SAA distributed file
access to the CICS
environment

IBM’s Customer Information Control System
(CICS) is the leading product family in the on-line
transaction processing (OLTP) market. OLTP
systems are being used by many enterprises to
implement their daily business processes and
manage operational data such as accounts,
inventories, and orders. CICS/Distributed Data
Management (CICS/DDM) implements the
distributed file function of Systems Application
Architecture® (SAA™) Common Communications
Support in the CICS environment on Multiple
Virtual Storage (MVS) and Virtual Storage
Extended (VSE) operating systems. Providing a
DDM target server, CICS/DDM implements IBM’s
SAA protocol for access to distributed data,
which are exploited by the SAA Common
Programming interface. CICS/DDM allows
applications and their users to access and share
the data managed through the OLTP environment
provided by CICS.

On-line transaction processing (OLTP) sys-
tems like the Customer Information Control
System (CICS) are being used by enterprises of all
sizes across industries as the basis for their key
business processes. These systems capture and
manage essential business information.

By implementing a target server in compliance
with IBM’s Distributed Data Management (DDM)
architecture,'” CICS/DDM provides the distrib-
uted file function of Systems Application Archi-
tecture* (SAA*) Common Communications Sup-
port (Ccs)*’ in the CICS environment. It adds file
access connectivity to the family of CICS products
by providing access to CICS data from other sys-
tems through an open 1BM protocol. This protocol
has already been adopted by operating systems

516 DEINHART

by K. Deinhart

inside and outside of IBM and is currently being
implemented in the SAA environment.

This paper focuses on the aspects of sharing CICS
data stored under Multiple Virtual Storage (MVS)
or Virtual Storage Extended (VSE) operating sys-
tems within a network configuration that has im-
plemented DDM. It reviews major functions of
CICS, which is 1BM’s flagship for OLTP and the ba-
sic subsystem available in most VSE systems. The
functions and values of CICS are put into the con-
text of SAA file 1/O operations, thus identifying the
impacts of connecting interactive single-user sys-
tems, such as the Conversational Monitor System
(cMs), Time Sharing Option/Extended (TSO/E),
Personal Computer Disk Operating System
(PC-DOS), Operating System/2* (0S/2*), and OLTP
environments, and outlining some similarities and
differences between those systems. That is, CICS
is used as an example for an OLTP system in order
to identify in general the specific aspects of ac-
cessing shared data stored in OLTP systems.

The importance of a record access method in a
distributed network that includes OLTP systems
is explained. Finally, the implementation of
CICS/DDM and its relevance to source system ap-
plications are discussed, highlighting the benefits
of a DDM implementation to a user.

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

CICS and DDM: Benefits and history

Today, many enterprises have installed a variety
of computers ranging in size from small to me-
dium to large, many of which run different oper-
ating systems for different purposes. Some of
these are even from different manufacturers.
Along with this variety in computer systems
comes a wide range of data management systems
that have unique file organizations and file access
methods. Sometimes there are even differences
between subsystems on the same computer due to
the fact that different requirements have to be
fulfilled. For example, OLTP systems such as CICS
and the Information Management System (IMS)
utilize different data management I/O services
than do interactive systems such as TSO and CMS.

When two different systems are connected to ex-
change data, communication programs have to be
supplied. These programs are often specific to the
application functions needed and the environ-
ment connected, so that a change in user require-
ments or changes in the hardware and software
environment often require the programs to be
modified or new programs to be written. When
the communications network is complex, such as
when several systems of different types need to
be connected, the task of maintaining these com-
munication programs can be considerable.

DDM is an open data management architecture
that defines an SAA CCS protocol for data inter-
change between systems that may have different
data management systems. It is open in so far as
it is published, provides compatibility across dif-
ferent architectural levels, and has already been
adopted by different file systems inside and out-
side IBM.

Communication is achieved through DDM source
and target servers that exchange DDM data
streams over logical unit (LU) 6.2 pipes: The
source servers (“clients”) run on the system of
the application or end user requesting access to
data; the target servers (“servers”) run on the
system where the data reside. With DDM, it does
not matter whether two systems store, manage,
or process data differently; once these systems
are connected, an application program running on
one system can gain access to data stored in the
other system, the same as if the data were stored
locally.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

User and programmer productivity. For an appli-
cation programmer the advantage of using DDM is

When two different systems
are connected to exchange data,
communication programs
have to be supplied.

to be able to write application programs that ac-
cess data without needing to determine where the
data actually reside; this extends the life and the
value of an application. Functions written for ac-
cess to a specific target system are easily avail-
able for other systems that have implemented
DDM. The benefit to the end user is not having to
learn different commands or services to access
remote data from those needed to access local
data. DDM does the necessary work to locate the
data.

Because the protocol for DDM has an architecture
defined, it allows new components to be added to
an existing network when an enterprise grows and
expands its existing configuration.

The management of data in a distributed network
has been discussed in the literature for several
years. It is being addressed by Open Systems In-
terconnection (0SI), UNIX**, Open Systems
Foundation Distributed Computing Environment
(OSF/DCE**) and SAA. The current focus of SAA is
on the implementation of cooperative processing®
as a subset of a generalized distributed system,
including distributed files and distributed rela-
tional databases. Distributed data access helps to
implement the distribution of functions in an SAA
application as outlined in Reference 7.

Connecting heterogeneous file systems. Because of
the variety of application programming interfaces
(APIs) for file access that have evolved, DDM pro-
vides a generic file model to allow structured and
independent communication between all those
different file systems. This general file model al-
lows DDM to connect heterogeneous and homo-
geneous file systems, while remote procedure call
(UNIX, DCE) or function shipping (CICS) types of

DEINHART 5§17

Figure 1 DDM file access and CICS OLTP

AS/400

CICS ON MVS NETWORK OF
< % OLTP SYSTEMS

CICS ISC, MRO | (CICS, IMS)

Y

SYSTEM/38

SYSTEM/36

PC-DOS

OTHER DDM
SOQURCE SYSTEMS

CICS ON VSE

P n

CICS ISC, MRO

OTHER DDM

TARGET SYSTEMS

protocols are often used to connect homogeneous
file systems, i.e., systems with identical or very
similar file I/O APIs (UNIX-t0-UNIX, CICS-t0-CICS).

