edge segment. 

Once  every  terminator and isolated point has 
been joined to another edgel, the existing edge 
segments plus the interpolated edges form a  net- 
work of closed boundaries. A flood algorithm can 
then  be used to label every pixel (except  the  ed- 
gels) in the image as belonging to a region, each 
region being identified by a numeric label. This 
turns  out to  be a  fast  method of finding regions, 
taking approximately half a  second (for a 256 by 
256 image) on an IBM RISC Systed6000 Model 
530H. The complete process,  starting with the 
image up to  the point where  the  user  can com- 
mence  interactive  work,  takes  about five sec- 
onds. 

We can  then label the edgels too,  because we 
define every edge as  the  boundary  between  a pair 
of regions. 

Combining  information. Once  a set of closed 
boundaries  has been found, it is  easy and efficient 
to gather  statistics,  such as mean and variance, 
from all the pixels in the regions. This information 
can  be combined with the edge evidence in a  Bay- 
esian  framework  because  a  convenient  basis now 
exists for hypothesizing and reasoning about new 
edges and regions. 

Three  factors  are combined to determine the 
probability of an edge: 

The  average probability of the edgels in the 

Whether  the edge includes an interpolation, i 
A region variance  statistic, s 

The  statistic s is found by considering the pair of 
regions R , ,   R ,  which separate  the edge E ,  to- 
gether  with  the combined region R = R ,  U R ,  U 
E.IfuisthevarianceofRandm,,m,,marethe 
means of R , ,  R , ,  R ,  respectively,  then 

edge, a 
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(m, - m)’ + (m, - 
S =  

V 

Two  tables  are  produced  by  the calibration pro- 
gram giving conditional probabilities p ( H ( a  ,i) 
and p(Hls) where H represents  the  hypothesis 
that  the edge will be retained by later  processes, 
including human interaction. Using these tables, 
we  calculate  the  posterior  odds on each edge 
given the  statistics a ,  i, s, assuming that  the edge 
and region evidence  are conditionally indepen- 
dent, as 

(Hla,i,s) = O(H)L(a,ilH)L(slH) 

Here 

are  the prior odds  before looking at  any  evidence, 
and 

is the likelihood of a particular value of the  sta- 
tistic s given a hypothesis H .  To get the likeli- 
hood, we note  that 

which gives an  expression in terms ofp(H1s) and 
similarly for p(Hla ,i). 

Hierarchy of segmentations. Once we have ob- 
tained a probability for each edge in the initial 
segmentation, we  have defined a  hierarchy of seg- 
mentations,  because we can  remove  one edge at 
a time (the least likely), each time merging a pair 
of regions until the whole image becomes  one  re- 
gion. At each  stage we have  a  complete segmen- 
tation in which all the edges form closed bound- 
aries to  the regions. 

Each time an edge is removed, two edges and one 
region will normally be merged. Thus if E sepa- 
rates regions R ,  and R2 andA, l?, C, D are  other 
edges as illustrated in Figure 9, removing E 
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will cause  two new edges F = A U B and G = 
C U D to  be created as well as  the combined 
region R = R ,  U R ,  U E .  Statistics  must be 
accumulated for these new entities  and probabil- 
ities  must be calculated for the combined edges F 
and G. 

An individual edgel b in B could be  part of several 
hierarchically superior  edges  above F .  Eventu- 
ally, though, as  we progress up the  hierarchy of 
segmentations removing edge after edge, the  one 
containing b will disappear. Thus  the edgel b be- 
longs to several edges, one of which is  the  most 
superior in the hierarchy. Call  it S. 

When the  interactive  user  moves  the slider up, 
the  less likely edges disappear,  and,  when it is 
moved the  other  way,  they  reappear.  This  must 
always be  done in such a way  as to  preserve  the 
integrity of the segmentation, i.e., so that regions 
are always enclosed and edges do not  have  dan- 
gling ends. In  order  to  achieve  this while avoiding 
ponderous  data  structures, individual edgels are 
given the probability of the  most  superior edge to 
which  they belong. Hence edgel b is given the 
probability of edge S.  

The edge probabilities are  converted to percen- 
tiles in order  to maximize the discrimination 
available by use of the slider. By assigning the 
values to individual edgels, a look-up table can  be 
used to manipulate what  is displayed on  the 
screen during interactive  sessions.  This  ensures 
much better performance than would be possible 
if the  screen  were  redrawn  every time the slider 
is moved. 

and region boundaries defined by user  actions 
and to the edges visible as a result of the  setting 
of the slider. 
Quit. No result is  saved. 

A newly defined region or edge can  be  undone  by 
clicking the right mouse  button  before commit- 
ment takes place. An edge or region is committed 
when  the  user  selects  another action. After that, 
the edge or the  boundary of the region appears in 
a different color and is unaffected by the slider. 
Edges inside the region no longer appear  when 
the slider is moved. It  is still possible for the  user 
to make changes by defining new edges or merg- 
ing regions. 

