Data description and
conversion architecture

A data description and conversion architecture
has been defined by IBM to enhance data
interchange among Systems Application
Architecture™ (SAA™) programming languages
and systems. Its components, described in this
paper, are (1) A Data Language (ADL), a
programming language for describing data and
specifying what data conversions are to be
performed, (2) an object-oriented method of
encoding ADL for efficient machine storage,
transmission, and processing, and (3) programs
that translate the data declarations of other
programming languages to or from ADL. Also
discussed is the application of the architecture to
record-oriented files for SAA Distributed File
Management.

Many different programming languages are in
use today on a wide variety of computers

and operating systems. Each programming lan-
guage is best suited for a specific range of tasks
and has language features and data types designed
for those tasks. For example, FORTRAN was de-
signed for scientific computing, COBOL for com-
mercial data processing, and C for systems pro-
gramming. But this is not to say that commercial
programs cannot be written in FORTRAN, or sci-
entific programs in C. In fact, there is consider-
able overlap of features and data types among
programming languages, the result of their evolu-
tion and the adoption of features from one another.

Itis a cliché that programmers should use the best
language for the task at hand, but this advice is
often ignored. Programmers tend to use the lan-
guages that they know best or that are mandated
by their employers. It is common to hear of
“CcoBOL shops™ or “C shops,” for example.
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An important benefit of this standardization is
that the programs of a shop specializing in one
language can exchange data among themselves.
For example, a COBOL program can export data
by writing the data to a file, sending the data in a
message, or calling another COBOL program and
passing data as arguments. A second COBOL pro-
gram can import data by reading the data from a
file, receiving a message, or accepting arguments
to its parameters. It is only necessary for the ex-
porting and importing COBOL programs to use
matching interfaces, consisting of the same
COBOL data declarations and complementary
COBOL export/import statements (WRITE/READ,
SEND/RECEIVE, etc.).

But today, as business entities are continually re-
shuffled, applications are increasingly mixtures of
different languages. And therein lies the problem;
programming languages are not designed to com-
municate with each other. In particular, the data
exported by programs of one language often cannot
be used when imported into programs of other lan-
guages. The exporting and importing programs sim-
ply have no agreements regarding the type, repre-
sentation, aggregation, and alignment of data.

When the exporting and importing programs are
on different systems, the number of incompati-
bilities increases further. Each implementation of
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Figure 1 The diversity of data representation techniques
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a language deals with these representation issues
in the ways best suited for its target hardware and
operating environment. The methods used often
vary even for different implementations of the
same language.

Figure 1 illustrates the diversity of methods used
for a simple data structure. In this figure, a data
structure called RECORD, consisting of a three-
character field called INITIALS and a two-byte bi-
nary field called NUMBER, is shown as represented
by C programs and by COBOL programs on Oper-
ating System/2* (0s/2*) systems and on Multiple
Virtual Storage (Mvs) systems. The character data
are AsCll-encoded in the 0S/2 systems but EBCDIC-
encoded in the MVS systems. And, the data are null-
terminated in C programs but not in COBOL pro-
grams. The binary data are byte-reversed in the 0S/2
systems but not in the MvS systems. The binary
field is aligned on a two-byte boundary in MVS
COBOL but not in 082 COBOL. The diversity found
in this simple example makes it easy to imagine the
representation incompatibilities that would be
found in more complex cases.

Data incompatibility problems can be handled by
application logic, but this logic can be very diffi-
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cult to program because of the numerous techni-
cal details to be considered. It would be far better
if these incompatibilities could be overcome by
conversion logic automatically invoked by sys-
tem services as data are imported or exported.

This paper describes a data description and con-
version architecture (called DD&C architecture)
that has been defined by IBM for data interchange
among Systems Application Architecture* (SAA*)
programs. Designed for SAA Distributed File
Management (DFM) products, DD&C has been ap-
plied to record-oriented file access and can be
applied to data interchange through other mech-
anisms. As an architecture, DD&C is a set of spec-
ifications for the construction of products that im-
plement the functions and interfaces defined by
DD&C architecture. In this paper, we do not de-
scribe any particular products built to the DD&C
specifications. It will be up to IBM and other soft-
ware vendors to incorporate DD&C capabilities
into products as they see fit.

A key concept of DD&C architecture is that data
conversions must be performed whenever data
flows between representation domains. The con-
cept of representation domains is introduced by
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Figure 2 ADL programs bridge between representation domains
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DD&C architecture to help categorize data repre-
sentations in terms of the methods used by a par-
ticular language implementation. For example,
082 C, Mvs C, 0S/2 COBOL, and MVS COBOL are
four different representation domains because of
differences in data types between C and COBOL,
and because of representation differences for the
0s/2 and MVS systems. This arrangement is illus-
trated by Figure 2. The programs that perform
necessary conversions are defined by a new pro-
gramming language, called A Data Language, or
ADL," designed specifically for describing how
data are represented by different representation
domains and for converting data as the data flow
between representation domains.

The top of Figure 3 shows the data declaration
statements used by C and COBOL programs to de-
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scribe the simple data structure illustrated in Fig-
ure 1. The C and COBOL declarations have little in
common beyond the names that programmers
used for the structure (RECORD) and its variables
(INITIALS and NUMBER). It is not possible to com-
pare the C and COBOL declarations to determine
what conversions are needed as data flow be-
tween a C program and a COBOL program. Not
only are there syntactic differences, neither dec-
laration is complete in regard to data representa-
tion. Language data declarations are deliberately
abstract so that programmers need not be con-
cerned with details that can be more easily han-
dled by language compilers.

In contrast, the ADL declarations at the bottom of

Figure 3, corresponding to the C and COBOL dec-
larations, are each complete for a particular rep-
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Figure 3 Declaration translator functions
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resentation domain because they fully describe
the representations of the structure and its vari-
ables. They are comparable to each other because
they are expressed in a common language—ADL.
There are many differences between the ADL dec-
larations for the 0s/2 C and MVS COBOL represen-
tation domains, but clearly, an ADL compiler, as
shown in Figure 4, can identify these differences
and generate an appropriate conversion program.
Then, when data are to flow from an MVS COBOL
program to an 0S/2 C program, as shown in Figure
5, the compiled ADL program can perform the
necessary conversions.

Where do the ADL declarations come from? They
can, of course, be written by a programmer, but
that programmer would need to understand all of
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the details of both the data declarations of a lan-
guage and the methods of representing data by a
representation domain. Requiring this knowledge
defeats the whole point of abstract data types in
programming languages. Language compilers are
already capable of handling all of these details, but
compilers do not make this information available
outside of themselves in a consistent and usable
fashion. It would be practically impossible to make
them do so. Some other mechanism is needed.

DD&C architecture defines a new kind of program
called a declaration translator. As shown in Fig-
ure 3, a declaration translator for a particular rep-
resentation domain can parse the data declara-
tions of its associated programming language and
create an ADL declaration with all representation
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Figure 4 Creating conversion programs from ADL declarations
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details filled in. A COBOL programmer needs only
to pass valid COBOL data declarations to this dec-
laration translator function.

A declaration translator can also reverse this pro-
cess and generate a data declaration for its asso-
ciated language from an ADL description that is
correct for its representation domain. These lan-
guage declarations can then be included in pro-
grams as part of their export-import interface. For
example, a COBOL programmer can include
COBOL data declarations generated from ADL in
any COBOL program that needs to export or im-
port the data described by an ADL declaration.

In addition, declaration translators can translate
ADL descriptions appropriate to a different rep-
resentation domain into an ADL appropriate to
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their own representation domain. For example, if
there is an ADL description of data that was writ-
ten to a file by an MVS COBOL program, the 0S/2 C
declaration translator can translate it into an ADL
description correct for the 05/2 C representation
domain. Together, these three declaration trans-
lator capabilities (parse, generate, and translate)
provide a rich set of tools in support of multilan-
guage programming.

What remains is to decide when an ADL program
needs to be called. This decision depends on the
export-import mechanism being used. For exam-
ple, as shown later in Figure 9, if an MVS COBOL
program has written records to a file and an 0S/2
C program needs to read them, the 0S/2 READ ser-
vice can call an ADL conversion program as each
record is read. DD&C architecture is not con-
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Figure 5 Converting data
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cerned with why or when ADL programs are
called, but 1BM’s Distributed File Management
products deal with these issues for record-
oriented files.

In the remainder of this paper, we consider the
objectives of DD&C architecture, discuss the al-
ternatives considered in its design, examine the

major concepts of DD&C in more depth, and fi-
nally, discuss the application of DD&C to file ac-
cess and to program calls.

