
Design considerations
for distributed
applications

by J. J. Rofrano, Jr.

Probably the hardest part about developing a
distributed application is determining where to
start, There are multiple hardware and software
platforms to understand, network traffic
implications, and numerous tools and
technologies to consider. One question, however,
transcends the importance of what platform to
pick or what tool to use: that is, how do you
design it? This paper represents the results of
two years of work with customers regarding this
question. The paper explores some of the
implications of working in a distributed
environment, reviews some rules for data and
function placement, and introduces a
methodology for distributed application design.

T wo popular terms, cooperative processing
and clientlserver, are used to describe dis-

tributed applications. These two terms, however,
often mean various things to different people. In
the context of Systems Application Architecture*
(sa*) , an SAA application is one that runs on an
SAA platform, conforms to Common User Ac-
cess* (CUA*), uses the Common Programming In-
terface (CPI), and is designed for cooperative pro-
cessing. ’ Most people understand hardware and
software platforms and what a common program-
ming interface is. However, the expression “de-
signed for cooperative processing” brings to mind
a broad definition of an application that can be
split between a programmable workstation (PWS)
and a host. Likewise, the term clientlserver has
been often broadly defined as an application
whose “client” part makes requests from a “serv-
er” part that resides somewhere in a local area
network (LAN) environment.

564 ROFRANO

A distributed application requires more logic
than just the communications between a work-
station and a back-end server or host. Different
programming paradigms must be blended and in-
terfaced. One paradigm views the PWS as an ex-
tension of the host world; the other views the host
as an extension of the PWS world. We examine the
two approaches in greater detail but, regardless of
one’s perspective, the graphical user interface
found on the present programmable workstations
has an impact on the design of the application.

The mix of skills needed to implement distributed
applications may have an impact on the organi-
zation of current software development depart-
ments. Most end-user’s jobs were probably de-
fined by existing computer applications, whereas
new applications should expand the existing
scope. In fact, if the application does not change
the work habits of people, then the technology is
not being exploited. Many things are to be con-
sidered in designing the physical connection be-
tween the portions of the distributed application,
such as scalability, configurability, and perfor-
mance.

This paper reviews some of the issues involved in
understanding the distributed processing envi-
ronment and designing applications to take ad-

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

vantage of it. Allan L. Scherr introduced a matrix
approach to determining where to place applica-
tion function and data in a network.’ This paper
is based on his work and introduces a tool called
the object/action matrix, which is built on
Scherr’s initial matrix design. We expand on the
rules for data and function placement, and review
a methodology for distributed application design
using the object/action matrix.

SAA is the example environment, but since this
methodology is independent of the application de-
velopment tools that are used, it will apply to the
Advanced Interactive Executive* (AIX*) and
other environments.

Distributed application models

Since there has been widespread usage of the
terms cooperative processing, distributed pro-
cessing, and clientherver computing, we first de-
fine the terms as they are used throughout this
paper.

Distributedprocessing is the distribution of func-
tion or resources across two or more intercon-
nected processors. These processors can be any
combination of mainframe, midrange, or pro-
grammable workstation. The distribution may be
transparent or overt. Distributed processing is a
generic term that includes cooperative processing
and clienthewer computing.

Cooperativeprocessing is a term that mainframe
users created to talk about an application whose
functions are divided between a mainframe
processor and a programmable workstation
(PWS). It is a “host-centric’’ view of the world in
which the PWS adds value to the mainframe by
providing a better human interface and perhaps
some additional processing. Cooperative pro-
cessing is a form of distributed processing.

Clientlserver computing is a term that personal
computer (PC) users created to talk about an ap-
plication whose functions are divided between a
programmable workstation and a LAN server. It is
a “workstation-centric,’ view of the world in
which the LAN server adds value to the worksta-
tion by carrying out work on its behalf. Some
users extend the definition to include enterprise
servers, which are traditional mainframes and
minicomputers that have now taken on a new
role. The network operating system provides sev-

IBM SYSTEMS JOURNAL, VOL 31, NO 3. 1992

era1 transparent services, making this environ-
ment very attractive to programmers and end
users alike.

From a software design perspective, the client is
the one making the request, while the server is the
one who does the actual work to satisfy the re-
quest. Most people think of clientherver in hard-
ware terms, with the PWS always being the client.
One look at X Windows* * confirms that this view
is flawed. The server is the place the work actu-
ally gets done. For a database request, the server
is the machine that applies the request to the ac-
tual data. For a display request in an X Windows
environment, the server is the PWS that executes
the display request on behalf of the host process
that made it.

For both of these forms of distributed processing,
the work is shared between two or more proces-
sors. This may be the result of a conscious deci-
sion by the application developer to execute func-
tion on a particular platform, or it may be a
transparent system service provided by the un-
derlying network or operating system. The ob-
jective is to extend the domains of applications
across local area networks (LANS) and wide area
networks (WANS), and expand the role of both the
traditional host and the programmable worksta-
tion by exploiting the unique capabilities of each.

The relationship between distributed parts of an
application can be either peer-to-peer, callhe-
turn, or event-driven. The three communication
models that implement these relationships are:
the conversational model, the remote procedure
call (RPC) model, and the message and queueing
model.

The conversational model is one model for dis-
tributed processing where the two application
halves agree on who has the right to send and who
will receive data based on established protocols
(peer-to-peer). The initiating application usually
starts with the right to send data. When the ini-
tiating application has completed sending and
agrees to receive data, the roles are reversed.
This role reversal continues until processing is
complete and the conversation is terminated.
This model is implemented on some systems
through the Advanced Program-to-Program Com-
munications (APPC) interface.

Remote procedure call is a call/return model
where application functions interact in a request-
er/server relationship. The requesting program
makes a request of the server program to provide
some service. The server program then carries
out the task and completes the process, usually
by returning some results. Since services can be
local or remote, this model introduces an element
of transparency in which the application can be
unaware of where the actual service is performed.
This model is implemented by the Open Software
Foundation (OW) Distributed Computing Envi-
ronment (DCE) remote procedure call application
programming interface (API), often referred to as
DCEIRPC. The Transmission Control Protocol/In-
ternet Protocol (TCPIIP) also has an RPC mecha-
nism.

Message and queueing (MQ) is an event-driven
model for writing distributed applications. The
communication between functions is performed
by placing a message event on a queue, which is
routed to the called function’s queue. The mes-
sage is then taken off the queue and processed. It
is, by default, an asynchronous model but if a
result is needed, the function called can return a
message, thus simulating a synchronous call.
E-Mail is one example of message and queueing.
Because of this, some people refer to messaging
as “datagrams.”

Messaging uses a connectionless paradigm. There
is no knowledge of the underlying transport or
topology. The message is sent to the first queue
along with the destination address and all inter-
queue routing is transparent to the calling appli-
cation. In fact, the function being placed on the
queue may not even be running at the time the
message is sent. This provides for off-line or batch
processing of messages.

Messaging is widely used in computer-integrated
manufacturing (CIM), where it is appropriate for
alerts and the asynchronous starting and stopping
of jobs and machinery. The added advantage of
being connectionless allows the shop floor to be
reconfigured during run time. The application is
unaware of the change. The IBM Distributed Au-
tomation Edition (DAE) is one implementation of
this model and is generic enough to be applicable
for application developers outside of CIM.

Two more terms may require clarification: pro-
grammable workstation and host.