The  interactive  user  therefore  has  complete  con- 
trol while having access to the  best segmentation 
results available from a combination of automatic 
algorithms. 

Calibration. The result of the  interaction  can be 
used in our application for the  preparation of a 
treatment plan. The  result  can  also be used to 
calibrate  the  tables of probabilities for use  on  sub- 
sequent images. Initially the  tables  were  prepared 
from the  results of segmentations performed man- 
ually by collaborating radiologists in Madrid 
(Kuhn14 et al.,  1990) but now the probabilities can 
be refined from the  more relevant statistics gen- 
erated from using this tool. 

Hence,  the  needs of particular specialities or the 
requirements of differing  imaging modalities (MR, 
CT) can  be accommodated adaptively. 

Interaction. The  interactive  user  may  move  the 
slider at  any time to change the visible edges. In 
addition, the following actions  can  be  selected. 
Each of these  actions  uses  the edges visible at  the 
time, according to the  setting of the slider. 

Define region. After selecting this  action,  the 
user should click the  mouse in one  or  more re- 
gions; if they adjoin, they will be merged. 
Define edge. After selecting this  action,  the  user 
should click the  mouse  on two or more points. 
Straight lines will be  drawn  between them. The 
ends of the newly defined edge will be  truncated 
or  extrapolated to join  with existing edges. 
Save. The  edges and regions visible on  the 
screen will be  saved as the result of the  inter- 
active session. This applies both  to  the edges 

The required conditional probabilities are  as fol- 
lows. The meaning is  the probability that  the edge 
or edgel will be retained. 

An edgel, given its  strength and whether or not 
it is  supported  by  connection to a stronger edge 
(used in Canny  and  hysteresis algorithms) 
An edge, given the average probability of its 
constituent edgels and whether or not it in- 
cludes an interpolation 
An edge as  the  boundary  between two regions, 
given the  variance  statistic 

The calibration process  matches edgels and edges 
in the  automatic segmentation with  those result- 
ing from interactions.  Counts of matched and un- 
matched edgels and edges are accumulated 
against the  strengths and other  statistics and the 
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probabilities are readily derived from these  quan- 
tities. Counts can be accumulated from many im- 
ages in order  to  obtain more reliable numbers. 
Where  totals  are too small, consolidation and in- 
terpolation are performed to  ensure  that  the prob- 
ability distribution functions  are monotonic. 

Matching. As a  matter of terminology we say that 
matching is done from automatic edgels or edges 
to manual ones,  the  latter being produced either 
with this tool or otherwise. 

Since  the initial work  was  done  on manual seg- 
mentations performed independently of this tool, 
there  is  some flexibility in  allowing for matching 
edgels, provided that  they  are within a 1.5  pixel 
distance  (the  distance between two diagonally ad- 
jacent pixels). 

When matching edges, we require that an auto- 
matic edge must  overlap with one  or  more manual 
edges. Recall that an edge is the  boundary be- 
tween a pair of regions. If there is a manual region 
that  has pixels on both  sides of an automatic edge, 
then  that  edge  does  not  match. 

Conclusion 

We have outlined one of the problems that  exists 
in three-dimensional radiotherapy  today,  that of 
defining tumor volume, target volume, and organs 
at risk in three-dimensional CT and MR data sets 
(a necessary  precursor to producing a  complete 
three-dimensional radiation treatment plan). We 
have described work  that  has been carried  out in 
an attempt to solve this problem by replacing 
time-consuming manual image segmentation by 
computer-assisted  interactive image segmenta- 
tion, in which the  computer relieves the user of 
much of the tedious work, and enables  the  oper- 
ator  to  use clinical judgment to  achieve the de- 
sired result. Using a  state-of-the-art  worksta- 
tion-the IBM RISC System/600Qwe have shown 
that  true  interactive  speeds  are achievable in this 
context. 

Other algorithms under investigation at  the IBM 
UK Scientific Centre include another develop- 
ment of the original edgehegion segmentation 
method. In this  case  the  user interactively indi- 
cates seed  points for a  statistical region growing 
process, which can be inhibited by edges  detected 
in the image. This method will be extended to the 
statistical growth of three-dimensional-volumes 
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on a slice-by-slice basis. Particular  attention is 
being given to the development of direct three- 
dimensional segmentation algorithms, and we 
have produced a three-dimensional version of the 
Canny edge detector  with  hysteresis.  The main 
research problem here is how to visualize and 
interact  successfully with the three-dimensional 
data. 

Although this  work  is primarily concerned  with 
medical images, the  same algorithms can of 
course  be applied to applications in any field 
where it is necessary to extract information from 
complex  data sets prior to  further analysis. 

In  the main phase of COVIRA, our  methods, in 
company  with algorithms produced by  other  part- 
ners in the  project, will be subjected to extensive 
clinical evaluation at the German Cancer Re- 
search  Center (Heidelberg, Germany) and the 
Royal Marsden Hospital and Institute of Cancer 
Research  (Sutton, UK). By this  means we ensure 
that  the  work  has  a clinical focus, for the ultimate 
benefit of the patient. 
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