Objectives

General objectives. The general objective of DD&C
architecture is to enable programs written in any
of the SAA programming languages (C, COBOL,
CSP, FORTRAN, PL/I, and RPG), as implemented on
any of the SAA system types, such as Multiple
Virtual Storage/Enterprise Systems Architecture
(MVS/ESA*), Virtual Machine/Enterprise Systems
Architecture (VM/ESA*), Operating System/400*
(0s/400%), and 0S/2, to interchange data. This is not
to say that all data exported by any of these pro-
grams can be imported by other programs of the
set. There are entirely too many language and
implementation peculiarities to allow for a fully
general solution. For example, numeric data for-
matted as character strings can only be inter-
changed as character data; conversion to the nu-
meric data types is not supported. Instead, DD&C
architecture defines a practical solution that al-
lows most SAA data to be interchanged by most
SAA programs. Further, the initial design of DD&C
architecture is focused on the interchange of data
stored in record-oriented files.
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Data description objectives. Innumerable record-
oriented files, created by a wide range of appli-
cations, exist in midrange and large systems. Pro-
viding workstations with access to the data in this
“data jail” is a prime objective of the SAA Dis-
tributed File Management products.? But the dif-
ferences between the languages and data repre-
sentations typically used in workstations and
those used in midrange and large systems must be
bridged to make this access feasible.

Programmers can write ADL descriptions of the
data stored in files, but it can be quite difficult to
do correctly because each implementation of a
programming language has its own ways of rep-
resenting, aligning, and aggregating data. Pro-
grammers would have to be fully aware of all of
them. Even in the initial scope of DD&C architec-
ture, ADL is quite complex and supports many
options. Requiring programmers to learn and cor-
rectly use ADL would not be acceptable to them.
Instead, an objective of DD&C architecture is to
make use of existing data declarations specified in
the syntax of an SAA programming language and
provide automatic translation into ADL via a dec-
laration translator for each SAA representation
domain.

Data conversion objectives. The key objective of
DD&C architecture in converting data can be
stated in one word: performance. Data conver-
sion is always viewed as a necessary evil, some-
thing required to get a job done, but which
contributes nothing to the application itself.
Therefore, DD&C architecture seeks to minimize
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the amount of data conversion that must be per-
formed and to perform it as efficiently as possible.

The initial focus of DD&C architecture on record-
oriented files substantially affected its design.
During file access, we are often dealing with a
large number of records, each with a potentially
large number of fields. Each record must be con-
verted as efficiently as possible, with as little
overhead as possible, and affecting as few fields
of the record as possible.

The fundamental approach of DD&C architecture
is to preplan the conversions that will be required
for each record by comparing the descriptions of
the records of the file with a description of how a
program is designed to view those records. Dif-
ferences in data representation, alignment, and
aggregation can then be accommodated by a sin-
gle invocation of an optimized conversion pro-
gram for each record, performing only necessary
conversions with minimal overhead.

A second data conversion objective is to have all
conversions allowed by DD&C architecture pro-
duce the same results wherever these conver-
sions are performed. For example, a conversion
from IEEE (Institute of Electrical and Electronics
Engineers) floating point to hexadecimal floating
point should produce exactly the same result
whether the conversion is performed on 0S/2 or on
MVS/ESA. To this end, the specifications for ADL
carefully define the results to be produced for all
conversions allowed by ADL.

A third data conversion objective of DD&C archi-
tecture is enhanced data interchange. Many differ-
ences in programming language data types exist for
historical reasons but are of little importance to pro-
grams seeking to interchange data. For example, a
number is a number is a number! The fact that one
language represents numbers in binary format,
whereas another represents them in zoned decimal
format or floating-point format is often not relevant
to an application. What is important, however, are
the precision, scaling, and radix of the number. The
ADL descriptions of data account for these differ-
ences, and ADL supports conversions among all nu-
meric data types. ADL then goes one step further by
ensuring that only data valid for the target data vari-
able are actually assigned to it. Interchange is fur-
ther supported by the translate function of decla-
ration translators whereby each attempts to map
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any ADL-described data into the data types of its
associated programming language.

A fourth data conversion objective of DD&C is
support of application development. ADL is a pro-
gramming language whose programs are invoked
to convert data, but these conversions are not
limited to simple data format conversions. De-
pending on how an application’s view of the data
is described, other conversions required by the
application can also be performed. As examples,
only certain records of a file can be selected, the
fields of selected records can be reordered, and
the fields of exported records can be validated.

And as a final data conversion objective, we must
consider reversible conversions. If a program
writes a record to a file of a different representa-
tion domain, that record must be converted to the
representations required by the representation
domain of the file. If the same program subse-
quently reads the same record from the file, it
must be converted back to the representations of
the representation domain of the program. Ide-
ally, the record read should be identical to the
record written, but this is not always the case. In
numeric conversions, significant digits can be lost
during the conversion because of rounding and
truncation. In character conversions, best-fit
character substitutions are used in some cases,
with no best-fit on the return trip. Known solu-
tions to these problems all involve canonical data
formats that are incompatible with the other ob-
jectives of DD&C architecture, or require applica-
tion programmers to account for reversibility in
their designs.

Alternatives considered

Throughout the design of DD&C architecture, the
architects were continually being asked questions
such as “Why did you do X this way?”” or “Why
did you not use the Y architecture?”” Indeed,
many other alternatives were studied and consid-
ered. In this section, a few of the more important
alternatives are discussed.

Programming language data description and con-
version. Most programming languages (PLs) in-
clude facilities for describing the data contained
in variables and for converting data as variables
are assigned to other variables. Why are these PL
descriptions and conversions not sufficient to al-
low data interchange among programs of different
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representation domains? The short answer is that
each PL implementation is self-contained with no
consideration given in its design to data inter-
change with other PLs. A programmer must use
matching interfaces of the same PL implementa-
tion when exporting data from the variables of a
program and then importing data into the varia-
bles of another program.

Conversions of the representations used by dif-
ferent implementations of the same PL are possi-
ble if the associated PL data types are unaffected.
So it would be acceptable, for example, for an
0s/2 C program to access data stored in an MVS C
file as long as representation conversions are
somehow performed. However, the position is
often taken that these conversions should be per-
formed by implementations of the language that
recognize when programs are being compiled for
an environment consisting of heterogeneous sys-
tems. Using data descriptions embedded within
program text, an approach to data conversion
similar to that outlined in the later subsection on
Network Interface Data Language then becomes
feasible. After all, that approach was designed for
a single language environment to begin with, that
of C.

This unilanguage restriction is often eased to al-
low a certain amount of interlanguage data com-
munications. But a requirement is imposed that
the data types and interfaces of the exporting and
importing PLs be “similar.” This approach, in ef-
fect, calls for pair-wise agreements to be reached
between PLs as to what types of data can be in-
terchanged between those languages, agreements
that have not yet been negotiated or documented
for most PL pairs.

As an alternative to pair-wise agreements, pro-
grams that require interlanguage communications
can be written within the constraints of a common
data model (CDM), such as the one espoused by
AD/Cycle*.’ If only the data types of a PL that
match the data types of the CDM are used in com-
munications with other programs, interlanguage
communications are assured. This alternative,
however, has severe limitations. First, the data
types of the CDM are, by necessity, the lowest
common denominator of the data types found in
the PLs covered by the CDM. Communications are
restricted between any two PLs to the types held
in common with the CDM, even when those PLs
may well be able to interchange additional data
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types. Second, this alternative only applies to
new programs and ignores the wealth of data
locked up in the records of existing files, records
that were written using the full expressive capa-
bilities of some PL.

At the heart of this alternative is the view that the

data types of a language are “owned” by that
language and that only implementations of the PL

Many existing alternatives were
studied and considered
throughout the design of the
DD&C architecture.

should be allowed to operate on their instances.
Any other operations on them could potentially re-
sult in bad data that cannot be processed by pro-
grams of the PL. But all that is really necessary is to
understand the range of values that a variable can
hold, as defined by its data type, and ensure that no
value is passed to a program outside of that range.

If we look specifically at data stored in files, this
alternative ignores historic realities. Most files re-
siding in large or midrange systems were typically
written by COBOL, FORTRAN, PL/I, or RPG pro-
grams. But the programs executing in worksta-
tions that seek access to the data in those files are
typically written in C, BASIC, Pascal, or other lan-
guages. No pair-wise interlanguage data conver-
sion agreements exist, and few compilers have
been designed for a heterogeneous systems envi-
ronment.

The use of PL data conversion capabilities when
accessing files on heterogeneous systems was re-
jected as being unrealistic, impractical, and prem-
ised on an outdated view of data processing.