566 ROFRANO

Programmable workstation (PWS) refers to a Per-
sonal System/2*- (PS/~*-) class workstation run-
ning Operating System/2* (os/2*), AIX, or PC-DOS.
We assume that the PWS has a graphical user in-
terface such as Presentation Manager*, AIXwin-
dows*, or Microsoft Windows* *. The graphical
user interface assists in the distributed goal of
exploiting each processor for what it does best. A
traditional time-sharing system simply cannot af-
ford to dedicate the resources necessary to ma-
nipulate the end-user interface like a PWS. The
PWS gives all applications an easy-to-use common
“look and feel” independent of the back-end pro-
cessor.

The PWS can physically be connected to other
computers via a local area network, or be at-
tached to a mini- or mainframe via a wide area
network.

In this paper, the back-end processor is referred
to as a host. What makes it a host is its ability to
execute function on an application’s behalf and to
share resources with other workstations. This pa-
per considers mainframes, minicomputers, and
LAN servers all to be hosts when they fit the above
description.

Whether trying to exploit the capabilities of the
PWS from host-based applications or trying to ac-
cess host data and resources from Pws-based ap-
plications, the objective is the same: to integrate
the role of the PWS into the enterprise information
system.

Most applications will operate in multiple modes.
They do this by sometimes becoming a client to
the OW2 LAN services to perform a function, while
at other times they may need to use a conversa-
tional model like APPC to get at back-end func-
tions on the server. Even servers may become
clients of other servers in the process of servicing
a request.

All distribution is performed by some form of pro-
gram-to-program communications. The question
is, does the developer write that communications
function into the application logic, or provide
some means of making it transparent to the ap-
plication by either utilizing networkkystem serv-
ices or by writing the developer’s own request-
odserver interface?

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

The distributed view

The role of the PWS has often been referred to as
the window to the enterprise. All applications will
be transparently accessed from a common work-
station platform whether they are local, remote,
or distributed. The enterprise network will be-
come less apparent to the end user. Distributed
processing expands the role of the PWS to that of
an active participant in the enterprise. Rather
than just being the window into the user’s appli-
cations, it becomes active in the execution of the
user’s applications as well (see Figure 1). The end
user sees a seamless application with transparent
access to function and data.

Advantages of distributed processing. One of the
primary reasons for implementing distributed
processing is to utilize each processor for its
unique capabilities. The resulting application
should provide a better result than could have
been achieved with either the PWS or mainframe
technology alone.3 We are already familiar with
mainframe capabilities. A better understanding of
PWS capabilities is needed. Some mainframe end
users may already be familiar with PWS capabil-
ities, but does the “glass house” programming
department understand it? The user interface of a
distributed application needs to remain highly in-
teractive while the back-end host or server is also
busy processing data. The user does not neces-
sarily have to wait for host processing.

Multitasking. Some tasks such as a credit check
or customer number search can be done in the
background while the user continues to interact
with the workstation in the foreground. Other
functions such as accessing insurance rate tables
and other “table lookup” functions can be per-
formed without ever going up to the enterprise
host by storing the data on a work group LAN
server or even at the workstation. This worksta-
tion processing can also be done in the back-
ground because of the multitasking capabilities of
most workstation operating systems. Programs
should not be written with the assumption that the
end user is waiting for a transaction to complete.
Users could very well be working on the next
transaction or even working with another part of
the application during wait times.

Design changes. In order to design an application
with simultaneously highly interactive front and
back ends, we need to change our current mono-

IBM SYSTEMS JOURNAL, VOL 31. NO 3, 1992

lithic, hierarchical, “panel-oriented” way of de-
signing applications and move to an overall in-
terface design that is modular and event-driven.
Event-driven applications place the end user in

The user interface of a
distributed application needs to

remain highly interactive.

control of application flow, not the programmer.
They also give programmers the freedom they
need to place function on various platforms while
maintaining the user interface code at the PWS.
We discuss these two application designs in more
detail in the next section.

Productivity. Increased productivity and ease-of-
use of the programmable workstation are some of
the advantages distributed processing offers.
Some people find it easier to interact with a graph-
ical interface than with the traditional character-
based interfaces on host systems. An advantage
in some environments is the ability to invoke mul-
tiple copies of an application and run them con-
currently. Direct manipulation of screen objects
will be an advantage in others. For example, in a
data entry application, the re-keying of informa-
tion can be virtually eliminated, along with the
errors re-keying introduces, by using direct ma-
nipulation at the field level to move data easily
from one application to another. Greater input
integrity may be a by-product of the graphical
user interface on the PWS.

Work-load shift. Because we have programmable
intelligence at the workstation, an advantage of
distributed processing might be to off-load host
processing. At the same time, the increased in-
telligence of the PWS can now process transac-
tions faster than was humanly possible on a non-
programmable terminal (NPT). The result may be
that the host work load actually increases by ex-
ploiting the PWS multitasking environment. This
will depend on application design and whether
transactions are driven synchronously or asyn-

ROFRANO 567

Figure 1 The distributed view

- COMMON PWS FRONT END
- INTEGRATED APPLICATIONS
- DISTRIBUTION IS

TRANSPARENTTOENDUSER

USERS VIEW

MVS

os/400

VM

I I I

DISTRIBUTED APPLICATIONS

I I

os12 \
J

NEW APPROACH
TO APPLICATION DESIGN

- NEW APPLICATION STRUCTURE
- NEW DECISIONS
-NEW SKILLS
-NEW TOOLS

chronously. There may be a work-load shift, but
not necessarily in the intended direction.

Greater connectivity options. The PWS will also
provide the ability, in some instances, to continue
processing if a host link fails or to have the option
of working remotely without a host link and batch
upload to the host later. The possibilities are lim-
ited only by our understanding of the capabilities
of each platform.

The addition of a consistent graphical user inter-
face for applications seems most powerful of all
the extended possibilities in distributed process-
ing. The increased user productivity will affect all
applications.

Distributed application design

While distributed processing introduces transpar-
ent application execution to the end user, the ap-

568 ROFRANO IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 2 Application anatomy

CONSTRUCTS

-USE OBJECT-ORIENTED DESIGN
(i.e., MODULAWENCAPSULATED)

- DESIGN FOR REUSE

plication programmer has some conscious deci-
sions to make, as outlined in the lower righthand
corner of Figure 1. A new approach to application
design is required, along with a new application
structure to support placement of function and
data across multiple platforms. In the past, the
programmer never worried about where to place
the data or end-user interface or where the code
would run-it all ran in the same place. This
changes in a distributed environment. The devel-
oper must acquire skills to know when and where
to split application function and must decide on
what platforms to run them. Tools are necessary
to help make and execute these design decisions.

Ideally, the functions should be placed on the
platform where they perform best or where shar-
ing is desired. The benefits are in reuse of code by
multiple applications, as well as good perfor-
mance by executing code on the platform it runs
best. "Best" is whatever is best for the enter-
prise; in some instances this means best perfor-
mance, in others it means the cheapest platform.
Whatever the goals are, function should be placed
where it will best meet these goals. This topic is

discussed in greater detail when we explore func-
tion placement.

Having function execute on multiple platforms
raises the problem of how to determine the split
point. The easiest solution is not to think in terms
of split points, but to design the application from
the start with separate functions that will execute
on an unknown platform (see Figure 2). The plat-
form will probably be determined by what the
function does or what object it must manipulate.
(For example, the manipulated functions include
the data functions on the same platform as the
data, the compute-intensive calculation function
on the processor with a floating-point accelerator,
or the end-user interface function on the work-
station.)

