The BiProcessor:
A merger of two
architectures

The BiProcessor consists of an IBM System/370™
and a Personal System/2® and merges these two
IBM architectures into a synergistic relationship.
The two processing environments are connected
by an internal high-speed pipe that allows each
system to take advantage of the other’s strengths
as well as developed products, both hardware
and software. This paper describes this closely
coupled heterogeneous multiprocessor and its
capability of concurrent coprocessing. Also
discussed are the implementation, coupling
architecture, and design considerations of the
BiProcessor and its development objectives.
Some of the intended applications are host off-
loading of communications protocol processing,
use as an applications coprocessor, and service
as a platform for future clustering technology.

he BiProcessor is a heterogeneous multipro-

cessing system that has been developed to
provide a platform for allowing nontraditional
system solutions. It allows new applications to
exploit the inherent goodness of proven architec-
tures, even if they do not fit or conform com-
pletely to existing molds. The BiProcessor is dif-
ferent from the combined architectures of the past
in that both processing environments are fully vis-
ible and accessible to the user. Each processor
has access to the other’s resources. In contrast,
earlier configurations typically consisted of em-
bedded controllers that were dedicated to a spe-
cific task with the controller’s personality hidden.
The BiProcessor is particularly suited for use as
a toolkit for the experienced system developer
who has a unique application or novel approach
to system solutions. The BiProcessor may be
thought of as a set of building blocks to support

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

by C. Berggren

the rapid customization of computer systems and
the easy creation of portable applications.

Several categories of new applications are envi-
sioned for this hybrid multiprocessor, with focus
on extending the IBM System/370* to other pro-
cessing environments that exist today and as they
may be realized in the near future. Development
of the BiProcessor was undertaken with the rec-
ognition that heterogeneous coprocessing is
likely to be a growing trend in future compu-
tational systems. The complex instruction-set
architectures used in many of today’s general-
purpose processors are expected to be comple-
mented with such coupled special-purpose
computational units as transputers and neural
processors. The design of the BiProcessor’s
interprocessor coupling mechanism reflects con-
siderations of these future trends.

There was no existing architecture available for
the coupling mechanism between heterogeneous
multiprocessors, as we began development. Nei-
ther was there prior experience related to the
merging of different IBM architectures. To a large
extent, the BiProcessor design was driven by our
vision of a product that would support future dis-
tributed object-oriented, event-driven, real-time
applications.

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

BERGGREN 535




Figure 1 BiProcessor system enclosure

This paper discusses the intended uses for this
hybrid architecture, both as the uses have already
materialized and as they are envisioned for the
future. Some of the applications addressed are
synergistic coprocessing, protocol off-loading,
adapter openness, and technology infusion and
clustering. This paper also describes the imple-
mentation of the BiProcessor and the design of
the coupling facility, including some of the design
tradeoffs that were made during the development
of the BiProcessor. Possible future improvements
are also discussed.

System overview

The Micro Channel* 370 BiProcessor consists of
two computer systems merged into a single small
package containing a System/370 and a Personal
System/2*. Each processor has its own private
memory, DASD and hard disk, input/output, and
separate controls. The two systems are con-
nected by an internal high-speed pipe. Figures 1
and 2 show pictorial views of the system: the
physical enclosure and a high-level schematic of
the system internal block diagram.

Hardware. The System/370 is a fully functional
System/370 processor, with capabilities function-
ally equivalent to an IBM 9370 cPU. The Personal
System/2 (ps/2*) is a 20 MHz ps/2 Model 80 de-
rivative, functionally equivalent to the PS/2 Model

536 BERGGREN

8580-321. One of the eight available Micro Chan-
nel slots in the PS/2 processor is used by the Sys-
tem/370 coupling facility. The remaining seven
slots can be used for other Micro Channel de-
vices. Without the coupling facility between the
System/370 and PS/2, each processor could be
used independently. The two processing environ-
ments have full operating autonomy, apart from
sharing a common power supply.

The coupling hardware connecting the two pro-
cessing environments consists of a bus-to-bus
protocol converter card that translates Sys-
tem/370 internal bus protocols to Micro Channel
protocols and vice versa. The card plugs into a
standard Micro Channel slot. The card houses
Micro Channel mapped memory accessible to the
PS/2 and a microprocessor that moves data be-
tween the System/370 and Micro Channel address
spaces. The microprocessor can read and write all
of the System/370 memory, a capability that is
used for the high-speed pipe implementation.

Software. Since the PS;2 is a fully functional PS/2,
it can run all operating systems and applications
intended for that platform. Several operating sys-
tem combinations are supported for the BiPro-
cessor interprocessor coupling facility. The PS/2
may execute DOS, 0S/2*, AIX*/386, or proprietary
operating systems such as Syzygy’s HBX/370**.
On the System/370 side, coupling support has
been developed for the virtual machine (VM) and
Virtual Storage Extended (VSE) operating sys-
tems. Applications that were developed for these
operating systems will execute unchanged on the
BiProcessor.

Standard high-level application programming in-
terfaces (APIs) are provided to facilitate ease of
use, and a low-level transport interface is made
available for customized protocol implementa-
tions.

Communications architecture. The communica-
tions architecture of the coupling facility between
the two processors is based on a tightly coupled
multiprocessor model, with peer-to-peer interac-
tion. Interprocess communications are imple-
mented as if the processes were executed in the
same environment.