DDM can connect file systems with different APIs,
different functions, and even different file models,
file organizations, and data representations. All
file access requests and their results are translated
by DDM source and target servers into a common
DDM language that allows the various file systems
to be connected. More details about the DDM ar-
chitecture can be found in manuals and in Refer-
ences 1 and 2. Figure 1 illustrates how heteroge-
neous file systems are connected to CICS and the
OLTP world via DDM implementations, whereas
the OLTP systems provide their own connectivity
services such as CICS multiregion operation (MRO)
and intersystem communication (isc).®

518 DEINHART

Data conversion. In addition, the representation
of text and numeric data must sometimes be con-
verted to allow for proper follow-on processing
by the application on the source system. Appli-
cations may even require different data types or
record layouts for their processing. Data conver-
sion is of major importance when character and
numeric data are shared between host-computer
(EBCDIC) and workstation (ASCII) applications.
Conversion of character data is part of many data
management or file transfer services, whereas
conversion of numeric data as a general service is
almost unique to the set of DDM products. For a
more detailed discussion of data conversion, see
Reference 3. In today’s environment, data con-
version (and description) has been implemented
on the programmable workstation (PWS) so that it
is available to all potential target systems.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Adding new DDM components—History. The ge-
neric file model as defined in DDM allows new DDM
implementations to be smoothly added to a con-
stantly growing product set without having to
modify the existing products. Availability of new
DDM implementations always extended the con-
nectivity provided through existing services and
thus broadened the scope of data and systems
accessible through applications on DDM source
systems. In 1988, DDM was announced as the SAA
CCS communication protocol to access, modify,
and manage remote files in SAA. At that time, the
program product CICS/DDM (MVS) was the only
System/370*-based implementation of the DDM
architecture. It allowed the interconnection of
midrange systems (Application System/400*,
System/36*, System/38*), small systems (PC-DOS
with DDM/PC, NetView/PC*), and vendor soft-
ware (UNIX) to System/370 hosts through CICS.

In 1989, CICS/DDM (VSE) was added as a new pro-
gram product, providing access to VSE data from
DDM source systems.

The availability of new SAA DDM implementa-
tions, mainly on 0S/2, emphasizes the role of
CICS/DDM as a service that allows SAA Common
Programming Interface (CPI) applications to
transparently access remote CICS data stored un-
der MVS or VSE. This service includes the ability
to copy complete CICS files or parts thereof with
a single request within the systems that support
DDM. Figure 1 shows the current DDM environ-
ment available to CICS/DDM. It illustrates that
CICS/DDM provides a bridge from SAA systems and
their users to data usually managed and con-
trolled by OLTP systems.

Why centralized data?

Although the trend of decentralizing computer
power onto a network of smaller systems brings
that power closer to the end user, it is important
to maintain access to existing applications and
data. New business solutions are often provided
on new small or medium systems. They need ac-
cess to data obtained through existing applica-
tions to give added value to existing solutions and
services.

The power of local workstations and departmen-
tal computers allows a variety of operations to be
performed apart and independent from a central
host system. Centralized systems gain more and

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

more importance through their ability to connect
all of the users of a network with all of the infor-
mation processed throughout an enterprise.

Several factors that still require the support of
centralized systems and centralized data, regard-
less of whether the data are on a System/390* or
System/370 host, an Application System/400
(AS/400*), or a local area network (LAN) server
(depending on the size of the organization), are:

s Availability of the same data to all users in the
network

s On-line access to data that are concurrently be-
ing modified by a large number of users

« Existing applications and organizations

» Security

» Backup facilities

« Data administration

More discussion of distributed versus centralized
processing tradeoffs in general can be found in
Reference 7.

In the early days of software development, file 1/0
functions were already coded independent from
the location of the data within the local system;
that is, they were independent from the physical
disk device and from the number and types of
devices attached to the local system. Within a
distributed system, applications now need to be
written to be as independent as possible from the
location of the data within the network.

This location independence of file access func-
tions also facilitates migration from one host sys-
tem to another: Either the data can be moved to
a new system without the need to modify the ap-
plications or new applications can be written to
access data on other existing systems, without
requiring many new services in the existing net-
work.

The mystery of on-line transaction
processing

In contrast to its long existence and importance,
on-line transaction processing remains a mystery
to many people. This section explains major char-
acteristics of the CICS OLTP system, in addition to
the concepts described in Reference 9.

Single address space, multiple users. CICS allows
many users to run applications concurrently in

DEINHART 519

the same address space. This capability is a major
difference from interactive systems such as TSO
or CMS, where users are isolated from each other
by means of separate address spaces or virtual

A CICS transaction represents
the active part of a
program as executed
by a user.

machines. It also explains one technical origin for
the important role of CICS in a system with very
few address spaces like VSE, which supported a
maximum of only eight “partitions” until the
recently announced version named Virtual Stor-
age Extended/Enterprise Systems Architecture
(VSE/ESA*). Interactive systems typically provide
their users with access to private data. Sharing
data between users is usually possible only on a
file level, and it requires specific action to be
taken by the end user.

Sharing the latest information on line. OLTP allows
users to share the latest information available in
an enterprise. In order to implement OLTP, CICS
provides a programming environment so that CICS
applications can read and write records of indi-
vidual files, thus minimizing the interference be-
tween concurrent users. In order to let users see
the latest information as soon as possible, and to
prevent one user from blocking another user,
OLTP applications must hold record locks for as
short a time as possible. This time is managed by
CICS, which enqueues and dequeues on records
implicitly when data are to be modified.

Data consistency. Operations as issued by an end
user often require multiple modifications in more
than one file. To prevent other users from viewing
inconsistent data, such changes must be made
available in atomic form to concurrent users. For
example, two separate customers of a travel
agency may only want to book a flight that in-
cludes a free hotel room and rental car. All these
operations must be booked and confirmed at once
to avoid the situation where one agent obtains the
last hotel room and another one obtains the last

520 DEINHART

car, with the result that neither one of the cus-
tomers decides to book the travel. That is, either
all modifications must be available to the user
community or none must be available. This re-
quires the concept of an Luw (logical unit of
work) to be available to applications, so that ei-
ther a commit can be performed on all updates by
the application or a rollback can be performed in
the event of a failure. CICS implements the LUW
concept for all resources that may be specified as
“recoverable,” such as Virtual Storage Access
Method (vsaM) files, databases, CICS temporary
storage or transient data queues, or CICS mes-
sages. A CICS sync point command can perform
either a commit or a rollback for all changes to
recoverable resources. Updates to recoverable
resources are logged on a journal that allows a
“backout” of the changes when a failure occurs.
Within an LUW, record locks on recoverable files
cannot be released before the LUW ends in order
to allow changes to be backed out.

