
The BiProcessor: 
A merger of two 
architectures 

by C. Berggren 

The  BiProcessor  consists of an IBM  System/370m 
and  a  Personal  System/2@  and  merges  these two 
IBM  architectures  into  a  synergistic  relationship. 
The  two  processing  environments are connected 
by an internal  high-speed  pipe  that  allows  each 
system to take  advantage of the  other’s  strengths 
as well as developed  products,  both  hardware 
and  software. This paper  describes this closely 
coupled  heterogeneous  multiprocessor  and  its 
capability of concurrent  coprocessing.  Also 
discussed are the  implementation,  coupling 
architecture,  and  design  considerations of the 
BiProcessor  and  its  development  objectives. 
Some  of the  intended  applications are host off- 
loading of communications  protocol  processing, 
use  as an applications  coprocessor,  and  service 
as a  platform for  future  clustering  technology. 

T he BiProcessor is a  heterogeneous multipro- 
cessing  system  that  has  been  developed  to 

provide  a platform for allowing nontraditional 
system  solutions.  It allows new applications  to 
exploit  the  inherent  goodness of proven  architec- 
tures,  even if they  do not fit or  conform com- 
pletely  to existing molds. The  BiProcessor is dif- 
ferent  from the combined  architectures of the  past 
in that  both  processing  environments are  fullyvis- 
ible and accessible to  the  user.  Each  processor 
has  access  to  the  other’s  resources.  In  contrast, 
earlier configurations typically  consisted of em- 
bedded  controllers  that were dedicated to a  spe- 
cific task  with the controller’s personality hidden. 
The BiProcessor is particularly  suited  for  use as 
a toolkit for  the  experienced  system  developer 
who  has  a  unique application or novel  approach 
to system solutions. The  BiProcessor may be 
thought of as a set of building blocks to  support 

the rapid customization of computer  systems  and 
the  easy creation of portable applications. 

Several  categories of new applications  are  envi- 
sioned  for  this hybrid multiprocessor, with focus 
on  extending  the IBM System/370* to  other pro- 
cessing  environments  that  exist  today  and as  they 
may  be realized in the  near  future.  Development 
of the  BiProcessor was  undertaken with the  rec- 
ognition that  heterogeneous  coprocessing is 
likely to  be  a growing trend in future  compu- 
tational  systems. The complex  instruction-set 
architectures used in many of today’s general- 
purpose  processors  are  expected  to  be  comple- 
mented  with  such  coupled  special-purpose 
computational  units as transputers and neural 
processors.  The design of the BiProcessor’s 
interprocessor coupling mechanism reflects con- 
siderations of these  future  trends. 

There  was no existing architecture available for 
the coupling mechanism between  heterogeneous 
multiprocessors, as  we began development. Nei- 
ther was  there  prior  experience  related  to  the 
merging of different IBM architectures. To a large 
extent,  the  BiProcessor design was driven by  our 
vision of a  product  that would support  future dis- 
tributed  object-oriented,  event-driven, real-time 
applications. 

Wopyright 1992 by  International Business Machines  Corpo- 
ration.  Copying in printed form for private use is permitted 
without  payment of royalty provided that (1) each  reproduc- 
tion is done  without alteration and (2) the Journal reference 
and IBM  copyright notice  are included on  the first page. The 
title and  abstract,  but no other portions, of this paper  may  be 
copied or distributed royalty  free  without  further permission 
by  computer-based  and  other information-service systems. 
Permission to republish any  other portion of this paper must 
be obtained  from  the Editor. 

BERGGREN 535 IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



Figure 1 BiProcessor  system enclosure 

~~~~~~ ~~ ~ 

This  paper  discusses  the  intended  uses for this 
hybrid architecture,  both as  the  uses  have  already 
materialized and as  they  are envisioned for the 
future.  Some of the  applications  addressed  are 
synergistic  coprocessing,  protocol off-loading, 
adapter  openness,  and  technology infusion and 
clustering. This  paper  also  describes  the imple- 
mentation of the BiProcessor  and  the design of 
the coupling facility, including some of the design 
tradeoffs that  were  made during the  development 
of the  BiProcessor.  Possible  future  improvements 
are  also  discussed. 

System overview 

The Micro Channel* 370 BiProcessor  consists of 
two  computer  systems merged into  a single small 
package  containing  a System/370 and  a  Personal 
System/2*. Each processor  has  its own private 
memory, DASD and hard disk, input/output,  and 
separate  controls. The two  systems  are  con- 
nected by an  internal high-speed pipe. Figures 1 
and 2 show pictorial views of the  system:  the 
physical  enclosure  and  a high-level schematic of 
the  system  internal  block diagram. 

Hardware. The System/370 is  a fully functional 
System/370 processor, with capabilities  function- 
ally equivalent to an IBM 9370 CPU. The  Personal 
System/2 (PS/~*)  is a 20 MHz psi2 Model 80 de- 
rivative, functionally equivalent to  the psi2 Model 

536 BERGGREN 

8580-321. One of the eight available Micro Chan- 
nel slots in the psi2 processor  is  used  by  the  Sys- 
tem/370 coupling facility. The remaining seven 
slots  can  be  used  for  other  Micro  Channel  de- 
vices. Without  the coupling facility between  the 
System/370 and PSD, each  processor could be 
used independently. The two processing  environ- 
ments  have full operating  autonomy,  apart from 
sharing  a  common  power  supply. 

The coupling hardware  connecting the two pro- 
cessing  environments  consists of a  bus-to-bus 
protocol  converter  card  that  translates  Sys- 
tem/370 internal  bus  protocols to Micro  Channel 
protocols  and  vice  versa.  The  card plugs into  a 
standard  Micro  Channel slot. The card  houses 
Micro  Channel mapped memory  accessible to  the 
psi2 and  a  microprocessor  that  moves  data  be- 
tween  the System/370 and Micro Channel  address 
spaces. The microprocessor  can  read  and  write all 
of the System/370 memory,  a  capability  that is 
used for the high-speed pipe implementation. 

Software. Since  the psi2 is a fully functional P S / ~ ,  
it can  run all operating  systems  and  applications 
intended  for  that platform. Several  operating  sys- 
tem combinations  are  supported  for  the BiPro- 
cessor  interprocessor coupling facility. The psi2 
may  execute DOS,  OS/^*, AIX*/386, or  proprietary 
operating  systems  such as Syzygy's HBX/370* *. 
On the System/370 side, coupling support  has 
been  developed  for  the  virtual machine (VM) and 
Virtual Storage  Extended (WE) operating  sys- 
tems.  Applications  that  were  developed for these 
operating  systems will execute unchanged on the 
BiProcessor. 

Standard high-level application programming in- 
terfaces (APIS) are  provided  to  facilitate  ease of 
use,  and  a low-level transport  interface is made 
available for  customized  protocol implementa- 
tions. 

Communications  architecture. The communica- 
tions  architecture of the coupling facility between 
the  two  processors  is  based  on  a tightly coupled 
multiprocessor model, with  peer-to-peer  interac- 
tion. Interprocess  communications  are imple- 
mented as if the  processes  were  executed in the 
same  environment. 

The  architecture  is  layered  with  three  distinct  in- 
terfaces, as shown in Figure 3. It provides  the 
capability for psi2 and System/370 programs to 

IBM SYSTEMS JOURNAL,  VOL 31, NO 3, 1992 



Figure 2 BiProcessor  hardware functional diagram 
~~~ 