The architecture is layered with three distinct in-
terfaces, as shown in Figure 3. It provides the
capability for Ps/2 and System/370 programs to

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Figure 2 BiProcessor hardware functional diagram

SYSTEM/370 CPU
AND
MEMORY

SYSTEM/370 | I
OPERATOR

CONSOLE et /O PROCESSOR
CHANNEL/
COMMUNICATION UNIT
EMULATION

SYSTEM/370 DASD

SYSTEM/370
/O ADAPTERS

REMOTE
SUPPORT

PS/2
PROCESSOR
AND
PS/2
MEMORY KEYBOARD AND
DISPLAY

(HARD DISK)  —

> MICRO CHANNEL

communicate directly at two interface levels—a
high-level user access point and a low-level trans-
port interface.

The high-level user access point in the commu-
nications architecture is the application program-
ming interface (API), as shown. A protocol stack
is built on top of the high-speed pipe implemen-
tation. The design is modular, so that any specific
protocol can be supported, for example, the Sys-
tems Application Architecture* (SAA*) Common
Programming Interface-Communications (CPI-C),’
Sockets, Network Basic Input/Output System
(NetBIOS), and Transmission Control Protocol/In-
ternet Protocol (TCP/IP).

The low-level user access is directly to the Bi-
Processor high-speed pipe, shown as the low-
level programming interface (LLPI) in Figure 3. It
provides a low-overhead data send and receive
function and rudimentary routing. The functional
components of the high-speed pipe consist of data
transport and inter-CPU signaling mechanisms, in-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

terface macros, and the supporting hardware,
shown as everything below the LLPI interface.
More than one logical pipe can be supported con-
currently over the same set of hardware.

Intended applications and system
realizations

The BiProcessor allows System/370 and PS/2 ap-
plications to communicate directly in a closely
coupled multiprocessing configuration, thereby
providing each with access to the other’s re-
sources. The BiProcessor system design objec-
tives were to satisfy the needs of several major
categories of intended applications that exploit
this capability, as described next.

Applications coprocessing. An applications copro-
cessing category is intended to be one of a syn-
ergistic relationship between System/390- and
ps/2-based applications, where one adds value to
the other. These applications may communicate
via either the CPI-C or LLPI interface, and specific

BERGGREN 537




Figure 3 BiProcessor communications architecture

SYSTEM/370

API

INTERFACE 1 l
HIGH-L.EVEL
PROTOCOL

INTERFACE 2 1

INTERFACE 3 |- m = = = mm o — — = — — — — —
DATA TRANSPORT SIGNALING

PS/2
AP
HIGH-LEVEL
PROTOCOL
LLPI
———

INTERFACE MACROS
-------------------- HIGH-

DATA TRANSPORT SIGNALING SPEED

PIPE

COUPLING HARDWARE

interface selections depend on the intended ap-
plication’s need and the operating systems used.
Both LLPI and CPI-C can be supported concur-
rently, if desired. See Figure 4.

Coprocessing examples are numerous, many of
which have traditionally been connected via local
area networks (LANs). Included are PS/2 LAN serv-
ers, such as the IBM LAN Server, Microsoft’s LAN
Manager**, and Novell’s NetWare**. Some
more recent implementations include the cou-
pling of Series/1 capabilities to the System/370 via
PS/2-based Series/1 emulators as shown by the
Syzygy implementation, as described later in this
paper, and high-performance mathematics copro-
cessing applications via Micro Channel Reduced
Instruction Set Computer (RISC) processor cards.

Using BiProcessor implementations, PS/2-based
LAN servers can exploit System/370 functionality,
thereby extending existing client-server offering
capabilities. These extensions include systems
management and control, data sharing and man-
agement (including backup and archiving), net-
work monitor and control, and software distribu-
tion. The extensions also enable full Systems

B38 BERGGREN

Network Architecture (SNA) wide-area commu-
nications participation. PS/2 applications can ben-
efit by utilizing Virtual Telecommunications Ac-
cess Method (VTAM*) and thus gain access to the
SNA network and remote resources.

Another client-server computing application that
used the BiProcessor was demonstrated by
Phaser Systems, Inc. at Networld. Phaser used
the BiProcessor to demonstrate their NetWare
for vM** product and how it provides for routing
Novell NetWare’s IPX/SPX across an SNA net-
work. IPX/SPX are LAN protocols developed by
Novell. The Ps/2 was used as a communications
gateway to provide access to the System/370-
based NetWare for VM component to LAN-at-
tached workstations.

A prime example of the platform’s use as an ap-
plications coprocessor was developed by Syzygy
Communications, Inc. in partnership with IBM.
The objectives were to provide a Series/1 replace-
ment and growth path using newer technology.
IBM developed the pipe support for the VSE op-
erating system, and Syzygy integrated Humming-
bird** on the PS/2 side allowing it to communicate

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Figure 4 Applications coprocessor configuration

SYSTEMW/370

APPLICATION A
CPI-C

APPLICATION B
LLPI

PS/2

APPLICATION A’
CPI-C

APPLICATION B’
LLPI

»

F 3

across the pipe. Hummingbird is a Series/1 EDX
(Event-Driven Executive) emulator that was de-
veloped by Computer Information Enterprises
for 1BM PCs and PS/2s. (EDX is a Series/1 operating
system.) Configuration details are shown in Fig-
ure 5.