The application becomes a collection of self-con-
tained functions that, when executed in a partic-
ular sequence, perform a business process. These
same functions executed in another fashion may
perform a completely different process. The abil-
ity to reuse functions in multiple applications is
very advantageous in today's environment of

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 3 Assembling the pieces

growing application backlogs. Using object-ori-
ented design is a good way to achieve this goal.
These functions could even be available as end-
user computing tools. Think about the power of
end-user tools like spreadsheets hooking into
company functions, like calculating commission
rates using the latest rate tables.

Platform portability can be attained by using com-
mon programming interfaces for both languages
and services. This makes both of them portable as
the objects they manipulate move. There is a re-
quirement to have a common way to call these
functions in all environments, directory services,
and routers to keep track of where data and func-
tion objects reside. The absence of these enablers

on a particular platform should not stop the pro-
grammer from writing the modular, portable code
that will take advantage of these common serv-
ices as they become available.

Applications then, are broken down into a series
of requests to be carried out on some platform.
These requests should be made through an inter-
face that is common to all platforms and trans-
parent to the application programmer.

At some point the programmer will want to as-
semble these functions (or code modules) into an
application (see Figure 3). When it is assembled,
there will be some placement decisions that will
be obvious, while other placement decisions will

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

ORDER ENTRY
1. LOCATE CUSTOMER

3. QUERY PARTS
2. EWER AN ORDER

4, REVtEW ORDERS
I L-

HARD

not. In general, we want to place those parts of
the application that deal with the end user on the
programmable workstation. It is also desirable to
place those parts of the application that require
host processing or database sharing on a host sys-
tem where they can run most efficiently. The LAN
environment is also a “host.” If the database
sharing needs can be satisfied on a LAN server,
then that becomes the host to the particular ap-
plication. Two models for application design are
discussed next, one of which might be better
suited for distributed applications.

Hierarchical application structure. Procedure-
driven or “panel-oriented’’ applications are hier-
archical by design. They interact with an end user
on a screen-by-screen basis, usually in a hierar-
chy of menus (Figure 4). Each procedure within
the hierarchy that needs input from the user, ac-
tively seeks it on its own behalf. The application
displays a selection menu that may call a proce-

dure that displays its submenu, which calls an-
other procedure that displays the data entry
screen, and so on. To select a different menu
item, the user must back out of the chain of
screens and start down a new path. This is re-
ferred to as modal operation because the inter-
action proceeds in one mode at a time, i.e., the
user may be using the “data entry mode” or “re-
port mode” or “electronic mail mode.” To look at
a report as a result of some mail that was re-
ceived, the user has to back out of mail mode and
go into report mode. One could argue that a jump
key or fast path can change the status in the menu
tree, but it must be preplanned by the program-
mer.

The problem with this design is that user input is
solicited by each menu procedure that is called.
Although structured programming and top-down
design procedures have been used, no central
point is specified to gather user input. It is very

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 ROFRANO 571

n
b

I -
a

572

I b I

DATA

17

most part. In fact, this structure lends itself quite
easily to having icons represented on the desktop
that actually initiate transactions running on a re-
mote host. With the exception of the end-user
interface code, host programmers will be writing
pretty much the same style code in the same lan-
guages as they do today. They just will not need
to solicit input.

This means it will not matter how back-end trans-
actions get the user input they need to process.
They also no longer need to perform simple range
checking or input validation. All this can be done
once in the end-user interface code and will no
longer need to be part of each and every trans-
action. This will yield a savings in host program-
mer time and contribute to reuse of code at the
workstation. Because of this structure, the same
transaction can process in both real time and
batch mode. One of the added values in designing
an application using this technique occurs when a
communication link goes down. The system al-
lows the user to keep working on the front end
and do a batch and upload when the link comes
back up. The host transactions will not know that
there is no end user at the other end of the line,
because they now react only to input.

Each function should be implemented as a “black
box.” Functions are only required to know what
another function does, not necessarily how it
does it. This is the object-oriented programming
concept known as data encapsulation. A function
that needs access to data should do so via a re-
quest to a function that manages all requests for
that data. The controlling function would be
passed all the parameters needed for data extract
or update, perform the function needed, and then
return the results. In this way one could change
the physical data access method and the request-
ing function would not be affected, because it is
unaware of how the data are physically accessed
(the requesting function has only a logical view).

Alternate views. The capabilities of the program-
mable workstation change the manner in which
one views the computer systems. The move is
from a view of applications looking out from the
mainframe to drive dumb terminals, to an alter-
nate view of the intelligent workstations looking
back at and driving a host. This view is opposite
that of most host programmers. The basis for cli-
ent/server computing is to expand the role to the

workstation to include other services in the en-
terprise. Now the workstation is master and re-
quests services from an upstream server.

It is very important to understand how an appli-
cation developer thinks. Does the developer view

There are three approaches
to communications
between distributed

functions.

him or herself as a host programmer or a PWS
programmer? If the developer asks, “What func-
tions should I move down to the workstation?”
then the developer is probably a host program-
mer. Workstation programmers are looking at
what function to distribute up to the host. How
the developer thinks will no doubt influence the
developer’s decisions on where to place function
and data. It is well to be aware that there is an
alternate view of the world, in which the host
computer is sometimes not the obvious place to
run the bulk of the application.

Distributed design considerations. There are three
approaches to communications between distrib-
uted functions. One uses multiple conversations
based on a program-to-program communications
protocol such as APPC. This requires both func-
tions to be executing at the same time in a “syn-
chronous” fashion. Another uses a messaging
model, such as a datagram, which requests a ser-
vice. This service may or may not be running at
the same time the request is made. When the ser-
vice processes the request, it sends back a reply,
if any, as another message to the original re-
questor. This requires a queuing mechanism that
can store messages and ensure their delivery. The
third is to design a requestor/server interface to
act as a remote procedure call (RPC) on behalf of
the application. This design allows calls for a ser-
vice similar to local function calls within the ap-
plication. It looks like a local procedure call to the
application, and the distribution is transparent.

574 ROFRANO

A well-architected interface that allows programs
to make requests for services and data without
being involved in how the service functions is
very desirable. These servers may become re-
questors (or clients) to other servers in the pro-
cess of servicing the original request. Servers
should not care if the requestor is an end-user
program or another server making a request on
behalf of its client. This style of application in-
terface is the easiest approach for most program-
mers to use.

If this type of interface does not exist on a de-
velopment platform, it can be built from what is
available today: RPC on AIX, APPC in SAA, NetBIOS
(local area network basic input/output system) on
a LAN, or TCPIIP, which is available on all SAA and
AIX environments. If the API does exist (remote
data and print services on a LAN), then it should
be used. The objective is not to reinvent the
wheel, but simply to place a layer of code be-
tween the application functions and the underly-
ing communication transport so that the transport
can change across environments and the applica-
tion is not affected.

Redirection. Environments that employ redirec-
tion as a distribution means are the most trans-
parent. An example is a virtual file on a LAN.
Redirection allows the application to access data
as if the data were local when they are actually on
a remote server. If the network can absorb the
traffic of multiple single UOS, then the system will
perform, but this approach does not allow for up-
ward scalability. What if this same application
were run outside of the LAN environment where
there are no redirection services or where not
enough bandwidth exists to use those services?
One must be able to take an application that pro-
cesses 100 transactions per minute today and use
it in 10 000 transactions-per-minute environments
tomorrow, without rewriting the application be-
cause of redirection at rates that can no longer be
handled by the underlying topology. The designer
must be sensitive to bandwidth considerations
when using redirection as a distribution mecha-
nism. A more robust mechanism is to use some
form of distributed data service.

