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A  data  description  and  conversion  architecture 
has  been  defined  by  IBM to enhance  data 
interchange  among  Systems  Application 
Architecturem ( S U P ‘ )  programming  languages 
and  systems.  Its  components,  described  in  this 
paper,  are (1) A  Data  Language  (ADL),  a 
programming  language  for  describing  data  and 
specifying  what  data  conversions  are  to  be 
performed, (2) an object-oriented  method  of 
encoding  ADL  for  efficient  machine  storage, 
transmission,  and  processing,  and (3) programs 
that  translate  the  data  declarations of  other 
programming  languages  to  or  from  ADL.  Also 
discussed is the  application  of  the  architecture to 
record-oriented  files  for SAA Distributed  File 
Management. 

any different programming languages are in 
use  today  on  a  wide  variety of computers 

and  operating  systems. Each programming lan- 
guage is  best  suited  for  a specific range of tasks 
and  has language features  and  data  types designed 
for  those  tasks.  For  example, FORTRAN was de- 
signed for scientific computing, COBOL for  com- 
mercial data processing, and C for  systems  pro- 
gramming. But  this is not to  say  that commercial 
programs  cannot  be  written in FORTRAN, or sci- 
entific programs in C. In  fact,  there  is  consider- 
able  overlap of features  and  data  types among 
programming languages, the result of their evolu- 
tion and the adoption of features from one another. 

It  is  a clichC that  programmers should use the  best 
language for  the  task  at  hand,  but  this  advice  is 
often ignored. Programmers  tend  to  use  the lan- 
guages that  they  know  best or  that  are mandated 
by their  employers.  It is common  to  hear of 
“COBOL shops”  or “C shops,”  for  example. 
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An important benefit of this  standardization is 
that  the  programs of a  shop specializing in one 
language can  exchange  data among themselves. 
For example,  a COBOL program can export data 
by writing the  data  to a file, sending the  data in a 
message, or calling another COBOL program and 
passing data  as  arguments. A second COBOL pro- 
gram can import data  by reading the  data from a 
file, receiving a  message,  or  accepting  arguments 
to  its parameters.  It  is  only  necessary  for  the  ex- 
porting and importing COBOL programs to use 
matching interfaces,  consisting of the  same 
COBOL data  declarations  and  complementary 
COBOL exporthmport  statements (WRITE/READ, 
SEND/RECEIVE, etc.). 

But  today, as business  entities are continually  re- 
shuffled, applications  are increasingly mixtures of 
different  languages. And therein lies the problem; 
programming languages are not designed to com- 
municate with each other. In particular, the data 
exported by programs of one language often cannot 
be used when imported into programs of other lan- 
guages. The exporting and importing programs sim- 
ply have no agreements regarding the type, repre- 
sentation, aggregation, and alignment of data. 

When the  exporting  and importing programs are 
on different systems,  the  number of incompati- 
bilities increases  further.  Each implementation of 
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Figure 1 The  diversity of data  representation  techniques 
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a language deals with these  representation  issues 
in the  ways  best  suited  for  its  target  hardware  and 
operating  environment. The methods  used  often 
vary even  for different implementations of the 
same language. 

Figure 1 illustrates  the  diversity of methods used 
for  a simple data  structure. In this figure, a  data 
structure called RECORD, consisting of a  three- 
character field called INITIALS and  a  two-byte bi- 
nary field called NUMBER, is shown as represented 
by C programs and by COBOL programs on Oper- 
ating System/2* (os/2*) systems and on Multiple 
Virtual Storage ( M V S )  systems. The character  data 
are ASCII-encoded  in the OW2 systems but EBCDIC- 
encoded in the MVS systems. And, the data are null- 
terminated in C programs but not in COBOL pro- 
grams. The binary data are byte-reversed in the oS/2 
systems but not in the MVS systems. The binary 
field is aligned on  a two-byte boundary in MVS 
COBOL but not in oS/2 COBOL. The diversity found 
in this simple example makes it easy to imagine the 
representation incompatibilities that would be 
found in more complex cases. 

Data incompatibility problems  can  be handled by 
application logic, but  this logic can be  very diffi- 
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cult to program because of the  numerous  techni- 
cal  details to  be considered.  It would be far  better 
if these incompatibilities could be  overcome  by 
conversion logic automatically invoked by  sys- 
tem services  as  data  are  imported  or  exported. 

This  paper  describes  a  data  description  and  con- 
version  architecture (called DD&C architecture) 
that  has  been defined by IBM for  data  interchange 
among Systems Application Architecture* (SAA*) 
programs. Designed for SAA Distributed  File 
Management (DFM) products, DD&C has  been  ap- 
plied to record-oriented file access  and  can  be 
applied to  data  interchange  through  other  mech- 
anisms. As  an  architecture, DD&C is a  set of spec- 
ifications for the  construction of products  that im- 
plement the  functions  and  interfaces defined by 
DD&C architecture.  In  this  paper, we  do  not  de- 
scribe  any  particular  products built to  the DD&C 
specifications. It will be  up to IBM and  other  soft- 
ware  vendors  to incorporate DD&C capabilities 
into  products  as  they  see fit. 

A key  concept of DD&C architecture  is  that  data 
conversions  must be performed  whenever  data 
flows between representation domains. The  con- 
cept of representation  domains is introduced by 
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Figure 2 ADL programs  bridge  between  representation  domains 
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DD&C architecture to help categorize  data  repre- 
sentations in terms of the  methods used by a par- 
ticular language implementation. For example, 
os/2 C ,  MVS C ,  ow2 COBOL, and MVS COBOL are 
four different representation domains because of 
differences in data  types  between C and COBOL, 
and because of representation differences for the 
os/2 and MVS systems.  This  arrangement  is illus- 
trated  by  Figure 2. The  programs  that perform 
necessary  conversions  are defined by  a new pro- 
gramming language, calledA Data Language, or 
ADL,' designed specifically for describing how 
data  are  represented by different representation 
domains and for converting  data as the  data flow 
between  representation domains. 

The  top of Figure 3 shows  the  data declaration 
statements used by C and COBOL programs to de- 

scribe  the simple data  structure illustrated in Fig- 
ure 1. The C and COBOL declarations  have little in 
common beyond the names that programmers 
used for the  structure (RECORD) and  its  variables 
(INITIALS and NUMBER). It  is  not possible to com- 
pare  the C and COBOL declarations to determine 
what  conversions  are  needed as  data flow be- 
tween  a C program and  a COBOL program. Not 
only are  there  syntactic differences, neither dec- 
laration is  complete in regard to  data  representa- 
tion. Language data  declarations  are deliberately 
abstract so that programmers need not be  con- 
cerned  with details that  can be more easily han- 
dled by language compilers. 

In  contrast,  the ADL declarations at the  bottom of 
Figure 3, corresponding to the C and COBOL dec- 
larations,  are  each  complete for a particular rep- 
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Figure 3 Declaration  translator  functlons 
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resentation domain because  they fully describe 
the  representations of the  structure and its  vari- 
ables. They  are  comparable to each  other  because 
they  are  expressed in a common language-mL. 
There  are many differences between  the ADL dec- 
larations for the 0 .92  C and MVS COBOL represen- 
tation domains, but clearly, an ADL compiler, as 
shown in Figure 4, can identify these differences 
and  generate  an  appropriate  conversion program. 
Then,  when  data  are to flow from an MVS COBOL 
program to  an os/2 C program, as shown in Figure 
5 ,  the compiled ADL program can perform the 
necessary conversions. 

Where do the ADL declarations  come from? They 
can, of course, be written  by  a programmer, but 
that programmer would need to understand all of 

the  details of both  the  data  declarations of a lan- 
guage and the  methods of representing  data  by  a 
representation domain. Requiring this knowledge 
defeats  the whole point of abstract  data  types in 
programming languages. Language compilers are 
already capable of handling  all of these details, but 
compilers do not make this information  available 
outside of themselves in a consistent and usable 
fashion. It would be practically impossible to make 
them do so. Some other mechanism is needed. 