The Syzygy exploitation of the hybrid aspects of
the BiProcessor has both immediate and long-
term benefits. Existing Series/1 EDX applications
can be ported to this interim platform, thus pre-
serving developed applications software. At the
same time, new applications can be System/370-
based and use efficiently the capabilities of new
technology at lower price and better perfor-
mance. The System/370 with the VSE operating
system offers an unlimited migration path from
the Series/1. (The Customer Information Control
System [CICS] transaction environment is ideally
suited for Series/1-type applications.) This copro-
cessing implementation solves both Series/1 ca-
pacity and Series/1 future availability problems.

Protocol off-load. A second major intended cate-

gory of BiProcessor usage was to open the Sys-
tem/370 to new processing environments through

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

use of the PS/2 as a protocol engine. This is the
outboard processing of communication protocols
on the Micro Channel-based processor and
adapter cards.

To communicate with the outside world, the Sys-
tem/370 usually uses either SNA or TCP/IP proto-
cols. A System/370 application wishing to com-
municate with the outside world communicates
with VTAM, for instance, which in turn does all the
communications on behalf of the requesting ap-
plication by executing the SNA protocols. By pro-
viding a direct path into the System/370, any PS/2-
based communications protocol can be used to
access System/370 applications with the BiPro-
cessor. Figure 6 shows the BiProcessor in a pro-
tocol engine configuration. The System/370 exe-
cutes user applications, and the protocol
processing is done outboard. The System/370 ap-
plication gets access to the protocol-specific API
via the LLPI interface and high-speed pipe, with
the communications verb set being pulled
through.

A database application executing on the Sys-
tem/370 can be opened up to a large segment of

BERGGREN 539




Figure 5 Syzygy Series/1 replacement

FAULT TOLERANT, LIGHTS OUT

SYSTEM/370 PS/2
NEW SYSTEM/370 CICS EXISTING EDL/ASM
TRANSACTION APPLICATIONS APPLICATIONS (OBJECT CODE)
VTAM 3.2 SERIES/1 CF
(COMMUNICATIONS FACILITY)
VSE HUMMINGBIRD

EDX EMULATOR

VSE <> SERIES/1 SYSTEM/370 €->EDX
VSE PIPE DOS PIPE
SYSTEM/370 CUSTOM I/0
INPUT/QUTPUT INTERFACES
CPI-C
APPLICATION < »  APPLICATION
VIRTUAL DISK
APPLICATION > DISK (SERIES/1 FILE LOOKS
LIKE SYSTEM/370 FILE)
VIRTUAL DISK
DISK < APPLICATION (SYSTEM/370 FILE LOOKS
LIKE SERIES/1 FILE)
VIRTUAL TERMINAL
TERMINAL %  APPLICATION

EDL/ASM —-EVENT-DRIVEN LANGUAGE/ASSEMBLER (SERIES/1)

LAN-attached PCs by putting NetBIOS on the PS/2
side. NetBIOS is the prevalent method of commu-
nications for existing PCs and PS/2s. In another
configuration, AppleTalk** protocols can be put
on the PS2 to enable MacIntosh** computers
access to the System/370. In still another config-
uration, DECnet** can be used if VAX** connec-
tivity is desired. Another advantageous imple-
mentation of this protocol off-load is to substitute
the System/370-based TCP/IP protocols, common
with governments and universities, with the AIX
PS/2 equivalent. This does not necessarily provide

540 BERGGREN

new function for the System/370 operating sys-
tems that already have TCP/IP capability, but it
improves the performance of existing function.

Viability of the BiProcessor protocol engine con-
cept was proved by the ease with which the man-
ufacturing messaging services (MMS) support was
developed for the BiProcessor. MMS is the stan-
dard application-level interface for manufactur-
ing, and it provides data collection and control for
factory devices on the plant floor. MMS uses the
seven-layer communication protocols defined by

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Figure 6 Protocol engine configuration

SYSTEM/370

APPLICATIONS
PROCESSING

SPECIFIC
APl

PS/2

A 4

PROTOCOL
\ 4 PRO-
CESSING

v

OUTSIDE-WORLD
LOCAL AREA
NETWORKS (LANS)

the International Standards Organization’s Open
Systems Interconnection (0SI) Reference Model
and the Manufacturing Automation Protocol
(MAP). By integrating a PS/2-based MAP adapter
and OSI protocols for 0S/2 with the System/370
MMS server for VM/SP, the development of a man-
ufacturing solution package that applies the Bi-
Processor as an area or cell controller for the
manufacturing floor was achieved in a very short
time and with little effort.

There are numerous advantages to the protocol
engine application of the BiProcessor concept. It
makes it possible for the System/370 to exploit a
multitude of PS/2-family-developed protocols, as
well as private low-overhead “roll-your-own”
implementations. The protocol engine applica-
tion provides for off-loading the System/370, thus
allowing the host to dedicate its processing power
to mainframe applications, while exploiting the
PS/2’s less expensive MIPs and hardware for com-
munications protocol processing. In addition, it
has a decided performance benefit in that the
communication protocols can be processed in
parallel with the application, rather than serially
with the added processing overhead of context
switching.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Adapter openness. Adapter openness can be
viewed as a variation on the protocol engine ap-
plication. However, rather than using the pSy-
developed communication protocols, Micro
Channel adapters are being made available to the
System/370. Besides IBM, there are several hun-
dred independent vendors that develop adapters
for the ps/2 family of processors. Adapter ex-
amples are manyfold and include optical disks,
CD ROMs, FAX adapters, scanners, and many
more.