Requestorlsewer. We now examine the building
of a requestorherver interface in more detail.
From the software design shown in Figure 6 one
can see a server program on the back-end pro-
cessor, which sits and waits for commands from

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 6 Example requestor/server interface

the requestor program on the PWS. This particular
example uses APPC as its communications proto-
col. The user should architect personalized com-
mands to perform the functions needed and pass
the parameters along with the command. The ad-
vantage is that programmers only have to learn
the command set that is implemented, not the un-
derlying APPC. The APPC could be changed to
TCPIIP or RPC and not affect the calling application
functions.

In the example, a request is being made for func-
tion A to be performed passing a pointer P as a
parameter. The requestor code would then take
the data pointed to by P and ship it via APPC to the
server function. The server code is just a router
switch that calls the actual function on the host,
passing it the parameters shipped to it by the re-
questor function. When the function is complete,
the server code will return the results to the re-
questor code via APPC, which would then place it
back into a data structure so that the application
code could extract it via a pointer. This is how the
Server Requestor Programming Interface (SRPI)
works on PC-DOS and os12 via LU 2 communica-
tions instead of APPC.

The result is a callable interface that keeps the
communications transparent to the user program.
A programmer writes the APPC code once, and
everyone else uses that interface. In environ-
ments where there exists a remote procedure call
(RPC) interface, such as with TCPIIP, this layer of
code may or may not be necessary, depending on
whether the programmer may want to move the
application to other environments that may not
have TCPIIP available. If so, RPC would be substi-
tuted for APPC and the original interface syntax
left the same.

Conversational. If the requestorherver approach
is not appropriate for the given application, then
one may want to implement a simplified verb set
interface to APPC for programmers to code to (i.e.,
START, STOP, SEND, RECEIVE, ERROR-CHECK,
TOGGLE-STATE). This way only a few program-
mers have to write the error handling code in APPC
and everyone else uses a higher level API to access
them. Finally, if this does not yield enough func-
tion for the program the programmers will have to
code at the native APPC level. This is not as de-
sirable because it makes the application “plat-
form-specific” and it will not move easily to other
environments.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Rules for data placement

A common question that developers ask is, “How
do I determine data placement?’’ The use of dis-
tributed data promises access to local data regard-
less of where the data are placed in the network,
but what are the performance implications of ac-
cessing data remotely? The following are some
simple rules-of-thumb for data placement.

Data placement is a function of the following pa-
rameters:

Level of sharing
Update/access frequency (timeliness)
Security
Capacity
Business needs

If other contributing factors for data placement
exist in the enterprise, then these factors should
be added to this list as considerations.

Optimally, data should not be moved. If the plat-
form in use has distributed data services, then this
may be the easiest way to design the application.
It may not, however, yield the most robust design
or even perform well, unless there is network
bandwidth to support the data traffic. Networks
with low latency such as LANS are much more
forgiving than WANS.

Given the lack of bandwidth to support distrib-
uted data for a specific application function, for
performance reasons the data should be placed as
close to the user as possible. On the other hand,
the data may be required to be in a central place
for sharing reasons. The key is to find a solution
that satisfies both requirements.

Level of sharing. The first step is to get the data
placed at the lowest level that meets the applica-
tion’s sharing requirements. If the data are pri-
vate, keep the data at the workstation. Data that
are shared at the department or work group level
should be on departmental or work group sys-
tems, usually on either a LAN or midrange system.
Data that are shared throughout the corporation
should be on a central host processor. This
sounds very simple in theory, but when an ex-
amination is made of the existing applications, it
is easy to think that most data are corporate data.
That does not help in this equation. The first ob-

576 ROFRANO

servation then, is to change the way we think
about data sharing.

Now, consider the following example: An order
entry application running on one centralized pro-
cessor probably views an order in process (one
being entered into the system) as data that are
shared by the corporation. After all, someone in
another department is probably taking that order
and filling it somewhere else in the enterprise.
Based on this fact, the data may be thought to be
shared at the corporate level. Now, consider the
ownership and level of sharing of the data.

How was order entry performed when a manual
system was employed? Probably a physical paper
invoice was thought of as a private piece of work
until the clerk actually sent it off to be processed.
Once submitted, the ownership and level of shar-
ing changed based on whose desk it landed on
next. Therefore the order can be thought of as a
private piece of work, and thus is private data to
the order entry clerk until the order is ready to
submit for processing. So the question is not so
much, “Are the data private?” as it is, “Can the
data be thought of as private for that application
function?” If so, that function should treat the
data as a private entity and work with the data on
the PWS.

Data ownership must be evaluated and it must be
brought down to the personal or work group level
where ever possible. If all the data remain on a
central host processor, the processor may not
yield optimal performance for distributed data ac-
cess.

Update/access frequency. There will be times
when data really are shared at a corporate level.
Then to get that data to a lower level, the follow-
ing questions should be addressed:

How often are the data accessed?
How much is required?
How often are the data updated?
How critical is it to have the latest copy of the
data?

How often are the data accessed? If the data are
not accessed very often by an application, then a
remote request can be used to get to the data on
the host. Using some form of distributed data
services is the easiest way to access remote data.
There still will be times, however, when distrib-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

uted data are not the right solution. If the data are
accessed often, or the amount of data requested
cannot be accurately determined, distributed data
may have a serious performance and network im-
pact. If this is the case, the developer might con-
sider downloading the data to a lower level plat-
form.

How much is required? If downloading is chosen,
the next question is how much should be down-
loaded? If only an extract is needed, then extract
and download only the data needed. If the whole
database is needed, how often is it updated?

How often are the data updated? If the data are
not updated that often, perhaps a snapshot is re-
quired that is refreshed when the data are re-
freshed. If the data are updated often, and re-
freshing at the same rate of update is not feasible,
then the question arises as to how critical it is to
have the latest copy.

How current are the data? In a personal experi-
ence, the author worked with one customer on
the design of an executive information system. In
this application the data were being used for trend
analysis. The designers insisted that the execu-
tives needed the latest data. But, how current did
the data really need to be? It is always nice to
have current data, but when comparing quarter-
to-quarter’ or even week-to-week, how much im-
pact will last night’s data have compared to in-
cluding this morning’s data too? For most
applications that show trends, last night’s data are
good enough for weekly trends and last week’s
data may be good enough for quarterly trends.
We need to think about how timely the data really
need to be.

If the data are updated often and current access
to the whole database is needed in real time, then
there are two options: Either leave the data on the
host and split the application so that the functions
that manipulate the data execute on the same host
as the data, or re-evaluate the need for current
data and ask these same questions again.

It is important to keep one’s focus on the business
problem that is being solved, not the technical
problem. The end user should be asked to clarify
the business need for timely data. Can the end
user use yesterday’s data? Last week’s? Last
month’s? At some point the business process
breaks and the business need is not satisfied any-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

more. At that point, it is well to back up one step
to set the ultimate timeliness required for that
data. If technology allows the delivery of better

It is important to keep one’s
focus on the business problem

that is being solved.

results, fine, but what the user views as timely
and what the business demands may be two dif-
ferent things. Keep focusing on the business need
for current data.