These dependencies between users, applications,
and data explain why CICS data are typically mod-
ified only through pretested programs. These pro-
grams are carefully introduced into production
environments by control of a CICS system admin-
istrator. The same rules apply to remote applica-
tions that access CICS data, for example, via DDM,
to maintain the consistency and integrity of data
and to prevent unnecessary waiting on the part of
concurrent users. Thus, OLTP applications build
the front end to the data.

Transactions. A CICS transaction represents the
active part of a program as executed by a user. To
maximize transaction throughput, CIiCS applica-
tions are often designed as a set of small and in-
dependent “pseudoconversational” transactions
that avoid prolonged usage of system resources
during user “think” time. When applications
communicate with each other via LU 6.2 conver-
sations, the duration of a conversation deter-
mines the lifetime of the CICS transaction. This
method leads to longer-running transactions that
perform more complex operations on data. There
is an obvious tradeoff between the overhead in-
volved in allocating and deallocating conversa-
tions (including authorization of users) and the
potential of saving system resources by minimiz-
ing transaction lifetime.

It is important to understand that LUWs and
record locks are to be bound to individual trans-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

actions in order to minimize the waiting time of
concurrent users during the time when some
users are thinking. Application designers and pro-
grammers have to ensure that locks are held only
for the time in which a transaction is active, rather
than during the possibly long terminal 1/0 or think-
ing times that may even be prolonged to coffee
breaks.

Reentrancy. A CICS transaction executes as reen-
trant or quasi-reentrant. Multiple instances of the
same program can be active concurrently when
several users execute the same transaction, e.g.,
the booking of a flight.

Security. Typically, data are shared by a group of
users and their applications. Access to CICS data
from applications can be controlled by the CICS
system administrator with help from CICS security
features or external security managers like the
Resource Access Control Facility (RACF*). The
administrator can authorize trusted source sys-
tem programs to access target system CICS data,
thus securing the integrity of data from unautho-
rized access through concurrent CICS transac-
tions and their users.

SAA distributed access to CICS data

SAA distributed data cover two types of data man-
agement systems, flat files and relational data-
bases. CICS supports a variety of data stores, such
as:

VSAM data set, accessed through CICS file con-
trol

Hierarchical databases (IMS on MVS, DL/ on
VSE), accessed locally or through IMS database
control (DBCTL)

Relational databases (DATABASE 2*, or DB2%,
and Structured Query Language/Data System,
or SQL/DS*)

Transient data queues (TD-Q) and temporary
storage queues (TS-Q), both CICS-specific and
either temporary or permanent data stores

Although distributed access to relational data-
bases can be managed exclusively by the data-
base management systems using Distributed Re-
lational Database Architecture* (DRDA*),' this
access is different for distributed files mainly for
two reasons:

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

1. The cIcS API adds OLTP functions to the native
VSAM API through CICS file control and CICS
sync pointing functions.

. CICS has exclusive access to VSAM files and
lets the data be shared with concurrent CICS
users but not with other users outside the CICS
address space.

Therefore, distributed files require an implemen-
tation in CICS, whereas DRDA does not, as out-
lined in Figure 2. CICS/DDM provides this access to
CICsS file data that could otherwise not be made
available through direct communication between
the source system file manager and VSAM.

As for the other types of data, several possible
access paths can be considered for SAA CPI ap-
plications, such as:

* SQL access to hierarchical data (e.g., via data
propagation)

« File access to CICS queues (TS-Q, TD-Q) and hi-
erarchical data, for example, with help from
CICS/DDM user exit code

A DDM target server on CICS under MVS
and VSE

CICS/DDM provides a DDM target server that al-
lows a DDM source server to interact with CICS as
it would with any system using DDM. In this way,
systems that have implemented a DDM source
server (see Figure 1) can access data on systems
that have implemented CICS and CICS/DDM. Ap-
plications on these systems can use APIs that are
supported by the DDM implementation on their
system, such as the COBOL file I/O statements;
there is no need to use the EXEC CICS command-
level API instead.

CICS/DDM allows source systems to:

¢ Perform record-level access on CICS data, typ-
ically via application programs that open the file
for concurrent updaters and perform read and
write operations on individual or multiple rec-
ords until the file is closed.

» Transfer all records of a CICS file or parts of it
with a single DDM request, in either direction,
often supported via operating system com-
mands (COPYDATA on Operating System/400%,
for example) on the DDM source system.

DEINHART 521

Figure 2 SAA access to CICS data

OPEN EXCLUSIVE
READMWRITE (/W)
CLOSE
CREATE/DELETE | OPERATING SYSTEM
RENAME, CLEAR
COPY DOM
¥ T
cies FILE VSAM
FILE /O CONTROL >
e
OLTP: DDM —
OPEN SHARED b >
Luw
R/W RECORD NO. DBCTL
R/W RECORD KEY >
CLOSE y
GoPY ’ SYNC POINT ‘] TD-Q ‘ | T8-Q }
QUERY L DATA
MANAGER sa PROPA-
\ GATION
oL EXECUTE DB,
PACKAGE SQL/DS
SELECT
INSERT, UPDATE y Y
DELETE
BIND

CICS/DDM is a set of CICS command-level pro-
grams, thus providing a high level of portability
across the various versions and releases of CICS
systems, from Version 1.7 to Version 2 up to
CICS/ESA Version 3. Running as standard CICS
transactions makes the product eligible for use by
other CICS application services such as security,
transaction routing, debugging, installation, and
recovery.