SYSTEM/370 CPU 1 PS/2 
PROCESSOR 

MEMORY 
MEMORY 

KEYBOARD AND 
DISPLAY 

i SYSTEW370 
OPERATOR 
CONSOLE 

I 1  

I/O PROCESSOR 
CHANNEU 
COMMUNICATION UNIT 
EMULATION 

SYSTEM/370 DASD 

I/O ADAPTERS 
SYSTEM/37O 

SUPPORT I 
E (HARD DISK) 

1 I > MICRO CHANNEL 

communicate  directly  at  two  interface levels-a 
high-level user  access point and  a low-level trans- 
port  interface. 

The high-level user  access point in the  commu- 
nications  architecture is the application program- 
ming interface  (API), as shown.  A  protocol stack 
is built on  top of the high-speed pipe implemen- 
tation.  The design is modular, so that  any specific 
protocol  can  be  supported,  for  example,  the  Sys- 
tems Application Architecture* ( s a * )  Common 
Programming Interface-Communications (CPI-c), 
Sockets,  Network  Basic  Input/Output  System 
(NetBIOS), and  Transmission  Control  Protocol/In- 
ternet  Protocol (TCPDP). 

The low-level user  access  is  directly  to  the Bi- 
Processor high-speed pipe, shown as the low- 
level programming interface (LLPI) in Figure 3. It 
provides  a  low-overhead  data  send  and  receive 
function  and  rudimentary routing. The functional 
components of the high-speed pipe consist of data 
transport  and  inter-cpu signaling mechanisms, in- 

terface  macros,  and  the  supporting  hardware, 
shown as everything below the LLPI interface. 
More than  one logical pipe can  be  supported  con- 
currently  over  the  same  set of hardware. 

Intended  applications  and  system 
realizations 

The BiProcessor allows System/370 and P S / ~  ap- 
plications to communicate  directly in a  closely 
coupled  multiprocessing configuration, thereby 
providing each with access  to  the other’s  re- 
sources.  The  BiProcessor  system design objec- 
tives  were to satisfy  the  needs of several major 
categories of intended  applications  that  exploit 
this  capability, as described  next. 

Applications  coprocessing. An applications  copro- 
cessing  category is intended to  be  one of a  syn- 
ergistic  relationship  between System/390- and 
~ s ~ b a s e d  applications,  where one  adds  value  to 
the  other.  These  applications  may  communicate 
via  either  the CPI-c or LLPI interface, and specific 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 BERGGREN 537 



Figure 3 BiProcessor communications architecture 

SYSTEMI370 PS/2 

1 API 

INTERFACE 1 
HIGH-LEVEL 
PROTOCOL 

INTERFACE 2 
INTERFACE MACROS 

API 

1 
HIGH-LEVEL 
PROTOCOL 

LLPl 

1 
INTERFACE MACROS 

DATA TRANSPORT SIGNALING 
"_"""""""" HIGH- 

I I '  COUPLING HARDWARE 

interface  selections  depend on the  intended ap- 
plication's need and the  operating  systems  used. 
Both LLPI and CPI-c can be supported  concur- 
rently, if desired. See Figure 4. 

Coprocessing  examples  are  numerous,  many of 
which  have  traditionally  been  connected  via local 
area  networks (LANS). Included are  PSI^ LAN serv- 
ers,  such  as  the IBM LAN Server,  Microsoft's LAN 
Manager**,  and Novell's Netware**. Some 
more  recent  implementations include the  cou- 
pling of Series/l capabilities to  the System/370 via 
PSD-based Series/l  emulators  as  shown by  the 
Syzygy  implementation, as described  later in this 
paper,  and  high-performance  mathematics  copro- 
cessing  applications  via  Micro  Channel  Reduced 
Instruction  Set  Computer (RISC) processor  cards. 

Using  BiProcessor implementations, ~sn-based 
LAN servers  can  exploit System/370 functionality, 
thereby  extending existing client-server offering 
capabilities. These  extensions include systems 
management and  control,  data  sharing  and man- 
agement (including backup  and  archiving),  net- 
work  monitor  and  control,  and  software  distribu- 
tion. The extensions  also  enable full Systems 

Network  Architecture (SNA) wide-area commu- 
nications  participation.  PSI^ applications  can  ben- 
efit by utilizing Virtual  Telecommunications Ac- 
cess Method (VTAM") and  thus gain access  to  the 
SNA network  and  remote  resources. 

Another  client-server  computing application that 
used  the  BiProcessor was demonstrated by 
Phaser  Systems,  Inc.  at  Networld.  Phaser used 
the  BiProcessor  to  demonstrate  their  NetWare 
for VM** product  and how it provides for routing 
Novell Netware's IPWSPX across  an SNA net- 
work. IPWSPX are LAN protocols  developed by 
Novell. The  PSI^ was used as a  communications 
gateway  to  provide  access to  the System/370- 
based  NetWare for VM component to LAN-at- 
tached  workstations. 

A prime example of the platform's use as an ap- 
plications  coprocessor was developed by Syzygy 
Communications, Inc. in partnership with IBM. 
The  objectives  were to provide  a  Series/l  replace- 
ment and  growth  path using newer technology. 
IBM developed  the  pipe  support  for  the VSE op- 
erating  system,  and  Syzygy  integrated Humming- 
bird** on  the  PSI^ side allowing it to communicate 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



Figure 4 Applications  coprocessor configuration 

SYSTEM/37O psi2 

1 CPI-c APPLICATION A' 

t t 

across  the pipe. Hummingbird is a Series/l EDX 
(Event-Driven  Executive)  emulator  that was de- 
veloped by Computer  Information  Enterprises 
for IBM PCS and PS12s. (EDX is a  Series/l  operating 
system.) Configuration details are shown in Fig- 
ure 5. 