The adapter openness is implemented by a data-
manager application on the PS/2 that controls the
specific device on the Micro Channel and passes
the data to and from the System/370 application,
as shown in Figure 7. Data are passed from ap-
plication to application, thus hiding the adapter
specifics to the System/370, using either the CPI-C
or LLPI interface depending on the specific needs.

By allowing the System/370 to interface to any
adapter card developed for the Micro Channel
without having the device defined to the Sys-
tem/370, the System/370 is given a previously un-
known flexibility in available adapter options and
in ease of implementation.

BERGGREN 541




Figure 7 Adapter openness configuration

SYSTEM/370

USER APPLICATIONS

CPI-C

A 4

PS/2

DEVICE MANAGER

CPI-C

A A 4

DEVICE
DRIVER

A 4

r 3

PS/2
MICRO CHANNEL
APAPTERS

Network router. Yet another communications ex-
ample is that of configuring the BiProcessor with
the PS/2 as a network router. In this configuration,
upper-layer protocols are resident on the Sys-
tem/370. The Ps/2 functions as a low-level router
to the data-link layer—for example the IEEE
802.2—and through it to the outside world, as
shown in Figure 8.

The vM cPI-C support developed for the BiPro-
cessor contains network routing support. Thus
VM applications may also use CPI-C to communi-
cate with PC-DOS, 0S/2, or AIX workstations.
These are attached via a token ring or Ethernet
adapter to the Ps/2 side of a BiProcessor that is
executing 0S/2. The following capabilities are pro-
vided:

* A workstation application (PC-DOS, 0S/2, or AIX)
can allocate a conversation with a System/370
CPI-C application, and through VTAM to remote
hosts.

* A System/370 CPI-C application can allocate a
conversation with the 0S/2 server, an 0S/2,
PC-DOS, or AIX workstation, or another Sys-
tem/370 system.

B42 BERGGREN

The BiProcessor implementation of the CPI-C sup-
port for VM is discussed in References 2-5.

Coupling implementation

BiProcessor communications architecture. The
communications architecture of the coupling fa-
cility between the two processors is layered with
three distinct interfaces, as shown in Figure 3.
The functional components are: (1) the coupling
hardware previously discussed, (2) data trans-
port, (3) inter-CPU signaling mechanisms, (4) low-
level interface macros, and (5) upper-layer pro-
tocols in support of the high-level interface, as
described in later sections of this paper.

Data transport. The BiProcessor data transport
mechanism is implemented through buffer-pool
technology, which is an interlocked memory
management scheme with shared direct access to
memory. Data transfer is not under the control of
a System/370 channel program nor are the data
presented to the PS/2 in a serial manner as a result
of IN/JOUT instructions. Instead, controls for
shared buffer pools are located in a communica-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Figure 8 Network router configuration

SYSTEM/370

VM/SP APPLICATIONS

CPI-C

A 4

APPC/
VM

A 4

PS/2

08/2
DOMAIN CONTROLLER
NETWORK ROUTER

DLC

ETHERNET
¥ TOKEN RING

LAN-ATTACHED
WORKSTATIONS
(PC-DOS, 0S/2, AlX)

tion area in System/370 memory, with a separate
communication area for each logical pipe.

Definitions for circular buffer pool queues are lo-
cated in this communication area. The buffer pool
queues contain memory pointers to storage loca-
tions into or out of which data are to be trans-
ferred, thus minimizing data moves by moving the
data directly to and from application space. The
definitions include information on storage loca-
tions of the buffer pointer lists, number of entries,
and size of the data buffers that the queue entries
point to.

The BiProcessor pipe is full duplex. Thus there
are two circular buffer pool queues defined in the
communication area for each logical pipe, one for
each direction of data transfer—System/370 to
PS/2 and PS/2 to System/370. One processor con-
trols the read pointer, and the other pointer con-
trols the write pointer in a queue, with the read
pointer chasing the write pointer. The content of
the pointers may be updated dynamically,
thereby allowing the application flexibility, with
regard to memory locations of the data buffers.

The communication area also contains control
fields for the buffer pools. These control fields

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

determine where in the circular buffer queue list
the current read and write pointers are located.
These pointers indicate the locations of next
available empty input buffer or data buffer to be
transferred out. Control fields also indicate
whether a queue is empty or full (or neither empty
nor full), information which is used to determine
signaling need.

Information with regard to buffer list formats is
contained in the communication area control
fields. The high-speed pipe supports transfers of
packets larger than the buffer size specified in the
control fields. The buffer list format fields provide
the controls to allow concatenation of individual
data buffers. These buffers do not have to be lo-
cated in contiguous memory.