Sun XDR. Sun eXternal Data Representation
(XDR)* is one of several methods of interchanging
data based on the use of canonical data formats,
that is, based on rules specifying how data are to
be represented when the data are transmitted be-
tween systems. For example, when character
data are to be transmitted, XDR specifies precisely
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how the data are to be encoded, and again, when
floating-point data are to be transmitted, XDR
specifies how those data are to be encoded.

The sending program must convert each data item

to be transmitted to the format required by XDR
for its data type. These conversions are accom-

Data interchange, data in
existing files, and the need to
accommodate multiple languages
are important.

plished by calling special XDR subroutines for
cach data item. These subroutines convert the
value of a program variable to the canonical for-
mat, if necessary, and copy it to the message.
When all such data items have been copied, the
program calls another XDR subroutine to transmit
the message via network pipes.

The receiving program issues an XDR call to re-
ceive the message and then, for each data item to
be received, the program must issue an XDR call
to a subroutine that extracts the next value from
the message, converts it to local representation if
necessary, and returns it to a program variable. It
is the programmer’s responsibility to issue the
correct XDR calls in the correct order to properly
receive each value.

Although conceptually simple, this approach also
has some disadvantages:

* For each representation domain, a set of XDR
subroutines must be provided that converts lo-
cal data representations to or from canonical
formats.

If the local representations of data are not the

same as the canonical representation, conver-

sions must be performed, even if the sending
and receiving representation domains use the
same local representations.

s XDR provides no support for constructor data
types, such as arrays or nested structures. The
sending program must decompose the construc-
tor into a series of simple data elements by using
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program logic, and the receiving program must
reconstruct them via program logic.

* XDR provides no means of communicating
metadata between the sending and receiving
programs. Side information, in the form of pro-
gram listings and specifications, must be passed
between the programmers of the sending and
receiving programs. There is no means, for ex-
ample, of recording the description of the data
in a file with the file itself so that it is available
to all users of the file.

» XDR provides no means of performing structural
conversions of the messages transmitted, such
as reordering or omitting fields or whole mes-
sages. Structural conversions are an application
responsibility.

¢ XDR applies primarily to new programs because
it requires them to be written in a certain way.
Using XDR for communications between exist-
ing programs would require substantial changes
to be made to the sending and receiving pro-
grams.

* Finally, XDR cannot be made to apply to the
data in existing files because those data are not
in the XDR canonical format.

All in all, there is sufficient justification for look-
ing at other alternatives.

OSI ASN.1. Abstract Syntax Notation 1 (ASN.1)°
is a language defined by the Open Systems Inter-
connection (0SI) standard of the International Or-
ganization for Standardization for describing data
transferred between heterogeneous systems.
Along with ASN.1 are the 0sI Basic Encoding
Rules (BER)® that specify a canonical format in
which the data described by ASN.1 can be trans-
ferred.

The text of ASN.1 data descriptions is written pri-
marily as a way for one programmer to tell an-
other how data are to be transmitted. It is up to
the sending program to encode data as required
by the BER, performing whatever data conver-
sions are necessary. It is up to the receiving pro-
gram to decode these data from the BER format
and convert the data to local representations. In
some cases, utility programs have been devel-
oped to interpret ASN.1 descriptions and convert
data between local representations and BER.
However, the ASN.1, being an abstract data de-
scription, requires additional (unstandardized)
annotations in order to correctly describe local
representations. That is, programmers must learn
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how the PL they are using actually represents
data, learn how to write ASN.1, and then learn how
to annotate it to specify how the PL actually rep-
resents data.

The 0SI BER specifies how data are to be repre-
sented when the data are transferred between sys-
tems. For each item of data, the length of the data
and a tag corresponding to an identifier specified
in ASN.1 are transmitted along with the canonical
representation of the data. Although this ap-
proach is robust, it too has some clear disadvan-
tages:

1. The length and tag associated with each data
item are superfluous. These metadata are not
needed because the sending and receiving pro-
grams must be written to process matching
data anyway. They do allow conversions to be
performed by the OSI Presentation Level, but
not enough information is available to really
match PL representation requirements. If the
data being transferred consist of repetitions of
the same formats, as the data do for the rec-
ords of afile, there is no need to transmit meta-
data more than once.

2. The canonical representation formats of BER
were designed for universal interpretability
and do not match the representations actually
used on any system. Therefore, all data must
be converted twice, once to the canonical for-
mat and once from the canonical format, even
if the sending and receiving representations
are the same. Few applications can afford this
overhead, so data must be transmitted as un-
encoded byte strings, with real conversions
performed by applications as necessary.

3. The data stored in existing files are not en-
coded as required by BER, and ASN.1 is not
capable of describing the data without exten-
sive annotations.

Although other, more efficient, canonical inter-
change languages than BER are possible, the need
for any such interchange format was questioned
during the design of DD&C architecture. Instead,
the approach in DD&C architecture is based on
detected differences in data descriptions in a lan-
guage capable of completely specifying how data
are actually represented.

Network Interface Data Language. The Network
Interface Data Language (NIDL) of the Open Soft-
ware Foundation’s Distributed Computing Envi-
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ronment’ is another language for describing data
transferred between heterogeneous systems.
NIDL is actually C language data descriptions with
annotations that specify descriptive information
not expressible in pure C. Thus, there is a clear
relationship between NIDL and at least one PL,
thereby making available at least the data descrip-
tion capabilities of C. But of course, not all pro-
grams are written in C.

Associated with NIDL are the rules of network
data representation (NDR) for multicanonical data
representation. NDR effectively overcomes the
problems of 0S1 BER. No length or tag fields are
transmitted, and each data type can be repre-
sented in one of several ways. A single tag is
transmitted once to specify which representation
will be used for each data type, allowing the send-
ing system to specify the representations used
and requiring it to perform the minimum conver-
sions. The target then only has to convert items
that differ from its local representations. For ex-
ample, if a receiving program expects an IEEE
binary floating-point number but is informed that
a hexadecimal floating-point number has been
sent, it knows to perform that conversion.

The key problem with NIDL is its single-language
focus. Not designed to accommodate the needs of
multiple languages, NIDL is not rich enough to
describe the full range of data types and repre-
sentations actually used by communicating pro-
grams. Nor would its C-language syntax be ac-
ceptable to programmers of other languages, even
if it could be enhanced to meet the data descrip-
tion requirements of other languages.

FD:OCA. Formatted Data:Object Content Archi-
tecture (FD:0CA)® is an IBM document content ar-
chitecture that was designed as a means of de-
scribing tabular data included in documents.
IBM’s Distributed Relational Database Architec-
ture (DRDA)’ uses FD:OCA to describe database
tables transmitted between systems. DD&C archi-
tecture initially attempted to enhance FD:0CA so
that it could be used to encode ADL. This en-
hancement proved undesirable for two major rea-
sons. First, the design of FD:0CA was not flexible
enough to accommodate the changes required by
ADL. Second, the performance objectives of
DD&C architecture did not allow the overhead of
building and parsing FD:OCA data streams.
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Data description specifications. The System/38*
and its successor, the Application System/400*
(As/400*), provide a way independent of program-
ming language to describe the data stored in some
of the record-oriented files of those systems.
Compilers can request the data description spec-
ifications (DDS) from a file and generate appropri-
ate data declarations within the programs that ac-
cess a file. Programs compiled with common DDS
data descriptions can easily interchange data,
even if written in different programming lan-
guages.

There are two reasons why DDS works on these
systems. First, the various IBM-supplied compil-
ers for these systems have all been written to exist
within a common language execution environ-
ment. Data representation is standardized for
similar language data types. Second, DDS is re-
stricted to describing records that are simple col-
lections of fields. None of the constructor types of
the programming languages, such as arrays or
nested structures, can be described. Unfortu-
nately, these factors do not prevail in general;
there is no universal common language execution
environment, and many existing files do contain
constructor type data. In fact, System/38s and
AS/400s usually contain many files that are not de-
scribed by DDS and are not easily interchanged
with other representation domains.

Consideration was given to extending DDS, but
extension was rejected because of the rigid,
forms-oriented nature of DDS. However, many as-
pects of the relationship of DDS to files were
adopted by DD&C architecture (see the subsection
“File Data Description™). AS/400 DDS is consid-
ered to be a separate representation domain and
its requirements have been accommodated in the
design of ADL.

Concepts of DD&C architecture

The conceptual layers of DD&C architecture are
shown in Figure 6. These layers are not part of
DD&C architecture, as such.