CICS/DDM to support SAA file access to OLTP
data. Figure 3 illustrates how DDM source systems
are connected to CICS as a DDM target system by
means of LU 6.2 and DDM links. It includes PC-DOS
with remote DDM record file access through the
DDM/PC product and 0S/2 with a record API (ab-
breviated to RLIO/2) and a DDM source server im-
plementation (Distributed File Manager/2, abbre-

522 DEINHART

viated to DFM/2). PCS is the PC Support product
available for the AS/400 midrange system and its
predecessors, System/36 and System/38; it may
be used together with the other shown DDM
source servers on PC-DOS and 0S/2. Applications
on a DDM source system can read and write data
that could otherwise only be accessed from CICS
terminals through CICS application programs. The
file 1/0 requests of an application are translated by
services on the DDM source system into DDM re-
quests that are sent to the CICS/DDM target server.
CICS/DDM retrieves the requested CICS data and
sends the data back to the source system. In a
network of connected CICS address spaces, a
CICSPLEX, CICS/DDM is to run in the address space
that contains the file to be accessed to minimize
network traffic. (One DDM request may result in
more than one CICS API call.)

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 3 DDM access to shared OLTP data

COMMUNICATION
BUSINESS APPLICATIONS NETWORK

MANAGEMENT
RLIO2 DDM/PC
DFM/2
0S8/2CM APPC/PC D

=1
Qs/2 PC-DOS 5250
PC SUPPORT

AS/400 1

SYSTEM/36

SYSTEM/38

NETVIEW/PC
FILE TRANSFER

08/2, PC-DOS

LU 6.2, DDM

cics

CICS/DDM]70ICS/DDM

l |

TRANSACTION
PROCESSING

CICS APPLICATION

— _LI

CICS APPLICATION

= _)

CICS APPLICATION

CICS APPLICATION

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

DEINHART 523

Figure 4 CICS VSAM files in DDM terminology

VSAM SUPPORT ESDS - ENTRY SEQUENCED
IN CICS FILE CONTROL DATA SET
KSDS - KEY SEQUENCED
DATA'SET
[RADS - RELATIVE RECORD
I I ’ I DATA SET
VSAM VSAM VSAM VSAM
ESDS RRDS KSDS PATH
VSAM VSAM
ESDS KSDS
SEQUENTIAL DIRECT KEYED ALTERNATE INDEX DDM FILE MODEL
FILE FILE FILE ('VIEW’) FILE
FIXED, FIXED FIXED, FIXED, RECORD LENGTH TYPE
VARIABLE VARIABLE VARIABLE
READ READ READ READ ACCESS
MODIFY MODIFY MODIFY
INSERT INSERT INSERT
DELETE DELETE

Each active DDM source application is connected
to its own instance of the CICS/DDM target server
transaction, thus allowing concurrent users and
jobs to access remote CICS data via DDM concur-
rently.

The following two subsections explain how the
conceptual components of DDM are mapped to the
implementation of CICS/DDM.

DDM access to CICS data. CICS supports a variety
of data management systems including files, re-
lational and hierarchical databases, and CICS-
specific queues. Although the relational data-
bases DB2 and SQL/DS have been designed to share
data (even on the field level) between multiple
address spaces, it is CICS that provides functions
such as record-level locking and LUW for VSAM.
This introduces the need for a DDM target server
under CICS in order to provide on-line access to

524 DEINHART

CICS data that may be shared with concurrent
CICS applications.

CIcS/DDM Version 1 allows all systems imple-
menting DDM to access the following recoverable
or nonrecoverable types of CICS-controlled data:

1. cics vsAM files—CICS/DDM maps the DDM
commands for sequential, direct, keyed, and
alternate index files as received from the bDM
source server onto the CICS file control API.
Mapping allows DDM source system applica-
tions to access all types of CICS-controlled
vSAM files as illustrated in Figure 4, where a
CICS file refers to a VSAM data set that is de-
fined to CICS.

2. Other files, via a file access user exit—The file
access user exit allows source system appli-
cations to invoke user-written CICS application
programs that access CICS data. The exit is

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

designed to intercept CICS AP requests (includ-
ing sync point and mass insert) that would oth-
erwise be executed by CICS/DDM while access-
ing a CICS vsAM file. These CICS API requests
are passed to the user-exit routines, which can
then provide file processing or other CICS
application functions independent from
CIcs/DDM. Existing CICS programming skill
can be used to write such exit programs.

Components of CICS/DDM target server process-
ing. The DDM target server function is comprised
in a single CICS transaction. The CICS/DDM target
server transaction is started when a DDM source
server allocates an LU 6.2 conversation to the DDM
target server in CICS. This target server is iden-
tified by a unique Systems Network Architecture
transaction program name (TPN), which identifies
the target server. The transaction is terminated
together with the conversation either explicitly by
the source server or in error situations. The DDM
target server transaction receives DDM data
streams, maps them on the CICS API, and lets CICS
execute the request. The result of the API call is
then converted into a DDM reply data stream and
returned to the DDM source system. Figure 5 iden-
tifies individual DDM components of the CICS/DDM
target server transaction and further illustrates
how DDM requests are processed by CICS/DDM.
The numbers in parentheses in the figure repre-
sent the following steps:

1. The DDM source server exchanges DDM data
streams via LU 6.2 with the target system.

2. ciIcs invokes the DDM transaction as identified
through the TPN.

3. The CICS/DDM communications manager pro-
cesses the LU 6.2 conversation through the CICS
terminal control API. It waits to receive re-
quests and passes on the DDM part of the data
stream for further processing. After comple-
tion by the other components, it returns the
reply via LU 6.2 to the source system.

4. The CICS/DDM agent parses and builds DDM
data streams and routes control to specific
command processors that implement the var-
ious DDM managers and process the requests.

5. The cICS/DDM directory manager checks the
existence and attributes of a file. It either que-
ries the CICS file control table or lets a file ac-
cess user exit program provide the informa-
tion.

6. The cIcs/DDM file access manager performs
read and write operations on CICS files through

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

the cics file control API. It includes functions
for DDM load and unload requests to transfer
mass data, for example, using the CICS mass
insert option.

7. To access files that were identified as a user
exit file in step 5, control is passed to a user-
provided CICS program.

8. Finally, CICS/DDM converts the results of the
operations into DDM reply objects and reply
messages, which are returned to the source
system through the CICS/DDM agent and com-
munications manager and the CICS advanced
program-to-program communications sup-
port.