The Syzygy  exploitation of the hybrid aspects of 
the BiProcessor  has  both immediate and long- 
term benefits. Existing Series/l EDX applications 
can  be  ported  to  this interim platform, thus pre- 
serving  developed  applications  software.  At the 
same time, new  applications  can  be System/370- 
based  and  use efficiently the  capabilities of new 
technology  at lower price and better  perfor- 
mance. The System/370 with  the VSE operating 
system offers an unlimited migration path from 
the  Series/l.  (The  Customer  Information  Control 
System [CICS] transaction  environment is ideally 
suited  for  Series/l-type applications.) This  copro- 
cessing implementation solves  both Series/l  ca- 
pacity  and  Series/l  future availability problems. 

Protocol off-load. A  second major intended  cate- 
gory of BiProcessor usage was  to  open  the  Sys- 
tem/370 to new  processing  environments  through 

use of the  PSI^ as a  protocol engine. This  is  the 
outboard  processing of communication  protocols 
on  the Micro Channel-based  processor and 
adapter  cards. 

To communicate  with  the  outside  world,  the  Sys- 
tem/370 usually uses  either SNA or TCP/IP proto- 
cols. A System/370 application wishing to com- 
municate with the  outside  world  communicates 
with VTAM, for  instance,  which in turn  does all the 
communications on behalf of the  requesting ap- 
plication by executing  the SNA protocols.  By  pro- 
viding a  direct  path  into the System/370, any Ps/2- 
based  communications  protocol  can be used to 
access System/370 applications with the BiPro- 
cessor.  Figure 6 shows  the  BiProcessor in a  pro- 
tocol engine configuration. The System/370 exe- 
cutes  user  applications,  and  the  protocol 
processing  is  done  outboard.  The System/370 ap- 
plication gets  access  to  the  protocol-specific API 
via  the LLPI interface  and high-speed pipe, with 
the  communications verb  set being pulled 
through. 

A  database application executing on  the  Sys- 
tem/370 can  be opened  up  to  a large segment  of 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 BERGGREN 539 



Figure 5 Syzygy  Series11  replacement 

SYSTEM/37O PSI:! 

TRANSACTION APPLICATIONS 
NEW SYSTEM/370 ClCS 

VTAM 3.2 

VSE 
FAULT TOLERANT. LIGHTS O U l  

VSE-SERIES/l 

""""""""""" 

VSE PIPE 

SYSTEM/370 
INPUT/OUTPUT 

EXISTING EDUASM 
APPLICATIONS (OBJECT CODE) 

SERIES1  CF 
(COMMUNICATIONS FACILITY) 

HUMMINGBIRD 
EDX EMULATOR 

DOS PIPE 
""""""""""" 

---"- CUSTOM I/O 
INTERFACES 

"r . .  
CPI-c 

APPLICATION 4 b APPLICATION 

APPLICATION 
VIRTUAL DISK 

b DISK (SERIES/l FILE LOOKS 
LIKE SYSTEMIS70 FILE) 

DISK 
VIRTUAL DISK 

4 APPLICATION (SYSTEM/370 FILE LOOKS 
LIKE SERIES/l FILE) 

VIRTUAL TERMINAL .~~ 
TERMINAL b APPLICATION 

EDUASM-EVENT-DRIVEN LANGUAGE/ASSEMBLER (SERIEW) 

LAN-attached PCs by putting NetBIOS on the PS/2 
side. NetBIOS is  the  prevalent  method of commu- 
nications for existing PCS and P S / ~ S .  In another 
configuration, AppleTalk**  protocols  can  be  put 
on the P S / ~  to enable Macintosh** computers 
access  to  the System/370. In still another config- 
uration, DECnet** can  be  used if VAX** connec- 
tivity  is  desired.  Another  advantageous imple- 
mentation of this  protocol off-load is to  substitute 
the System/370-based TcP/IP protocols,  common 
with  governments  and universities, with  the AIX 
PS/2 equivalent.  This  does  not  necessarily  provide 

new  function for the System/370 operating sys- 
tems  that  already  have TCP/IP capability, but it 
improves  the  performance of existing function. 

Viability of the  BiProcessor  protocol engine con- 
cept  was  proved by the  ease with which  the man- 
ufacturing messaging services (MMS) support  was 
developed for the  BiProcessor. MMS is the  stan- 
dard application-level interface for manufactur- 
ing, and it provides  data collection and control  for 
factory  devices on the plant floor. MMS uses  the 
seven-layer  communication  protocols defined by 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



Figure 6 Protocol  engine  configuration 

SYSTEM/370 PSI2 

APPLICATIONS 
PROCESSING 

SPECIFIC 

1 """""" "" 

I I OUTSIDE-WORLD 

NETWORKS  (LANs) 
LOCAL AREA 

the  International  Standards  Organization's  Open 
Systems  Interconnection (OSI) Reference Model 
and  the  Manufacturing  Automation  Protocol 
(MAP). By integrating a ~ s / ~ - b a s e d  MAP adapter 
and OSI protocols for ow2 with the System/370 
MMS server  for VM/SP, the  development of a man- 
ufacturing solution  package  that  applies  the Bi- 
Processor as an  area  or cell controller  for the 
manufacturing floor was achieved in a very  short 
time and with little effort. 

There  are  numerous  advantages  to  the  protocol 
engine application of the  BiProcessor  concept.  It 
makes it possible for the System/370 to exploit a 
multitude of ~s/2-family-developed  protocols,  as 
well as private  low-overhead "roll-your-own" 
implementations.  The  protocol engine applica- 
tion provides  for off-loading the System/370, thus 
allowing the host to  dedicate  its processing  power 
to mainframe applications, while exploiting the 
PS/~'S less  expensive MIPS and  hardware  for  com- 
munications  protocol processing. In addition, it 
has  a  decided  performance benefit in that  the 
communication  protocols  can  be  processed in 
parallel with  the  application,  rather  than  serially 
with  the  added  processing  overhead of context 
switching. 