Security. Security is a concern when dealing with
multiple copies and extracts. The obvious rule of
thumb is that if the platform being extracted does
not meet security requirements, the data must be
kept on the next upstream host that does meet
those needs. The classification of data is impor-
tant.

For example, consider a personnel database. If
the database contains a field for employee’s sal-
ary, which is usually considered confidential, the
whole database would be labeled confidential.
The rule-of-thumb has always been to classify the
database at the level of the highest element. When
taking extracts of this personnel database, what is
the security level of the extract? To say the entire
database is confidential would be excessive. If all
that is extracted are names and addresses, then
the extract may not be confidential. This implies
that the developer must assign security at the
“field” level for databases that are being ex-
tracted.

Capacity. Capacity is becoming less of an issue
these days. As disk space on Pwss and LANs in-
creases, there is more we can store for use at the
personal and work group level. The data to place
at lower levels in a network should be files like
rate tables, schedules, and any type of reference
item that does not change too often. These are
generally small enough to fit in a LAN or PWS envi-
ronment and are read-only items, so there are not
many data synchronization problems to deal
with.

Figure 7 Function placement methodology

FOR EACH UNIQUE USER OF THE APPLICATION:

1 DEFINE THE OBJECTS THE USER CAN MANIPULATE

2 DEFINE THE ACTIONS ALLOWED ON THOSE OBJECTS

3 CREATE AN OBJECT/ACTION MATRIX

4 SHOW HOW OBJECTS ARE RELATED TO ACTIONS BY
PLACING Xs WHERE THEY INTERSECT IN THE MATRIX

5 DETERMINE DATA PLACEMENT BASED ON SHARING,
UPDATE, SECURITY, CAPACITY, AND BUSINESS NEED

6 USING THE OBJECT/ACTION MATRIX, UNDERSTAND
THE MESSAGE TRAFFIC BETWEEN:
-THE END USER AND THE APPLICATION
-THE INTERNAL APPLICATION FUNCTIONS
-THE APPLICATION AND THE DATA

7 DETERMINE FUNCTION SPLIT BY FINDING THE POINT
WITH THE LOWEST TRAFFIC (NOTE: THIS MAY
INCLUDE NO SPLIT AT ALL BY USING SOME FORM OF
DISTRIBUTED NETWORK SERVICES)

8 REPLACE EACH X IN THE OBJECT/ACTION MATRIX
WITH THE NAME OF THE PLATFORM ON WHICH THAT
FUNCTION SHOULD EXECUTE

9 REPEAT PROCESS TO A GREATER LEVEL OF 'ACTION'
DETAIL

Table 1 Database descriptions

Database Descrlption

Customer details Company-wide customer

Inventory of parts Warehouse inventory
Price catalog Company-wide prices for parts
Daily orders Current orders in process
Pending orders Orders committed but not filled

information

The rule-of-thumb is: if the developer determines
the best placement for data, only to find that there
is not enough capacity for the data on that plat-
form, then the developer must either increase the
capacity on that platform or move the data back
to the next up-stream platform that has the ca-
pacity. In a distributed environment, LANs play
an important role to fill the resource sharing role
that mainframes now perform. It does not make
sense to have 500 workstations directly attached
to a mainframe, with 500 copies of all the appli-

cations duplicated at each workstation. Installing
LAN servers is a good way to solve workstation
capacity problems in a workstation-to-main-
frame-only environment.

Business needs. There may be business needs for
data placement. A company may have a need to
decentralize and want all databases to be man-
aged on a midrange or work group LAN system.
Or there may be a policy that all data are to reside
in one location for ease of backup, so centraliza-
tion is key. Whatever the need, the business need
must be balanced with what is available via cur-
rent technology to satisfy the local data require-
ments. Quite often, the business needs prevail
and data placement will be determined by factors
outside of the application. In these cases, trade-
offs must be made as to where to place the ap-
plication function given the current data place-
ment.

Determining function placement

The general rule for function placement is to keep
the function near the object it manipulates. If the
function manipulates screen objects, it is kept on
the workstation where the display is being done.
If the function manipulates data objects, it is kept
on the node with the data. This can best be shown
by using an application sample, applying the rules
for both data and function placement as previ-
ously discussed. A tool called an objectlaction
matrix is introduced to help determine the best
platform for function placement. The steps for
determining function placement can be seen in
Figure 7.

We now take a set of functions in a sample ap-
plication and apply this methodology. The exam-
ple is the order entry function of a parts supplier
warehouse. It is important to note that this ap-
plication may, in fact, perform more than just this
one function or be used by more than one user
group. This methodology takes the perspective of
a single user of the application for a particular
application function. In the example we are only
concerned with the order entry function. There
may also be an order analysis function or an in-
ventory function, but the order entry clerk does
not use it in the process of taking an order. Those
functions should be addressed as a separate ma-
trix. The key is to break the functions down into
simple steps.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Table 2 Work flow

Step Procedure Name Description of Activity

1 Get a form CREATE a blank order form (invoice)

2 Take customer details New customer? CREATE information and ADD to customer file
Existing customer? SEARCH customer file, verify information, and UPDATE if necessary

3 Enter parts needed SEARCH catalog file for part
ADD to invoice

4 Check inventory SEARCH inventory file and UPDATE accordingly

5 Check customer credit CHECK total amount of order and any pending order against credit
If OK, process order
If not, cancel or SAVE invoice for later approval

6 Process order ADD invoice to pending order file

These steps should be performed for each user of
the system. It is very important to take one user’s
view at a time. One matrix is made for the order
entry clerk and another for the stockroom clerk.
Trying to combine several user’s views of the bus-
iness in one matrix yields too much detail.

For a new system, the first step is to gather re-
quirements. For modification of an existing sys-
tem, however, there may be a tendency to assume
that the existing application functions are the base
requirements. This is a dangerous assumption.
Perhaps the existing functions perform as they do
because of the limits of technology 10 or 20 years
ago when the application was first written. The
developer should take the attitude that he or she
is designing a new system and gather the user’s
requirements for existing functions all over again.
When technology poses limitations, we tend to
make the requirements fit the solution. Taking a
new look at the application ensures that the so-
lution will fit the requirements.

Work flow and data definition. The first thing we
need to do, as in any application design process,
is to understand the current business process. In
our example, this is the order processing proce-
dure. The data associated with entering an order
can be found in Table 1. We start with this ex-
ample and decide how we can make use of dis-
tributed processing.

In response to a phone call from a customer the
order entry clerk begins the order entry process.
The steps that the order entry clerk follows to

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

enter an order into the system can be seen in Ta-
ble 2. In computer terms, getting a form is simply
creating a blank order form that will become the
invoice. Taking the customer details involves two
options. For a new customer, the clerk creates
the information and adds it to the customer file.
For an existing customer, the clerk searches the
customer file for information and verifies over the
phone that the information is still correct; if not,
the information is updated, if necessary. In both
cases, this information is added to the invoice.

Next the clerk asks the customer for the items to
be ordered, searches the catalog for the parts and
adds them to the invoice. At some point the clerk
will check the warehouse inventory to make sure
the parts are available; to process this order the
clerk will need to update the inventory accord-
ingly to commit those resources. The clerk will
also want to check the customer’s credit against
the final invoice amount to be sure the customer
is in good standing. The algorithm for this is sim-
ple: Check the total amount of the order, plus any
pending orders the customer has not yet been
billed for, against the customer’s credit limit. If
the credit is good, then process the order; if not
the clerk may want to save the order details for
further credit authorization from a manager or
supervisor.

