Interactive image
segmentation for
radiation treatment
planning

COVIRA (COmputer Vision in RAdiology) is a
project in the European Community’s Advanced
Informatics in Medicine program. The goal is to
improve the diagnosis and planning of treatment
(radiotherapy) for patients with brain tumors and
other diseases. The aim of radiotherapy is to
provide a high dose of radiation to a tumor while
sparing as much as possible of the surrounding
healthy tissue. A necessary first step is defining
the target volume and organs at risk by manually
outlining the required contours on magnetic
resonance or computed tomography scans. For a
full three-dimensional plan this is time-
consuming, as 40 or more scans are used.
Computer image segmentation speeds up the
process, and a method that combines
information from edge and region detectors is
described. Since this method is not able to
completely meet the clinical requirements, an
interactive image segmentation algorithm has
been developed that enables the operator to
employ clinical judgment. Probabilities are
assigned to edges and regions and presented to
the user as a hierarchy of segmentations. The
approach is being subjected to extensive clinical
evaluation, using pilot applications running on
IBM RISC System/6000™ workstations.

OVIRA (COmputer VIsion in RAdiology) is

a project sponsored by the Commission of
the European Communities under the Advanced
Informatics in Medicine (AIM) research program.
COVIRA uses computers to improve the diagnosis
and planning of treatment for cancer patients, es-
pecially those with brain tumors.
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The first phase of the AIM program ran from June
1989 to December 1990. The I1BM United Kingdom
Scientific Centre took part in this program, in a
consortium with Philips Medical Systems, a clin-
ical partner, and two academic partners. IBM con-
tributed in the areas of image segmentation using
edges and regions, texture analysis of magnetic
resonance (MR) images, and the provision of a sta-
tistical knowledge source related to the MR im-
aging process. We developed working algorithms
running on IBM RISC technology (RT*) 6150 work-
stations. In an evaluation of the clinical useful-
ness of the algorithms produced by the various
partners in the project, ours were preferred by the
clinicians.

For the main phase of AIM (January 1992 to De-
cember 1994), the consortium has been expanded
to include Siemens, the other major European
medical equipment manufacturer, in addition to
other leading academic partners and a total of six
clinics. This reflects the European Commission’s
desire for AIM to produce pilot systems that are
subject to extensive clinical evaluation. Our pro-

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992




posal was one of about 200 submitted in Septem-
ber 1991. Only 36 were accepted.

In the ATM main phase, the IBM UK Scientific Cen-
tre is concentrating on applications in radiation
therapy planning, in conjunction with the Royal
Marsden Hospital and Institute of Cancer Re-
search (Sutton, UK) and the German Cancer Re-
search Center (Heidelberg, Germany). These ap-
plications will run on IBM RISC System/6000*
workstations. Other partners in the project will
work on neuroradiological diagnosis and neuro-
surgery planning. IBM’s specific contributions in-
clude interactive three-dimensional image seg-
mentation, three-dimensional visualization, and
development of the clinical user interface. We are
also playing a significant role in the management
of the COVIRA project.

The aim of radiation therapy is to provide a high
dose of radiation to a tumor in order to eradicate
it, while sparing as much of the surrounding
healthy tissue as possible. Using modern imaging
techniques such as CT (X-ray computed tomog-
raphy) and MRI (magnetic resonance imaging),
new three-dimensional methods of planning and
applying the treatment have been developed in
recent years. However, at present these methods
are restricted to specialist centers because the
planning stage is very time-consuming. Within
COVIRA, a system will be developed that signifi-
cantly speeds up the planning process through the
use of computer visualization techniques to iden-
tify relevant structures in the images, together
with knowledge-based systems to assist the user
in generating the best treatment plan. The reduc-
tion of planning time and cost will allow many
more centers to use the new techniques.

Itis estimated that two-thirds of all tumor patients
are referred to radiation therapy. About 40 per-
cent of these can be treated effectively with cur-
rent methods. Another 40 percent are not suitable
for treatment because the disease has spread too
far. The remaining 20 percent could be treated if
the new three-dimensional planning methods
were generally available. Therefore, up to 250 000
patients a year in Europe and the United States
could benefit from the work being done in
COVIRA.

In this paper, a brief description of the radiation
treatment planning process is given. One of the
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most time-consuming stages, defining the thera-
py-relevant volumes, is done by manually outlin-
ing contours in the images; the current state of the
art is described. A method for automatic image
segmentation, developed by IBM during the ex-
ploratory phase of COVIRA, is discussed, followed
by a detailed description of an extension of this
work that allows the clinical user to interactively
control the segmentation result.

Radiation treatment planning

The goal of radiotherapy, as stated previously, is
to eradicate a tumor without causing severe dam-
age to healthy tissue. Computer-assisted radia-
tion treatment planning (RTP), and especially the
newly developed three-dimensional treatment
planning techniques,’ provide a tool to find the
optimum configuration of radiation beams for the
treatment of an individual patient. In clinical
practice, RTP has traditionally been based on two-
dimensional sectional representations of the
treatment of the patient. However, the shape of
the tumor and adjacent uninvolved anatomic
structures may vary substantially from one sec-
tion to another. The sectional two-dimensional
planning approach may lead to uncertainties in
localizing the tumor volume and target volume as
well as internal organs, a problem that can still be
considered as one of the largest sources of error
in the whole radiation treatment procedure.

Today, the situation is changing due to several
technical developments, among which the advent
of whole-body X-ray computed tomography (CT)
and of magnetic resonance imaging (MRI) are the
most important. With the availability of CT and
MR imaging devices, the ability to visualize ana-
tomical structures in detail has been tremen-
dously enhanced. In order to take full advantage
of these new imaging developments within the
field of radiation therapy, new tools have to be
developed and evaluated that permit easy and
precise extraction of the therapy-relevant infor-
mation from three-dimensional images; three-
dimensional display of anatomical structures; and
computer simulation for accurate placement of
radiation beams. This paper focuses on the ap-
plication of computers in the step that is currently
considered the bottleneck of three-dimensional
treatment planning: segmentation of therapy-
relevant anatomical structures.