Several instances of the target server transaction
can be active concurrently, where each instance
uses a separate LU 6.2 conversation and repre-
sents a user, task, or job on the source system.

Duration of a CICS/DDM transaction. CICS/DDM
acts as one long-running transaction, which uses
all of its resources from the first remote file re-
quest until the last one has been completed. The
duration is controlled by the source system and its
application. In the case of a record I/O application,
it may take from the first Open command on a file
until the last Close command or application ter-
mination. In the case of a load or unload opera-
tion, the transaction may only be active from ex-
ecution of the request until the last record has
been returned.

Performance, caching, and parallel sessions. Line
speed, number of communication controllers in-
volved, and the amount of data transferred are the
main factors for remote file /0 performance. The
amount of CPU time consumed by CICS/DDM in-
fluences the number of source system jobs that
can perform remote file I/0 operations in CICS at
the same time. Finally, the number of record
locks held by source system applications and the
time they take determine the impact on concur-
rent CICS or source system users of the same data.
Source and target system caching techniques as
provided in CICS/ESA (data tables feature) and
0s/2, as well as the use of parallel sessions and
multitasking features on the source system, can
be used to improve the performance of the dis-
tributed file system.

Problem determination. A user-enabled trace fa-
cility is provided with CICS/DDM and can be
switched on or off for all or just for named LU 6.2

DEINHART 525

Figure 5 CICS/DDM target server processing

526 DEINHART

DDM

SOURCE SERVER

MVS, VSE

CICS SUBSYSTEM

APPC SUPPORT IN

CiCS TERMINAL CONTROL

CICS/DDM
TARGET SERVER
TRANSACTION

LU 6.2 INTERFACE

CICS/DDM COMMUNICATION MANAGER:

CICS/DDM AGENT:

DDM DATASTREAM PROCESSING

LOCK
MANAGER

CICS/DDM
EXCLUSIVE
FILE LOCK
USER EXIT

DIRECTORY
MANAGER

FILE ACCESS

MANAGER

CICS/DDM

FILE ACCESS USER EXIT

INQUIRY

FILE ACCESS

LOAD AND
UNLOAD

CICS API

FILE
CONTROL

SYNC POINT

OTHER, eg.,

- DUl

-IMS/DB

-~ RELATIONAL
DB

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

connections to DDM source servers. All LU 6.2
conversation data received and sent together with
additional information on internal control and
data flows are logged on a single trace file used by
all active instances of CICS/DDM. The trace data
can be formatted using a CICS transaction pro-
vided by CICS/DDM, thus improving the readabil-
ity for terminal displays and printouts.

The past sections reviewed relevant CICS func-
tions and the implementation of CICS/DDM. The
subsequent sections discuss the aspects that need
to be considered when remote applications access
CICS data. Special emphasis is first given to data
integrity, followed by other considerations such
as file naming, commands supported, and file
models.

Ensuring data integrity from DDM source
systems

On-line transaction processing introduces a need
to ensure the integrity of data. Users want to see
the latest information immediately, and multiple
users must be able to modify different parts of a
file concurrently, for example, the accounts of
different customers. Changes must not be lost in
the event of a failure, and related modifications
must be made available to other users at the same
time. To fulfill these requirements, OLTP systems
support functions that are elsewhere imple-
mented only in databases, namely the concept of
a logical unit of work (LUW) and the concept of
record-level locking, both of which are related to
each other.

The following subsections discuss how these
functions are supported by CICS/DDM, allowing
SAA applications to share OLTP data.

Locking. CICS is a programming environment that
allows all users to share the same data and that
makes the latest updates immediately available to
concurrent users. CICS does not support the con-
cept of users being able to lock a file entirely
against concurrent use between Open and Close
commands. Rather, the VSAM share options can
be used to lock the VSAM file exclusively for CICS
to ensure full integrity by shielding the file against
usage from other address spaces. All CICS appli-
cations share the CICS VSAM files with concurrent
updaters, and record-level locking is used.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

This specific need for OLTP impacts the source
system programs that access remote CICS data,
because they have to follow the same program-
ming conventions. DDM source system applica-
tions must use record-level locking to update CICS
files, and they should keep the time for record
locks as short as possible. That is, source system
programmers may have to be made aware of the
record-level locking used by CICS and incorporate
it into their design.

As an example, an attempt to lock an entire CICS
vSAM file exclusively from an Operating Sys-
tem/400 (0s/400*) application program must fail
because this function is not supported by CICS.
CICS/DDM would return a DDM “File In Use” reply
message (FILIUSRM), which is mapped onto a cor-
responding application return code. However,
when there is a need to have exclusive write ac-
cess to a file stored under CICS, a CICS/DDM lock
user exit program can be implemented in order to
ensure the integrity of the operation in the user’s
CICS installation.

Commitment control, LUW. When a VSAM data
set is defined in the CICS file control table (FCT) as
a CICS file, it can be specified to be recoverable or
nonrecoverable. For recoverable files, CICS pro-
vides a logging function that supports the concept
of an LUW similar to the one supported in relational
databases. This CICS function allows changes to be
committed on request (SYNCPT command) or when
the transaction terminates normally, or to back out
uncommitted changes in the event of a failure or on
request (SYNCPT ROLLBACK command).

Updates to distributed recoverable files in a net-
work must be coordinated via a two-phase-com-
mit protocol as described in the SYNC_LEVEL(2)
tower of the LU 6.2 architecture and as being ad-
dressed in SAA by CPI-RR (resource recovery).

Updates to nonrecoverable files are not commit-
ted nor is their content predictable in the event of
a system or task failure.

Although the LUW concept is currently supported
only in relational database (RDB) and OLTP sys-
tems and not on most DDM source systems (nei-
ther for local nor for remote data), CICS/DDM sup-
ports access to both recoverable and nonre-
coverable CICS files.

To ensure the integrity of CICS data, the following
considerations must be taken into account:

DEINHART 5§27

* Modifications to CICS recoverable files via
CICS/DDM are committed as soon as possible.
Usually, a sync point is performed by CICS/DDM
immediately after the successful completion of
the DDM write operation to a CICS recoverable
file.

In situations where the application still holds an
additional update intent on a different record of
the same or a different file, this sync point is
deferred by CICS/DDM because CICS would oth-
erwise release the record lock. The sync point
is then performed as soon as the latest record
lock is released. This phenomenon is known as
the cics/pbDM “deferred sync point process-
ing.”