DD&C architecture defines a new kind of program 
called a declaration translator. As shown in Fig- 
ure 3, a  declaration  translator for a  particular rep- 
resentation domain can parse the  data  declara- 
tions of its  associated programming language and 
create an ADL declaration with all representation 

IBM SYSTEMS  JOURNAL, VOL 31, NO 3, 1992 DEMERS AND YAMAGUCHI 491 



Figure 4 Creating conversion  programs  from ADL declarations 
~ ~~~ 
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details filled in. A COBOL programmer  needs  only 
to pass  valid COBOL data  declarations to this  dec- 
laration  translator  function. 

A declaration  translator  can  also  reverse  this  pro- 
cess and generate a  data  declaration  for  its  asso- 
ciated language from an ADL description  that  is 
correct  for  its  representation domain. These lan- 
guage declarations  can  then be included in pro- 
grams as  part of their  export-import  interface. For 
example,  a COBOL programmer  can include 
COBOL data  declarations  generated from ADL in 
any COBOL program that  needs  to  export  or im- 
port  the  data  described  by  an ADL declaration. 

In  addition,  declaration  translators  can translate 
ADL descriptions  appropriate to a different rep- 
resentation domain into  an ADL appropriate to 

their own  representation domain. For example, if 
there is an ADL description of data  that was  writ- 
ten  to a file by an MVS COBOL program,  the Ow2 C 
declaration  translator  can  translate it into  an ADL 
description  correct  for  the ow2 C representation 
domain.  Together,  these  three  declaration  trans- 
lator  capabilities  (parse,  generate,  and  translate) 
provide  a rich set of tools in support of multilan- 
guage programming. 

What  remains  is to decide  when  an ADL program 
needs  to  be called. This  decision  depends  on the 
export-import mechanism being used. For exam- 
ple, as shown  later in Figure 9, if an MVS COBOL 
program has  written  records  to  a file and  an ow2 
C program needs  to  read  them,  the Ow2 READ ser- 
vice  can call an ADL conversion  program as each 
record is read. DD&C architecture is not  con- 
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Figure 5 Converting data 
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cerned with why  or when ADL programs are 
called, but IBM’S Distributed File Management 
products deal with these  issues for record- 
oriented files. 

In  the remainder of this  paper, we consider the 
objectives of DD&C architecture,  discuss  the al- 
ternatives  considered in its design, examine  the 
major concepts of DD&C in more  depth, and fi- 
nally, discuss  the application of DD&C to file ac- 
cess and  to program calls. 

Objectives 

General  objectives. The  general  objective of DD&C 
architecture  is  to  enable  programs  written in any 
of the S A A  programming languages (C, COBOL, 
CSP, FORTRAN, PWI, and RPG), as implemented on 
any of the SAA system  types,  such as Multiple 
Virtual  Storage/Enterprise  Systems  Architecture 
(MVS/ESA*), Virtual MachineEnterprise  Systems 
Architecture (VM/ESA*), Operating System/400* 
(OS/400*), and 0 ~ 2 ,  to  interchange  data.  This  is  not 
to  say that all data  exported by  any of these  pro- 
grams  can  be  imported by  other  programs of the 
set.  There  are  entirely  too  many language and 
implementation peculiarities to allow for  a fully 
general  solution. For example,  numeric  data for- 
matted as character  strings  can  only  be  inter- 
changed as character  data;  conversion  to  the  nu- 
meric  data  types  is not supported.  Instead, DD&C 
architecture defines a  practical  solution  that al- 
lows most SAA data  to  be interchanged by most 
SAA programs. Further,  the initial design of DD&C 
architecture is focused  on  the  interchange of data 
stored in record-oriented files. 
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Data description  objectives. Innumerable  record- 
oriented files, created by a wide range of appli- 
cations,  exist in midrange and large systems.  Pro- 
viding workstations  with  access  to  the  data in this 
“data jail” is  a prime objective of the SAA Dis- 
tributed  File Management products.  But the dif- 
ferences  between  the languages and  data  repre- 
sentations typically used in workstations  and 
those  used in midrange and large systems  must  be 
bridged to make  this  access feasible. 

Programmers  can  write ADL descriptions of the 
data  stored in files, but it can  be  quite difficult to 
do  correctly  because  each implementation of a 
programming language has  its  own  ways of rep- 
resenting, aligning, and aggregating data.  Pro- 
grammers would have to  be fully aware of all of 
them. Even in the initial scope of DD&C architec- 
ture, ADL is  quite  complex and supports  many 
options. Requiring programmers to learn  and  cor- 
rectly  use ADL would not  be  acceptable to them. 
Instead,  an  objective of DD&C architecture  is to 
make  use of existing data  declarations specified in 
the  syntax of an SAA programming language and 
provide  automatic  translation  into ADL via  a  dec- 
laration  translator for each SAA representation 
domain. 

Data conversion  objectives. The  key  objective of 
DD&C architecture in converting  data  can  be 
stated in one word:  performance.  Data  conver- 
sion is  always  viewed as a  necessary evil, some- 
thing required  to get a job done,  but  which 
contributes nothing to  the application itself. 
Therefore, DD&C architecture  seeks  to minimize 
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the amount of data  conversion  that must be per- 
formed and to perform it as efficiently as possible. 

The initial focus of DD&C architecture on record- 
oriented files substantially affected its design. 
During file access, we are  often dealing with a 
large number of records,  each  with a potentially 
large number of fields. Each  record must be con- 
verted  as efficiently as possible, with as little 
overhead as possible, and affecting as few fields 
of the  record as possible. 

The fundamental approach of DD&C architecture 
is to preplan the  conversions  that will be required 
for  each  record  by comparing the  descriptions of 
the  records of the file with a description of how a 
program is designed to view  those  records. Dif- 
ferences in data  representation, alignment, and 
aggregation can  then be accommodated by a sin- 
gle invocation of an optimized conversion pro- 
gram for each  record, performing only  necessary 
conversions  with minimal overhead. 

A second  data  conversion  objective  is to have all 
conversions allowed by DD&C architecture  pro- 
duce  the  same  results  wherever  these  conver- 
sions  are performed. For example, a conversion 
from IEEE (Institute of Electrical and Electronics 
Engineers) floating point to hexadecimal floating 
point should produce  exactly  the  same result 
whether  the  conversion  is performed on  OS!^ or on 
MVSESA. To this  end,  the specifications for ADL 
carefully define the  results to  be produced for all 
conversions allowed by ADL. 

A third data conversion objective of DD&C archi- 
tecture is enhanced data interchange. Many differ- 
ences in  programming  language data types exist for 
historical reasons but are of little importance to pro- 
grams seeking to interchange data. For example, a 
number is a number is a number! The fact that one 
language represents numbers in binary format, 
whereas another represents them in zoned decimal 
format or floating-point format is often not relevant 
to an application. What is important, however, are 
the precision,  scaling, and radix of the number. The 
ADL descriptions of data account for these differ- 
ences, and ADL supports conversions among  all nu- 
meric data types. ADL then goes one  step further by 
ensuring that only data valid for the target data vari- 
able are actually assigned to it. Interchange is fur- 
ther supported by the translate function of decla- 
ration translators whereby each attempts to map 
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any mL-described  data into the  data types of its 
associated programming  language. 

A fourth  data  conversion objective of DD&C is 
support of application development. ADL is a pro- 
gramming language whose  programs  are invoked 
to convert  data,  but  these  conversions  are  not 
limited to simple data format conversions. De- 
pending on how an application’s view of the  data 
is  described,  other  conversions required by  the 
application can  also be performed. As examples, 
only  certain  records of a file can  be  selected,  the 
fields of selected  records  can be reordered, and 
the fields of exported  records  can  be validated. 

And as a final data  conversion objective, we must 
consider reversible conversions. If a program 
writes a record to a file of a different representa- 
tion domain, that  record  must  be  converted to  the 
representations required by  the  representation 
domain of the file. If the  same program subse- 
quently  reads  the  same  record from the file,  it 
must be converted  back to the  representations of 
the  representation domain of the program. Ide- 
ally, the record read should be identical to  the 
record  written,  but  this  is not always  the  case.  In 
numeric  conversions, significant digits can  be  lost 
during the  conversion  because of rounding and 
truncation.  In  character  conversions, best-fit 
character  substitutions  are used in some cases, 
with  no best-fit on  the  return trip. Known solu- 
tions to  these  problems all involve canonical data 
formats  that  are incompatible with  the  other ob- 
jectives of DD&C architecture, or require applica- 
tion programmers to account  for reversibility in 
their designs. 