ELLIOTT, KNAPMAN, AND SCHLEGEL §21




The radiotherapy planning procedure. The radio-
therapy process can be separated into a number
of steps, shown in Figure 1.

As can be seen from Figure 1, the process starts
with an imaging procedure (CT and/or MRI). The
main steps in the radiotherapy process are treat-
ment planning (including segmentation of the
therapy-relevant volumes and defining an ar-
rangement of radiation beams to achieve the re-

The main steps of radiotherapy
are treatment planning, patient
positioning, irradiation, and
verification.

quired dose), patient positioning, the (repeated)
irradiation of the patient, and verification of the
dose given. Computer assistance is essential in
most of these steps.

The tumor volume includes all the tissue that can
be recognized and identified as tumor tissue
within the tomographic images. The identification
of tumor tissue may be based on different criteria:
e.g., sometimes enhanced, sometimes decreased
soft tissue contrast in the MR or CT images, with
sometimes well-defined, sometimes blurred or
even invisible margins (after subtotal or total tu-
mor resection). Further criteria for the definition
of the tumor volume are the displacement of
neighboring anatomical structures or the occur-
rence of edemous tissue.

After the definition of the tumor volume, the tar-
get volume has to be defined. This is the volume
that has to be completely covered by the thera-
peutic dose during the irradiation of the patient.
The target volume not only includes the tumor
volume, but also possible tumor extensions,
possible sites of metastasation such as lymphatic
regions in the vicinity of the tumor volume, pre-
ferred paths of further tumor growth, and a so-
called “safety region” around the tumor. The lat-
ter takes into account the uncertainties during the
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irradiation of the patient caused by patient move-
ment and inaccurate patient alighment under the
linear accelerator. The problematic nature of tu-
mor and target volume definition is due to having
to depend on histology and surrounding anatomy
to determine tumor margins and safety margins.
The goal of radiotherapy is not only to apply a
high radiation dose to the tumor tissue, but also
to avoid the occurrence of side effects in the sur-
rounding healthy tissue, especially in those ana-
tomical structures that will not tolerate radiation
burdens above so-called “critical doses.”

The third important type of therapy-relevant vol-
ume that has to be defined during the treatment
planning process is the nontarget tissue, the “or-
gans at risk.” Depending on the location of the
target volume, organs at risk in the brain may be
the brain stem, white matter, the optic nerve, the
eyes, or the lenses. There are several good rea-
sons for the complete and accurate segmentation
of organs at risk:

1. The geometrical shape and the location of the
three-dimensional surfaces of the organs at
risk can subsequently be used to optimize the
position, shapes, and incidence angles of the
radiation fields.

2. It is possible to precalculate the dose distri-
bution within the target volumes, and, by fur-
ther changes of the irradiation technique, min-
imize the physical dose in those critical areas.

3. With the help of radio-biological models, it is
possible to estimate the risk of radiation injury
(the treatment-related morbidity probability,
or TRMP) of the critical organ and the proba-
bility for tumor control (tumor control proba-
bility, or TCP). To base the optimization of ra-
diation treatment plans on TCPs and TRMPs
seems much more promising than a pure geo-
metrical and physical consideration of the
treatment planning problem. In addition to
more elaborate and realistic radio-biological
models, what will be needed in the future to
make this biological treatment planning a rou-
tine tool are procedures for individual three-
dimensional image segmentation for the defi-
nition of critical organs or even functional
subunits of critical organs.

Tumor tissue that is not included in the target
volume will be underdosed with high probability;
organs at risk that are not included during this
process will probably not be considered in the
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evaluation of treatment plans and eventually be
overexposed. Errors, inaccuracies, and over-
sights that are made during the first step of image
segmentation dramatically influence the effec-
tiveness of treatment planning and the outcome of
the whole radiotherapeutic process. This shows
the importance of optimal treatment planning in
radiotherapy.’

State-of-the-art methods in clinical practice:
Manual segmentation of target volumes and
organs at risk

Currently, the method used in clinical practice for
extracting three-dimensional information is man-
ual segmentation of CT and MR data sets. The
number of slices comprising a three-dimensional
image may vary from 20 to 60. As many as ten or
more structures may need to be outlined on each
of these images. This is a major effort to be carried
out for each patient. Until now, there were few
automatic tools available in clinical practice to
make this process easier and faster. However,
there are some groups developing fast and user-
friendly three-dimensional image segmentation
and modeling tools.*? To characterize the state of
the art in manual segmentation, one of these sys-
tems is now described in some detail.

Tool for manual segmentation. TOMAS (TOol for
MAnual Segmentation) is an interactive worksta-
tion program that has been developed at the Ger-
man Cancer Research Center since 1987.° It is an
advanced program for the three-dimensional seg-
mentation of tumor volumes, target volumes, and
organs at risk and is routinely applied in radiation
treatment planning. Originally developed on
VAX** workstations under the vMS (virtual mem-
ory system) operating system, it has recently
been ported by the UK Scientific Centre to run on
the 1IBM RISC System/6000 workstation under
A1x*. The software is written in the C program-
ming language, and the object-oriented user in-
terface is implemented with X Windows** and
OSF/Motif**.

The three-dimensional reconstruction and pre-
sentation of the contour lines is realized by means
of PHIGS (Programmers Hierarchical Interactive
Graphics System). The PHIGS we used conforms
to the international PHIGS standard iSO 9592:
1988(E), which is device-independent and prom-
ises good portability.
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CT and MR images are transferred directly to the
workstation through an internal data network
(Ethernet with Transmission Control Protocol/
Internet Protocol, or TCP/P).