Adapter openness. Adapter  openness  can  be 
viewed as a  variation on  the protocol engine ap- 
plication. However,  rather  than using the PS/2- 
developed  communication  protocols, Micro 
Channel  adapters  are being made available to  the 
System/370. Besides IBM, there  are  several hun- 
dred  independent  vendors  that  develop  adapters 
for  the P S / ~  family of processors.  Adapter  ex- 
amples  are manyfold and include optical disks, 
CD ROMs, FAX adapters,  scanners,  and  many 
more. 

The  adapter  openness is implemented by a  data- 
manager application on  the P S / ~  that  controls  the 
specific device on  the Micro Channel  and  passes 
the  data  to and from the System/370 application, 
as shown in Figure 7. Data  are  passed from ap- 
plication to application,  thus hiding the  adapter 
specifics to  the System/370, using either  the CPI-c 
or LLPI interface  depending  on  the specific needs. 

By allowing the System/370 to  interface to  any 
adapter  card  developed for the  Micro  Channel 
without having the  device defined to the  Sys- 
tem/370, the SystemM70 is given a  previously un- 
known flexibility in available adapter  options and 
in ease of implementation. 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



Figure 7 Adapter  openness  configuration 

SYSTEM/370 psi2 

USER APPLICATIONS 

CPI-c 

DEVICE MANAGER 

7 
CPI-c 

DEVICE 
DRIVER 

4" ""  """"  "" 

I 1 I + 
psi2 
MICRO CHANNEL 
APAPTERS 

Network  router. Yet  another  communications  ex- 
ample is that of configuring the  BiProcessor  with 
the  PSI^ as a  network  router.  In  this configuration, 
upper-layer  protocols are resident  on  the  Sys- 
tem/370. The  PSI^ functions as a low-level router 
to  the  data-link layer-for example  the IEEE 
802.2-and through it to  the  outside  world, as 
shown in Figure 8. 

The VM CPI-c support  developed  for  the BiPro- 
cessor  contains  network routing support.  Thus 
VM applications  may  also  use CPI-c to communi- 
cate with PC-DOS, Os/2, or AIX workstations. 
These  are  attached  via  a  token ring or  Ethernet 
adapter  to  the P S / ~  side of a  BiProcessor  that is 
executing os12. The following capabilities  are  pro- 
vided: 

A workstation  application (PC-DOS, OSl2, or AIX) 
can  allocate  a  conversation with a System/370 
CPI-c application, and  through VTAM to remote 
hosts. 
A System/370 CPI-c application can  allocate  a 
conversation with the os12 server, an 0 ~ 1 2 ,  
PC-DOS, or AIX workstation,  or  another  Sys- 
tem/370 system. 

542 BERGGREN 

The BiProcessor implementation of the CPI-C sup- 
port  for VM is discussed in References 2-5. 

Coupling  implementation 

BiProcessor  communications  architecture. The 
communications  architecture of the coupling fa- 
cility between  the  two  processors  is  layered  with 
three  distinct  interfaces, as shown in Figure 3. 
The  functional  components are: (1) the coupling 
hardware  previously  discussed, (2) data  trans- 
port, (3) inter-cpu signaling mechanisms, (4) low- 
level interface  macros,  and (5 )  upper-layer  pro- 
tocols in support of the high-level interface, as 
described in later  sections of this  paper. 

Data transport. The BiProcessor  data  transport 
mechanism is implemented through buffer-pool 
technology,  which is an interlocked  memory 
management scheme with shared  direct  access to 
memory.  Data  transfer is not  under  the  control of 
a System/370 channel program nor are  the  data 
presented to  the  PSI^ in a  serial  manner as a result 
of IN/OUT instructions.  Instead,  controls  for 
shared buffer pools  are  located in a  communica- 

IBM SYSTEMS JOURNAL, VOL 31, NO  3, 1992 



Figure 8 Network  router  configuration 

SYSTEMI370 Psi2 

VM/SP APPLICATIONS 

CPI-c t APPCl 

+ "" 

OS12 
DOMAIN CONTROLLER 
NETWORK ROUTER 

u "" """"_ 

ETHERNET 

DLC 

I L I + YOKEN F ~ N G  
F 

WORKSTATIONS 
LAN-ATTACHED 

(PC-DOS. OSI2, AIX) 

tion area in Systemi370 memory, with a  separate 
communication  area  for  each logical pipe. 

Definitions for  circular buffer pool queues  are lo- 
cated in this  communication  area. The buffer pool 
queues  contain  memory  pointers to storage loca- 
tions  into or  out of which data  are  to  be  trans- 
ferred, thus minimizing data  moves by moving the 
data  directly to and from application space.  The 
definitions include information on  storage loca- 
tions of the buffer pointer lists, number of entries, 
and  size of the  data buffers that  the  queue  entries 
point to. 

The BiProcessor pipe is full duplex. Thus there 
are two circular buffer pool queues defined in the 
communication  area  for  each logical pipe, one  for 
each  direction of data  transfer"Systed370  to 
P S / ~  and ps/2 to  Systed370. One  processor  con- 
trols  the  read  pointer,  and  the  other  pointer  con- 
trols  the  write  pointer in a  queue,  with  the  read 
pointer  chasing  the  write  pointer.  The  content of 
the pointers  may be updated dynamically, 
thereby allowing the application flexibility, with 
regard to memory  locations of the  data buffers. 

The  communication  area  also  contains  control 
fields for the buffer pools. These  control fields 

determine  where in the  circular buffer queue list 
the  current  read and write  pointers  are  located. 
These  pointers  indicate  the  locations of next 
available empty input buffer or  data buffer to  be 
transferred  out.  Control fields also  indicate 
whether  a  queue  is  empty  or full (or  neither  empty 
nor full), information which is used to determine 
signaling need. 

Information with regard to buffer list formats is 
contained in the  communication  area  control 
fields. The high-speed pipe  supports  transfers of 
packets larger than  the buffer size specified in the 
control fields. The buffer list format fields provide 
the  controls  to allow concatenation of individual 
data buffers. These buffers do not have  to  be lo- 
cated in contiguous memory. 