Finally, when the checking is complete, the clerk
processes the order by adding it to the pending
order file. Each action in the activity portion of
Table 2 is highlighted by using all uppercase let-

Figure 8 Object/action matrix

OBJECTS

ACTIONS

ters. This defines all of the actions the order entry
clerk performs.

Object/action matrix. Now that the actions that
are carried out during the order entry process
have been defined, and the data files are identi-
fied, it is time to understand the interaction be-
tween the two. By thinking of the data as “ob-
jects” and the things done to the data as
“actions,” a matrix can be built to show the in-
teraction between the two. We call this the ob-
ject/action matrix (see Figure 8).

Across the top of this matrix are listed the data
objects that the order entry clerk is allowed to
manipulate to process an order. These objects are
defined at the database or file (record) level for
simplicity. In reality, objects may have to be de-
fined at the field level. Perhaps the order entry
clerk is not allowed to see all the information in
the customer file. In this case the data object

would be the order entry clerk’s “database view”
of the customer file.

On the left side of the matrix are listed all the
actions that are allowed on those data objects by
the clerk. The terminology used for these actions
is not of primary importance. It is best to use
colloquial terms that reflect the user’s perspec-
tive. While it is very easy to get caught up in the
definition of terms, what is important is that the
clerk has logged the action needed.

Once the matrix is set up, we place an “X” in each
box where an action is allowed on an object, to
show a relationship between the two. This serves
a dual purpose. First, the developer can quickly
see which functions will need to be written. Sec-
ond, the developer can see that actions like
“search” and “update” are used quite often. This
is an indication that some code can be reused by
making the core of these functions generic enough

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 580 ROFRANO

to be used by multiple data objects. This could
mean a tremendous savings of programmer time
for the project.

For the first pass, the developer should start with
data objects and broadly defined actions. It is best
not to get too entrenched in detail the first time
through. This is an iterative process that will be
repeated several times, refining the actions to
smaller entities until the developer is left with the
actual functions (Le., subroutines) that will be
coded.

Current data placement. At some point the de-
veloper must look at data placement. We assume
that most companies already have their data de-
fined. If this is a totally new application, then the
system designer will have to perform normal data
modeling before going on. The current data place-
ment for the sample corporation is shown in Fig-
ure 9.

In the sample, corporate headquarters maintains
its own computer with the master copies of the
customer details file and price catalog for the en-
tire company. There are three regional ware-
houses, each having its own host computer that
has a copy of the corporate customer details and
price catalog, along with its own inventory of
parts, pending orders, and daily orders that are
maintained for the warehouse. The host computer
is the warehouse computer.

The order entry department is one of several or-
der entry departments connected to the ware-
house host via a LAN. This LAN also has a file
server attached that is currently unused by the
existing application.

Data placement scenario. It is now time to make
a decision about data placement in our sample.
The options for placement are the warehouse
host, work group LAN, or personal PWS. We take
each data file and analyze it using the rules out-
lined earlier in this paper. The results are dis-
played in Table 3. Following is a discussion of the
data objects.

The level of sharing for the customer details file
is at the warehouse level so the tendency is to
leave it on the warehouse host. It is updated daily
and the system may not have the capacity on the
LAN server to download it and then refresh it each

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

night. Also there will be updates during the day as
new customers call, so it is necessary to keep it
synchronized with the other order entry depart-
ment LANs throughout the day.

The next choice is to try to extract a subset of the
data. The designer wants to find some subset of
the data that may not change very often. Analyz-
ing the demographics of the customers, the de-
signer may find that because they are retailers
who depend on the warehouse for a steady flow
of parts, 90 percent of the customers are return
business. This means that 90 percent of the time
the calls are from customers within the local re-
gion. Therefore, an extract can be taken of the
regional customers from the corporate database
down to the LAN server. This subset would not
take up as much LAN resource and would take less
time to refresh. For the remaining 10 percent of
outside and new customers, the system would use
remote data access to the host that contains the
master file.

This is an example of how the solution may ac-
tually be a combination of data access techniques.
The system assumes a 90 percent hit ratio on the
LAN. If a customer calls who is outside the local
region, the system is willing to take the additional
communications overhead of distributed data ac-
cess across a WAN to the host database, because
this should only be 10 percent of the time. Also,
when a new customer calls, the host is updated
immediately so that other LANS will find them if
they call back twice within the same day (i.e.,
between LAN refreshes).

The inventory of parts is shared by the whole
warehouse and is updated in real time to reflect
the current parts committed to orders and parts
remaining. Trying to manage distributed updates
in a real-time system across multiple LANS is not
recommended since the developer has to write all
the synchronization code. It would be easier to
keep this file on the host and distribute the ap-
plication functions to access it so the system
would have the host integrity that is needed for
real-time updates at the warehouse level.

Although the price catalog is another file whose
sharing scope is company wide, it is only updated
weekly, so we download a copy to the LAN server
and access it via a remote server function or lo-
cally from the PWS. Since the order entry clerk is

ROFRANO 581

Figure 9 Current data placement

-MAINTAINS CORPORATE
HOST SYSTEM

-THERE ARE 3 REGIONS 7
- EACH MAINTAINS ITS OWN HOST

CUSTOMER DETAILS

PRICE CATALOG

CUSTOMER DETAILS

PRICE CATALOG

INVENTORY OF PARTS

PENDING ORDERS

DAILY ORDERS

-ONE OF MANY O.E. DEPARTMENTS
- CONNECTED TO HOST VIA LAN

LAN U

582 ROFRANO IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

able 3 Data sharing vs tlmeliness

Data Objects Suggested Placement Suggested Access

CUSTOMER DETAILS Extract for warehouse and download to Local access to extract
Shared by company LAN server (access too frequent for Use remote data access for exceptions
Updated daily remote data access)

INVENTORY OF PARTS Maintain on host (extraction and update Split application
Shared by warehouse not feasible)
Updated in real time

PRICE CATALOG Batch download weekly to LAN server Local to LAN server
Shared by company
Updated weekly

DAILY ORDERS Maintain on PWS
Private to order entry clerk
Updated in real time

PENDING ORDERS Maintain on host
Shared by warehouse
Updated as needed

Local to PWS

Batch upload at predetermined intervals

not allowed to update prices, the database is a
read-only database that should not be a problem,
given that the system has the disk capacity on the
LAN server. This is the approach that should be
taken for most read-only files like rate tables and
other static files. We get them as close to the user
as possible for performance and refresh them only
as needed.

The daily orders file is created on the host and
stays just long enough for some authorization pro-
cess before it is appended to the pending orders
file. The file is currently viewed as data that are
shared at the warehouse level because other
workers need to share the data for authorization
purposes or to fill the order. As suggested earlier,
while the data are in the hands of the order entry
clerk, they can be viewed as private data until
ready for submission. It is for this reason that we
place the data on the workstation and then add the
data to the pending orders file at some predeter-
mined interval.

Since the shipping department needs thepending
orders file to fill the orders, it is shared at the
warehouse level. The developer could also prob-
ably add to it in real time from the daily orders file
today, but does the business really require real-
time access? If the business policy is next-day
shipping, then perhaps this is true, but if the bus-
iness policy is to allow six-to-eight weeks for de-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

livery and a three-day backlog exists, then one
must ask if a batch update at the end of the day
is really going to cause an impact. In the sample,
this company’s policy is the latter, so the decision
is to keep the pending orders file on the host for
sharing reasons, but add to it from the daily or-
ders file on the PWS in batch mode each evening.