Inter-CPU signaling. In addition to the buffer pool
queue and controls definition described above, an
inter-CPU signaling mechanism is required for the
operation of the BiProcessor pipes. The inter-CPU
signaling is used for the following:

* Communication area definition. The storage lo-
cation of a specific communication area and its
size must be communicated by the System/370

BERGGREN 543




to the PS/2 agent responsible for buffer pool
queue manipulation. This is done when a pipe is
initially enabled and after a reset and/or pro-
gram load.

s Pipe termination. An application or detected
errors may close a pipe.

s Buffer pool queue state changes. The peer pro-
cessor is not interrupted, as a rule, for normal
data transfers, in order to optimize data transfer
performance. A shoulder-tap notification is re-
quired, however, when a circular buffer queue
goes from empty to nonempty or from full to
nonfull, indicating that action should be taken.
If processors are speed-matched, data transfers
can go on indefinitely without interruption to
either the System/370 or the Micro Channel-
based peer processor. This is because one pro-
cessor reads from a queue at the same rate as
another processor writes into it.

s Requests for status.

Although the design of the data transport mech-
anism could easily be optimized, development of
the interprocessor signaling was less straightfor-
ward. With no prior implementation of peer-to-
peer coupling between heterogeneous proces-
sors, there was no given mechanism to implement
this interprocessor signaling. What was needed
was an instruction and a corresponding asynchro-
nous external interrupt that could be used be-
tween the two processors symmetrically with
each one switching roles. This was not available
to us in either system. Therefore, we evaluated
possible instructions and interrupts, based on
what could be made to meet our objectives within
one year. After discarding several options, the
choice of signaling method was narrowed down to
one based on multiprocessing or to an 1/0 subset
as described below.

The multiprocessing option was based on using the
existing System/370 multiprocessing architecture
for tightly coupled System/370 processors. Inter-
CPU signaling for homogeneous System/370s is im-
plemented by a Signal Processor (SIGP) instruction.
The SIGP instruction and associated external inter-
rupts with the various order codes fill the BiPro-
cessor pipe signaling needs naturally. A logical pipe
would be implemented as an emulated System/370
CPU and interact as such with the real System/370.
The order codes associated with the SIGP instruc-
tion include commands that allow one processor to
retrieve status from, and to start, stop, and reset the

544 BERGGREN

other. This is in addition to the basic shoulder tap
needed for queue manipulation.

The second option for implementing the signaling
between the CPUs was based on using a thin layer
of the System/370 1/0 architecture to emulate sub-
sets of the System/370 1/0 channel and control unit
function. The 1/0-subset approach to interproces-
sor signaling was chosen, based on the time re-
quired for development. The multiprocessing fa-
cility was not implemented for the specific
hardware, and development of the required func-
tions would not be a trivial undertaking. Modifi-
cation of the 1/0 architecture to meet our needs,
on the other hand, was fairly simple, and we could
exploit existing microcode. The System/370 1/0
architecture subset was used as follows:

s Start 10 (S10) with a Prepare command was
used to enable the pipe communication area.
The Channel Command Word (cCW) data ad-
dress was used for the address of the commu-
nication area, and the data length was used to
denote its size.

s Test 1/0 (T10) was used for the shoulder tap from
the System/370 to notify the PS/2 agent of a
buffer queue state change. TIO was chosen be-
cause of its low operating system overhead, and
performance was a major design criterion.

s Asynchronous attention interrupt (ATTN) was
used by the PS/2 to signal the System/370 about
buffer queue state changes. ATTN plus unit
check was used to signal errors or the closing of
a pipe.

s Start 1/0 (510) with a Sense command was used
by the System/370 to retrieve status from the
PS/2.

The chosen approach to interprocessor signaling
performed well, and it can be extended in the
future. With the layered approach to the design
and specifics of the pipe implementation details
hidden, there is nothing to preclude changing it
later when standard coupling mechanisms emerge
for heterogeneous multiprocessors, without im-
pact on developed application software.

When the implementation choice was made, the
standard System/370 /O architecture was evalu-
ated at length for applicability to the BiProcessor
concept, as were different channel protocols. Al-
though it was recognized that many future appli-
cations could be developed for a System/370 with
a channel-attached PS/2 and that some of the func-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




tional objectives would be met with this approach
to coupling (albeit with a performance penalty),
the 1/0 approach was discarded as an option as it
did not meet the BiProcessor long-term objec-
tives for clustering and technology infusion.

Pipe operation. The following is a discussion of
the features of pipe operation, which is a major
function of the BiProcessor architecture.

Pipe initialization. Before data transfers can take
place, a pipe has to be initialized by determining
the location of its communication area. The Sys-
tem/370 defines a communication area. The
System/370 then opens its end of the pipe by com-
municating the location and size of the commu-
nication area to the PS/2 agent responsible for
buffer pool queue manipulation. When a pipe has
been initialized by the System/370, it is in a con-
nection-pending state. The pipe is not operational
and enabled for data transfers, however, until
end-to-end connection has been established. The
application that owns the corresponding Pipe
Connection End Point (PCEP) still has to open its
end of the pipe, which, when completed, puts a
pipe in the operational state.

Pipe data transfer. Data transfer is symmetric,
with each partner switching roles for the opposite
queue. Queue 1 is used for data flowing from Sys-
tem/370 storage to the Micro Channel address
space, and Queue 2 is used for data flowing from
the Micro Channel address space to the Sys-
tem/370 storage. Consequently, the System/370 is
responsible for maintaining the Queue 1 input se-
quence number and the Queue 2 output sequence
number. At the same time, the PS/2 agent process
is responsible for maintaining the Queue 2 input
sequence number and the Queue 1 output se-
quence number.