Foundations. The layer of DD&C architecture at
the bottom of Figure 6, called foundations, is con-
cerned with the ways in which data are repre-
sented, aligned, and aggregated by various rep-
resentation domains. This layer includes three
representations now described.
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Programming language data representations. In
assembly languages, program variables are de-
scribed in terms of their representation in a com-
puter system. Historically, this approach made
sense. Hardware architects are primarily inter-
ested in the representation of data as part of the
operational specifications of a system, and the
designers of assembly languages are interested in
making those data representations available to
programmers. But the programmer is burdened
with the tasks of selecting the best representation
schemes for values and of mapping variables onto
memory for optimal processing.

Programming language designers attempted to re-
move these burdens by defining a set of abstract
data types that the programmer can use to de-
scribe variables. Each data type of a program-
ming language defines a set of possible values and
the operations that can be performed on those
values. Examples of numeric data types are CO-
BOL numeric PICTUREs, PL/I FIXED BINARY, and C
integers. Numeric data types support arithmetic
operations, and character data types support
string operations. Programming languages sup-
port both simple data types concerned with single
values and more complex data types, such as ar-
rays and structures, concerned with aggregations
of data.

For each of its data types, a programming lan-
guage also defines a set of type attributes that can
be specified by programmers to complete the de-
scription of a variable. For example, the PL/I
FIXED BINARY data type also allows the program-
mer to specify the precision and scaling factor of
the number, how the variable is to be initialized,
and whether it is to be aligned or not.

The problem is that each programming language
handles the representation, mapping, and at-
tribute issues in its own way. Each compiler for
a language is designed for a specific system ar-
chitecture and its representation and mapping
techniques. Thus, a COBOL program developed
and tested on a personal computer (PC) may not
work exactly the same as on a System/370* be-
cause of data representation differences. Data
written to a file by a PC program cannot be directly
read by the same program running on the Sys-
tem/370.

A difficult aspect of the design of DD&C architec-
ture was deciding what representation domains
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Figure 6 The conceptual layers of DD&C
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should be formally considered in the scope of
ADL. There was a strong temptation to make ADL
as broad as possible, encompassing the represen-
tations used by as many IBM and other vendor
systems as possible. However, this temptation
was countered by the difficulty of concurrently
defining ADL and a set of declaration translators.
Experts could be found within 1BM for work on
declaration translators for each of the SAA pro-
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gramming languages and systems, but to go be-
yond this scope was not practical. We believe,
however, that much of ADL is useful for other
representation domains and that it is possible to
formally extend DD&C architecture to other rep-
resentation domains in the future.

Character Data Representation Architecture. A
special case of data representation is that of char-
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Figure 7 ADL program for file data conversions

(100) FILE: /* declarations corresponding to file data */
DECLARE
BEGIN;
(104) RECORD: SEQUENCE
BEGIN;
INCLUDE 'DEFAULTS.MVS.COBOL';
(104) INITIALS: CHAR LENGTH(3)
| (105) WHEN INITIALS BETWEEN 'A' AND 'Z'";
(104) NUMBER: BINARY PRECISION (15)
| (105) WHEN NUMBER < 99;
END;
END;
(100) VIEW: /* declarations corresponding to program variables */
DECLARE
BEGIN;
(104) RECORD: SEQUENCE
BEGIN;
INCLUDE 'DEFAULTS.0S2.C"';
(104) INITIALS: CHARSFX MAXLEN (4)
| (106) WHEN INITIALS IN (‘A', 'B’', 'C');
(104) NUMBER: BINARY PRECISION(15):;
END;
END;
(100) ACCESS_METHOD: /* declarations of additional Access Method */
/* variables passed to ADL plans */
DECLARE
BEGIN;
(101) DEFAULT BINARY BYTRVS (FALSE) COMPLEX (FALSE) CONSTRAINED (FALSE)
| RADIX (2) SCALE(0) SIGNED(TRUE) FIT (ROUND});
(102) word: CONSTANT 31;
(103) cesid: SUBTYPE OF BINARY PRECISION{32) SIGNED (FALSE) ;
(104) inlen: BINARY PRECISION (word);
incesid: cecsid;

outmaxlen: BINARY PRECISION (word);
outccsid: ccsid;

outlen: BINARY PRECISION (word);
END;
(200) getPlan: /* Plan to convert records read from the file */
PLAN ¢
inlen: INPUT,
(201) inccsid: INPUT,
(201) (203) FILE.RECORD: INPUT LENGTH(inlen) CCSID(inccsid),
{201) outmaxlen: INPUT,
(201) outcesid: INPUT,
(202) (204) VIEW.RECORD: OUTPUT MAXLEN (outmaxlen) CCSID(outccsid),
(202) outlen: OUTPUT)
BEGIN;
(205) VIEW.RECORD <- FILE.RECORD;
(205) outlen <- LENGTH (VIEW.RECORD) ;
END;
(200) putPlan: /* Plan to convert records to be written to the file */
PLAN (
(201) inlen: INPUT
(201) inccsid: INPUT
(201) (203) VIEW.RECORD: INPUT LENGTH({inlen) CCSID{(inccsid),
(201) outmaxlen: INPUT
(201) outcesid: INPUT,
(202) (204) FILE.RECORD: OUTPUT MAXLEN (outmaxlen) CCSID(outccsid),
(202) outlen: OUTPUT)
BEGIN;
(205) FILE.RECORD <- VIEW.RECORD;
(205) outlen <- LENGTH(FILE.RECORD) ;
END;
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acter data. A large number of different schemes
have been developed, because the number of dif-
ferent graphic characters that can be represented
by a single byte is limited (a maximum of 256
characters). Many national languages require
special characters (e.g., accented vowels or punc-
tuation) or entirely unique sets of graphic char-
acters (e.g., Farsi). Some programming languages
require special characters (e.g., APL). Some dis-
ciplines require special characters (e.g., mathe-
matics). Various devices have been designed to
support only limited graphic characters (e.g.,
printers and displays).

Different standards groups have promulgated a
variety of encoding schemes (e.g., ASCII versus
EBCDIC). Additionally, double-byte encoding
schemes have been adopted for national lan-
guages requiring thousands of graphic characters
(e.g., Chinese, Japanese, and Korean), along with
a number of schemes for intermixing single-byte
and double-byte encodings.

The result is a nightmare of complexity that greatly
inhibits data communication. Fortunately, this
complexity has been addressed by the IBM SAA
Character Data Representation Architecture
(CDRA)." CDRA defines a comprehensive means of
identifying the scheme by which a given character
string has been encoded. A single tag called a coded
character set identifier (CCSID) can be associated
with each character string. CDRA also defines the set
of all possible valid conversions of character strings
from one CCSID to other CCSIDs and provides the
conversion tables required to perform them.

ADL associates CCSID tags with character strings,
as required by CDRA, and depends on CDRA con-
version services for performing character conver-
sions.

Numeric representation architectures. The rep-
resentation of numeric values falls into two major
categories, the representation of exact numbers
and the representation of approximate numbers.
Again for a variety of historic reasons, a number
of representation methods are in common use in
each of these categories.

Exact numbers can be encoded in either binary or
decimal format. Binary formats are often used
because they are natively supported by most ma-
chine architectures and can therefore be pro-
cessed most efficiently. Decimal formats exist be-
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cause they are a better match to the ways in which
numbers were encoded in the punched card de-
vices of early systems. Not all decimal values can
be accurately encoded in binary encodings be-
cause of inherent number system differences.

Approximate numbers are based on the concepts
of scientific notation, which allow very small or
very large numbers to be encoded with only a
limited amount of precision. Based on exponen-
tial notation, various floating-point encoding
schemes have been devised, using either binary
or hexadecimal encodings of the characteristic
and mantissa of the value.

Conversions between exact and approximate en-
codings of a numeric value are often possible but
may result in data loss through truncation or
rounding. ADL defines comprehensive rules for
performing conversions of numeric encodings.

Language layer. The language layer is concerned
with ADL and its relationship to the SAA program-
ming languages.

A Data Language. ADL provides a means of de-
scribing the representation of data exported and
imported by a wide variety of programming lan-
guages, as implemented on a variety of systems,
so that efficient data conversion programs can be
generated.

A module is the compilation unit of ADL, consist-
ing of a DECLARE statement for each view of the
data and PLAN statements for each required con-
version program. See Figure 7 and Figure 8 for
examples of ADL modules. Parenthesized num-
bers, such as (100) in the following text, refer to
portions of those figures.