* Source system applications that need to modify
CICS recoverable files from systems that do not
(yet) support commit or rollback verbs can ex-
ploit this deferred sync point processing in
CICS/DDM for their purposes. It allows them to
control explicitly when sync points are per-
formed. By means of a CICS/DDM file access user
exit, a generalized service can be implemented
that allows applications to easily migrate to
CPI-RR or similar APIs when they become avail-
able on the source system.

Security. CICS/DDM implements the security tower
of the LU 6.2 architecture in conjunction with the
security and auditability features of MVS, VSE,
and cics. Therefore, the system is secured
against unauthorized access as follows:

* Since CICS/DDM is a normal CICS application
program, it is eligible to use all available CICS or
RACF security facilities that are available to CICS
LU 6.2 transactions:

* With incoming LU 6.2 requests, access can be
controlled at bind time (session establish-
ment), at attach time (conversation establish-
ment), or at the resource level, as described in
Reference 8. Control of access prevents the
attachment of unauthorized systems to CICS,
controls the authority of specific users on spe-
cific systems to initiate a transaction, and re-
stricts access to certain CICS resources.

e A CICS security key can be defined for the
DDM target server transaction to control
which user or system can invoke this service.

* By means of resource security level (RSL)
checking (discontinued with CICS/ESA 3.2.1) a

528 DEINHART’

user can associate the appropriate RSL key
with each resource that the transaction will
access; such resources can be CICS VSAM files,
CICS transactions, or CICS programs, for ex-
ample.

* In addition, security facilities on the source sys-
tem can be used to restrict access by specific
source system users to specific remote files.

Access from DDM source systems

This section discusses differences in the various
programming environments such as applicable
commands, the meaning of the Open and Close
commands, stream files, directories, and file
names. It includes considerations for applications
to access CICS data.

Addressing the remote CICS file. Application pro-
grams may use a variety of file name declarations
to address a specific file or data set, independent
of the location of the device on which the file is
stored. When the application is executed on the
system where the file resides, at least one sym-
bolic name is used in addition to the physical file
name:

¢ A symbolic name is often used in the source
code of an application program to be indepen-
dent from physical naming conventions.

* The name by which the file is actually known to
the file system should be specified only once.
Often, symbolic and physical file names are
linked only at execution time of the program,
thus allowing the file name to be changed with-
out having to recompile the program.

Accessing remote files adds a new dimension to
this file name mapping process, because the
names must be mapped onto the file name con-
ventions of the target system. Figure 6 illustrates
this relationship between file names used in the
source system application and those known to
CICS.

¢ DDM Declare Name—The symbolic file name is
mapped into a corresponding, but not identical,
DDM DCLNAM (Declare Name) in order to iden-
tify and process different openings of the file on
the same file name. Multiple Declare Names
can be generated for a specific local file name
(n:1 relationship; many-to-one). The Declare

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 6 Multiple access paths to the same CICS file

SOURGE SYSTEM NAMES

RELATIONSHIP

SYMBOLIC FILE NAME LOCAL FILE NAME REMOTE FILE NAME
CICS FILE NAME: VSAM
FCT-ENTRY DATA SET NAME
(8-BYTE NAMES) (44-BYTE NAMES)
NS 181 M1
DDM DCLNAM DDM FILNAM
SOURCE DDM OPEN CICS FCT OPERATING
CODE SYSTEM
| FiEA DCLNAM—D1—
FILEA DCLNAM-D2 FCT-F1
— L 5 VSAM—DSN-VA
| FueEN DCLNAM—DN——!
FILEX DCLNAM—DX FCT-F2
| FLEY DCLNAM-DY: FCT-F3
| FiLEZ DCLNAM—DZ FCT-F4 VSAM—DSN—VB

Name is not seen by the user, but it is part of the
DDM data stream.
DDM File Name—The remote file name is either
directly specified by the application or mapped
from the local file name by the DDM source
server or a related service. In both cases, the
relationship between local and remote file name
is one-to-one. The remote file name is pro-
cessed as a DDM FILNAM (File Name) and is
used to identify the file within the target system.
To access remote CICS data, FILNAM must be a
valid cICS file name.
¢ CICS file names and VSAM data sets—In CICS,
the file name must be defined in the CICS FCT,
where multiple file names may again be speci-
fied for the same physical vSAM data set. This
additional indirection (m:1 relationship; many-
to-one) allows control of the access character-
istics of different CICS applications to the same
VSAM data set, e.g., the operations to be per-
formed by the application.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Open and Close. CICS applications do not need to
explicitly open or close files, because CICS itself
opens and closes VSAM data sets for access
through CICS applications that have been autho-
rized to perform the requested operations. This
operation is different from when SAA file 1/0 ap-
plications access remote CICS data via DDM. The
Open request identifies the file as a remote file and
specifies the access intent of the application to the
data and the degree of sharing with concurrent
users. The access intent can be used to check
whether the cIcS file name has been defined to
allow the requested operations to be performed
(SERVREQ entry in CICS FCT). The sharing param-
eter must be set to allow concurrent updaters.
The Close request terminates the access of the
application to the remote CICS file name.

Managing CICS files (create, delete, rename,
clear). As CICS files are usually not owned by a
specific user but instead are used to share data on

DEINHART 529

line, no CICS API functions perform file manage-
ment operations such as create, delete, rename,
or clear on CICS VSAM files. Rather, a CICS system

The introduction of PWS
into the network raises a
requirement to exploit standard
PWS applications and services.

administrator creates and deletes VSAM data sets
and provides the necessary CICS definitions to
make them available as CICS files. Consequently,
such operations are not supported by CICS/DDM
for execution from a DDM source system. The
only file management operations supported are
load and unload, thus allowing copy operations to
be performed on CICS data.

Cooperative processing

Together with DDM source server implementa-
tions on the PWS, CICS/DDM provides a coopera-
tive processing® function as do other applications
such as CICS 0S/2 with a CICS host. DDM-based
applications have the advantage of connectivity
beyond the OLTP world, i.e., they can easily be
written to access CICS data as well as 0S/400 data,
for example. When programmable workstations
are introduced into the network, a requirement to
exploit standard PWS applications and services is
often raised, including support for byte stream file
10 and directory commands. The following sub-
sections discuss how these functions apply to
CICS data and OTLP and how PWS applications can
access the contents of CICS files with support from
their local DDM component.