The input sequence number points to the buffer-
list entry for the next available input buffer. The
output sequence number points to the buffer-list
entry for the next output buffer. The queue is
empty if the input sequence number is equal to the
output sequence number. The buffer list is circu-
lar and the output sequence number “chases” the
input sequence number.

Each sequence number is a 2-byte value between
0 and 65535, which is used to locate an entry in a
buffer list. The sequence number wraps from
65535 to 0. A buffer list entry is selected by di-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

viding the current sequence number by the num-
ber of entries in the list and using the remainder
as an index into the list. The input sequence num-
ber is incremented each time a buffer is filled, and
the output sequence number is incremented each
time a buffer is emptied. The queue is empty when
the input sequence number is equal to the output
sequence number.

A “wake-up” interrupt is reflected to the partner
whenever the queue status changes from empty to
not-empty or from full to not-full.

Pipe termination. The pipe interface will remain
enabled until either application wishes to termi-
nate the connection or until an error is detected
and/or a reset is issued. Upon receipt of a dis-
connect order, all pending read and write requests
are terminated for this pipe, and the application
that owns the corresponding Pipe Connection
End Point is notified that the pipe interface has
been disabled.

Interface macros. In order to isolate the user from
the specifics of pipe implementation details and to
allow future upgrades without application soft-
ware impact, we defined a low-level programming
interface (LLPI). The LLPI is provided as a set of
interface macros (Open, Close, Read, Write, and
Status) supporting the communication between
two cooperating application processes, each
owning one end of a particular pipe realization.

The low-level interface is intended for develop-
ment of private protocols by users who prefer to
customize their protocol implementation and for
applications with performance requirements that
dictate the more direct interface. The LLPI mac-
ros, therefore, support high-speed, point-to-point
data transfers between the cooperating pro-
cesses, without any processing overhead for up-
per-layer communication protocols. That is, the
macros’ functions are strictly data-move opera-
tions between the two address spaces. There is no
error checking on the data content or multiplexing
over a pipe between different users. These func-
tions, if desired, must be implemented by the user
application. They are also provided by the higher-
level CPI-C interface, which could be considered
by a system developer, based on a specific appli-
cation’s need.

The major functions performed by the LLPI mac-
ros’ communication verbs are outlined below.

BERGGREN 545




* Enable_Pipe is the function that enables the
pipe and makes it available to the calling appli-
cation. If the pipe is already enabled, a return
code of busy indicates that condition.

¢ Get_Output_Status obtains the current status
of the outbound side of the pipe. The return
value indicates the amount of data that can be
accepted by the pipe queue.

e Write_Output_Message writes the next mes-
sage to the pipe, up to the maximum message
size of 32 767 bytes. The function return value
is the size of the message sent to the peer
application. If space is not available in the
pipe queue, control is not returned until the
message has been input to the queue. The
Get_Output_Status function should be used to
check for available buffers before issuing a
Write_Qutput_ Message request, if the applica-
tion does not want to wait for a message to be
sent.

Get_Input_Status is the function used by the
application to obtain the current status of the
inbound side of the pipe. For example, this
function can be used to poll for incoming mes-
sages. The return value indicates the amount of
data waiting to be read.

e Read_Input_Message reads the next message
from the pipe. (The maximum message size is
32767 bytes.) The function return value is the
size of the message received from the peer ap-
plication. If there are no pending messages
when the application issues a read, control is
not returned to the caller, until a message is
received in the queue. For polling-type trans-
fers, the Ger_ Input_Status function is used to
check for pending messages in conjunction with
this synchronous read, before issuing a
Read_Input_ Message request. This assumes
that the application does not want to wait for a
message to be received.

We have been considering the desirability of
future pipe implementations to provide addi-
tional transfer modes to complement the initial
synchronous mode. Examples are the asyn-
chronous modes in support of polling and sig-
naling operations. For the latter, the data re-
ceived interrupt the target application, and are
used for the distribution of control, remote in-
terrupts, and for event-driven applications.

546 BERGGREN

* Disable_ Pipe disables the pipe, and data pend-
ing in the high-speed pipe are discarded. An
indication of Pipe Closed is reported to the peer
application, to indicate that the pipe has been
disabled. The Pipe Closed indication is also re-
ported to all applications that have logical pipes
enabled when the peer processor goes through
an IPL while the pipe is operational.

o Get_Installed_Status determines whether the
high-speed pipe device driver has been in-
stalled. If the device driver is installed, the ver-
sion number of the driver is the return value.
Otherwise, an error code is returned.

The LLPI API depends on the specific operating
systems used on the two environments. On the
PS/2 side, support has been developed for 0S/2,
DOS, and AIX, and the LLPI is provided by a set of
interface routines that may be linked to applica-
tion programs. These routines support function
calls from programs compiled by means of the
IBM C2 compiler and any of the valid memory
modules. To support languages other than C and
to maintain consistency with the 0S/2 system serv-
ices API, these interface routines use the Pascal
calling sequence, instead of the normal C calling
sequence. Format of the Ps/2 C-language LLPI in-
terface macros, including the required parame-
ters, are illustrated in Figure 9.