Fach DECLARE statement (100) corresponds to a
single representation domain and consists of:

s DEFAULT statements (101) that each specify the
default values to be used for the attributes of a
single ADL data type. These statements can be
included from a library containing the DEFAULT
statements for each representation domain,
greatly reducing the number of details that must
be specified in data declaration statements.

s CONSTANT statements (102) that associate a lit-
eral with an identifier. The identifier can then be
referenced wherever the literal can be specified.
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Figure 8 ADL module for program call conversions

(100) PGMA: /* declarations corresponding to the 0S/2 COBOL compiler's
representations of PGMA program variables */
DECLARE
BEGIN;
(104} INITIALS: CHAR LENGTH(3) CCSID(850) JUSTIFY(LEFT) UNITLEN(S8);
(104) NUMBER: BINARY PRECISION (3) BYTRVS (TRUE) COMPLEX (FALSE)
CONSTRAINED (TRUE) RADIX(10) SCALE (0)
SIGNED (TRUE) FIT(ROUND)
END;
(100) PGMB: /* declarations corresponding to the 05/2 C compiler’'s
representations of PGMB program variables */
DECLARE
BEGIN;
(104) INITIALS: CHARSFX MAXLEN(4) CCSID(850) MAXALC(TRUE) SFXENC(X'00
UNITLEN(8);
(104) NUMBER: BINARY PRECISION(15) BYTRVS(TRUE) COMPLEX (FALSE)
CONSTRAINED (TRUE) RADIX(2) SCALE(0)
SIGNED (TRUE) FIT (ROUND) ;
END;
(200) gluePlan: /* Plan to convert records read from the file */
PLAN
(201) PGMA,INITIALS: INPUT,
(202) PGMA ,NUMBER: OUTPUT)
BEGIN;
(205) PGMB.INITIALS <- PGMA.INITIALS;
(206) CALL 'PGMB' (PGMB,INITIALS, PGMB.NUMBER):
(205) PGMA .NUMBER <~ PGMB.NUMBER;
END;

* SUBTYPE statements (103) that define subtypes
of the ADL-defined types, or of another subtype.
Subtypes can be defined for each of the data
types of a programming language, with the sub-
type identifier identical to a programming lan-
guage type. For example, an integer subtype of
the ADL BINARY type can be defined to be equiv-
alent to the integer type of C. A set of SUBTYPE
statements in a file, along with appropriate
DEFAULT and CONSTANT statements, can ease
the task of creating ADL descriptions of data if
no declaration translator is available for a pro-
gramming language.

Subtypes can also be defined for application
types. For example, a gameboard subtype of
the ADL ARRAY type could be defined for use by
all 8-by-8 game programs. These statements can
also be included from a dictionary of common
data descriptions.

* Data declaration statements (104). These state-
ments actually describe data. Each consists of

502 DEMERS AND YAMAGUCHI

a keyword that names a data type, followed by
attributes appropriate to the data type. For con-
structor types, a clause follows that defines the
elements of the constructor, such as the ele-
ments of an ARRAY.

A WHEN clause can also be specified in data
declaration statements. In any assignment of
data to the declared variable, the predicate
expression' of the WHEN clause must evaluate
to true or else the assignment statement and the
plan are terminated with an exception. For files,
two primary uses are seen for this capability:
data selection and data validation. A WHEN
clause (105) in the declaration of a file ensures
that only valid data are written to the file. A
WHEN clause (106) in the declaration of a pro-
gram selects the records to be presented to the
program.

Each PLAN statement (200) defines the parame-

ters that can be passed to a conversion program
as INPUT parameters (201) or as OUTPUT param-
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A bit string of unknown encoding. Assignment to any other ADL data type is allowed. When an ASIS field
is the data source, the assumption is made that ASIS data are already represented as required by the target
field and can be copied to it. When an ASIS field is the assignment target, the bit representation of the

A binary encoded number. Conversions to or from any other ADL numeric data type are defined.
A bit string with a length prefix. Conversions to or from the ADL BIT data type are defined.

A string of characters encoded as specified by the associated coded character set identifler attribute.
A character string with a length prefix. Conversions to or from any other ADL character data type are

A zero terminated character string. Conversions to or from any other ADL character data type are defined.

An association of identifiers with integers. Conversions between ENUMERATION fields are performed
such that the identifiers associated with the BINARY encodings of the ENUMERATIONS are preserved.
Numeric conversions to or from the ADL BINARY, PACKED, and ZONED data types are also defined.

A floating-point number. An attribute specifies which IBM hexadecimal format (single, double, or ex-
tended) or IEEE format (single, double, or extended) is used. Conversions among all formats are defined.

A packed decimal number. Conversions to or from any other ADL numeric data type are defined.

Table 1 Scalar data types supported by ADL
ASIS
source field is simply copied to the ASIS target.
BINARY
BIT A bit string. Conversions to or from the ADL BITPRE data type are defined.
BITPRE
BOOLEAN An encoding of TRUE or FALSE.
CHAR
Conversions to or from any other ADL character data type are defined.
CHARPRE
defined.
CHARSFX
ENUMERATION
FLOAT
Conversions to or from any other ADL numeric data type are defined.
PACKED
ZONED

A zoned decimal number. Conversions to or from any other ADL numeric data type are defined.

eters (202). Each parameter is specified by the
identifier of a data item declared in one of the
DECLARE sections of the module. The parameter
is thereby associated with an expected represen-
tation.

For file conversion programs, a single record is
passed as an input parameter (203) and a single
area is passed as an output parameter (204) to
receive the converted record. Other input param-
eters specify the length and ¢csiD of the input
record and the maximum length and required
ccsiD of the output record.

The parameter lists of these conversion programs
are fixed in format because file conversion pro-
grams are called by access method services. But
for other applications, such as CALL/RETURN con-
versions between programs, other parameters
can be specified, as in Figure 8.

The ASSIGNMENT statements (205) of a PLAN re-
quest conversions as data are copied from a
source variable to a target variable. The conver-
sions allowed by ADL are defined by a matrix of
conversions from one ADL type to other ADL
types. In addition to scalar type conversions, ADL
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includes powerful conversions of constructor
types that greatly simplify the writing of conver-
sion plans. In fact, default plans are defined for
most file data conversions, so that programmers
need only be concerned with describing the data
in files, and not with writing ADL plans.

An ADL PLAN can also CALL (206 in Figure 8)
other programs and pass and receive parameter
values. These programs can be called for several
reasons. One reason is to perform conversions
not otherwise supported by ADL. Another reason
is to allow an ADL PLAN to act as a glue program
between otherwise incompatible programs, as
shown in Figure 8. A third reason is to allow an
ADL PLAN to perform conversions as part of a
larger function, such as a remote procedure call.
All ADL PLANs and all programs called by ADL
PLANs conform to the program calling conven-
tions established by the SAA AD/Cycle Common
Execution Environment.’

The scalar data types supported by ADL are listed
in Table 1.

Attributes of each type specify metadata that de-
scribe how an instance of a type is represented
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and used. For the BINARY scalar type, for exam-
ple, the following attributes can be specified: PRE-
CISION, SCALE, RADIX, SIGNED, COMPLEX, CON-
STRAINED, LENGTH, BYTRVS, FIT, TITLE, HELP,
and NOTE. Some of these attributes, such as TITLE
and HELP, can be optionally specified, but a value
must be specified for other attributes in a data
declaration statement or through inheritance
from a SUBTYPE statement or a DEFAULT state-
ment.

The constructor data types supported by ADL are
the following:

* ARRAY—a unidimensional or multidimensional
collection of elements. The bounds of each di-
mension can be specified by a low bound and
either a high bound or size. Declaration trans-
lators can map between programming lan-
guages that specify array bounds in either way.
The bounds can be any signed integer as long as
the low bound is less than the high bound. Fur-
ther, the bounds of each dimension can be spec-
ified by integers, constants, or by reference to
other integer fields passed in a record or as pa-
rameters.

The elements of an ARRAY can be of any scalar
or constructor type or subtype except ARRAY.
ADL requires arrays of arrays to be described as
a single multidimensional array, which is easily
accomplished by the declaration translators of
languages that do not support multidimensional
arrays directly (such as COBOL).

When an array is assigned to another array, the
number of dimensions and the number of ele-
ments in each dimension must conform in the
source (exported) and target (importing) arrays
named in the assignment statement. Dimen-
sionality is preserved because each dimension
has semantic meaning to applications. How-
ever, the index values associated with each di-
mension for each element of the array are not
preserved if the low bounds of a dimension dif-
fer. Some programming languages allow nega-
tive low bounds, whereas others require the low
bound to be 0 or 1. The ADL goal of data inter-
change takes precedence over preservation of
dimension cardinality.

* CASE—a declaration of a multiformat data ele-
ment, for example, when the records of a file
can be of several formats. A CASE declaration
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consists of a set of WHEN statements and an
optional OTHERWISE statement. The predicate
expressions of the WHEN statements are eval-
uated in the order specified until one evaluates
to true. The data declaration associated with
that WHEN statement is then selected. If no
WHEN statement evaluates true, the data dec-
laration of the optional OTHERWISE statement is
selected.