Alternatives  considered 

Throughout  the design of DD&C architecture,  the 
architects  were continually being asked  questions 
such as “Why did you  do X this  way?”  or  “Why 
did you not use  the Y architecture?”  Indeed, 
many other  alternatives  were  studied and consid- 
ered. In  this  section, a few of the  more  important 
alternatives  are  discussed. 

Programming  language  data  description  and  con- 
version. Most programming languages (PLS) in- 
clude facilities for describing the  data  contained 
in variables and for converting data  as  variables 
are assigned to  other  variables.  Why  are  these PL 
descriptions and conversions not sufficient to al- 
low data interchange among programs of different 
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representation domains? The  short  answer is that 
each PL implementation is  self-contained with no 
consideration given in its design to data  inter- 
change  with  other PLS. A  programmer  must use 
matching interfaces of the  same PL implementa- 
tion when  exporting  data from the  variables of a 
program and  then importing data  into  the  varia- 
bles of another program. 

Conversions of the  representations used by dif- 
ferent  implementations of the  same PL are possi- 
ble if the  associated PL data  types  are unaffected. 
So it would be  acceptable, for example,  for  an 
ow2 C program to  access data  stored in an MVS C 
file as long as representation  conversions are 
somehow performed. However,  the position is 
often  taken  that  these  conversions should be per- 
formed by implementations of the language that 
recognize when  programs  are being compiled for 
an  environment consisting of heterogeneous  sys- 
tems. Using data  descriptions  embedded within 
program text,  an  approach  to  data  conversion 
similar to  that outlined in the  later  subsection  on 
Network  Interface  Data  Language  then  becomes 
feasible. After all, that  approach was designed for 
a single language environment to begin with,  that 
of c. 
This unilanguage restriction is often  eased  to al- 
low a  certain  amount of interlanguage data  com- 
munications.  But  a  requirement is imposed that 
the  data  types  and  interfaces of the  exporting and 
importing PLS be “similar.” This  approach, in ef- 
fect, calls for pair-wise agreements to  be reached 
between PLS as  to what  types of data  can  be in- 
terchanged  between  those languages, agreements 
that  have not yet been negotiated or documented 
for most PL pairs. 

As an  alternative to pair-wise agreements,  pro- 
grams  that  require interlanguage communications 
can  be  written within the  constraints of a common 
data model (CDM), such as  the  one  espoused  by 
A D / c ~ c l e * . ~  If only  the  data  types of a PL that 
match  the  data  types of the CDM are used in com- 
munications with other  programs, interlanguage 
communications  are  assured.  This  alternative, 
however,  has  severe limitations. First,  the  data 
types of the CDM are, by necessity,  the lowest 
common  denominator of the  data  types found in 
the PLs covered by the CDM. Communications are 
restricted  between  any two PLS to  the  types held 
in common with the CDM, even  when  those PLS 
may well be  able to interchange additional data 
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types.  Second,  this  alternative  only applies to 
new programs  and ignores the  wealth of data 
locked up in the  records of existing files, records 
that  were  written using the full expressive  capa- 
bilities of some PL. 

At  the  heart of this  alternative is the  view  that  the 
data  types of a language are  “owned”  by  that 
language and  that  only  implementations of the PL 

Many existing alternatives  were 
studied  and  considered 

throughout the  design of the 
DD&C architecture. 

should be allowed to  operate  on their instances. 
Any other operations on them could potentially re- 
sult in bad data that cannot be processed by pro- 
grams of the PL. But all that is really necessary is to 
understand the range of values that a variable can 
hold, as defined by its data type, and ensure that no 
value is passed to  a program outside of that range. 

If we  look specifically at  data  stored in files, this 
alternative ignores historic realities. Most files re- 
siding in large or midrange systems  were typically 

grams. But  the  programs  executing in worksta- 
tions  that  seek  access  to  the  data in those files are 
typically written in C, BASIC, Pascal,  or  other Ian- 
guages. No pair-wise interlanguage data  conver- 
sion agreements  exist,  and few compilers  have 
been designed for  a  heterogeneous  systems envi- 
ronment. 

The  use of PL data  conversion  capabilities  when 
accessing files on  heterogeneous  systems was re- 
jected  as being unrealistic, impractical, and prem- 
ised on an outdated  view of data  processing. 

Sun XDR. Sun  external Data Representation 
(XDR)4 is one of several  methods of interchanging 
data  based  on  the use of canonical  data  formats, 
that is, based  on  rules specifying how data are  to 
be  represented  when  the  data  are  transmitted  be- 
tween  systems.  For  example,  when  character 
data  are  to  be  transmitted, XDR specifies precisely 

written by COBOL,  FORTRAN, PWI, or RPG pro- 
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how the  data  are  to  be  encoded,  and again, when 
floating-point data  are  to  be transmitted, XDR 
specifies how those  data  are  to  be  encoded. 

The sending program  must  convert  each  data item 
to  be transmitted  to  the  format  required by XDR 
for its data  type.  These  conversions  are  accom- 

Data interchange, data  in 
existing files, and the need to 

accommodate multiple  languages 
are important. 

plished by calling special XDR subroutines  for 
each  data item. These  subroutines  convert  the 
value of a program variable to  the canonical  for- 
mat, if necessary,  and  copy it to  the message. 
When all such  data  items  have  been  copied,  the 
program calls another XDR subroutine  to  transmit 
the message via  network pipes. 

The receiving program  issues  an XDR call to  re- 
ceive  the message and then, for each  data item to 
be  received,  the program must  issue  an XDR call 
to a  subroutine  that  extracts  the  next  value from 
the  message,  converts it to local representation if 
necessary, and returns it to a program variable.  It 
is the programmer’s responsibility to issue  the 
correct XDR calls in the  correct  order  to  properly 
receive  each  value. 

Although conceptually simple, this  approach  also 
has  some  disadvantages: 

For each  representation domain, a  set of XDR 
subroutines  must be provided  that  converts  lo- 
cal  data  representations to  or from canonical 
formats. 
If the local representations of data  are  not  the 
same as  the  canonical  representation,  conver- 
sions  must  be  performed,  even if the sending 
and receiving representation  domains  use  the 
same local representations. 
XDR provides no support for constructor  data 
types,  such as  arrays  or nested  structures.  The 
sending program must  decompose  the  construc- 
tor  into  a  series of simple data  elements by using 
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program logic, and  the receiving program must 
reconstruct  them  via program logic. 
XDR provides  no  means of communicating 
metadata  between  the  sending  and receiving 
programs.  Side information, in the form of pro- 
gram listings and specifications, must  be  passed 
between the programmers of the sending and 
receiving programs. There  is  no  means,  for  ex- 
ample, of recording  the  description of the  data 
in a file with  the file  itself so that it is available 
to all users of the file. 
XDR provides  no  means of performing structural 
conversions of the  messages  transmitted,  such 
as  reordering or omitting fields or whole  mes- 
sages. Structural  conversions  are an application 
responsibility. 
XDR applies primarily to new  programs  because 
it requires  them to  be written in a  certain  way. 
Using XDR for communications  between  exist- 
ing programs would require  substantial  changes 
to  be  made  to  the sending and receiving pro- 
grams. 
Finally, XDR cannot be made to apply to  the 
data in existing files because  those  data  are  not 
in the XDR canonical  format. 

All  in all, there is sufficient justification for look- 
ing at  other  alternatives. 

OS1 ASN.1. Abstract  Syntax  Notation 1 (ASN.1)’ 
is a language defined by  the Open Systems  Inter- 
connection (OSI) standard of the  International Or- 
ganization for  Standardization  for describing data 
transferred  between  heterogeneous  systems. 
Along with ASN.l are  the os1 Basic  Encoding 
Rules ( B E R ) ~  that  specify  a  canonical  format in 
which the  data  described by ASN.l can  be  trans- 
ferred. 