A similar macro set has been constructed for use
by the cooperating System/370 program(s) for the
VM/SP and VSE operating systems with callable
subroutines that use System/370 assembler lan-
guage, standard /0 commands, and (for VM/SP)
CMS commands.

Further details with regard to the implementation
and use of the BiProcessor LLPI macros are de-
scribed in the BiProcessor programmer’s refer-
ence manual.®

High-level application programming
interface

The high-level user access point in the commu-
nications architecture for the BiProcessor high-
speed pipe is the application programming inter-
face (API), as shown in Figure 3. Several specific
protocol options (APIs) are possible, depending on
the operating systems that are executing in the
tWO processors.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Figure 9 Format of C-language LLPI interface macros

far
far
far
far
far
far
far
far
far
far

int
int
int
int
int
int
int
int
int
int

pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal
pascal

pstatus{ph);

popen (ph) ;

pclose(ph);
pread(ph,buffer,count);
pwrite (ph,buffer,count);
pinstat (ph);
pinsize(ph);

poutstat (ph);

poutsize (ph);

popensys (ph);

int ph;
char far *buffer;
int count;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

Get installed status */
Open a logical pipe */
Close a logical pipe */
Read input message */
Write output message */
Get input status */
Get input buffer size */
Get output status */

Get output buffer size */
Open pipe for system use*/

Pipe handle (0-1) */
Data buffer address */
Data count

(1 to 32767) */

CPI-C is the first API to be implemented. The Bi-
Processor design is modular, and new protocol
machines that support additional APIs can be
added when required.

The CPI-C interface conforms to the Common Pro-
gramming Interface-Communications component
of the IBM Systems Application Architecture
(sAA).! It provides guaranteed data delivery and
supports the Advanced Program-to-Program Com-
munications (APPC) functions including message
routing, error checking, and session management.
The s44—Common Programming Interface Com-
munications Reference Manual' describes in detail
the rich characteristics and extensive functionality
of the cpI-C interface, and References 2-5 describe
the BiProcessor VM program offering.

The VM/SP applications may also use CPI-C to com-
municate with PC-DOS, 0S/2, or AIX workstations
attached via a token-ring or Ethernet adapter to
the ps.2 side of a BiProcessor that is executing
0872, as described earlier in this paper.

The PC-DOS CPI-C implementation supports a sin-
gle user on the BiProcessor PS/2. It does not sup-
port a local area network (LAN) attached to the
BiProcessor system as the 0S/2 implementation
does.

Future considerations

BiProcessor objectives, in addition to satisfying
applications immediately realizable, were to

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

serve as an enabler for the future. The design was
driven by the recognition that systems architec-
tures are going through a generational change,
with novel system concepts emerging that will
allow computing applications that were previ-
ously possible only on large super computers to
become commonplace.

Although today’s typical data center application
with TP-line-connected processing units that are
used primarily for management of corporate data
and time sharing of computing resources will not
disappear, new applications will exploit recent
advances in parallel systems technology. Clusters
of processing units sharing in the task-execution
load will also be joined by various specialized pro-
cessing units the architectures of which are dif-
ferent and dedicated to specific tasks, such as
data sorting and filtering, signal processing, and
inferencing. These coprocessors may simply be
executing reduced instruction sets for scientific
visualization, or they may be collections of trans-
puters cooperating on the processing of the dif-
ferent layers in a communications protocol. Other
examples of future coprocessor categories in-
clude learning machines, that is, neural proces-
sors that emulate the behavior of the human
brain, and massively parallel processors.

With the transition from centralized to fully dis-
tributed architectures, where single complex ap-
plications are distributed onto parallel clusters of
heterogeneous CPUs, the communications archi-
tectures required to support this distribution, by

BERGGREN 547




necessity, also are going through a generational
change. With the high data rates realized by fiber
optics and new system concepts exploiting these
high data rates, the technology trend is to not
move the data as communication protocols are
processed, but rather to deposit the data directly
in the application buffer. Therefore, implementa-
tions based on shared memory approaches with
buffer-pool technology as an integral component
in the path between the application and 1/0 pro-
cessors are likely to be the prevalent choice for
future low-overhead protocols. Some of these
emerging I/O processors are in themselves highly
parallelized.

Just as the applications and communications are
changing so is the form of the information that is
to be transferred between processing units. In-
formation has attributes that require different
treatment. This, in turn, translates into parallel
logical data paths implemented with different pro-
tocols based on specific attributes between the
execution units.

Whereas, there will always be requirements for
the type of corporate data we are familiar with
today, with its guaranteed integrity, for some in-
formation categories bit errors can be ignored.
For image and voice information, for example, it
may not make sense to do extensive error check-
ing and correction on the data that would increase
the associated processing costs, if the human
senses cannot perceive the error. Neither does it
make sense to do corrections of bit errors on in-
formation collected by sensors such as radar that
have relative low resolution. Corporate-type
data, on the other hand, must not be corrupted,
because bit errors can lead to economic loss and
chaos. For these information forms, the relative
costs associated with the protocol processing
overhead to ensure the accuracy of the data are
necessary.