Directories. Programmable workstations usually
implement the concept of hierarchical directories
with one root on each drive. They allow the files
to be grouped on the system to correspond to both
the logical relationships of files and the location of
files.

* Grouping files according to their logical rela-
tionships is as important for users who need to

530 DEINHART

change the contents of files interactively as it is
for system personnel to control the inventory of
files and programs on a system.

e The location of a file on physical /0 media is
always very important information, for security
reasons as well as for addressability. When re-
mote resources are introduced into the net-
work, it is usually the drive letter that is as-
signed to a remote system.

In OLTP environments, the end user typically in-
vokes a program that in turn accesses and mod-
ifies the data. Thus, support for a “dir”” command
that lists all or a subset of the files in a remote CICS
system is not so important as in interactive envi-
ronments and is currently not supported by
CICS/DDM.

Stream file access. Discussions about the purpose
and advantages of byte stream files, record files,
and databases can be found in References 11, 12,
13, and 14. The representation of files as linear
byte streams gives programmers considerable
power and flexibility to choose whatever struc-
ture is best-suited to a particular application. This
freedom of choice, however, often results in ap-
plication-specific access methods being devel-
oped for programs that require random access to
defined substructures within a file, such as rec-
ords and fields, thereby increasing application
size, complexity, and development time. The
same arguments apply to databases, which add an
additional support level to applications, com-
pared to record files. They often provide im-
proved data sharing (on the field level), data in-
tegrity and consistency, and help to minimize
data redundancy, but often at the cost of perfor-
mance (see Reference 14). This is one reason why
record files are sometimes still preferred com-
pared to databases, in addition to the amount of
data already available on files.

Connecting PWS stream file systems with host
record file systems adds the question of how stan-
dard pws applications can operate on host data.
Simple existing solutions providing a file copy fa-
cility like INDSFILE apply only to interactive sys-
tems such as CMS and TSO with their correspond-
ing file systems. They are not appropriate for
keyed files nor for data that are shared between
concurrent writers. In the following, we explain
how PWS applications can solve this problem
when accessing the OLTP environment provided
by CICS.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

» Application-specific record access method—
PWS applications written for stream file access
often provide their own private record access
method by implementing application-specific
conventions (delimiters, header and trailer rec-
ords, fixed record lengths, etc.). This applica-
tion internal record file interface is to be used to
import and access data from other sources that
require record access methods, such as the data
managed in an OLTP system. (See Figure 7.)

~ Write access to shared data—When a PWS ap-
plication is to modify OLTP data shared with
concurrent writers of the same file, a record
access method is to be used in order to minimize
the interference between concurrent users. In
this case, the PWS application has to follow the
same rules that apply to OLTP applications in
general. This type of data access is the typical
scenario for business applications that require
an OLTP environment. (See Figure 8.)

~ Write access to private or temporary storage—
Sometimes an application has to collect input
for further processing by other CICS applica-
tions that are written to manage the access to
shared files. In this case, information has to be
provided in an intermediate store between two
applications that communicate with each other.
This is a typical scenario for which CICS tem-
porary storage queues have been designed.
With CICS/DDM, a PWS application may access a
CICS temporary storage queue as a sequential
file. The NetView/PC bulk data transfer facility
is an example of this scenario. (See Figure 9.)

» Read access—Often, a PWS is used to provide
business graphics or spreadsheet calculations.
Such applications only require part or all of a
host file to be extracted, thus providing a snap-
shot of OLTP data. To import the contents of a
CIcs file that is in record format, the PWS ap-
plication has to import the requested data and
convert the records into the byte stream format
of the application. This processing depends ei-
ther on selective read operations on individual
records that form the extracted file or on a full
file read operation that goes up to at least the
latest record accessed. (See Figure 10.)

To integrate the functions of PWS applications into
an OLTP environment, service routines are re-
quired that import the contents of a CICS record
file into the byte stream file format of an appli-
cation. Such routines allow remote CICS data to
be extracted for follow-on processing through

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 7 Stream application-specific record access

PWs

PWS APPLICATION

SERVICE ROUTINE

- IMPORT/EXPORT

J —REMOTE RECORD
FILE ACCESS

RECORD ACCESS METHOD
—DELIMITERS

—RECORD LENGTH
—HEADER, TRAILER

REMOTE RECORD
ACCESS METHOD

STREAM APi

DATA CONVERSION

PWS applications, thus providing a snapshot of
host data.

Providing PWS applications as a front end for CICS
OLTP requires a record access method as the in-
terface to CICS applications and their users. In one
case the PWS application shares CICS files on line
with concurrent CICS users. In this situation it
needs to access individual records and has to min-
imize the time during which record locks are held.
In another case, the 0S/2 application provides
only input for further processing by other CICS
applications that control the access to the shared
files. In this latter case, information has to be
provided in an intermediate store between two
applications that communicate with each other.

DEINHART 531

igure 8 Sharing data between concurrent writers of the same fi

F

CICS APPLICATION

CICS/DDM

PWS OLTP APPLICATION

RECORD ACCESS

DATA CONVERSION

STREAM ACCESS

tion

ica

input for a CICS appl

9 Providing

igure

Fi

-

-

.

R
.
e

-

=

5

i

S w\\‘n o
-

-

CICS APPLICATION

CICS/DDM

PWS INPUT APPLICATION

RECORD ACCESS

DATA CONVERSION

STREAM ACCESS

o
\\%\m\mw%

wmmw«\m -

o

-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

532 DEINHART

Figure 10 Extracting CICS data for processing by PWS applications

PWS

PWS SNAPSHOT APPLICATION

STREAM ACCESS RECORD ACCESS

DATA CONVERSION

CICS temporary storage queues have been de-
signed for such a typical scenario. In both cases,
the data passed to CICS must be in record format
to allow further processing by CICS applications.
Information provided by standard 0s/2 applica-
tions in byte stream format must be extracted and
mapped into the more regular structure of a
record file.