The  text of ASN.l data  descriptions is written pri- 
marily as a way for one programmer  to tell an- 
other how data  are to  be transmitted.  It is up to 
the  sending program to  encode  data as required 
by  the BER, performing whatever  data  conver- 
sions  are  necessary.  It is up to  the receiving pro- 
gram to decode  these  data from the BER format 
and  convert  the  data  to local representations. In 
some  cases, utility programs  have  been  devel- 
oped to interpret ASN.l descriptions  and  convert 
data  between local representations and BER. 
However,  the ASN.l, being an  abstract  data  de- 
scription,  requires additional (unstandardized) 
annotations in order  to  correctly  describe local 
representations.  That  is,  programmers  must  learn 
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how the PL they  are using actually  represents 
data,  learn how to  write ASN.l, and then  learn how 
to  annotate it to specify how the PL actually  rep- 
resents  data. 

The OS1 BER specifies how data  are  to  be repre- 
sented  when  the  data  are  transferred  between  sys- 
tems. For  each item of data,  the length of the  data 
and  a tag corresponding  to  an identifier specified 
in ASN.l are transmitted along with the  canonical 
representation of the  data. Although this  ap- 
proach  is  robust, it too  has  some  clear  disadvan- 
tages: 

1. The length and tag associated with each  data 
item are superfluous. These  metadata  are  not 
needed  because  the  sending and receiving pro- 
grams  must  be  written to  process matching 
data  anyway.  They  do allow conversions  to  be 
performed by  the OSI Presentation  Level,  but 
not  enough information is available to really 
match PL representation  requirements. If the 
data being transferred  consist of repetitions of 
the  same  formats, as  the  data  do for the  rec- 
ords of a file, there  is  no need to  transmit  meta- 
data  more  than  once. 

2. The canonical  representation  formats of BER 
were designed for universal  interpretability 
and  do  not  match  the  representations  actually 
used on  any system.  Therefore, all data  must 
be  converted twice, once  to  the  canonical  for- 
mat  and once from the canonical  format,  even 
if the  sending and receiving representations 
are  the  same.  Few  applications  can afford this 
overhead, so data  must  be  transmitted as un- 
encoded  byte  strings,  with  real  conversions 
performed by applications as necessary. 

3. The  data  stored in existing files are  not  en- 
coded as required by BER, and ASN.l is  not 
capable of describing the  data  without  exten- 
sive  annotations. 

Although other,  more efficient, canonical  inter- 
change languages than BER are possible, the need 
for any  such  interchange  format was questioned 
during the design of DD&C architecture.  Instead, 
the  approach in DD&C architecture is based  on 
detected differences in data  descriptions in a lan- 
guage capable of completely specifying how data 
are  actually  represented. 

Network  Interface Data  Language. The Network 
Interface  Data  Language (NIDL) of the Open Soft- 
ware  Foundation’s  Distributed Computing Envi- 
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ronment7 is another language for describing data 
transferred  between  heterogeneous  systems. 
NIDL is actually  C language data  descriptions  with 
annotations  that  specify  descriptive information 
not  expressible in pure C. Thus,  there  is  a  clear 
relationship  between NIDL and at least  one PL, 
thereby making available at  least  the  data  descrip- 
tion capabilities of C. But of course,  not all pro- 
grams  are  written in C. 

Associated with NIDL are the  rules of network 
data  representation  (NDR)  for multicanonical data 
representation. NDR effectively overcomes  the 
problems of OS1 BER. No length or tag fields are 
transmitted,  and  each  data  type  can  be  repre- 
sented in one of several  ways.  A single tag is 
transmitted  once  to  specify which representation 
will be used for each  data  type, allowing the  send- 
ing system  to  specify  the  representations used 
and requiring it to perform the minimum conver- 
sions. The  target  then  only  has to  convert items 
that differ from its local representations.  For  ex- 
ample, if a receiving program expects  an IEEE 
binary floating-point number  but  is informed that 
a hexadecimal floating-point number  has  been 
sent, it knows to perform that  conversion. 

The  key problem with NIDL is its single-language 
focus. Not designed to accommodate  the  needs of 
multiple languages, NIDL is  not rich enough to 
describe  the full range of data  types  and  repre- 
sentations  actually  used  by communicating pro- 
grams. Nor would its C-language syntax  be  ac- 
ceptable to programmers of other languages, even 
if it could be enhanced to meet  the  data  descrip- 
tion requirements of other languages. 

FD:OCA. Formatted Data:Object Content Archi- 
tecture (FD:OCA)8 is an IBM document  content  ar- 
chitecture  that was designed as a  means of de- 
scribing tabular  data included in documents. 
IBM’s Distributed Relational Database  Architec- 
ture (DRDA)9 uses FD:OCA to  describe  database 
tables  transmitted  between  systems. DD&C archi- 
tecture initially attempted to  enhance FD:OCA so 
that it could be  used to encode ADL. This  en- 
hancement  proved  undesirable for two major rea- 
sons.  First,  the design of FD:OCA was not flexible 
enough to accommodate  the  changes  required by 
ADL. Second,  the  performance  objectives of 
DD&C architecture did not allow the  overhead of 
building and parsing FD:OCA data  streams. 
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Data description specifications. The System/38* 
and  its  successor,  the Application System/400* 
(AS/400*), provide  a way independent of program- 
ming language to describe the  data  stored in some 
of the  record-oriented files of those  systems. 
Compilers  can  request  the  data  description  spec- 
ifications (DDS) from a file and  generate  appropri- 
ate  data  declarations within the  programs  that  ac- 
cess a file. Programs compiled with  common DDS 
data  descriptions  can easily interchange  data, 
even if written in different programming lan- 
guages. 

There  are two reasons  why DDS works on these 
systems.  First,  the  various IBM-supplied compil- 
ers for  these  systems  have all been  written  to exist 
within a  common language execution  environ- 
ment.  Data  representation is standardized  for 
similar language data  types.  Second, DDS is re- 
stricted  to describing records  that  are simple col- 
lections of fields. None of the  constructor  types of 
the programming languages, such  as  arrays  or 
nested  structures,  can  be  described.  Unfortu- 
nately,  these  factors do not prevail in general; 
there is no universal  common language execution 
environment,  and  many existing files do  contain 
constructor  type  data. In fact, System/38s and 
AS/400s usually contain  many files that are not  de- 
scribed by DDS and  are  not easily interchanged 
with  other  representation domains. 

Consideration was given to  extending DDS, but 
extension was rejected  because of the rigid, 
forms-oriented  nature of DDS. However,  many  as- 
pects of the  relationship of DDS to files were 
adopted by DD&C architecture (see the  subsection 
“File  Data  Description”). AS/400 DDS is  consid- 
ered  to  be  a  separate  representation domain and 
its  requirements  have  been  accommodated in the 
design of ADL. 

Concepts of DD&C architecture 

The conceptual  layers of DD&C architecture are 
shown in Figure 6. These  layers  are  not  part of 
DD&C architecture,  as  such. 

Foundations. The  layer of DD&C architecture at 
the  bottom of Figure 6, called foundations, is con- 
cerned with the  ways in which data  are  repre- 
sented, aligned, and aggregated by  various  rep- 
resentation domains. This  layer  includes  three 
representations now described. 
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Programming language data representations. In 
assembly languages, program variables  are  de- 
scribed in terms of their  representation in a  com- 
puter  system.  Historically,  this  approach  made 
sense.  Hardware  architects  are primarily inter- 
ested in the  representation of data  as  part of the 
operational specifications of a  system,  and  the 
designers of assembly languages are  interested in 
making those  data  representations available to 
programmers. But the programmer is burdened 
with the  tasks of selecting  the  best  representation 
schemes for values  and of mapping variables  onto 
memory  for optimal processing. 

Programming language designers  attempted  to  re- 
move  these  burdens  by defining a  set of abstract 
data  types  that  the  programmer  can use to  de- 
scribe  variables. Each  data  type of a program- 
ming language defines a set of possible  values  and 
the  operations  that  can  be  performed on those 
values.  Examples of numeric  data  types  are CO- 
BOL numeric PICTURES, PWI FIXED BINARY, and  C 
integers. Numeric  data  types  support  arithmetic 
operations,  and  character  data  types  support 
string  operations. Programming languages sup- 
port  both simple data  types  concerned  with single 
values  and  more  complex  data  types,  such  as  ar- 
rays  and  structures,  concerned  with aggregations 
of data. 