Inter-CPU  signaling. In addition to  the buffer pool 
queue  and  controls definition described  above, an 
inter-cpu signaling mechanism is required  for  the 
operation of the BiProcessor pipes. The  inter-cpu 
signaling is  used for the following: 

Communication area definition. The  storage lo- 
cation of a specific communication  area and its 
size  must be communicated by the System/370 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 BERGGREN 543 



to  the ps/2 agent responsible  for buffer pool 
queue manipulation. This  is  done  when  a pipe is 
initially enabled and after a  reset  and/or  pro- 
gram load. 
Pipe termination. An application or  detected 
errors  may  close  a pipe. 
Bufferpool queue state changes. The  peer  pro- 
cessor is not  interrupted, as a rule, for normal 
data  transfers, in order  to optimize data  transfer 
performance. A shoulder-tap notification is re- 
quired,  however,  when  a  circular buffer queue 
goes from empty to nonempty or from full to 
nonfull, indicating that  action  should  be  taken. 
If processors  are  speed-matched,  data  transfers 
can go on indefinitely without  interruption to 
either  the System/370 or  the Micro Channel- 
based  peer  processor.  This is because  one  pro- 
cessor  reads  from  a  queue  at  the  same  rate  as 
another  processor  writes  into it. 
Requests for status. 

Although the design of the  data  transport  mech- 
anism could easily be optimized,  development of 
the  interprocessor signaling was  less  straightfor- 
ward. With no prior implementation of peer-to- 
peer coupling between  heterogeneous  proces- 
sors,  there  was  no given mechanism to implement 
this  interprocessor signaling. What was needed 
was an  instruction  and  a  corresponding  asynchro- 
nous  external  interrupt  that could be used  be- 
tween  the  two  processors  symmetrically  with 
each  one switching roles.  This was not available 
to  us in either  system.  Therefore, we evaluated 
possible instructions and interrupts,  based  on 
what could be made  to  meet  our  objectives within 
one  year.  After discarding several  options, the 
choice of signaling method was narrowed  down to 
one  based  on multiprocessing or  to an I/O subset 
as described below. 

The multiprocessing option was based on using the 
existing Systed370 multiprocessing architecture 
for tightly coupled Systerd370 processors. Inter- 
CPU signaling for homogeneous Systed370s is  im- 
plemented by a Signal Processor (SIGP) instruction. 
The SIGP instruction and associated external inter- 
rupts with the various order codes fill the BiPro- 
cessor pipe signaling needs naturally. A logical  pipe 
would be implemented as an emulated Systed370 
CPU and interact as such with the real Systed370. 
The  order  codes associated with the SIGP instruc- 
tion include commands that allow one processor to 
retrieve status from, and to start,  stop, and reset the 

544 BERGGREN 

other. This is in addition to the basic shoulder tap 
needed for queue manipulation. 

The  second  option  for implementing the signaling 
between  the CPUS was based  on using a thin layer 
of the System/370 I/o architecture to emulate  sub- 
sets of the System/370 110 channel  and  control unit 
function.  The  I/o-subset  approach to interproces- 
sor signaling was  chosen,  based  on  the time re- 
quired  for  development. The multiprocessing  fa- 
cility was not implemented for  the specific 
hardware, and development of the required  func- 
tions would not be a trivial undertaking. Modifi- 
cation of the I/O architecture to meet  our  needs, 
on  the  other hand, was fairly simple, and we could 
exploit existing microcode. The System/370 I/O 
architecture  subset was used as follows: 

Start z/o (szo) with  a  Prepare command was 
used to enable the pipe  communication  area. 
The  Channel Command Word (CCW) data  ad- 
dress  was used for the  address of the commu- 
nication area,  and  the  data length was  used to 
denote  its size. 
Test z/o (TZO) was used  for  the  shoulder  tap from 
the System/370 to notify the P S / ~  agent of a 
buffer queue  state  change. TIO was  chosen  be- 
cause of its low operating  system  overhead,  and 
performance was a major design criterion. 
Asynchronous attention interrupt (ATTN) was 
used by  the ps/2 to signal the System/370 about 
buffer queue  state  changes. ATTN plus unit 
check  was  used  to signal errors  or  the closing of 
a pipe. 
Start Z/O (NO) with  a  Sense command was used 
by  the System/370 to retrieve  status from the 
PS/2. 

The  chosen  approach  to  interprocessor signaling 
performed well, and it can be extended in the 
future. With the  layered  approach to the design 
and specifics of the pipe implementation details 
hidden, there is nothing to preclude changing it 
later  when  standard coupling mechanisms  emerge 
for heterogeneous  multiprocessors,  without im- 
pact  on  developed application software. 

When the implementation choice was made, the 
standard System/370 I/O architecture  was  evalu- 
ated  at length for applicability to  the BiProcessor 
concept,  as  were different channel  protocols. Al- 
though it was recognized that  many  future appli- 
cations  could  be  developed  for  a System/370 with 
a  channel-attached P S / ~  and  that  some of the  func- 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



tional objectives would be  met with this  approach 
to coupling (albeit with a  performance  penalty), 
the I/O approach  was  discarded  as  an  option  as it 
did not  meet  the  BiProcessor long-term objec- 
tives for clustering  and  technology infusion. 

Pipe  operation. The following is  a  discussion of 
the  features of pipe operation, which is  a major 
function of the BiProcessor  architecture. 

Pipe initialization. Before  data  transfers  can  take 
place, a  pipe  has to  be initialized by determining 
the location of its  communication  area. The Sys- 
ted370 defines a  communication  area. The 
Systed370 then  opens  its  end of the  pipe by com- 
municating the location and  size of the commu- 
nication area  to  the P S / ~  agent  responsible  for 
buffer pool queue manipulation. When a  pipe  has 
been initialized by  the System/370, it is in a con- 
nection-pendingstate. The pipe is not  operational 
and  enabled  for  data  transfers,  however, until 
end-to-end  connection  has  been  established.  The 
application  that  owns  the  corresponding Pipe 
Connection  End Point (PCEP) still has  to  open its 
end of the pipe, which,  when  completed,  puts  a 
pipe in the operational state. 

Pipe data transfer. Data  transfer is symmetric, 
with  each  partner switching roles  for  the  opposite 
queue.  Queue 1 is used for  data flowing from  Sys- 
tem/370 storage  to the Micro  Channel  address 
space, and Queue  2 is used for  data flowing from 
the Micro Channel  address  space to  the Sys- 
tem/370 storage.  Consequently,  the System/370 is 
responsible  for maintaining the Queue 1 input se- 
quence  number  and  the  Queue  2  output  sequence 
number.  At  the  same time, the P S / ~  agent  process 
is responsible  for maintaining the  Queue  2 input 
sequence  number  and  the  Queue 1 output se- 
quence  number. 