For files, it is expected that predicate expres-
sions will be used to evaluate discriminator
fields within the records to determine their for-
mat. But in other cases, the discriminator can
be passed to the PLAN as a separate parameter;
for example, when converting the messages of
a mapped conversation, the map name can be
passed to the PLAN as a parameter.

The selected data declaration of a WHEN state-
ment can be of any scalar or constructor type or

subtype.

When a CASE is assigned to another CASE, the
WHEN clauses of the source are first evaluated
to identify the source format. The data decla-
ration of the target WHEN statement with a
matching identifier is then selected as the target
format. If the assignment statement completes
successfully, the predicate expressions of the
selected target WHEN statements are evaluated
to ensure that the target format is valid for its
discriminators.

* SEQUENCE—an ordered collection of data
items, each with its own declaration. The ele-
ments of a SEQUENCE can be of any scalar or
constructor type or subtype.

When a SEQUENCE is assigned to another
SEQUENCE, the identifier of each declaration of
the target sequence is matched to the identifiers
of the source sequence. When a match is found,
the corresponding source declaration is se-
lected for assignment to the target. The target
can be a subset of the source, and the data items
of the target sequence can be in a different order
than those of the source sequence.

The ability to declare constructors whose cle-
ments are constructors is a powerful feature of
ADL. This ability allows, for example, the decla-
ration of ARRAYs of SEQUENCEs, SEQUENCEs of
SEQUENCEs, one or more CASEs or ARRAYs within
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a SEQUENCE, or ARRAYs of CASEs. For example,
it is possible to describe an array in which the
format of each element is unique.

ADL annotation of prograinming languages. Al-
though ADL text can be written to fully describe
data exported by the SAA programming languages
(PLs), a DD&C objective is to use existing descrip-
tions specified in the syntax of the SAA PLs to the
extent possible. In many cases, PL text provides
sufficient information to allow an ADL description

ADL annotation of programming

language text provides additional

information for data that will be
exported or imported.

be produced without any further consideration by
programmers. However, additional information
is sometimes required, especially if data are to be
exported to other PLs or imported from other PLs.
Although it would be desirable to enhance the PLs
so that the additional information could be spec-
ified natively in each PL, this expectation is not
realistic, given the rigidity of language standards.
Instead, this information can be provided as ADL
annotation to PL text.

A general model of ADL annotation of PL text was
designed by the developers of the declaration
translators for the SAA PLs. Seeing common prob-
lems across the PLs led them to generalizations
about what kinds of annotation are required and
how they can be incorporated in PL text. A de-
scription of the general annotation model is be-
yond the scope of this paper, but some examples
of its use will illustrate its power.

In general, ADL annotation consists of special
comments intermixed with standard PL text to
provide additional information about data. The
first nonblank symbol after the opening comment
symbol of the PL comment is the symbol “ADL.”
Following this symbol is text consisting of ADL
statements or segments of ADL statements. This
ADL annotation can be intermixed with PL text in
whatever way is considered optimal by the dec-
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laration translator designers for each PL. Some
simple examples of ADL annotation are the fol-
lowing:

* ADL includes certain optional attributes that af-
fect neither the representation nor the conversion
of data. Examples are TITLE, HELP, or NOTE.
They only provide programmer or application
commentary. These attributes can be specified in
ADL annotation of PL variable declarations. In the
following PL/ text, the ADL TITLE attribute is
specified as an ADL annotation comment within a
PL/ declaration statement.

DCL num
/* ADL TITLE('Employee serial number')*/
FIXED BINARY(31);

PL/I compilers ignore the comment, but a PL/1
declaration translator uses it to add the speci-
fied TITLE attribute to its ADL declaration of
num:

num: BINARY PRECISION(31)} TITLE('Employee
serial number');

A declaration translator generate function re-
verses this process, making the TITLE attribute
an ADL annotation comment.

ADL annotations are also used when a PL dec-
laration can be mapped to ADL in more than one
way, depending on the programmer’s intended
use. For example, a C char declaration would
normally be mapped by a C declaration trans-
lator to the ADL CHARSFX (character with a suf-
fix) data type, but the C language also allows a
char variable to be used as an integer. If it is the
programmer’s intent to actually treat it as an
integer, the following ADL annotation can indi-
cate it is being used as a single byte signed bi-
nary count field:

signed char checked_out_books
/* ADL BINARY; */;

The C declaration translator, being familiar
with the peculiarities of the C language, is then
able to create the following ADL:

checked_out_books : BINARY PRECISION(7)

SIGNED(TRUE) ;
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¢ Complex numbers are important for scientific
applications but are not supported by commer-
cial programming languages, such as COBOL. If
it is necessary to import a complex number into
a COBOL program, the real and imaginary por-
tions of the complex number must be declared
as separate variables within a containing COBOL
structure, as in:

*ADL D_06: COMPLEX(TRUE);
15 D-@6.
20 REAL PIC S99v99 COMP-4.
20 IMAGINARY PIC S99v99 COMP-4.

An ADL annotation comment precedes the
COBOL structure declaration to specify that the
structure is really just a single complex number.
The COBOL declaration translator, being famil-
iar with this convention, is able to create the
following ADL that allows correct ADL conver-
sion programs to be constructed:

D_06: BINARY COMPLEX(TRUE) LENGTH(16)
PRECISION(4) SCALE(2) RADIX(10);

The concurrent design of ADL and of the SAA dec-
laration translators allowed many such consider-
ations to be discussed and appropriate changes
made to both ADL and the declaration translators.
Consideration was given to all three declaration
translator functions (parse, generate, and trans-
late).

Services layer. The services layer is concerned
with the services that must be provided when im-
plementing DD&C architecture.

Interactive data description. One of the objec-
tives of DD&C architecture is to make it as painless
as possible for programmers to describe data for
ADL conversion programs. As previously dis-
cussed, having programmers manually write ADL
data declarations would not be acceptable to
them. Instead, DD&C architecture defines tools
called declaration translators that allow them to
use existing PL data declarations. But to be used
propetrly, these tools should be used within the
context of a computer-aided software engineering
(CASE) environment that knows how PL data dec-
larations are stored, how to use declaration trans-
lator functions, and how to relate ADL declara-
tions to various interchange mechanisms, such as
files or program calls.
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Relating DD&C services to CASE environments is
properly the task of CASE vendors and is outside
the scope of DD&C architecture.

Declaration translators. As was described earlier
in the introductory section, associated with each
representation domain is the software component
called a declaration translator. It understands the
following things about its representation domain:

* The syntax used by programmers for describing
data in the PL of that domain

* The data types supported by the PL

e The attributes of the PL used to qualify the data
types

* The representations used by the compiler for
each data type

e The method used by the compiler for aligning
data in memory

* The methods used by the compiler for mapping
constructor types to memory

Declaration translators provide programmers
with the following three functions for using PL
data descriptions:

1. PARSE—parses a PL data description to pro-
duce an ADL data description. This function
fills in the details of the encodings used by the
representation domain for each of the data
types of the PL.

The result of PARSE is an encoded form of ADL.
An ADL declaration translator allows program-
mers to describe data in ADL itself. This ca-
pability is provided for PLs for which no dec-
laration translator is otherwise provided.

. GENERATE—generates PL text from an ADL
data description. This function produces PL
data descriptions that can be included in pro-
grams, thereby facilitating program develop-
ment. ADL annotation is included as required
to allow a subsequent invocation of the PARSE
function of the representation domain.

The input to GENERATE is an encoded form of
ADL. The GENERATE of the ADL declaration
translator can be used to produce ADL text for
any representation domain, a valuable debug-
ging aid.

. TRANSLATE—translates the ADL description of
data originally created for any other represen-
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tation domain to produce an ADL description
of data suitable for its own representation do-
main. This function helps programmers to
make productive use of data exported by other
representation domains by examining the en-
coding details of the other representation do-
main and filling in the encoding details of the
target representation domain. The input and
output of TRANSLATE are an encoded form of
ADL.

Referring to the ADL declarations in Figure 3,
the translation performed by the 0s/2 C dec-
laration translator on the ADL data declaration
for MVS COBOL is the following:

» The declaration of RECORD as a SEQUENCE is
copied because this is identical to the ADL
used to describe C structures.

» A declaration of character data for 0S/2 C data
differs from that of MVS COBOL in both data
type and attributes. Since C character strings
are typically null-terminated, INITIALS must
be described in ADL as an ADL CHARSFX data
type. MAXLEN(4) is specified to allow for the
null-terminator byte plus the three bytes of
character data. MAXALC(TRUE) is specified
because the CHARSFX field does not need to
vary in length. And CcSID(850) is specified be-
cause 0S/2 C character data are ASCIl-encoded.