Functionality of the manual segmentation tool. A
program for manual segmentation of tomographic
images should take the following items into con-
sideration:

» Image presentation

» Efficient segmentation tools for drawing on to-
mographic images

% Layout of the user interface

» Visualization of the segmentation results

Image presentation. Figure 2 shows the different
sections for tomographic imaging. Three small
windows appear at the top of the display screen
(see Figure 3, top). One of these small windows
is used to present the image data in the original
form (transversal in CT; transversal, sagittal, or
frontal depending on the image acquisition mode
in MRI, see Figure 2). The two other small win-
dows are used for multiplanar reconstructed
views of the image data. The user can select one
of the three views for presentation in the larger
working window (see Figure 3, bottom left).

The selection of the spatial position of an actual
section is indicated by reference lines in the two
other corresponding views. The reference lines
can also be used to select an interesting slice sim-
ply by moving the line with the computer mouse
to the requested position. This method allows the
therapist to get an impression of the patient’s
anatomy in all three dimensions. The working
window is used for outlining anatomical struc-
tures on the images. For the segmentation of
small structures, the images can be enlarged up to
eight times their original size. The area to zoom
in upon is selected interactively by moving a rect-
angle on the image. A presentation with a high
zoom factor can be smoothed by low-pass filter-
ing.

Segmentation tools. Segmentation of three-dimen-
sional images into tumor volumes, target vol-
umes, and organs at risk is performed in the work-
ing window by contouring “regions of interest™ in
successive transversal, sagittal, or frontal sec-
tions with a tomographic image as the back-
ground. The drawing instrument is the computer
mouse. Three different drawing functions are
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available: free-hand, polygon drawing, and
ellipse drawing.

When drawing free-hand, a line on the screen fol-
lows the movements of the mouse. Unwanted
lines can be deleted at any time. It is often nec-
essary to keep a well-defined security distance to
an anatomical structure, e.g., for the definition of
the target volumes. For this purpose the cursor
can be changed to a circle with the center being
the active point and the radius corresponding to
the desired safety margin. For drawing polygons,
only the edge points have to be marked. With the
help of a spline interpolation, additional points
can be computed. In this way it is quite easy to
create naturally formed curves that approximate
anatomical structures. To segment structures
with nearly elliptical shape, e.g., the eyes or the
lenses, it is convenient to use the circle and el-
lipse-drawing functions. This significantly re-
duces the time needed for outlining these objects.

All manually drawn objects are mouse-sensitive
and can be selected simply by clicking with the
left mouse button on an object’s outline. Selected
objects can be interactively moved, copied, or
deleted. It is also possible to scale and edit objects
by clicking the mouse button on special control
points and moving them to the required position.

As contours of an anatomical structure are often
similar from one slice to the next, the copy and
edit functions are very convenient for three-
dimensional segmentation of medical images. Af-
ter a region has been drawn manually in the first
slice that cuts the anatomical structure under con-
sideration, it is copied to a neighboring slice. In
many cases, only small parts of the contours then
have to be edited or redrawn to match the struc-
ture of the object in the new slice. (Spacing be-
tween slices is usually between 2 and 8 mm.)

Interpolation of contours. Because the interac-
tive delineation of contours is a time-consuming
task, a contour interpolation feature is included
that calculates the preliminary contour in a slice,
if contours in adjacent slices have already been
defined. The interpolation algorithm is based on
triangulation of the surface defined by two con-
tours.® Using this feature, the definition of vol-
umes of interest is performed as follows:

¢ QOutline the region of interest in the first, central,
and last slices of the CT or MRI data set.
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* The program interpolates preliminary contours
in all intermediate slices.

¢ Check the contour in an intermediate slice. If
the interpolation is unsatisfactory, the user can
edit the contour with the described editing func-
tions.

e The program interpolates again in all slices
where no user-defined contours exist.

Contouring along grey-level thresholds. Besides
manual segmentation, objects with sufficient
grey-level contrast can be segmented automati-
cally using a contouring algorithm that has been
taken from the literature.” This algorithm has
been very helpful for the definition of the outline
contour of the patient and for segmentation of
bony structures or lung tissue in CT images. How-
ever, this algorithm completely fails for more
complex objects with only small grey-level dif-
ference to the surrounding tissue.

User interface. The interaction is done completely
with the computer mouse. All user interface ob-
jects may be manipulated by the mouse. Func-
tions of the program can be started simply by
activating the mouse on icons in a control panel
or by selecting entries of pull-down menus. Dia-
logs with the user are handled with dialog boxes.
A dialog box consists of interactive elements such
as text entry fields, radioboxes, listboxes, and
scaleboxes. The user has a good overview of all
program functions and can fully concentrate on
the work on the screen. This kind of user interface
makes it fast and easy to use the program, a con-
sideration that is particularly important for inex-
perienced users.

Visualization. During and at the end of the seg-
mentation procedure, it is important to have the
possibility of checking the shape and the consis-
tency of the volume under consideration, prefer-
ablyin a three-dimensional view. Currently, there
are three visualization aids implemented in the
program:

¢ While drawing a contour in the working win-
dow, the contour is also shown in the corre-
sponding small overview window. Further-
more, all points where the slices perpendicular
to the slice in the working window cut the pre-
vious and current contours are shown in the
other two overview windows (Figure 3, top).

» A fifth window may be opened that shows a
selection of up to 16 CT or MRI images with the
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contours of the different volumes that have
been segmented previously (Figure 4).

¢ Another window may be opened that shows a
perspective view of the different contour
stacks, and thus provides a three-dimensional
impression of the segmented volumes (Figure 3,
bottom right).

Summary. Apart from the simple but limited con-
touring algorithm mentioned above, it is obvious
this procedure is very time-consuming for the ra-
diotherapist if the complete three-dimensional
picture is to be built up. There is a clear require-
ment for more sophisticated computer algorithms
to automate this process as far as possible. The
saving of time that will result will enable more
patients to benefit from the full three-dimensional
treatment, with consequent improvement in tu-
mor control and reduction in side effects.