The input sequence  number  points  to  the buffer- 
list entry  for  the  next available input buffer. The 
output  sequence  number  points  to  the buffer-list 
entry for the  next  output buffer. The  queue is 
empty if the input sequence  number is equal to  the 
output  sequence number. The buffer list is circu- 
lar  and  the  output  sequence  number  “chases” the 
input sequence  number. 

Each  sequence  number  is  a 2-byte value  between 
0 and 65535, which is used to  locate an entry in a 
buffer list. The  sequence  number  wraps from 
65535 to 0. A buffer list entry is selected by di- 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 

viding the  current  sequence  number  by  the num- 
ber of entries in the list and using the  remainder 
as an index  into the list. The input sequence num- 
ber is incremented  each time a buffer is filled, and 
the output  sequence  number is incremented  each 
time a buffer is  emptied. The  queue  is  empty  when 
the input sequence  number is equal to  the  output 
sequence  number. 

A  “wake-up”  interrupt  is reflected to  the partner 
whenever  the  queue status changes  from  empty  to 
not-empty  or from full to not-full. 

Pipe termination. The pipe interface will remain 
enabled until either  application  wishes  to termi- 
nate  the  connection or until an  error  is  detected 
and/or  a  reset is issued. Upon  receipt of a dis- 
connect  order, all pending read  and  write  requests 
are terminated  for  this pipe, and the application 
that  owns  the  corresponding Pipe Connection 
End Point is notified that  the  pipe  interface  has 
been disabled. 

Integace macros. In order  to isolate the user from 
the specifics of pipe implementation details  and to 
allow future  upgrades  without  application  soft- 
ware  impact, we defined a low-level programming 
interface (LLPI). The LLPI is  provided as a  set of 
interface  macros  (Open,  Close,  Read, Write, and 
Status)  supporting  the  communication  between 
two  cooperating application processes,  each 
owning one  end of a  particular  pipe realization. 

The low-level interface  is  intended  for  develop- 
ment of private  protocols by  users  who  prefer  to 
customize  their  protocol implementation and  for 
applications with performance  requirements  that 
dictate  the  more  direct  interface.  The LLPI mac- 
ros,  therefore,  support high-speed, point-to-point 
data  transfers  between  the  cooperating  pro- 
cesses,  without  any  processing  overhead  for up- 
per-layer  communication  protocols.  That  is,  the 
macros’  functions are strictly  data-move  opera- 
tions  between  the two  address  spaces.  There  is  no 
error  checking on  the  data  content  or multiplexing 
over  a  pipe  between different users.  These  func- 
tions, if desired,  must  be implemented by the  user 
application. They  are also  provided by  the higher- 
level CPI-c interface,  which could be  considered 
by a  system  developer,  based  on  a specific appli- 
cation’s need. 

The major functions  performed by  the LLPI mac- 
ros’ communication verbs  are outlined below. 

BERGGREN 545 



Enable-Pipe is the  function  that  enables the 
pipe and  makes it available to  the calling appli- 
cation. If the  pipe is already  enabled,  a  return 
code of busy  indicates  that condition. 

Get-Outputstatus obtains  the  current  status 
of the  outbound  side of the pipe. The  return 
value  indicates  the  amount of data  that  can be 
accepted by  the  pipe  queue. 

Write-Output-Message writes  the  next mes- 
sage  to the pipe, up to  the maximum message 
size of 32 767 bytes. The function  return  value 
is the size of the message sent  to  the peer 
application. If space is not available in the 
pipe queue,  control is not returned until the 
message has  been  input to  the queue. The 
Get-Outputstatus function  should  be used to 
check for available buffers before issuing a 
Write-Output-Message request, if the applica- 
tion does  not  want  to  wait for a  message to  be 
sent. 

Get-Inputstatus is  the function used by  the 
application to obtain  the  current  status of the 
inbound side of the pipe. For example,  this 
function  can  be used to poll for incoming mes- 
sages. The  return  value  indicates  the  amount of 
data waiting to  be read. 

Read-Input-Message reads the next  message 
from the pipe. (The maximum message  size is 
32 767 bytes.) The  function  return  value is the 
size of the message received  from  the  peer  ap- 
plication. If there  are no pending messages 
when  the application issues  a  read,  control is 
not  returned to  the caller, until a message is 
received in the queue. For polling-type trans- 
fers, the Get-Inputstatus function  is used to 
check  for pending messages in conjunction with 
this  synchronous  read,  before issuing a 
Read-Input-Message request.  This  assumes 
that the application does  not  want  to  wait  for  a 
message to  be received. 

We have  been considering the desirability of 
future pipe implementations to provide addi- 
tional transfer  modes  to  complement  the initial 
synchronous mode. Examples  are  the  asyn- 
chronous  modes in support of polling and sig- 
naling operations. For  the  latter,  the  data  re- 
ceived interrupt the target  application,  and  are 
used for the  distribution of control,  remote  in- 
terrupts,  and  for  event-driven  applications. 

546 BERGGREN 

Disable-Pipe disables  the pipe, and  data  pend- 
ing  in the high-speed pipe are  discarded. An 
indication of Pipe Closed is reported  to  the  peer 
application,  to  indicate  that  the pipe has  been 
disabled. The Pipe Closed indication is also  re- 
ported to all applications  that  have logical pipes 
enabled  when  the  peer  processor  goes  through 
an IPL while the pipe is operational. 

Get-InstalledStatus determines  whether  the 
high-speed pipe device  driver  has  been in- 
stalled. If the  device  driver is installed, the  ver- 
sion number of the driver  is the  return  value. 
Otherwise,  an  error  code  is  returned. 

The LLPI API depends on the specific operating 
systems used on the two environments. On the 
psi2 side,  support  has  been  developed for OSi2, 
DOS, and AIX, and the LLPI is provided by a set of 
interface  routines  that may be linked to applica- 
tion programs.  These  routines  support  function 
calls  from  programs compiled by means of the 
IBM ci2 compiler and  any of the valid memory 
modules. To support languages other  than  C  and 
to maintain consistency with the ow2 system  serv- 
ices API, these  interface  routines  use  the  Pascal 
calling sequence,  instead of the normal C calling 
sequence.  Format of the P S / ~  C-language LLPI in- 
terface  macros, including the  required  parame- 
ters,  are illustrated in Figure 9. 