For  each of its  data  types,  a programming lan- 
guage also defines a  set of type  attributes  that  can 
be specified by programmers to complete  the  de- 
scription of a  variable. For example,  the PL/I 
FIXED BINARY data  type also allows the program- 
mer to  specify  the  precision and scaling factor of 
the  number, how the  variable  is to  be initialized, 
and whether it is to  be aligned or not. 

The problem is that  each programming language 
handles  the  representation, mapping, and  at- 
tribute  issues in its  own  way.  Each compiler for 
a language is designed for  a specific system  ar- 
chitecture  and  its  representation  and mapping 
techniques.  Thus,  a COBOL program developed 
and  tested on a  personal  computer (PC) may  not 
work  exactly  the  same as on a System/370* be- 
cause of data  representation differences. Data 
written to a file by a PC program cannot  be  directly 
read by  the  same program running on the  Sys- 
tem/370. 

A difficult aspect of the design of DD&C architec- 
ture  was deciding what  representation  domains 
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Flgure 6 The conceptual  layers of DD&C 
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should  be formally considered in the  scope of 
ADL. There  was  a  strong  temptation  to  make ADL 
as broad as possible, encompassing the represen- 
tations used by  as many IBM and  other  vendor 
systems  as possible. However,  this  temptation 
was countered by the difficulty of concurrently 
defining ADL and  a  set of declaration  translators. 
Experts could be found within IBM for work  on 
declaration  translators  for  each of the SAA pro- 

gramming languages and  systems,  but to go be- 
yond  this  scope was not practical. We  believe, 
however,  that  much of ADL is useful for other 
representation  domains  and  that it is possible  to 
formally extend DD&C architecture to  other rep- 
resentation  domains in the  future. 

Character  Data  Representation  Architecture. A 
special case of data  representation is that of char- 
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Figure 7 ADL program  for  file  data  conversions 

100) FILE: / *  declarations  corresponding to file  data * /  
DECLARE 
BEGIN; 

(104)  RECORD:  SEQUENCE 
BEGIN; 

INITIALS: CHAR LENGTH(3) 

NUMBER:  BINARY PRECISION(15) 

END : 

(104) 
I (105) 
( 1 0 4 )  
I (105) 

INCLUDE ' DEFAULTS .MVS .COBOL '; 

WHEN  INITIALS  BETWEEN 'A' AND ' 2 '; 

WHEN  NUMBER < 99; 

I 
( 1 0 0 )  VIEW: / *  declarations  corresponding to program  variables * /  

END; 

DECLARE 
BEGIN; 

(104) RECORD:  SEQUENCE 
BEGIN; 

INCLUDE ' DEFAULTS.  OS2.  C '; 

WHEN  INITIALS IN ('A', 'B', 'C ' )  ; I ( 1 0 6 )  
(104) INITIALS : CHARSFX  MAXLEN (4) 

(104) NUMBER:  BINARY PRECISION(15) ; 

END ; 
END ; 

(100) ACCESS-METHOD: / *  declarations of additional  Access  Method * /  
DECLARE 
BEGIN; 

/ *  variables  passed to ADL  plans * /  

(101 )  DEFAULT BINARY  BYTRVS(FALSE)  COMPLEX(FALSE)  CONSTRAINED(FALSE) 
I RADIX(2)  SCALE ( 0 )  SIGNED (TRUE) FIT (ROUND) ; 
(102) word: 
(103) ccsid: 

CONSTANT  31; 
SUBTYPE OF  BINARY PRECISION(32) SIGNED(FALSE1; 

(104) inlen:  BINARY PRECISION (word) ; 
inccsid:  ccsid; 
outmaxlen:  BINARY  PRECISION(w0rd); 
outccsid:  ccsid; 
outlen:  BINARY PRECISION (word) ; 
END ; 

(200)  getplan: / *  Plan to convert  records read from  the  file * /  

I PLAN ( 
inlen:  INPUT, 

(201) inccsid:  INPUT, 
(201) (203) 
(201) 
(201) 
(202 )  (204) 
(202) 

FILE.TiECORD: INPUT  LENGTH(in1en)  CCSID(inccsid), 
outmaxlen : INPUT, 
outccsid: INPUT, 
VIEW.RECORD:  OUTPUT  MAXLEN(outmax1en)  CCSID(outccsid), 
outlen:  OUTPUT) 

BEGIN; 
VIEW.RECORD <- FILE.RECORD; 
outlen <- LENGTH(VIEW.RECORD); 

END; 

/ *  Plan to convert  records to be written to the file * /  
PLAN ( 

inlen: INPUT 
inccsid: 
VIEW.RECORD: INPUT LENGTH(in1en)  CCSID(inccsid), 

INPUT 

outmaxlen: INPUT 
outccsid: INPUT, 
FILE.RECORD: OUTPUT MAXLEN(outmax1en)  CCSID(outccsid), 
outlen: OUTPUT) 

FILE.RECORD <- VIEW.RECORD; 
BEGIN; 

outlen <- LENGTH(FILE.RECORD); 
END ; 
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acter  data. A large number of different schemes 
have  been  developed,  because  the  number of dif- 
ferent  graphic  characters  that can be  represented 
by a single byte is limited (a maximum of  256 
characters). Many national languages require 
special characters (e.g., accented  vowels or punc- 
tuation)  or  entirely  unique sets of graphic  char- 
acters (e.g., Farsi).  Some programming languages 
require  special  characters (e.g., APL). Some dis- 
ciplines require special characters (e.g., mathe- 
matics).  Various  devices  have  been designed to 
support  only limited graphic  characters (e.g., 
printers  and displays). 

Different standards  groups  have promulgated a 
variety of encoding schemes (e.g., ASCII versus 
EBCDIC). Additionally, double-byte encoding 
schemes  have  been  adopted for national lan- 
guages requiring thousands of graphic  characters 
(e.g., Chinese,  Japanese,  and  Korean),  alongwith 
a  number of schemes  for intermixing single-byte 
and  double-byte encodings. 

The result is a nightmare of complexity that greatly 
inhibits data communication. Fortunately, this 
complexity has been addressed by the IBM SAA 
Character Data Representation Architecture 
(CDRA). lo CDRA defines a comprehensive means of 
identifying the scheme by which a given character 
string has been encoded. A single tag called a coded 
character  set identifier (CCSID) can be associated 
with each character string. CDRA also defines the set 
of  all possible valid conversions of character strings 
from one CCSID to  other CCSIDS and provides the 
conversion tables required to perform them. 

ADL associates CCSID tags with  character  strings, 
as required by CDRA, and depends  on CDRA con- 
version  services for performing character  conver- 
sions. 

Numeric representation architectures. The  rep- 
resentation of numeric  values falls into  two major 
categories,  the  representation of exact  numbers 
and  the  representation of approximate  numbers. 
Again for a  variety of historic  reasons,  a number 
of representation  methods  are in common  use in 
each of these  categories. 

Exact  numbers  can be encoded in either  binary or 
decimal format.  Binary  formats  are  often used 
because  they  are natively supported  by  most ma- 
chine  architectures and can  therefore  be  pro- 
cessed  most efficiently. Decimal formats  exist  be- 
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cause  they  are  a  better  match  to  the  ways in which 
numbers  were  encoded in the  punched  card  de- 
vices of early  systems.  Not all decimal values  can 
be accurately  encoded in binary  encodings  be- 
cause of inherent  number  system differences. 

Approximate  numbers  are  based  on  the  concepts 
of scientific notation, which allow very small or 
very large numbers  to  be  encoded with only  a 
limited amount of precision. Based on  exponen- 
tial notation,  various floating-point encoding 
schemes  have  been  devised, using either  binary 
or hexadecimal encodings of the  characteristic 
and mantissa of the  value. 

Conversions  between  exact  and  approximate  en- 
codings of a  numeric  value  are  often possible but 
may result in data  loss  through  truncation or 
rounding. ADL defines comprehensive  rules for 
performing conversions of numeric encodings. 

Language  layer. The language layer  is  concerned 
with ADL and its relationship to  the SAA program- 
ming languages. 