The remainder of this paper reports on work that
has been carried out toward this goal. A brief
introduction to computer image segmentation is
given first, followed by a description of a method
for edge/region-based segmentation that was pro-
duced by the 1BM UK Scientific Centre during the
first phase of COVIRA. This has since been devel-
oped into an interactive system for hierarchical
probabilistic segmentation, which is fully de-
scribed in the following section.

Image segmentation

Segmentation is an important first step in analyz-
ing an image. A segmented image represents the
information in the image by delineating the
boundaries between regions that correspond to
different objects. This allows the amount of in-
formation to be reduced, and provides a descrip-
tion of the image contents better adapted to image
analysis. The problem of segmenting an image
into regions bounded by edges is classical in the
fields of image interpretation and computer visu-
alization, and no satisfactory, general solution
has been found.

Two principal methods of image segmentation
have been employed, using edges or regions. The
first type corresponds to finding the local discon-
tinuities in the grey-level intensity function of the
image. These local discontinuities (or points of
high gradient) characterize the abrupt intensity
variations that often indicate the presence of an
object in the image. Many techniques for edge
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detection have been developed, their purpose be-
ing to describe the image by a set of points that
constitute the boundaries of different objects in
the image.

The second type identifies homogeneous regions
in the image. The idea underlying this approach is
to describe the image by segmenting it into sets of
points that possess certain properties of homo-
geneity. Different types of homogeneity have
been used to characterize regions for the purpose
of detection. For example, smooth regions can be
detected on the basis of their roughly constant or
perhaps smoothly varying intensity, while zex-
tured regions can be detected on the basis of the
similarity of the texture across them. The use of
texture detectors is not considered further here.

From a theoretical point of view, the two ap-
proaches (of edge and region detection) are com-
plementary, in the sense that knowledge of the
edges allows the regions to be deduced and vice
versa. However, in practice the two methods give
rise to different algorithms that produce different
results, each having its own peculiarities. Some
simple images can be satisfactorily segmented us-
ing edges alone, although gaps may be created
when imaging noise disrupts the performance of
the edge detector. The boundaries of smooth re-
gions may identify edges not detectable by an
edge detector; however, they may be false bound-
aries that have no physical significance.

It is better to combine information from the edge
and region detectors, in order to produce a more
reliable result. The edge detector uses informa-
tion in a small locality to detect points at which
the image intensity gradient is high, whereas the
region detector exploits information gathered
from many more points (and can, for example, fill
gaps left by an edge detector). A system for
edge/region-based segmentation was imple-
mented by the IBM UK Scientific Centre for use in
the first phase of the COVIRA project.

Edge/region-based segmentation

A survey of the literature has not revealed a de-
finitive method for combining edge and region in-
formation to improve the segmentation. Basi-
cally, there are two possibilities to consider:

¢ To give priority to the edge information
* To give priority to the region information
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It was decided to take the edge information first,
and then use a region-growing algorithm to fill in
the discontinuities in the edge map. The edge de-
tector chosen is described in Reference 8 by
Canny and is one of the most successful edge
detectors today. One of the major advantages of
using Canny’s method in this application is that it
gives clean edges with good localization. It has
some deficiencies, notably in the area around
junctions. However, this deficiency has been rec-
tified, using the method discussed in Reference 9.

The Canny operator. The Canny operator finds
edges by locating points of maximum gradient
(edgels) in the grey-level intensity of the image.
Thresholding is needed to separate the useful,
stronger edges from weaker edges due to noise in
the image. A hysteresis algorithm is used in which
all edgels above an upper threshold are retained,
as are weaker edgels that are connected to these
strong edgels, provided that the weaker edgels
exceed a lower threshold. The choice of suitable
thresholds was originally made on an empirical
basis, and later confirmed by a gradient descent
method. These thresholds proved to give satis-
factory results on more than 20 images from 6
different patients.

This process inevitably leads to gaps in the edges
where there is insufficient contrast in the image.
A region grower can be invoked in an attempt to
repair these gaps by using information from a
wider area, not just locally at the edge. A state-
of-the-art region-growing algorithm was used,
based on the work in Reference 10, in which
smooth quadratic patches are fitted to the regions.
(This is more general than simple thresholding,
allowing second-order edges, missed by gradient-
based edge detectors, to be recovered.) In prac-
tice we found that constant smooth patches gave
better results on our MR images. The edge infor-
mation is used to generate seed points for the
region grower. It also limits the growth of the
regions, thus intimately linking the two pro-
cesses.

Region detection process. There are three distinct
phases in the region detection process, as follow:

* A coarse resolution phase in which 2 X 2 pa-
rameterized patches (mean and variance) are
merged on the basis of the likelihood ratio de-
scribed in Reference 10. The Canny edges de-
fine the starting point for a new region to be as
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far as possible from the end of any edge, thus
ensuring that the growing region is as large as
possible before it encounters a broken edge. At
each stage the most likely new patch is merged
into the region. Regions are not allowed to cross
Canny edges, and growth is stopped when there
are no more patches that can be added without
exceeding a threshold on the likelihood ratio.

* A second phase extends the above process to
fine resolution (single pixel), continuing on from
the first phase into unvisited areas of the image.
(The unvisited areas are those 2 X 2 patches
that contain Canny edges.)

* It is possible that parametrically homogeneous
regions of the image are split into two or more
regions, for example where the Canny edges
form a bottleneck through which the region
grower cannot pass. Therefore we have a third
phase in which adjacent regions are merged,
unless they have some small number of Canny
edgels between them. (This reflects our strategy
that the region grower is used to supplement the
original edge information.)

A typical result of this process can be seen in
Figure 5. On the left is a transversal MR image of
the brain, in which a tumor is clearly visible. On
the right is the computer segmentation, with the
Canny edges shown in green. Gaps in these edges
closed by the region grower are shown in yellow.
For further details of this process, refer to Ref-
erence 11.