A similar macro  set  has  been  constructed for use 
by  the  cooperating System/370 program(s) for the 
VM/SP and VSE operating  systems with callable 
subroutines  that  use System/370 assembler lan- 
guage, standard 1/0 commands,  and (for VM/SP) 
CMS commands. 

Further  details  with regard to the implementation 
and use of the  BiProcessor LLPI macros  are de- 
scribed in the  BiProcessor programmer’s refer- 
ence manual. 

High-level  application  programming 
interface 

The high-level user  access point in the  commu- 
nications  architecture for the BiProcessor high- 
speed pipe is the application programming inter- 
face (API), as shown in Figure 3. Several specific 
protocol  options (APIS) are possible, depending on 
the  operating  systems  that are executing in the 
two  processors. 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



Figure 9 Format of C-language LLPl interface macros 

int far pascal pstatus  (ph) ; / *  Get  installed  status * /  
int far pascal popen  (ph) ; / *  Open  a  logical  pipe * /  
int far pascal pclose  (ph) ; / *  Close  a  logical  pipe * /  
int far pascal pread(ph,buffer,count); / *  Read input message * /  
int far pascal pwrite(ph,buffer,count); / *  Write  output  message * /  
int far pascal pinstat (ph); / *  Get input status * /  
int far pascal pinsize (ph) ; / *  Get input buffer  size * /  
int far pascal poutstat(ph); / *  Get  output  status " /  
int far pascal poutsize(ph); / *  Get  output  buffer  size * /  
int far pascal popensys(ph); / *  Open  pipe for system  use*/ 

int ph; 
char far *buffer; 
int count; 

/ *  Pipe  handle (0-1) * /  
/ *  Data  buffer  address * /  
/ *  Data  count (1 to 32767) * /  

CPI-c is the first M I  to  be implemented. The Bi- 
Processor design is modular,  and  new  protocol 
machines  that  support additional M I S  can be 
added  when required. 

The CPI-c interface conforms to the Common Pro- 
gramming Interface-Communications component 
of the IBM Systems Application Architecture 
(sM).' It provides guaranteed data delivery and 
supports  the Advanced Program-to-Program Com- 
munications (APPC) functions including message 
routing, error checking, and session management. 
The sAA-Common  Programming  Intet$ace  Com- 
munications  Reference  Manual' describes in detail 
the rich characteristics and extensive functionality 
of the CPI-c interface, and References 2-5 describe 
the BiProcessor VM program offering. 

The VM/SP applications  may also use CPI-C to com- 
municate with PC-DOS, OS/2, or AIX workstations 
attached  via  a  token-ring  or  Ethernet  adapter  to 
the ps/2 side of a  BiProcessor  that  is  executing 
0 ~ 2 ,  as described earlier in this  paper. 

The PC-DOS CPI-C implementation supports  a  sin- 
gle user  on  the  BiProcessor P S / ~ .  It  does  not  sup- 
port  a local area  network (LAN) attached  to  the 
BiProcessor  system as the 0s/2 implementation 
does. 

Future considerations 

BiProcessor  objectives, in addition to satisfying 
applications immediately realizable, were  to 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 

serve  as  an  enabler for the future. The design was 
driven by  the recognition that  systems  architec- 
tures  are going through  a  generational  change, 
with novel system  concepts emerging that will 
allow computing  applications  that  were  previ- 
ously  possible  only on large super  computers  to 
become  commonplace. 

Although today's typical data  center application 
with TP-line-connected processing  units  that  are 
used primarily for management of corporate  data 
and time sharing of computing  resources will not 
disappear,  new  applications will exploit  recent 
advances in parallel systems technology. Clusters 
of processing  units  sharing in the task-execution 
load will also  be  joined by  various specialized pro- 
cessing  units  the  architectures of which  are dif- 
ferent  and  dedicated to specific tasks,  such as 
data  sorting and filtering, signal processing, and 
inferencing. These  coprocessors  may simply be 
executing  reduced  instruction sets for scientific 
visualization, or they  may  be  collections of trans- 
puters  cooperating  on the processing of the dif- 
ferent  layers in a  communications  protocol.  Other 
examples of future  coprocessor  categories in- 
clude  learning  machines,  that is, neural  proces- 
sors that  emulate  the  behavior of the human 
brain,  and  massively parallel processors. 

With the  transition from centralized to fully dis- 
tributed  architectures,  where single complex ap- 
plications  are  distributed onto parallel clusters of 
heterogeneous CPUS, the communications archi- 
tectures  required to  support this  distribution, by 

BERGGREN 547 



necessity,  also are going through  a  generational 
change. With the high data  rates realized by fiber 
optics  and  new  system  concepts exploiting these 
high data  rates,  the  technology  trend is to not 
move  the  data as communication  protocols are 
processed,  but  rather to deposit  the  data  directly 
in the application buffer. Therefore, implementa- 
tions  based  on  shared  memory  approaches  with 
buffer-pool technology as  an integral component 
in the  path  between  the application and I/O pro- 
cessors  are likely to  be  the prevalent  choice  for 
future  low-overhead  protocols.  Some of these 
emerging I/O processors  are in themselves highly 
parallelized. 

Just  as  the  applications  and  communications  are 
changing so is the  form of the information that  is 
to  be transferred  between  processing units. In- 
formation  has  attributes  that  require different 
treatment.  This, in turn,  translates  into parallel 
logical data  paths implemented with different pro- 
tocols  based  on specific attributes  between  the 
execution units. 

Whereas,  there will always  be  requirements  for 
the  type of corporate  data  we  are familiar with 
today,  with  its  guaranteed integrity, for  some in- 
formation  categories bit errors  can  be ignored. 
For image and  voice information, for example, it 
may  not  make  sense to  do extensive  error  check- 
ing and  correction  on  the  data  that would increase 
the associated  processing  costs, if the human 
senses  cannot  perceive  the  error.  Neither  does it 
make  sense  to  do  corrections of bit errors  on in- 
formation  collected by  sensors  such  as  radar  that 
have  relative low resolution.  Corporate-type 
data,  on  the  other  hand,  must  not  be  corrupted, 
because bit errors  can lead to economic  loss  and 
chaos. For  these information forms, the relative 
costs associated  with  the  protocol  processing 
overhead  to  ensure  the  accuracy of the  data  are 
necessary. 