A Data Language. ADL provides  a  means of de- 
scribing the  representation of data  exported  and 
imported by a  wide  variety of programming lan- 
guages, as implemented on  a  variety of systems, 
so that efficient data  conversion  programs  can  be 
generated. 

A module is the compilation unit of ADL, consist- 
ing of a DECLARE statement for each  view of the 
data and PLAN statements for each  required  con- 
version program. See Figure 7 and  Figure 8 for 
examples of ADL modules.  Parenthesized num- 
bers,  such  as (100)  in the following text,  refer to 
portions of those figures. 

Each DECLARE statement (100) corresponds  to a 
single representation domain and  consists of: 

DEFAULT statements (101) that  each  specify  the 
default values  to  be used for the  attributes of a 
single ADL data  type.  These  statements  can  be 
included from a  library containing the DEFAULT 
statements for each  representation domain, 
greatly reducing the  number of details  that  must 
be specified in data  declaration  statements. 

CONSTANT statements (102) that  associate  a lit- 
eral with  an identifier. The identifier can  then  be 
referenced  wherever  the literal can  be specified. 
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Figure 8 ADL module  for  program call conversions 

100)  PGMA: / *  declarations  corresponding to the O S / 2  COBOL  compiler's 

DECLARE 
BEGIN; 

NUMBER:  BINARY PRECISION ( 3 )  BYTRVS (TRUE) COMPLEX (FALSE) 
INITIALS:  CHAR  LENGTH ( 3 )  CCSID (850) JUSTIFY  (LEFT)  UNITLEN(8) ; 

representations  of PGMA program  variables * /  

i104)  

(104) 

CONSTRAINED  (TRUE)  RADIX (10) SCALE ( 0 )  
SIGNED (TRUE) FIT (ROUND) ; 

END; 

i l o 0 )  

i'"" 

PGMB: / *  declarations  corresponding to the OS/2 C compiler's 
representations  of PGMB program  variables * /  

DECLARE 
BEGIN; 
INITIALS:  CHARSFX MAXLEN(4) CCSID (850) MAXALC (TRUE) SFXENC(X ' 00 '  

NUMBER:  BINARY PRECISION (15) BYTRVS (TRUE) COMPLEX (FALSE) 
CONSTRAINED (TRUE) RADIX(2)  SCALE ( 0 )  
SIGNED (TRUE) FIT (ROUND) ; 

Y O 4 '  UNITLEN(8) ; 

END; 

200)  glueplan: / *  Plan to convert  records  read  from the file * /  
PLAN ( 

(201) PGMA.INITIALS: INPUT, 
(202) PGMA .NUMBER: OUTPUT) 

(205) 
(206) 
(205) 

BEGIN; 
PGMB.INITIALS <- PGMA.INITIALS; 
CALL 'PGMB' (PGMB.INITIALS,  PGMB.NUMBER); 
PGMA.NUMBER <- PGMB.NUMBER; 

END ; 

SUBTYPE statements (103) that define subtypes 
of the ADL-defined types, or of another  subtype. 
Subtypes  can  be defined for  each of the  data 
types of a programming language, with  the  sub- 
type identifier identical to a programming lan- 
guage type. For example, an integer subtype of 
the ADL BINARY type  can  be defined to  be equiv- 
alent to  the integer type of C .  A set of SUBTYPE 
statements in a file, along with appropriate 
DEFAULT and CONSTANT statements,  can  ease 
the  task of creating ADL descriptions of data if 
no  declaration  translator is available for  a  pro- 
gramming language. 

Subtypes  can  also  be defined for application 
types. For example,  a gameboard subtype of 
the ADL ARRAY type could be defirled for use by 
all 8-by-8 game programs.  These  statements  can 
also be included from a  dictionary of common 
data  descriptions. 

Data  declaration  statements (104). These  state- 
ments  actually  describe  data.  Each  consists of 
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a  keyword  that  names  a  data  type, followed by 
attributes  appropriate to  the  data type. For  con- 
structor  types,  a  clause follows that defines the 
elements of the  constructor,  such  as  the ele- 
ments of an ARRAY. 

A WHEN clause  can also be specified in data 
declaration  statements. In any assignment of 
data  to  the  declared  variable,  the  predicate 
expression" of the WHEN clause  must  evaluate 
to  true  or else  the assignment statement and the 
plan are  terminated  with  an  exception.  For files, 
two primary  uses  are  seen  for  this capability: 
data  selection  and  data  validation. A WHEN 
clause (105) in the  declaration of a file ensures 
that  only valid data  are  written  to  the file. A 
WHEN clause (106) in the declaration of a  pro- 
gram selects  the  records  to  be  presented  to  the 
program. 

Each PLAN statement (200) defines the  parame- 
ters  that  can  be  passed  to  a  conversion program 
as INPUT parameters (201) or  as OUTPUT param- 
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Table 1 Scalar data types supported by ADL 

ASIS  A bit string of unknown encoding. Assignment to  any other  ADL data  type  is allowed. When an ASIS field 
is the data  source,  the  assumption  is  made  that  ASIS  data are already  represented  as required by the target 
field and can be copied to it. When an ASIS field is the assignment target,  the bit representation of the 
source field is simply copied to the ASIS target. 

BINARY A  binary  encoded  number.  Conversions to or from any other  ADL numeric data  type  are defined. 
BIT  A bit string. Conversions  to or from the ADL BITPRE  data  type  are defined. 
BITPRE  A bit string with a length prefix. Conversions to  or from the ADL BIT  data  type are defined. 
BOOLEAN An encoding of TRUE  or  FALSE. 
CHAR A string of characters encoded  as specified by the associated coded character  set identifier attribute. 

CHARPRE  A character string with a length prefix. Conversions to or from any  other ADL character  data  type  are 

CHARSFX  A zero terminated character string. Conversions to  or from any  other ADL character  data  type are defined. 
ENUMERATION An association of identifiers with integers. Conversions  between ENUMERATION fields are performed 

such  that  the identifiers associated with the  BINARY encodings of the  ENUMERATIONS are preserved. 
Numeric  conversions  to or from the ADL BINARY,  PACKED, and ZONED  data  types are also defined. 

FLOAT A floating-point number. An attribute specifies which IBM hexadecimal format (single, double, or ex- 
tended) or  IEEE format (single, double, or extended)  is used. Conversions among all formats  are defined. 
Conversions  to or from any other  ADL numeric data  type  are defined. 

Conversions to  or from any  other ADL character  data  type  are defined. 

defined. 

PACKED  A  packed decimal number.  Conversions  to or from any other  ADL numeric data  type  are defined. 
ZONED  A  zoned decimal number. Conversions to  or from any other ADL numeric data  type  are defined. 

eters (202). Each  parameter is specified by  the 
identifier of a  data item declared in one of the 
DECLARE sections of the module. The parameter 
is thereby  associated with an expected  represen- 
tation. 

For file conversion  programs,  a single record is 
passed as an input parameter (203) and  a single 
area is passed as an  output  parameter (204) to 
receive  the  converted  record.  Other input param- 
eters specify the length and CCSID of the input 
record  and  the maximum length and required 
CCSID of the  output  record. 

The  parameter  lists of these  conversion  programs 
are fixed in format  because file conversion  pro- 
grams  are called by  access  method  services. But 
for  other  applications,  such as CALWRETURN con- 
versions  between  programs,  other  parameters 
can  be specified, as in Figure 8. 

The ASSIGNMENT statements (205) of a PLAN re- 
quest  conversions as  data  are copied from a 
source  variable  to  a  target  variable.  The  conver- 
sions allowed by ADL are defined by  a  matrix of 
conversions from one ADL type to  other ADL 
types. In addition to  scalar  type  conversions, ADL 

includes powerful conversions of constructor 
types  that  greatly simplify the writing of conver- 
sion plans. In fact, default plans  are defined for 
most file data  conversions, so that  programmers 
need only  be  concerned with describing the  data 
in files, and  not with writing ADL plans. 

An ADL  PLAN can also CALL (206 in Figure 8) 
other  programs and pass and receive  parameter 
values.  These  programs  can  be called for several 
reasons. One reason is to perform conversions 
not  otherwise  supported  by ADL. Another  reason 
is to allow an ADL PLAN to  act  as  a glue program 
between  otherwise incompatible programs, as 
shown in Figure 8. A third reason is to allow an 
ADL PLAN to perform conversions as part of a 
larger function,  such as a  remote  procedure call. 
All ADL  PLANS and all programs called by ADL 
PLANS conform to  the program calling conven- 
tions  established by  the SAA AD/Cycle Common 
Execution  Environment. 