Clinical validation. In order to assess the clinical
usefulness of the results, the results were com-
pared to manual segmentations provided by ra-
diologists from the Gregorio Marafion Hospital,
Madrid. The radiologists were asked to mark
boundaries in the images that they considered
useful. Allowing an error of one pixel between the
two segmentations, we typically observed that 85
percent of the edgels marked by the radiologists
were found by the edge/region segmentation al-
gorithm. This is shown in Figure 6, which shows
the manual contours from the radiologists. Those
parts found by the computer are marked in red,
the remainder in yellow. Note that about 35 per-
cent of the computer edgels did not correspond to
any manual edge. It is clear that no amount of
manipulation of the various thresholds in the al-
gorithm would produce 100 percent correspon-
dence. This is in part due to the fact that the ra-
diologists used their clinical knowledge in
deciding which boundaries to mark. This knowl-
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edge is, of course, not available to our data-driven
process.

Conclusion. We were led to the conclusion that an

interactive process is required, in which the cli-
nician is enabled to input clinical expertise in a

An interactive process is
required to input clinical
expertise.

simple, straightforward way. The interest then
centers on how to exploit automatic methods for
detecting edges and regions in order to minimize
the manual interaction required. Ideally, one
would like the human user to feel that the inter-
actions are a way of exercising professional judg-
ment—as, for example, adjusting a boundary to
reduce radiation risk to the optic nerve—rather
than a tedious chore that the machine ought to be
able to carry out.

A method developed by the UK Scientific Centre
to do this is described in the next section.

Hierarchical probabilistic segmentation

The work described above, using a combination
of edges and regions, gave good results and com-
pared favorably with other methods, but it is not
fast enough for interactive use. (On an IBM RT
6150 Model 135 workstation, the edge detector
takes about one minute, and the region detection
up to 60 minutes for a 256 X 256 image.) Also, no
account was taken of the edge strength informa-
tion. In the new method each edge is given a con-
fidence in the form of a percentile (between 1 and
100 percent) based on its likelihood calculated
from Bayesian belief updating, an application of
methods described in Reference 12. Region vari-
ance information is incorporated into this likeli-
hood in addition to edge strength. We have also
experimented with including the results of sym-
metry matching and adding the additional infor-
mation present in a second sensor channel in MR
imaging.
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The user interface exploits the confidence per-
centile by means of a slider. By adjusting it using
the pointer, different segmentations can be ob-
tained, as in Figure 7. These adjustments can be
made in real time using a lookup table. In this
way, a hierarchy of segmentations can be readily
presented. Figure 7A shows the slider set to the
lowest probability so that all regions are dis-
played. Moving the slider to increase the proba-
bility causes more and more regions to be com-
bined (Figures 7B and 7C) until only the most
likely are displayed (Figure 7D). The user can
select a region at any particular setting of the
slider, as in Figure 8. If desired, the region can be
merged with others. Once a region is completed,
any interior edges are removed and they no longer
appear when the slider is readjusted.

Bayesian probabilities. A fundamental question is
how information found from different sources us-
ing automatic methods can be combined in a man-
ner that a human user can readily understand. In
fact, integration of information is an important
consideration whether human interaction is to
take place or not. It is a topic of current research
in machine visualization and in artificial intelli-
gence work generally.

In principle, the method of Bayesian probabilistic
belief updating'? appears to provide a promising
answer because it allows the weighing of different
evidence strengths. For example, a weakly de-
tected edge should be strengthened if there is sup-
porting evidence from the surrounding regions.
But it is not a trivial matter to apply the theory
efficiently to two-dimensional data. One custom-
ary approach is to perform iterative convergence
using the Markov random field model. Such iter-
ations are notoriously slow to converge. The dif-
ficulty lies in the fact that belief propagation
works well in (one-dimensional) chains but not in
(two-dimensional) fields.

It is therefore more tractable to deal with the
edges, since these are mostly arranged as one-
dimensional chains. In Canny’s method, a sim-
plified form of belief updating takes place in the
hysteresis algorithm, which propagates support
from strong edge points to weaker neighbors. (We
experimented with several more sophisticated
forms of belief propagation but failed to better the
results achieved with the standard hysteresis al-
gorithm.)
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Probabilities of edgels. The main result of the
edge detector is to determine that certain points
in the image are edge points, or edgels, and to give
them a strength based on the local intensity gra-
dient. The standard hysteresis algorithm then re-
tains edgels that are stronger than an upper
threshold and also retains weaker edgels that are
connected to these strong edgels, provided that
the weaker edgels are at least as strong as a lower
threshold.

In our experiments, strengths ranged from 1 to
over 150 (based on intensity values of 0 to 255)
and the thresholds were typically 10 and 25. In the
256 by 256 images we often deal with, one may
find perhaps 3000 edgels stronger than 25, another
2000 or so in the range 10 to 25, and maybe 10000
below that strength. In the crucial middle range,
the hysteresis algorithm will retain about two-
thirds of the edgels, and we produced statistics to
show a good correlation with results obtained
manually. Below the threshold, we find a smaller
proportion of useful edgels. (Some information
about calibration against manual results appears
in the section on calibration later in this paper.)

Rather than discard these useful edgels with the
other weak ones as the standard algorithm does,
we retain them with low probabilities, so that the
information is not lost. Using the interactive
slider technique, edges containing these unlikely
edgels tend to appear at the bottom of the hier-
archy (the lowest slider setting) and so may easily
be discarded if the user desires. The edge
strengths are converted to probabilities so that
the information discovered by the hysteresis al-
gorithm can be combined with the strength infor-
mation in a consistent framework. Hence, edgels
that satisfy the threshold criteria are given higher
probabilities than the others. The probabilities
are obtained from a table created by the calibra-
tion process (see the later section).

Meanings of the probabilities. The probability
of an edgel needs to be defined. We adopt a
task-oriented definition, based on the need to
maximize the productivity of later processes and
especially of the human interaction. If the prob-
ability of an edgel is 10 percent, this means that
there is a 10 percent chance that it will be retained
by later processes, including the human inter-
action.
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Probabilities can be revised as new evidence is
considered. This is detailed in the section on com-
bining information.