» The SKIP(8) specification of the ADL decla-
ration for MVS COBOL is ignored because the
0s/2 C declaration does not require pad bits
to force alignment of the NUMBER field.

» The declaration of NUMBER is copied, but
the BYTRVS attribute is changed to TRUE to
reflect how short integers are encoded by
ose C.

Declaration translator transformations, plus ad-
ditional editing of programming language text,
provide great flexibility. By using ADL and an ap-
propriate set of declaration translators, interlan-
guage communications between programmers
and between tools, as well as conversions of data
between native representations, become rela-
tively easy. Programmers can use their normal
languages and tools. They have to learn how to
annotate PL descriptions with ADL, but it is only
a small difference from their existing PL knowl-
edge base.

The following interfaces for requesting declara-
tion translator functions have also been defined:
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& List declaration translators

& List declaration translator attributes
& Parse PL source text file

~ Generate PL source text file

~ Translate descriptor

As a final point regarding declaration translators,
we believe that they should be implemented in a
highly portable fashion so that they can be used
wherever application programming is done. It
would make little sense to separately implement
cach declaration translator for individual systems
because of the cost and because of the inevitable
inconsistencies that would result. Further, we ex-
pect a great deal of sharing of internal compo-
nents and logic among declaration translators. Al-
though there must be a separate declaration
translator for each COBOL representation domain,
for example, clearly there is much in common
among all COBOL declaration translators. For
both of these reasons—portability and common-
ality of components—an object-oriented design
with a common class library would make sense
for declaration translator implementations.

Object-oriented encoding of ADL. The syntax of
ADL was designed for human reading and writing. It
consists of free-format textual tokens that must
obey the rules of ADL grammar while giving pro-
grammers considerable freedom of expression. As
with other programming languages, ADL trades off
processing efficiency for programmer ease of use.

The obvious solution to this conflict is to process
ADL text and generate an encoded form of the
language that is more suitable for storing, pro-
cessing, and transmission. In fact, this step is of-
ten first in the compilation process for many pro-
gramming languages. For ADL, however, the
encoded form is not just an internal form of the
language, being of no concern outside of each im-
plementation. The encoded form of ADL is the
primary means of communication among a set of
software engineering tools residing on one or
more heterogeneous systems. Among these tools
are the ADL compiler (as shown in Figure 4) and
declaration translators.

The design requirements for the ADL encodings
were the following:

» Isomorphism with ADL. The encodings of ADL
are just another form of the language. Anything
that can be expressed in ADL can be expressed
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in its encodings, and all relationships specified
in ADL are maintained in the encodings. This led
to the adoption of object-oriented technology in
the encodings. The objects of the encodings are
instances of classes that model each aspect of
the language. For example, instances of the
ADLBINARY class represent descriptions of var-
iables of the ADL BINARY data type.
Processing efficiency. The ADL encodings are
directly processable, without any need for pars-
ing or other forms of analysis. Any indirection
allowed by ADL, such as named references to
variables, are fully resolved in the ADL encod-
ings. Optimization information that can be in-
ferred from ADL, such as field lengths and off-
sets, is explicitly encoded.

Extendability. ADL covers a large number of
representation domains, but many additional
languages and systems exist that were not con-
sidered in the initial design of ADL. Further,
ADL was designed to meet only the require-
ments of IBM SAA Distributed File Management.
It is anticipated that additional data types, at-
tributes, and features will be required in ADL as
additional representation domains and areas of
application are considered. Therefore, the
method of encoding ADL also allows for exten-
sions in all of the directions in which ADL is
likely to be extended. This requirement effec-
tively rules out control-block forms of encoding
and points to the use of linked-object struc-
tures.

Transmission efficiency. The efficiency with
which a data structure can be transmitted be-
tween systems is affected by its size and by the
transformations required to linearize it as a data
stream. Most ADL descriptions are relatively
small, so size was not considered an important
factor. The primary concern, here, was the de-
sign of a data stream architecture that linearized
the linked-object structure selected for ADL en-
codings. ADL encoding objects are created
within a single space-type object, with all rela-
tionships among them specified by offsets from
the beginning of the space. In this way, the en-
tire space can be transmitted and received with-
out any further processing of its contents by the
sender or the receiver.

Malleability. Various aspects of an ADL data
description are subject to change over time, in-
cluding when a description is initially being cre-
ated and when it is subsequently modified as
application requirements change. To allow this
level of malleability, it must be possible to add,
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delete, and modify the objects of the space that
encode an ADL description. All objects of the
encoding (except for an anchor object) are in-
dependent of their location in the space.

» Integrity. As changes are made to an ADL de-
scription, errors introduced by failing tools be-
come a possibility. These errors can be avoided
by allowing only proven tools, invoked through
well-defined interfaces, to make changes. En-
capsulation can be enforced for the space con-
taining the description and for each class of ob-
ject contained within the space. It further
justifies the use of object-oriented programming
techniques in the encoding of ADL.

» Storage efficiency. As with transmission effi-
ciency, the size of a data structure is only one
aspect of storage efficiency. In a paged memory
environment, locality of reference is of great
importance. That is, objects that are frequently
used together (especially small objects) should
be in close proximity in the space, whereas
large, infrequently used objects should be
stored where they do not interfere with normal
reference patterns. The location independence
of objects in a space is the prime requirement
for this rule.

The encoded forms of ADL are specified and con-
trolled through formal architecture specifications
that can be published and thereby made available
to the developers of CASE tools.

The ADL compiler. An ADL compiler consists of
two components, a parser capable of converting
ADL source text into encoded objects and a pro-
gram generator that creates conversion programs
for each specified plan of a module. Unlike most
other compilers, these DD&C architecture com-
ponents are separate. The ADL parser is actually
the parse function of an ADL declaration transla-
tor, and what is called the ADL compiler is actu-
ally just the program generator. This division
makes sense in DD&C architecture for several rea-
sons:

» A full ADL declaration translator was needed
anyway to support representation domains
without their own declaration translators.

» Any number of declaration translators can be
created that produce the object encoding of ADL
as the output of their parse function.

« It is possible for other CASE tools to generate or
use the information in the object encodings of
ADL.
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» The object encodings of ADL for files are stored
with the files and can be used in multiple ADL
modules.

¢ In Distributed File Management, it is occasion-
ally necessary to regenerate conversion pro-
grams on the fly, so it is desirable to avoid the
parse phases.

As with declaration translators, it is likely that
ADL compilers will be needed on many different
types of systems, and the programs produced by
them must convert data identically on all systems.
These are strong arguments for the development
of a single highly portable compiler. And since the
inputs to the compiler consist of encoded objects,
an object-oriented compiler design would also be
appropriate.

Conversion programs. The output of the ADL
compiler is a program that can be called to per-
form data conversions. Consideration was given
to both interpreted programs and directly execut-
able programs. Initially, interpreted programs
were favored because they could be easily trans-
mitted between Distributed File Management
systems. The system best able to perform con-
versions could then be dynamically selected to do
them. However, this method was rejected be-
cause it led to considerable complexity in the Dis-
tributed Data Management (DDM) architecture'
flows defined for Distributed File Management,
because the dynamic selection of the conversion
system proved less important than initially
thought, and because the performance of inter-
preted programs is generally inferior to that of
directly executed code.

Further, we believe that it is important for ADL
compilers to generate as much in-line conversion
logic as possible. Run-time subroutines will be
used for many conversions, especially complex
numeric conversions and CDRA character conver-
sions, but in general, in-line logic should be used
because it allows more optimization to be done.
This is especially true for predicate logic, for the
conversions of constructors, and for simple scalar
conversions.

Data interchange layer. The data interchange
layer is a conceptual layer, concerned with how
application programs are developed for inter-
change and how ADL conversion programs are
created and invoked. The Distributed File Man-
agement answers to these questions for record-
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oriented files are discussed, but similar consider-
ations apply to other interchange mechanisms.

The following two subsections describe how file
access DD&C is used by SAA Distributed File Man-

It is important for ADL compilers
to generate in-line conversion
logic because it allows more

optimization to be done.

agement for the record-oriented files. For more
information on SAA Distributed File Manage-
ment, see Reference 13.

File data description. Record-oriented file sys-
tems evolved as repositories of data produced and
used by programs written in a variety of program-
ming languages. Each programming language in-
cludes interfaces for reading, writing, and updat-
ing records. When matching interfaces are used,
the records written to a file by one program can
be read by another program of the same language.
These interfaces consist of programming lan-
guage statements for accessing records, such as
READ and WRITE statements, and statements for
describing the data contained in the records.