The  scalar  data  types  supported by ADL are listed 
in Table 1. 

Attributes of each  type specify metadata  that  de- 
scribe how an  instance of a  type is represented 
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and  used. For  the BINARY scalar  type,  for  exam- 
ple, the following attributes  can  be specified: PRE- 
CISION, SCALE, RADIX, SIGNED, COMPLEX, CON- 
STRAINED, LENGTH, BYTRVS, FIT, TITLE, HELP, 
and NOTE. Some of these  attributes,  such as TITLE 
and HELP, can  be  optionally specified, but  a  value 
must  be specified for other  attributes in a  data 
declaration  statement  or  through  inheritance 
from  a SUBTYPE statement  or a DEFAULT state- 
ment. 

The  constructor  data  types  supported  by ADL are 
the following: 

ARRAY-a unidimensional or multidimensional 
collection of elements. The bounds of each di- 
mension can be specified by a low bound  and 
either  a high bound or size.  Declaration  trans- 
lators  can  map  between programming lan- 
guages that  specify  array  bounds in either  way. 
The  bounds  can  be any signed integer as long as 
the low bound is less  than  the high bound.  Fur- 
ther,  the  bounds of each dimension can  be  spec- 
ified by integers,  constants,  or  by  reference  to 
other integer fields passed in a  record or  as pa- 
rameters. 

The  elements of an ARRAY can be of any  scalar 
or  constructor  type  or  subtype  except ARRAY. 
ADL requires  arrays of arrays  to  be described as 
a single multidimensional array,  which is easily 
accomplished by  the  declaration  translators of 
languages that  do  not  support multidimensional 
arrays  directly  (such  as COBOL). 

When an  array  is assigned to another  array,  the 
number of dimensions  and  the  number of ele- 
ments in each dimension must  conform in the 
source  (exported)  and  target (importing) arrays 
named in the assignment statement. Dimen- 
sionality  is  preserved  because  each dimension 
has  semantic meaning to applications.  How- 
ever,  the  index  values  associated with each di- 
mension for  each  element of the  array  are  not 
preserved if the low bounds of a  dimension dif- 
fer.  Some programming languages allow nega- 
tive low bounds,  whereas  others  require  the low 
bound  to be 0 or 1. The ADL goal of data  inter- 
change  takes  precedence  over  preservation of 
dimension cardinality. 

CASE-a declaration of a multiformat data  ele- 
ment,  for  example,  when  the  records of a file 
can  be of several  formats. A CASE declaration 
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consists of a  set of WHEN statements and an 
optional OTHERWISE statement.  The  predicate 
expressions of the WHEN statements  are  eval- 
uated in the  order specified until one  evaluates 
to  true.  The  data  declaration  associated  with 
that WHEN statement is then  selected. If no 
WHEN statement  evaluates  true,  the  data  dec- 
laration of the  optional OTHERWISE statement is 
selected. 

For files, it is  expected  that  predicate  expres- 
sions will be  used to evaluate discriminator 
fields within the  records  to determine  their  for- 
mat. But in other  cases,  the  discriminator  can 
be  passed  to  the PLAN as a  separate  parameter; 
for example,  when  converting  the  messages of 
a  mapped  conversation,  the  map name can  be 
passed  to  the PLAN as a  parameter. 

The  selected  data  declaration of a WHEN state- 
ment  can  be of any scalar  or  constructor  type  or 
subtype. 

When a CASE is assigned to  another CASE, the 
WHEN clauses of the  source  are first evaluated 
to identify the  source format. The  data  decla- 
ration of the  target WHEN statement  with  a 
matching identifier is then  selected as  the  target 
format. If the assignment statement  completes 
successfully,  the  predicate  expressions of the 
selected  target WHEN statements  are  evaluated 
to  ensure  that  the  target  format is valid for its 
discriminators. 

SEQUENCE-an ordered  collection of data 
items, each with its own declaration.  The ele- 
ments of a SEQUENCE can  be of any  scalar or 
constructor  type  or  subtype. 

When a SEQUENCE is assigned to  another 
SEQUENCE, the identifier of each  declaration of 
the  target  sequence is matched  to  the identifiers 
of the  source  sequence. When a  match is found, 
the  corresponding  source  declaration is se- 
lected  for assignment to  the target. The target 
can be  a  subset of the  source, and the  data  items 
of the  target  sequence  can  be in a different order 
than  those of the  source  sequence. 

The ability to declare  constructors  whose ele- 
ments  are  constructors is a powerful feature of 
ADL. This ability allows, for  example,  the  decla- 
ration of ARRAYs Of SEQUENCES, SEQUENCES Of 
SEQUENCES, one or more CASES or ARRAYs within 
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a SEQUENCE, or ARRAYS of CASES. For example, 
it is possible to describe  an  array in which the 
format of each element is unique. 

ADL annotation of programming  languages. Al- 
though ADL text  can  be  written to fully describe 
data  exported by the SAA programming languages 
(PLs), a DD&C objective is to  use  existing  descrip- 
tions specified in the  syntax of the SAA PLS to  the 
extent possible. In  many  cases, PL text  provides 
sufficient information to allow an ADL description 

ADL annotation of programming 
language text provides additional 
information for data that will be 

exported or imported. 

be  produced  without  any  further  consideration by 
programmers.  However, additional information 
is sometimes  required,  especially if data  are  to  be 
exported to  other PLS or imported from other PLS. 
Although it would be  desirable  to  enhance  the PLS 
so that  the additional information could be  spec- 
ified natively in each PL, this  expectation is not 
realistic, given the rigidity of language standards. 
Instead,  this information can  be  provided as ADL 
annotation  to PL text. 

A general model of ADL annotation of PL text  was 
designed by the  developers of the  declaration 
translators  for  the SAA PLS. Seeing common  prob- 
lems  across  the PLS led them  to  generalizations 
about  what  kinds of annotation  are  required  and 
how they  can  be  incorporated in PL text. A de- 
scription of the general annotation model is be- 
yond  the  scope of this  paper,  but  some  examples 
of its  use will illustrate its power. 

In general, ADL annotation  consists of special 
comments intermixed with  standard PL text  to 
provide additional information about  data.  The 
first nonblank symbol after the opening comment 
symbol of the PL comment  is  the  symbol "ADL." 
Following this  symbol is text  consisting of ADL 
statements  or segments of ADL statements.  This 
ADL annotation  can  be  intermixed  with PL text in 
whatever  way is considered optimal by  the  dec- 
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laration  translator  designers  for  each PL. Some 
simple examples of ADL annotation  are  the fol- 
lowing: 

ADL includes certain optional attributes that af- 
fect neither the representation nor the conversion 
of data. Examples are TITLE, HELP, or NOTE. 
They only provide programmer or application 
commentary. These attributes can be specified  in 
ADL annotation of mvariable declarations. In  the 
following PL/I text, the ADL TITLE attribute is 
specified as  an ADL annotation comment within a 
PL/I declaration statement. 

DCL  num 
/* ADL TITLE('Emp1oyee s e r i a l   n u m b e r ' ) * /  
F I X E D  BINARY (31) ; 

PWI compilers ignore the  comment,  but  a PL/I 
declaration  translator  uses it to  add  the  speci- 
fied TITLE attribute to its ADL declaration of 
num: 

num: BINARY PRECISION(31)  TITLE('Emp1oyee 
s e r i  a1 number') ; 

A declaration  translator  generate  function  re- 
verses this  process, making the TITLE attribute 
an ADL annotation  comment. 