For  other information forms,  latency  (or  relative 
latency) is the primary  protocol  driver. For  some 
process  control applications, the length of the 
control  loop  forces  transfer  latencies  between  ap- 
plications down  to  less  than  a millisecond, as 
compared to the  order  to several  orders of mag- 
nitude higher latencies  common  today. For con- 
current  voice  and  video  transmission  on different 
channels,  synchronization  between  the  two,  the 
relative  latency,  is  essential and drives  the  pro- 
tocol implementation. 

548 BERGGREN 

A large category of new applications are cyclical 
in nature,  for  instance,  computer  vision,  weather 
and  storm  tracking,  air traffic control,  and  other 
monitor and control  systems.  Their information 
transfers are characterized by highly periodic 
traffic. For  these  transfers,  no  error checking or 
retries are performed  because  redundancy  is  in- 
trinsic to  the  processes themselves. Given a 60 
Hz system, new data will be available in 16 mil- 
liseconds, or in less time than it would take  to 
resend the old erroneous information. For this 
type information, jitter  (that is, variance in the 
periodicity),  may  be  a  much  more  stringent  re- 
quirement  than  any  other  attribute.  Periodic in- 
formation as described  for  these  type  applications 
would be  deposited  directly  at  the application 
level in swinging buffer pairs, a  two-deep FIFO 
(first-in-first-out). The application works  out of 
one buffer while the  other is being refreshed by 
the  communications  processor.  Other applica- 
tions, such as some filter applications, require the 
most  recent five or six data  points. Their pipe 
would be six points  deep,  with the oldest  one  up- 
dated by  the  communications  processor  every cy- 
cle. 

Another  example of an information form that dic- 
tates  special  communications  protocol  treatment 
is that of remote  interrupts  used  for  synchroni- 
zation  purposes and to distribute  control,  espe- 
cially in event-driven  architectures,  where  an  ex- 
ternal  event  may initiate the  execution of a 
dormant  task. 

Although the  subject of this  paper is not  that of 
the  communication  architectures required to  sup- 
port  future  distributed  systems,  a major objective 
in the  development of the  BiProcessor was  to pro- 
vide  a platform that could be used for  prototyping 
different clustering  concepts  and the intelligence 
required outboard  before committing these  pro- 
tocols  to silicon. 

Concluding remarks 

The  BiProcessor  provides  a platform that  sup- 
ports  the rapid customization of computer sys- 
tems by merging the  two  processing  environ- 
ments,  thereby allowing both  the System/370 and 
the psi2 to exploit  the  strength of the  other,  as 
evidenced by  the  ease  with  which  new applica- 
tions  were  developed.  Examples of innovative 
system  solutions  that  take  advantage of the com- 
plementing resources,  both  hardware  and  soft- 

IBM SYSTEMS JOURNAL,  VOL 31, NO 3, 1992 



ware, include concurrent applications coprocess- 
ing, protocol off-load, and System/370 use of 
Micro Channel adapters. 

Communications architecture is, at  present,  a 
very rapidly evolving technology. Silicon imple- 
mentations of parallel executions for low-over- 
head protocols  are emerging with some functions 
done in hardware  that used to be application soft- 
ware.  This  paper has described how BiProcessor 
design objectives  were to provide a  vehicle  to al- 
low the infusion of this technology into  the  Sys- 
tend370 processor family. The  BiProcessor pipes 
are  the first steps toward a long-term goal to come 
up with  a  product to support  future  distributed 
object-oriented,  event-driven, real-time applica- 
tions. 

At the  same time we  are meeting our  objectives to 
provide a toolkit for rapid customization,  the Bi- 
Processor development allows us  to gain valuable 
experience in the coupling of heterogeneous  ar- 
chitectures.  The development of future  proces- 
sor-to-processor  interfaces for the coupling of 
host  processor to foreign architectures  can  take 
advantage of the  lessons learned from the BiPro- 
cessor pipe. 

Acknowledgments 

The  author  wishes  to acknowledge Ronald W. 
Hoffman and Robert C. Will for their role in the 
development of the prototype and G. W. (Bill) 
Wilhelm, Jr., who  was instrumental in making 
that  prototype  into  a  product. 

*Trademark  or registered trademark of International Business 
Machines  Corporation. 

**Trademark  or registered trademark of Syzygy Communi- 
cations, Inc., Microsoft Corp., Novell,  Inc., Phaser  Systems, 
Inc., Computer Information Enterprises, Inc.,  Apple Com- 
puter, Inc., MacIntosh  Laboratories, Inc., or Digital Equip- 
ment  Corp. 

Cited references 

1. Systems Application Architecture-Common Program- 
ming  Interface  Communications Reference, SC26-4399-0, 
IBM  Corporation; available  through IBM  branch offices. 

2. Installation  Checklist for W Personal Workstation Com- 
munication Facility, SX24-5268, IBM Corporation; avail- 
able  through  IBM branch offices. 

3. Managing W Personal Workstation Communication  Fa- 
cility, SC24-5585, IBM Corporation; available  through 
IBM branch offices. 

4. Programming for W Personal Workstation Communica- 
tion Facility, SC24-5586, IBM Corporation; available 
through IBM  branch offices. 

5. W Personal Workstation Communication  Facility Host 
Guide  and Reference, SC24-5593, IBM Corporation; avail- 
able  through  IBM branch offices. 

6. 9371 Model 14 Data ExchangeAdapterProgrammer’s Ref- 
erence Guide, SA24-4136, IBM Corporation; available 
through  IBM branch offices. 

Accepted for publication January 9, 1992. 

Christina  Berggren IBMEnte?pnse Systems Division, Route 
17C  and Glendale  Drive,  Endicott, New York 13760. Ms. 
Berggren  joined  IBM in 1973. She  earned a B.S. in chemical 
engineering and an M.S. in polymer science from the Royal 
Institute of Technology, Stockholm,  Sweden. Ms.  Berggren is 
currently a senior engineer  responsible for  coprocessors  and 
heterogeneous coupling  for  midrange Enterprise  Systems. 
Her  interests lie in clustering and communications  architec- 
tures  for distributed  real-time  computing, and  she  has given 
numerous  papers  and  lectures  on the subject. Ms. Berggren 
has been  contributing  for many  years  to  the international tech- 
nical organization that  develops clustering standards for mil- 
itary  and  aerospace applications. She  is  chairperson of the 
Systems, Applications, and  Requirements  Subcommittee of 
the SAE Interconnect  Networks Committee and also  chair- 
person of the Real-Time Model Task  Group in the  same  or- 
ganization. 

Reprint Order No. G321-5485. 

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 BERGGREN 549 