Initial segmentation. We need to be able to com-
bine evidence and weigh alternative hypotheses
effectively, avoiding the classical Al bugbear of
the combinatorial explosion. This needs to be
done quickly, since a human user interaction is
also required. The user interface also needs to be
able to present choices without cluttering the
screen with too much derived information.

In order for the Bayesian belief updating to work
within these constraints, an initial segmentation is
carried out automatically. This initial segmenta-
tion results in a set of regions, with each pair of
regions separated by an edge (made up of edgels).
The initial segmentation is at the bottom of the
hierarchy of segmentations and is displayed when
the user sets the slider to the lowest value. Al-
though the eventual segmentation will be different
from the one produced initially by this method,
there is likely to be a useful number of reliable
edges and regions detected that need no further
change. For example, in the cranial MR image of
Figure 7, the major boundaries of the skull and the
tumor are reliably detected and the ventricular
region is a combination of a small number of
subregions.

It can be seen that, instead of reasoning at the
level of pixels, edgels, or patches of an image,
later processes—including human interaction—
can work mainly at the level of regions and edges.
This is likely to be much more convenient. Two
regions can be merged, eliminating the edge that
separates them. A region can be split by defining
a new edge within it. These later processes avoid
a complex interaction with the early (low-level)
edge and region detectors by virtue of the sum-
marized result provided in the confidence as-
cribed to each edge, which is calculated from the
edgel and pixel data.

Closing gaps. A prerequisite for this approach is
to be able to find closed boundaries of regions.
Unfortunately the edge detection method used
does not provide closed boundaries. The detector
finds edgels that can then be joined into edge seg-
ments. Further work must be done to close the
gaps between them in order to find the regions.
There are other methods that do find closed re-
gions, notably the one due to Marr and Hildreth,
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but the positional accuracy is poorer than is ob-
tained with the method by Canny.

We have experimented with several ways of clos-
ing gaps between edges. So far, the most suc-
cessful has been a straightforward search among
neighboring feature points, followed by straight-
line interpolation. A feature point may be an iso-
lated edgel, a corner, or a terminator; a termina-
tor is an end of an edge segment.

Once every terminator and isolated point has
been joined to another edgel, the existing edge
segments plus the interpolated edges form a net-
work of closed boundaries. A flood algorithm can
then be used to label every pixel (except the ed-
gels) in the image as belonging to a region, each
region being identified by a numeric label. This
turns out to be a fast method of finding regions,
taking approximately half a second (for a 256 by
256 image) on an IBM RISC System/6000 Model
530H. The complete process, starting with the
image up to the point where the user can com-
mence interactive work, takes about five sec-
onds.

We can then label the edgels too, because we
define every edge as the boundary between a pair
of regions.

Combining information. Once a set of closed
boundaries has been found, it is easy and efficient
to gather statistics, such as mean and variance,
from all the pixels in the regions. This information
can be combined with the edge evidence in a Bay-
esian framework because a convenient basis now
exists for hypothesizing and reasoning about new
edges and regions.

Three factors are combined to determine the
probability of an edge:

» The average probability of the edgels in the
edge, a

» Whether the edge includes an interpolation, i

» A region variance statistic, s

The statistic s is found by considering the pair of
regions R,, R, which separate the edge E, to-
gether with the combined regionR = R UR, U
E. If vis the variance of R and m,, m,, m are the
means of R, R,, R, respectively, then
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(m; —m)* + (m, — m)*
s 3
v

Two tables are produced by the calibration pro-
gram giving conditional probabilities p(H|a,i)
and p(H|s) where H represents the hypothesis
that the edge will be retained by later processes,
including human interaction. Using these tables,
we calculate the posterior odds on each edge
given the statistics a, i, s, assuming that the edge
and region evidence are conditionally indepen-
dent, as

(Hla,i,s) = O(H )L(a,ilH)L(s|H)

Here

are the prior odds before looking at any evidence,
and

p(s|H)

L) = )

is the likelihood of a particular value of the sta-
tistic s given a hypothesis H. To get the likeli-
hood, we note that

L O(H|s)
6H) = 55y

which gives an expression in terms of p(H|s) and
similarly for p(H|a,i).

Hierarchy of segmentations. Once we have ob-
tained a probability for each edge in the initial
segmentation, we have defined a hierarchy of seg-
mentations, because we can remove one edge at
a time (the least likely), each time merging a pair
of regions until the whole image becomes one re-
gion. At each stage we have a complete segmen-
tation in which all the edges form closed bound-
aries to the regions.

Each time an edge is removed, two edges and one
region will normally be merged. Thus if E sepa-
rates regions R; and R, and 4, B, C, D are other
edges as illustrated in Figure 9, removing E
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will cause two new edges F = A U Band G =
C U D to be created as well as the combined
region R = R, U R, U E. Statistics must be
accumulated for these new entities and probabil-
ities must be calculated for the combined edges F
and G.

An individual edgel b in B could be part of several
hierarchically superior edges above F. Eventu-
ally, though, as we progress up the hierarchy of
segmentations removing edge after edge, the one
containing b will disappear. Thus the edgel b be-
longs to several edges, one of which is the most
superior in the hierarchy. Call it §.

When the interactive user moves the slider up,
the less likely edges disappear, and, when it is
moved the other way, they reappear. This must
always be done in such a way as to preserve the
integrity of the segmentation, i.e., so that regions
are always enclosed and edges do not have dan-
gling ends. In order to achieve this while avoiding
ponderous data structures, individual edgels are
given the probability of the most superior edge to
which they belong. Hence edgel b is given the
probability of edge S.