This is a case where the designer questions cur-
rent practices based on business need. It may
have been easy to design the application with
real-time updates in the past because the appli-
cation ran on one system, but was there a busi-
ness need for it? The author strongly suggests that
designers look at the business requirements and
not rely on how the previous application handled
a particular problem.

New physical layout. Figure 10 shows the new
physical layout of the data placement. The parts
inventory file is maintained at the host, as is the
pending orders file. Rather than updating the
pending orders in real time, we batch and upload
the updates on a daily basis. A full copy of the
price catalog is downloaded to the LAN server, as
well as a regional extract of the customer details
file. The daily orders are maintained on the PWS
until they are batched and uploaded to the host.

Application function placement. Now that the
functions (or actions) that need to be written have

been identified and the designer has taken a first
look at data placement, the designer can begin to
look at where to place those functions in the en-
terprise. Using the object/action matrix, the lo-
cation of the data objects is added at the top of the
chart. Now for every “X” made in the matrix, the
designer must go back and determine the location
for that function, based on the message traffic it
generates to manipulate its data. Keep in mind
that almost all of these functions will have a PWS
component to trigger them off. What is being de-
termined here is where the “core” function will
execute.

Remember it has been stated that the function
should be placed close to the object it manipulates
for good performance, preferably on the same
processor. It is unlikely that anyone will debate
that any code that interacts with the end user be-
longs on the PWS. The problem is with code that
accesses data. The question is when to use dis-
tributed services and when to move the applica-
tion function. This can only be determined by un-
derstanding the amount of traffic caused by a
transaction and whether the distributed service,
line speed, and network bandwidth are sufficient
to handle it. Since tools are not available to mon-
itor the physical traffic caused by transactions, all
this is based on manual calculations using the size
of the data record, communications link, and ap-
proximate frequency of access. By using the ma-
trix a column at a time, leaving the credit check
function for last, we obtain the results shown in
Figure 11.

The customer file has a regional extract on the
LAN server and a full copy on the warehouse host.
The CREATE function can be written on the PWS to
take advantage of the graphical user interface and
excellent editing capabilities of the workstation.
Keep in mind that wherever possible the designer
will rethink data ownership and scope of sharing
so the designer can consider a new customer
record a private work until it is completed and
submitted for processing. Also keep in mind that
when the word “create” is used, it is not the in-
tention to conjure up any database definition of
what create means. It simply means to collect the
information about a new customer that is needed
for the customer file.

584 ROFRANO

All the information for an order is taken over the
phone, and the capabilities of the PWS are used to
enter it and edit it. When the processing is done,
the new record must be added to the database.
Because the system is in a distributed environ-
ment, protection against two people adding the
same customer at the same time must be ensured.
It is for this reason that the ADD function (the
actual adding to the database) is placed on the
host for execution. This allows the integrity of the
host system to perform this function. Likewise if
there is any updating of the customer’s existing
record to be done, this should take place on the
host also to allow record locking or what ever is
needed to ensure integrity. Because a full copy of
the customer database is not available at the LAN
server, the SEARCH function must be written for
both the LAN and host environments.

The inventory file is a rather simple matter. Since
we elected to maintain this purely as a host file,
the UPDATE and SEARCH functions are placed on
the host with the data. It will be necessary to
architect a way to invoke these host functions
from the PWS later. Remember each of these will
probably have a PWS component even though the
core function runs on a host.

The price catalog is really a read-only file for the
order entry function, so the SEARCH function is
placed to access the catalog on the PWS and use
the distributed LAN services to access it via file
redirection or distributed structured query lan-
guage (SQL). It is possible that many people
searching this file at the same time on the LAN
may cause too much traffic even for NetBIOS. If
this happens, the SEARCH function should run in
the LAN server machine and requests should be
made from the PWS.

Since the daily orders file is really private data to
the order entry person until it is ready to be sub-
mitted, all functions that manipulate this file are
placed on the PWS and then the results are batched
and uploaded to the pending orders file. Also,
since multiple departments need access to the
pending orders file at the warehouse level, the
function that manipulates this file resides on the
warehouse host with the database.

Example: Credit check function. The credit check
function is left until last for a reason. There are
two possible ways to implement this function, as

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 10 New physical layout of data

INVENTORY
FILE u-1 CUSTOMER (MASTER) FILE

PRICE CATALOG
(MASTER)

DAILY
ORDERS L

U

BATCH

IL,

PENDING
ORDERS

BATCH
DAILY WEEKLY

BATCH

LAN

CUSTOMER FILE
(REGIONAL EXTRACT)

shown in Figure 12. Since the customer file and that the traffic is too much, this is not a good
the daily orders file are both on the PWS, the func- choice.
tion can run on the PWS and access the pending
orders file remotely. If this is not a lot of data, this This is an example of how using some form of
may still be a good idea; but if the data are too remote request works to a point. If the system is
large, or the frequency of credit checks is such in a small company that does not have many

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 ROFRANO 585

Figure 11 Objectlaction matrix with function placement

OBJECTS

BASED ON MESSAGE TRAFFIC CAUSED BY ACTIONS

pending orders, this method might work fine; but
if we have a large corporation with hundreds of
pending orders, this method might break if the
data coming across the link from a distributed
request are too much to handle. This is not a ro-
bust design.

A better solution is to write the credit check func-
tion to run on the host with the master customer
file and pending orders file. After all, the only
thing needed from the PWS is the customer num-
ber and the amount of the invoice. The only re-
sponse required is the customer number and an
accept or reject notification. If the credit check
function is run as an synchronous task, the cus-
tomer number is not needed because the user is
waiting for the answer. This also eliminates the
worry of how many data are returned from the
credit search, because this is all contained within
the host environment (Le., the size of the results
are always predictable). This design will not be
affected by a growing order backlog or increased

transaction rates and is preferred for this partic-
ular type of request.

It is important to only use distributed data in a
line-of-business application when one can safely
predict or limit the volume of data to be trans-
mitted from a given request. The network may be
able to absorb a few ad hoc queries, but busi-
nesses do not want all the order entry people mak-
ing voluminous queries all day, every day, for
every customer invoice.

Methodology summary. To summarize, we start
by taking the view of one end user. This may be
the data entry person’s view, the analyst’s view,
or the executive’s view, but we hold to that view.
We then go back and make a new matrix for each
different user of the application, avoiding the
temptation to combine all actions and objects for
all users into one large matrix.

586 ROFRANO IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 12 Credit check implementation

-ACCESS HOST DATABASE REMOTELY - SEND CUSTOMER NUMBER AND DOLLAR
VIA REMOTE REQUEST AMOUNT TO APPL HALF ON HOST

-PROCESS RECORDS FROM REMOTE - HOST PROCESSES REQUEST AND
HOST VIA CODE ON PWS RETURNS ACCEPT / REJECT

PWS APPLICATION HOST APPLICATION

SEND RECORD RECEtVE RECURD

OALL CREOlTOHK

RECEIVE RESULT

First define the objects that the user can manip-
ulate. These should not be restricted to data ob-
jects, as in the example. Data objects can also be
defined at the record or field level if needed. In the
example they are defined at the database level for
simplicity, but in reality some people may not
have access to a whole record.