Cooperative or distributed applications designed
to connect 0S/2 with SAA environments may use
CICS/DDM to share information with CICS applica-
tions in the same way as they do with users and
applications on systems such as 0S/400 and MVS.
NetView/PC is an application that uses CICS/DDM
as a data transfer vehicle to provide input for fur-
ther processing by related CICS applications; for
example, call detail information collected from
various devices such as computerized branch ex-
changes and private branch exchanges can be for-
warded to a CICS host for billing and for traffic line
optimization programs (see References 15 and 16).

Concluding remarks

The specific characteristics of an OLTP environ-
ment require source system applications to use a

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

CICS APPLICATION

CiCS/DDM

record access method. To minimize interference
between concurrent modifiers of the same data,
the concepts of record locking and LUW have to
be applied in these programs. These concepts en-
sure data consistency while maximizing transac-
tion throughput and data availability.

PWs applications can access the contents of CICS
files via CICS/DDM and convert the contents to (or
from) the byte stream format of the application
with help from their local DDM component.

We have shown that CICS/DDM connects hetero-
geneous file systems to the data managed through
the OLTP environment provided by CICS. In SAA,
it provides CPI and system applications with lo-
cation-transparent access to CICS data. Applica-
tions can access CICS data (on MVS and VSE) with
no or minimal change compared to local data ac-
cess and access to remote data on any other envi-
ronment that has implemented DDM.

*Trademark or registered trademark of International Business
Machines Corporation.

DEINHART 533

**Trademark or registered trademark of UNIX Systems Lab-
oratories, Inc. or Open Software Foundation.

Cited references

1. R. A. Demers, “Distributed Files for SAA,” IBM Sys-
tems Journal 27, No. 3, 348-361 (1988).

2. R. A. Demers, J. D. Fisher, S. S. Gaitonde, and R. R.
Sanders, “Inside IBM’s Distributed Data Management
Architecture,” IBM Systems Journal 31, No. 3, 459-487
(1992, this issue).

3. R. A. Demers and K. Yamaguchi, “Data Description and
Conversion Architecture,” IBM Systems Journal 31, No.
3, 488-515 (1992, this issue).

4. V. Ahuja, “Common Communications Support in Sys-
tems Application Architecture,” IBM Systems Journal
27, No. 3, 264-280 (1988).

5. L. A. Buchwald, R. W. Davison, and W. P. Stevens,
“Integrating Applications with SAA,” IBM Systems
Journal 27, No. 3, 315-324 (1988).

6. E. F. Wheeler and A. G. Ganek, “Introduction to Sys-
tems Application Architecture,” IBM Systems Journal
27, No. 3, 250-263 (1988).

7. A. L. Scherr, “SAA Distributed Processing,” IBM Sys-
tems Journal 27, No. 3, 370-383 (1988).

8. CICS Intercommunication Facilities Guide, SC33-0133-2,
IBM Corporation; available through IBM branch offices.

9. Transaction Processing: Concepts and Products, GC33-
0754, IBM Corporation (1990); available through IBM
branch offices.

10. R. Reinsch, “Distributed Database for SAA,” IBM Sys-
tems Journal 27, No. 3, 362-369 (1988).

11. R. Q. Cordell II, M. Misra, and R. F. Wolfe, “Advanced
Interactive Executive Program Development Environ-
ment,” IBM Systems Journal 26, No. 4, 361-382 (1987).

12. D. M. Ritchie, “A Retrospective,” Bell System Technical
Journal 57, No. 6, Part 2, 1947-1970 (1978).

13. J. M. Bissell, “Extended File Management for AIX,” RT
Personal Computer Technology, SA23-1057, IBM Cor-
poration (1986), pp. 114-118; available through IBM
branch offices.

14. G. Sharman, “CICS in the 1990s—The Evolution of
Transaction Processing Systems,” to be published.

15. CICS/VS and Distributed Data Management, GH24-
3157-00, IBM Corporation; available through IBM branch
offices.

16. M. Ahmadi, J. H. Chou, and G. Gafka, “NetView/PC,”
IBM Systems Journal 27, No. 1, 32-44 (1988).

General references

C. C. Barnes, A. Coleman, J. M. Showalter, and M. L.
Walker, “VM/ESA Support for Coordinated Recovery of
Files,” IBM Systems Journal 30, No. 1, 107-125 (1991).
Concepts of Distributed Data, SC26-4417, IBM Corporation
(1988); available through IBM branch offices.

W. T. Fischofer, “VM/ESA: A Single System for Centralized
and Distributed Computing,” IBM Systems Journal 30, No. 1,
4-13 (1991).

D. J. Haderle and R. D. Jackson, “IBM Database/2 Over-
view,” IBM Systems Journal 23, No. 2, 112-125 (1984).

534 DEINHART

D. L. Schleicher and R. L. Taylor, “System Overview of the
Application System/400,” IBM Systems Journal 28, No. 3,
360-375 (1989).

R. L. Stone, T. S. Nettleship, and J. Curtiss, “VM/ESA CMS
Shared File System,” IBM Systems Journal 30, No. 1, 52-71
(1991).

R. C. Summers, “Local-Area Distributed Systems,” IBM
Systems Journal 28, No. 2, 227-240 (1989).

Accepted for publication March 12, 1992.

Klaus Deinhart IBM Deutschland GmbH, GADL Boeblin-
gen, 7030-91, Pascalstrasse 100, FRG-7000 Stuttgart 80, Ger-
many. Mr. Deinhart received an M.S. in computer science at
the Technical University, Darmstadt, Germany, where his
main interests were in databases, theory, and open systems.
He joined IBM in 1984 at the Program Product Development
Center in Sindelfingen and worked on the development of
several program products, during which time he held various
positions. His first assignments were on videotex communi-
cation monitors that included IBM’s first Open Systems In-
terconnection products. These systems were based on IBM
large systems; follow-on projects were on System/36 and
AS/400. After being involved with a project on cooperative
processing between personal workstations and the Customer
Information Control System, Mr. Deinhart became the team
leader of a CICS/DDM development project and was a mem-
ber of the DDM architecture control board. Following that
work, he held technical planning and, later, business planning
assignments in the Application Session Manager and Network
Security area related to NetView Access Services. Currently,
he is a planner in the German Application Development Lab-
oratory Boeblingen for networking products.

Reprint Order No. G321-5484.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