The edge probabilities are converted to percen-
tiles in order to maximize the discrimination
available by use of the slider. By assigning the
values to individual edgels, a look-up table can be
used to manipulate what is displayed on the
screen during interactive sessions. This ensures
much better performance than would be possible
if the screen were redrawn every time the slider
is moved.

Interaction. The interactive user may move the
slider at any time to change the visible edges. In
addition, the following actions can be selected.
Each of these actions uses the edges visible at the
time, according to the setting of the slider.

» Define region. After selecting this action, the
user should click the mouse in one or more re-
gions; if they adjoin, they will be merged.

» Define edge. After selecting this action, the user
should click the mouse on two or more points.
Straight lines will be drawn between them. The
ends of the newly defined edge will be truncated
or extrapolated to join with existing edges.

» Save. The edges and regions visible on the
screen will be saved as the result of the inter-
active session. This applies both to the edges
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and region boundaries defined by user actions
and to the edges visible as a result of the setting
of the slider.

& Quit. No result is saved.

A newly defined region or edge can be undone by
clicking the right mouse button before commit-
ment takes place. An edge or region is committed
when the user selects another action. After that,
the edge or the boundary of the region appears in
a different color and is unaffected by the slider.
Edges inside the region no longer appear when
the slider is moved. It is still possible for the user
to make changes by defining new edges or merg-
ing regions.

The interactive user therefore has complete con-
trol while having access to the best segmentation
results available from a combination of automatic
algorithms.

Calibration. The result of the interaction can be
used in our application for the preparation of a
treatment plan. The result can also be used to
calibrate the tables of probabilities for use on sub-
sequent images. Initially the tables were prepared
from the results of segmentations performed man-
ually by collaborating radiologists in Madrid
(Kuhn™ et al., 1990) but now the probabilities can
be refined from the more relevant statistics gen-
erated from using this tool.

Hence, the needs of particular specialities or the
requirements of differing imaging modalities (MR,
CT) can be accommodated adaptively.

The required conditional probabilities are as fol-
lows. The meaning is the probability that the edge
or edgel will be retained.

¢ An edgel, given its strength and whether or not
it is supported by connection to a stronger edge
(used in Canny and hysteresis algorithms)

¢ An edge, given the average probability of its
constituent edgels and whether or not it in-
cludes an interpolation

¢ An edge as the boundary between two regions,
given the variance statistic

The calibration process matches edgels and edges
in the automatic segmentation with those result-
ing from interactions. Counts of matched and un-
matched edgels and edges are accumulated
against the strengths and other statistics and the
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probabilities are readily derived from these quan-
tities. Counts can be accumulated from many im-
ages in order to obtain more reliable numbers.
Where totals are too small, consolidation and in-
terpolation are performed to ensure that the prob-
ability distribution functions are monotonic.

Matching. As a matter of terminology we say that
matching is done from automatic edgels or edges
to manual ones, the latter being produced either
with this tool or otherwise.

Since the initial work was done on manual seg-
mentations performed independently of this tool,
there is some flexibility in allowing for matching
edgels, provided that they are within a 1.5 pixel
distance (the distance between two diagonally ad-
jacent pixels).

When matching edges, we require that an auto-
matic edge must overlap with one or more manual
edges. Recall that an edge is the boundary be-
tween a pair of regions. If there is a manual region
that has pixels on both sides of an automatic edge,
then that edge does not match.

Conclusion

We have outlined one of the problems that exists
in three-dimensional radiotherapy today, that of
defining tumor volume, target volume, and organs
at risk in three-dimensional CT and MR data sets
(a necessary precursor to producing a complete
three-dimensional radiation treatment plan). We
have described work that has been carried out in
an attempt to solve this problem by replacing
time-consuming manual image segmentation by
computer-assisted interactive image segmenta-
tion, in which the computer relieves the user of
much of the tedious work, and enables the oper-
ator to use clinical judgment to achieve the de-
sired result. Using a state-of-the-art worksta-
tion—the 1BM RISC System/6000-—we have shown
that true interactive speeds are achievable in this
context.

Other algorithms under investigation at the IBM
UK Scientific Centre include another develop-
ment of the original edge/region segmentation
method. In this case the user interactively indi-
cates seed points for a statistical region growing
process, which can be inhibited by edges detected
in the image. This method will be extended to the
statistical growth of three-dimensional-volumes
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on a slice-by-slice basis. Particular attention is
being given to the development of direct three-
dimensional segmentation algorithms, and we
have produced a three-dimensional version of the
Canny edge detector with hysteresis. The main
research problem here is how to visualize and
interact successfully with the three-dimensional
data.

Although this work is primarily concerned with
medical images, the same algorithms can of
course be applied to applications in any field
where it is necessary to extract information from
complex data sets prior to further analysis.

In the main phase of COVIRA, our methods, in
company with algorithms produced by other part-
ners in the project, will be subjected to extensive
clinical evaluation at the German Cancer Re-
search Center (Heidelberg, Germany) and the
Royal Marsden Hospital and Institute of Cancer
Research (Sutton, UK). By this means we ensure
that the work has a clinical focus, for the ultimate
benefit of the patient.

Acknowledgments

We acknowledge the support given to this work
by the Commission of the European Communities
under the AIM program. Other partners in the AIM
Exploratory Action Project A1011 COVIRA were
Philips Medical Systems (Hamburg, Germany),
the University of Hamburg (Germany), the Uni-
versity of Genoa (Italy), and the Gregorio Ma-
rafion General Hospital (Madrid, Spain) who sup-
plied the MR images and manual segmentations.

We would also like to acknowledge the contribu-
tions of G. Brelstaff and M. Ibison to the
edge/region-based segmentation work, and of
W. Dickson to the hierarchical probabilistic seg-
mentation work.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Digital Equipment
Corporation, Massachusetts Institute of Technology, or Open
Software Foundation.

Cited references

1. W. Schlegel, “Computer Assisted Radiation Therapy
Planning,” in NATO Series F 60, 3D Imaging in Medi-
cine, K. H. Hohne, Editor, Springer, Berlin, Heidelberg
(1990), pp. 399-410.