For other information forms, latency (or relative
latency) is the primary protocol driver. For some
process control applications, the length of the
control loop forces transfer latencies between ap-
plications down to less than a millisecond, as
compared to the order to several orders of mag-
nitude higher latencies common today. For con-
current voice and video transmission on different
channels, synchronization between the two, the
relative latency, is essential and drives the pro-
tocol implementation.

548 BERGGREN

A large category of new applications are cyclical
in nature, for instance, computer vision, weather
and storm tracking, air traffic control, and other
monitor and control systems. Their information
transfers are characterized by highly periodic
traffic. For these transfers, no error checking or
retries are performed because redundancy is in-
trinsic to the processes themselves. Given a 60
Hz system, new data will be available in 16 mil-
liseconds, or in less time than it would take to
resend the old erroneous information. For this
type information, jitter (that is, variance in the
periodicity), may be a much more stringent re-
quirement than any other attribute. Periodic in-
formation as described for these type applications
would be deposited directly at the application
level in swinging buffer pairs, a two-deep FIFO
(first-in-first-out). The application works out of
one buffer while the other is being refreshed by
the communications processor. Other applica-
tions, such as some filter applications, require the
most recent five or six data points. Their pipe
would be six points deep, with the oldest one up-
dated by the communications processor every cy-
cle.

Another example of an information form that dic-
tates special communications protocol treatment
is that of remote interrupts used for synchroni-
zation purposes and to distribute control, espe-
cially in event-driven architectures, where an ex-
ternal event may initiate the execution of a
dormant task.

Although the subject of this paper is not that of
the communication architectures required to sup-
port future distributed systems, a major objective
in the development of the BiProcessor was to pro-
vide a platform that could be used for prototyping
different clustering concepts and the intelligence
required outboard before committing these pro-
tocols to silicon.

Concluding remarks

The BiProcessor provides a platform that sup-
ports the rapid customization of computer sys-
tems by merging the two processing environ-
ments, thereby allowing both the System/370 and
the PS/2 to exploit the strength of the other, as
evidenced by the ease with which new applica-
tions were developed. Examples of innovative
system solutions that take advantage of the com-
plementing resources, both hardware and soft-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




ware, include concurrent applications coprocess-
ing, protocol off-load, and System/370 use of
Micro Channel adapters.

Communications architecture is, at present, a
very rapidly evolving technology. Silicon imple-
mentations of parallel executions for low-over-
head protocols are emerging with some functions
done in hardware that used to be application soft-
ware. This paper has described how BiProcessor
design objectives were to provide a vehicle to al-
low the infusion of this technology into the Sys-
tem/370 processor family. The BiProcessor pipes
are the first steps toward a long-term goal to come
up with a product to support future distributed
object-oriented, event-driven, real-time applica-
tions.

At the same time we are meeting our objectives to
provide a toolkit for rapid customization, the Bi-
Processor development allows us to gain valuable
experience in the coupling of heterogeneous ar-
chitectures. The development of future proces-
sor-to-processor interfaces for the coupling of
host processor to foreign architectures can take
advantage of the lessons learned from the BiPro-
cessor pipe.

Acknowledgments

The author wishes to acknowledge Ronald W.
Hoffman and Robert C. Will for their role in the
development of the prototype and G. W. (Bill)
Wilhelm, Jr., who was instrumental in making
that prototype into a product.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Syzygy Communi-
cations, Inc., Microsoft Corp., Novell, Inc., Phaser Systems,
Inc., Computer Information Enterprises, Inc., Apple Com-
puter, Inc., Maclntosh Laboratories, Inc., or Digital Equip-
ment Corp.

Cited references

1. Systems Application Architecture—Common Program-
ming Interface Communications Reference, SC26-4399-0,
IBM Corporation; available through IBM branch offices.

2. Installation Checklist for VM Personal Workstation Com-
munication Facility, SX24-5268, IBM Corporation; avail-
able through IBM branch offices.

3. Managing VM Personal Workstation Communication Fa-
cility, SC24-5585, IBM Corporation; available through
IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

4. Programming for VM Personal Workstation Communica-
tion Facility, SC24-5586, IBM Corporation; available
through IBM branch offices.

5. VM Personal Workstation Communication Facility Host
Guide and Reference, SC24-5593, IBM Corporation; avail-
able through IBM branch offices.

6. 9371 Model 14 Data Exchange Adapter Programmer’s Ref-
erence Guide, SA24-4136, IBM Corporation; available
through IBM branch offices.

Accepted for publication January 9, 1992.

Christina Berggren IBM Enterprise Systems Division, Route
17C and Glendale Drive, Endicott, New York 13760. Ms.
Berggren joined IBM in 1973. She earned a B.S. in chemical
engineering and an M.S. in polymer science from the Royal
Institute of Technology, Stockholm, Sweden. Ms. Berggren is
currently a senior engineer responsible for coprocessors and
heterogeneous coupling for midrange Enterprise Systems.
Her interests lie in clustering and communications architec-
tures for distributed real-time computing, and she has given
numerous papers and lectures on the subject. Ms. Berggren
has been contributing for many years to the international tech-
nical organization that develops clustering standards for mil-
itary and aerospace applications. She is chairperson of the
Systems, Applications, and Requirements Subcommittee of
the SAE Interconnect Networks Committee and also chair-
person of the Real-Time Model Task Group in the same or-
ganization.

Reprint Order No. G321-5485.

BERGGREN 549