Once the objects are defined, next define the ac-
tions allowed on those objects. These can be de-
rived from an examination of the work flow, much
the same as one would do for any application de-
velopment. What is important is the next step,
which is to define how the objects and actions are
related through the use of an object/action matrix.

At this stage, examine the data placement and see
if the data can be placed as close to the user as
possible for performance reasons. Remember,
data placement is primarily a function of sharing.
It is desirable to keep the data at the lowest level
of sharing possible. Go back to the object/action
matrix once this is done and add the location of
the data under each object heading.

Now the designer is ready to analyze and under-
stand the message traffic between the end user
and the application, application-to-application,
and the application and the data. The traffic be-
tween the application and the data is probably the
highest. This is why we suggest that the parts of
the application be kept close to the objects they
manipulate. If one is manipulating a screen ob-
ject, keep the code on the workstation; if one is
manipulating a data object, keep the code on the
processor that contains the data. Also, be very
careful to understand the size of the results from
a distributed request if distributed access is the
preferred choice. Since the traffic between the
application functions is probably the lowest, the
designer will want to choose a point within the
application that makes sense to distribute.

Once the matrix is built, the designer must ex-
plore the possibilities for making the connections.

Checklist for getting started. A checklist for get-
ting started is shown in Figure 13. First and fore-
most, assemble a team with the proper skills. The
core team should consist of three to five of the

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 13 Checklist for getting started

ASSEMBLE TEAM
WITH
REQUIRED SKILLS

-CORE TEAM OF TECHNICAL PROGRAMMERS (3-5 PEOPLE)
- FOUR-MONTH LEARNING CURVE
- OS2 AND GRAPHICAL USER INTERFACE DESIGN
-HOST BACK-END EXPERIENCE
- APPC / NETWORK

SELECT

APPLICATION
RIGHT

- ONE THAT LENDS ITSELF TO EXPLOITING CAPABILITIES

- DO NOT RECODE AN OLD APPLICATION TO DO THE SAME

-BE INNOVATIVE!

OF THE PWS

FUNCTION

0 USE DIRECT MANIPULATION
ADD GRAPHICS REPRESENTATIONS TO DATA
EXPLOIT MULTITASKING CAPABILITIES OF OS/2

BUILD
A WORKING
PROTOTYPE

- BUlLD AND AGREE ON USER INTERFACE FIRST
- USE ‘REAL‘ FUNCTION ON ‘REAL‘ NETWORK
-SKILLS ARE ACQUIRED DURING PROTOTYPE PROCESS
-CODE CAN BE USED IN FINAL APPLICATION

best people available. Allow for a four- to six-
month learning curve in the respective areas of
PWS, APPC, and host back-end skills.

Next, select an application that lends itself to ex-
ploiting the capabilities of the PWS. It should be
something small enough to manage easily. Do not
simply recode an old application to do the same
function in a distributed manner. No one will see
the benefit. Add additional function that exploits
the PWS so people will say, “YOU can’t do that
with a nonprogrammable terminal!” Be innova-
tive, use direct manipulation, add graphic repre-
sentations to data that were only shown in tabular
format before. Exploit the multitasking capabili-
ties of 0s/2 so that things like credit checks and
table lookups are performed asynchronously and
work goes on in the foreground while back-end
processors operate.

Build a working prototype. Because all applica-
tion function will be driven by the end-user in-
terface, build and agree on the user interface first.

588 ROFRANO

Having an action bar that controls the pop-up
windows with no code behind them will give the
user a good feeling for how the application will
flow. Since functions will be more atomic in this
object/action environment, you can plug the func-
tions behind the windows later with greater ease
than in the old hierarchical model, where the
function called the user interface rather than the
reverse.

Take one distributed function and code it from
start to finish. Then use it on a “real” network to
understand the implications of network traffic.
Network traffic is going to change. We used to
think of PWS traffic as infrequent but occurring in
large chunks. This is because we mostly down-
loaded files, worked with them, and uploaded the
results. The trend in distributed processing is to
have a much shorter message duration but with
increased message traffic. This can be equally
devastating to a network. It is better to work on
one function and refine it until the calculations for
traffic can be trusted, than to code all functions
first and then find out the network cannot handle
the result in final test stage.

Skills are acquired during the prototyping pro-
cess. Although you may need to recode your first
prototype, most others can be used in the final
application. An object/action application is de-
signed with the user interface (objects) first and
function (actions) added later.

Conclusion

When applications are developed that are distrib-
uted across multiple platforms, there are always
tradeoffs to be made. Clearly if one must capital-
ize on system services that are specific to one
platform, the design will suffer if it needs to be
moved to other platforms. Still, distributed pro-
cessing can be a powerful base for application
design, where the resulting application should
provide a better result than could have been
achieved with either the PWS or mainframe tech-
nology alone. All this is achievable with today’s
technology.

Applications can be written to perform well
regardless of the underlying topology. The appli-
cation design should provide scalability, accept-
able performance, and reconfigurability for future
growth in the enterprise. A good application de-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

sign will work well across a wide range of
usage/loads without change, and execute across a
wide range of configurations. It should also allow
flexibility in data placement.

While there are considerations today that have to
do with bandwidth implications, these can be
overcome by designing the application to be in-
sensitive to network latency by executing func-
tions that require high data access of the same
platform with the data.

As a common remote procedure call becomes
widely available across systems, it will be much
easier to implement distributed applications. In
the mean time, the user can design applications
today to take advantage of tomorrow’s technol-
ogy when it arrives.

Acknowledgments

I would like to thank Allan L. Scherr who not only
provided the basis for this work, but from whom
I have learned so much in the time I have worked
for him. I would also like to thank the customers
who worked with me in validating my methodol-
ogy for function placement. Finally I would like
to thank Oliver Simms, IBM United Kingdom
Technical Support, for the use of some of his
charts and figures and for sharing his ideas on the
event-driven application model.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corpora-
tion.

Cited references

1. SAA Guide for Evaluating Applications, G320-9803, IBM

2. A. L. Scherr, “SAA Distributed Processing,” ZBM Sys-

3. R. N. Manicom, The Mainframe Versus PC Battle, White

4. 0. Simms, “The New World,” unpublished, IBM U K

Corporation; available from IBM branch offices.

tems Journal 27, No. 3, 370-383 (1988).

Paper, IBM Canada Limited (1990).

Technical Support.

Accepted for publication December 4, 1991.

John J. Rofrano, Jr., ZBMApplication Solutions, Route 100,
Somers, New York 10589. Mr. Rofrano is currently a senior
programmer on the Application Solutions architecture and
development technical staff and is working on the definition
and implementation of an application services architecture.
He joined IBM in 1984 in the System Products Division in
White Plains, New York, as an information center analyst.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

There he specialized in the support of Personal Computer
products. In 1986 he became manager of the Information Cen-
ter for the Information Systems and Products group and a year
later became manager of Customer Services I/S at IBM Cor-
porate Headquarters in Purchase, New York. In 1989 he
joined Application Solutions, working in the Cooperative Pro-
cessing Cluster as a technical planner. He was responsible for
strategy and plan evaluation of future products that would
enable cooperative processing. During this time Mr. Rofrano
served as IBM’s representative to the GUIDE Cooperative
Processing Project and worked with members of GUIDE,
SHARE, and numerous other customers on his distributed
design guidelines. Mr. Rofrano received a B.S. in computer
science in 1984 from Mercy College, New York.

Reprint Order No. (3321-5487.

ROFRANO 589