ELLIOTT, KNAPMAN, AND SCHLEGEL B33




2. H. Suit and W. Du Bois, “The Importance of Optimal
Treatment Planning in Radiation Therapy,” International
Journal of Radiation Oncology and Biological Physics 21,
1471~1478 (1991).

3. M. Goitein and M. Abrams, “Multi Dimensional Treat-
ment Planning: I. Delineation of Anatomy,”International
Journal of Radiation Oncology and Biological Physics 9,
7717-787 (1983).

4. B. Bauer-Kirpes, W. Schlegel, R. Boesecke, and W. J.
Lorenz, “Display of Organs and Isodoses as Shaded 3D
Objects for 3D Therapy Planning,” International Journal
of Radiation Oncology and Biological Physics 13, 135-
140 (1987).

5. R. Bendl, J. Pross, and W. Schiegel, “Application of
Computer Graphics in 3D Radiotherapy Treatment Plan-
ning: Manual Segmentation and Virtual Therapy Simula-
tion,” in Proceedings of the Third Joint Seminar on Med-
ical Informatics and Bioengineering, H. Dickhaus,
T. Leo, and P. Russo, Editors, University of Ancona
(1990), pp. 20-32.

6. H. N. Christiansen and T. W. Sederberg, “Conversion of
Complex Contour Line Definitions into Polygonal Ele-
ment Mosaics,” Computer Graphics 12, 187-192 (1981).

7. W. V. Snyder, “Contour Plotting,” ACM Transactions on
Mathematical Software 4, No. 3, 290-294 (1978).

8. J. F. Canny, “A Computational Approach to Edge De-
tection,” IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-6, No. 6, 679-698 (1986).

9. D.Li, G. D. Sullivan, and K. D. Baker, “Edge Detection
at Junctions,” Proceedings of the 5th Alvey Vision Con-
ference, Reading, UK (1989), pp. 121-125.

10. J. F. Silverman and D. B. Cooper, “Bayesian Clustering
for Unsupervised Estimation of Surface and Texture
Models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI-10, 482-495 (1988).

11. G. J. Brelstaff, M. C. Ibison, and P. J. Elliott, “Edge-
Region Integration for Segmentation of MR Images,”
Proceedings of the British Machine Vision Conference,
Oxford (1990), pp. 139-144.

12. J. Pearl, Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference, Morgan Kaufman Pub-
lishers, San Mateo, California (1988).

13. D. Marr and E. Hildreth, “Theory of Edge Detection,”
Proceedings of the Royal Society of London B 207, 187-
217 (1980).

14. M. H. Kuhn, 1. C. Carlsen, S. Dellepiane, P. Elliott,
F. Galvez-Galan, H. Neumann, and H. S. Stiehl, “Com-
puter Vision in Radiology (COVIRA): Knowledge Based
Segmentation and Interpretation of Cranial Magnetic Res-
onance Images,” AIM Euroforum, Sevilla, Spain (De-
cember 1990), pp. 169-180.

Accepted for publication September 17, 1992,

Peter J. Elliott IBM UK Scientific Centre, Athelstan House,
St Clement Street, Winchester, Hampshire SO23 9DR, United
Kingdom (electronic mail: pjelliot @winvmd.vnet.ibm.com).
Dr. Elliott graduated with first-class honors in physics at the
University of Sussex, UK, in 1968. He joined IBM UK Lab-
oratories Ltd., Hursley Park, to work on thin film magnetic
recording heads for disk files. Sponsored by IBM, he carried
out research on amorphous semiconductor thin films at the
Cavendish Laboratory, Cambridge, UK, leading to his Ph.D.
in 1975. He subsequently worked on the development of a
number of disk storage devices, gaining experience in tech-

634 ELLIOTT, KNAPMAN, AND SCHLEGEL

nical project management. In 1989 he joined the IBM UK
Scientific Centre, working on medical image analysis. He was
instrumental in setting up the European consortium for the
main phase of COVIRA (COmputer VIsion in RAdiology),
and is currently project manager of the consortium.

John M. Knapman IBM UK Scientific Centre, Athelstan
House, St Clement Street, Winchester, Hampshire SO23 9DR,
United Kingdom (electronic mail: knapman @winvmd.vnet.
ibm.com). Dr. Knapman graduated in mathematics as a wran-
gler at the University of Cambridge, UK. He joined IBM
United Kingdom as a systems engineer, eventually special-
izing in databases and fourth-generation languages, providing
customer consultancy across Europe and in the United States.
He earned his Ph.D. in artificial intelligence at Edinburgh Uni-
versity during this time. He joined the Scientific Centre in 1985
to work on image analysis and computer vision, applied to
robot guidance, industrial inspection, and medical image un-
derstanding.

Wolfgang Schlegel German Cancer Research Center
(DKFZ), Im Neuenheirmer Feld 280, D-6900 Heidelberg, Ger-
many. Dr. Schlegel studied physics, mathematics, and chem-
istry at the Free University of Berlin from 1964-1968. He
received his diploma in physics at the University of Heidel-
berg in 1970, and his Ph.D. in nuclear physics at the Max
Planck Institute for Nuclear Physics in 1972. After a position
as a research associate at the Max Planck Institute in Heidel-
berg he joined the German Cancer Research Center in 1973,
where he initiated digital image processing of biomedical im-
ages and computer simulation of procedures in cancer ther-
apy. Since 1976 he has held the position as head of the group
for radio-oncological computing at the Institute of Radiology
of the German Cancer Research Center. Since 1988, he has
had the Venia Legendi for teaching medical physics at the
University of Heidelberg. Dr. Schlegel is author of more than
100 scientific papers on image processing and computer-as-
sisted treatment planning in radiation therapy and neurosur-

gery.

Reprint Order No. G321-5489.

IBM SYSTEMS JOURNAL, VOL 31, NO 4, 1992