The declaration statements can be specified
within the source text of a program, but for im-
portant files, they are often stored in a library and
dynamically included in the program by the pro-
gramming language compiler. This method en-
sures that all programs that include the declara-
tion statements share a common definition of the
records of the file. However, it is not a complete
solution. First, it works only for programs of a
single programming language. Second, if any
change is made to the stored data declarations for
any one program, all programs that include it
must be recompiled. Without adequate support
tools, it can be difficult to determine which pro-
grams need to be recompiled, especially when the
file is accessed by programs on remote systems.
Third, there is no managed relationship between
the data declarations and the file they describe.
Even if all of the programs that access a file in-
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cluded the same data declarations, nothing guar-
antees that the file actually matches those de-
scriptions.

These problems are solved by the System/38 and
its successor, the AS/400, for their common lan-
guage environment. Language-independent, ex-
ternal data descriptions, called data description
specifications (described earlier in this paper), are
created by programmers during application de-
velopment. These descriptions are stored with a
file when the file is created. Compilers can re-
quest these descriptions from a file and generate
appropriate data declarations within programs
that access the file.

Another concept of the AS/400 pertinent to DD&C
is that of logical files. A logical file is one that
contains no records of its own, but instead pro-
vides an alternate view of the data in a physical
file. In the alternate view, the format of the rec-
ords, their representation, or their order can differ
from those of the base physical file. If a program
needs the data view or access path defined by the
logical file, it opens the logical file. Any opera-
tions requested on logical file records are actually
performed on the base physical file.

VIEW files are the means by which ADL conversion
programs are managed and used for files. A view
file is similar to an AS/400 logical file in that a pro-
gram opens a view file when it needs data con-
version services to use a base file. Conversion
programs produced by the ADL compiler are
stored with the view file and called as needed to
convert records. View files can be managed the
same as any other files in a file system with regard
to naming, directory services, security, and lock-
ing.

These concepts of view files and of language-in-
dependent data descriptions stored with files are
central to the DD&C approach to file data inter-
change. This approach is illustrated by Figure 9,
with the following steps keyed to that figure. Note
that these steps are assumed to occur within the
context of CASE tools that guide and aid program-
mers in performing them.

1. When a file is created, an ADL description of
its records can be specified as an attribute of
the file. This description is specified in terms
of the representation domain of the primary
set of programs that will work with the file,
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MVS COBOL in this example. The COBOL dec-
laration of the records is obtained from a li-
brary of program source text and passed to
the parse function of the MVS COBOL decla-
ration translator.

. The resulting ADL description is passed to the

create file function of the file system to be
stored as an attribute of the file.

. When it is time to compile a program of the

same representation domain as the file (an
MVS COBOL program), the ADL description
stored with the file is requested and passed to
the generate function of the MVS COBOL dec-
laration translator.

. The resulting COBOL declarations can then be

included in the COBOL program and com-
piled. Although it would be possible to use
the original COBOL declarations from the
source text library, it is better to use the dec-
larations generated from the ADL description
of the file. The source library declarations
could have been changed and therefore be out
of synchronization with the file.

. When it is time to compile a program from a

different representation domain (an 0S2 C
program in this example), the ADL declara-
tion stored with the file can be used to create
appropriate declarations for the new pro-
gram. The ADL declaration of the file is
passed to the translate function of the 02 C
declaration translator.

. The resulting ADL declarations can then be

passed to the generate function of the 052 C
declaration translator to produce C declara-
tions.

. The C declarations can be edited by a pro-

grammer as needed for the program being de-
veloped. For example, the programmer could
reverse the order of the NUMBER and INI-
TIALS fields, change the declaration of the
NUMBER field from short integer to integer,
change the CCSID (in the ADL annotation) of
the INITIALS field, delete one of the field dec-
larations, or add WHEN clauses to field dec-
larations (as ADL annotation) to select the
records of the file to be processed by the 0S/2
C program. Although this example is very
simple, a variety of changes would be possi-
ble in more complex cases to allow the new
program to work with the data as it requires.
However, the fewer changes made from the
declaration produced by the translate func-
tion of the declaration translator, the easier it
is to keep data declarations up to date with
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Figure 9 Application development process
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the original COBOL declaration of the records
of the file.

8. The edited C declarations can then be in-
cluded in a new C program and compiled.

9. The edited C declaration can also be passed
to the parse function of the 0S/2 C declaration
translator to produce an updated ADL de-
scription of the program’s view of the data.

10. The final task is to create a view file that can
be used by the 0s/2 C program to access the
records in the MVS COBOL file. The ADL dec-
laration stored with the MvS COBOL file and
the new ADL declaration for the 0S/2 C pro-
gram’s view of the records of the file are both
passed to the create view function of the file
system. Default ADL PLANs for converting
records read from the file (similar to the Get-
Plan in Figure 7) and for converting records
written to the file (similar to the PutPlan in
Figure 7) are provided by the file system.

11. The ADL compiler is called by the create view
function and passed the ADL declarations and
plans.

12. The resulting GetPlan and PutPlan conver-
sion programs are stored with the new view
file for later use during data access.

13. The ADL description of the 0s2 C view is
stored as an attribute of the view file so that
it can be used by other 0s/2 C programs (via
step 3, above).

File data conversion. Figure 10 shows how data
are converted by ADL conversion programs as
records are accessed through a view file with the
following steps keyed to the figure.

1. When a program opens a file by name, the file
system creates a bound path to the file that its
access method services can use to efficiently
work with the records of the file. Since an MVS
COBOL program is opening a file that is also in
the MVS COBOL representation domain, there
is no need for conversion services.

2. The MVS COBOL program can assign values to
the fields of RECORD in its process memory and
then use the COBOL WRITE statement to call
access method write services to add the record
to the file. Note that the record is written to the
file essentially as it was mapped to process
memory by the MVS COBOL compiler.

3. When a program opens a view file by name, the
file system creates a bound path through the
view file to its base file. Since an 082 C pro-
gram needs to access an MVS COBOL file, a
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view file must be opened to provide the nec-
essary conversion services.

4. When the 0S/2 C program reads records from
the view file, the access method read service
obtains the record from the base file and calls
the GetPlan of the view file.

5. The GetPlan converts the record to the form
required by the 0872 C program. The converted
record is returned to the access method and is
then presented to the 0s/2 C program.

6. When the 072 C program writes a record to the
view file, the access method write service calls
the PutPlan of the view file.

7. The PutPlan converts the record to the form
required by the MvS COBOL base file and re-
turns it to the access method.

8. The access method writes the converted
record to the base file.

Program call DD&C. Although DD&C architec-
ture has been designed for data interchange
through files, the need for data conversion sup-
port when using other data interchange mecha-
nisms is readily apparent. Without going to the
depths of explanation provided for files, the ap-
plication of DD&C to program calls is illustrated in
Figure 8. An ADL conversion program is used as
an intermediary when a program of one represen-
tation domain (0S/2 COBOL) calls a program of a
different representation domain (0s/2 C).

The ADL module consists of the following:

* The first DECLARE statement describes the var-
iables of the 0S/2 COBOL program being passed
as arguments to the 0S/2 C program.

* The second DECLARE statement describes the
variables of the 0S/2 C program that are defined
as its parameters.

* The PLAN statement, named gluePlan, must be
called by PGMA, instead of PGMB. The input pa-
rameter, INITIALS, is converted to the repre-
sentation required by PGMB, and space is allo-
cated for the output argument returned by
PGMB, NUMBER. The gluePlan calls PGMB, pass-
ing it the converted INITIALS argument and the
address of the space for the returned NUMBER
argument. On return from PGMB, the value of
NUMBER returned is converted to the represen-
tation required by PGMA, and the gluePlan ter-
minates. If PGMB had failed, any exceptions
would have been forwarded to PGMA from
PGMB.
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Figure 10 File data conversions
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The primary issues to be resolved are the kinds of
programming issues discussed for files in the sub-
section “File Data Description,” namely how the
declarations of interfaces are to be stored, trans-
lated, and managed. These issues are best con-
sidered within the context of a CASE system. As
with files, considerable benefit can be derived
from declaration translator parse, generate, and
translate functions.

The concept shown in this example can be easily
extended to interlanguage remote procedure
calls.

Concluding remarks

Within its initial scope of the SAA languages and
systems, DD&C architecture enhances the inter-
change of data stored in record-oriented files. In
the design of DD&C architecture, equal consider-
ation was given to the problems of describing data
and of converting the data. Initially designed for
record-oriented files, DD&C architecture can also
be applied to other areas of data interchange.
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