ADL annotations  are also used when  a PL dec- 
laration  can be mapped  to ADL in more  than one 
way,  depending  on  the programmer's intended 
use. For example,  a C char  declaration would 
normally be mapped by a C declaration  trans- 
lator  to  the ADL CHARSFX (character with a suf- 
fix) data  type,  but  the C language also allows a 
char  variable to  be used as an integer. If it is  the 
programmer's intent to actually  treat it as  an 
integer, the following ADL annotation  can indi- 
cate it is being used as a single byte signed bi- 
nary  count field: 

signed  char  checked-out-books 
/* ADL BINARY; */; 

The C declaration  translator, being familiar 
with the  peculiarities of the C language, is then 
able to  create  the following ADL: 

checked-out-books : BINARY PRECISION(7) 
SIGNED(TRUE) ; 
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Complex  numbers  are  important  for scientific 
applications  but  are  not  supported by commer- 
cial programming languages, such as COBOL. If 
it is necessary  to import  a  complex  number  into 
a COBOL program, the real  and imaginary por- 
tions of the complex  number  must  be  declared 
as  separate  variables  within  a  containing COBOL 
structure,  as in: 

*ADL  D-06:   COMPLEX(TRUE) ; 
15 D-06. 

20 R E A L   P I C  S99V99 COMP-4. 
20 I M A G I N A R Y   P I C  S99V99 COMP-4. 

An ADL annotation  comment  precedes  the 
COBOL structure  declaration  to  specify  that  the 
structure  is really just a single complex  number. 
The COBOL declaration  translator, being famil- 
iar  with  this  convention, is able to  create  the 
following ADL that allows correct ADL conver- 
sion  programs to  be  constructed: 

D-86:   B INARY  COMPLEX(TRUE)   LENGTH(16)  
P R E C I S I O N ( 4 )   S C A L E ( 2 )   R A D I X ( 1 0 ) ;  

The  concurrent design of ADL and of the SAA dec- 
laration  translators allowed many  such  consider- 
ations to  be discussed  and  appropriate  changes 
made  to  both ADL and  the  declaration  translators. 
Consideration was given to all three  declaration 
translator  functions  (parse,  generate,  and  trans- 
late). 

Services layer. The  services  layer is concerned 
with  the  services  that  must  be  provided  when im- 
plementing DD&C architecture. 

Interactive data description. One of the objec- 
tives of DD&C architecture is to make it as painless 
as possible for programmers to describe  data  for 
ADL conversion  programs. As previously dis- 
cussed, having programmers manually write ADL 
data  declarations would not be acceptable to 
them.  Instead, DD&C architecture defines tools 
called declaration  translators  that allow them  to 
use existing PL data  declarations.  But  to  be used 
properly,  these  tools  should be used within  the 
context of a  computer-aided  software engineering 
(CASE) environment  that  knows how PL data  dec- 
larations  are  stored, how to  use  declaration  trans- 
lator  functions,  and how to relate ADL declara- 
tions to  various interchange  mechanisms,  such as 
files or program calls. 

506 DEMERS AND YAMAGUCHI 

Relating DD&C services  to CASE environments is 
properly  the  task of CASE vendors  and is outside 
the  scope of DD&C architecture. 

Declaration translators. As was described  earlier 
in the  introductory  section,  associated  with  each 
representation domain is  the  software  component 
called a  declaration  translator.  It  understands  the 
following things about  its  representation domain: 

The  syntax used by programmers for describing 

The  data  types  supported  by  the PL 
The  attributes of the PL used to qualify the  data 

The  representations  used  by  the compiler for 

The  method used by the compiler for aligning 

The  methods used by  the compiler for mapping 

data in the PL of that domain 

types 

each  data  type 

data in memory 

constructor  types  to  memory 

Declaration  translators  provide  programmers 
with the following three  functions  for using PL 
data  descriptions: 

1. PARSE-parses a PL data  description to  pro- 
duce  an ADL data  description.  This  function 
fills  in the  details of the encodings used by the 
representation domain for  each of the  data 
types of the PL. 

The  result of PARSE is  an  encoded form of ADL. 
An ADL declaration  translator allows program- 
mers  to describe  data in ADL itself. This  ca- 
pability is provided for PLS for  which no dec- 
laration  translator  is  otherwise  provided. 

2. GENERATE-generates PL text from an ADL 
data  description.  This  function  produces PL 
data  descriptions  that  can  be included in pro- 
grams,  thereby facilitating program develop- 
ment. ADL annotation  is included as  required 
to allow a  subsequent  invocation of the PARSE 
function of the  representation domain. 

The  input  to GENERATE is an  encoded form of 
ADL. The GENERATE of the ADL declaration 
translator  can  be  used to produce ADL text  for 
any  representation domain, a  valuable debug- 
ging aid. 

3. TRANSLATE-translates the ADL description Of 
data originally created for any  other  represen- 
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tation domain to produce an ADL description 
of data  suitable for its own representation  do- 
main. This  function helps programmers  to 
make  productive  use of data  exported by  other 
representation  domains by examining the  en- 
coding details of the  other  representation  do- 
main and filling  in the encoding details of the 
target  representation domain. The input and 
output of TRANSLATE are  an  encoded form of 
ADL. 

Referring to  the ADL declarations in Figure 3, 
the  translation performed by  the OS/2 C dec- 
laration  translator on the ADL data  declaration 
for MVS COBOL is the following: 

The  declaration of RECORD as a SEQUENCE is 
copied  because  this is identical to  the ADL 
used to describe C structures. 
A declaration of character data for os12 C data 
differs from that of MVS COBOL in both data 
type and attributes. Since C character strings 
are typically null-terminated, INITIALS must 
be described in ADL as  an ADL CHARSFX data 
type. MAXLEN(4) is specified to allow for the 
null-terminator byte plus the three bytes of 
character data. MAXALC(TRUE) is  specified 
because the CHARSFX field does not need to 
vary in  length. And ccsID(850) is specified be- 
cause 0s/2 C character data are ASCII-encoded. 
The  SKIP(^) specification of the ADL decla- 
ration for MVS COBOL is ignored because  the 
os12 C declaration  does  not  require pad bits 
to  force alignment of the NUMBER field. 
The  declaration of NUMBER is copied,  but 
the BYTRVS attribute is changed to TRUE to 
reflect how short  integers  are  encoded by 
os12 c. 

Declaration  translator  transformations, plus ad- 
ditional editing of programming language text, 
provide  great flexibility. By using ADL and an ap- 
propriate set of declaration  translators,  interlan- 
guage communications  between  programmers 
and  between  tools, as well as conversions of data 
between  native  representations,  become  rela- 
tively easy.  Programmers  can  use  their normal 
languages and tools. They have to learn how to 
annotate PL descriptions  with ADL, but it is only 
a small difference from their existing PL knowl- 
edge base. 

The following interfaces  for  requesting  declara- 
tion translator  functions  have also been defined: 
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List  declaration  translators 
List  declaration  translator  attributes 
Parse PL source  text file 
Generate PL source  text file 
Translate  descriptor 

As a final point regarding declaration  translators, 
we believe that  they  should  be implemented in a 
highly portable  fashion so that  they  can  be used 
wherever application programming is done. It 
would make little sense  to  separately implement 
each  declaration  translator for individual systems 
because of the  cost and because of the inevitable 
inconsistencies  that would result.  Further,  we  ex- 
pect  a  great deal of sharing of internal  compo- 
nents  and logic among declaration  translators. Al- 
though there  must  be  a  separate  declaration 
translator  for  each COBOL representation domain, 
for example, clearly  there is much in common 
among all COBOL declaration  translators. For 
both of these reasons-portability and common- 
ality of components-an object-oriented design 
with a  common  class  library would make  sense 
for  declaration  translator implementations. 

Object-oriented encoding of ADL. The  syntax of 
ADL was designed for human reading and writing. It 
consists of free-format textual tokens that must 
obey  the rules of ADL grammar while giving pro- 
grammers considerable freedom of expression. As 
with other programming  languages, ADL trades off 
processing efficiency for programmer ease of use. 

The obvious  solution to this conflict is to  process 
ADL text  and  generate  an  encoded form of the 
language that  is  more  suitable for storing,  pro- 
cessing, and  transmission. In fact,  this step  is of- 
ten first in the compilation process  for  many  pro- 
gramming languages. For ADL, however,  the 
encoded form is not  just  an  internal form of the 
language, being of no concern  outside of each im- 
plementation.  The  encoded form of ADL is the 
primary  means of communication among a  set of 
software engineering tools residing on one  or 
more  heterogeneous  systems. Among these  tools 
are  the ADL compiler (as  shown in Figure 4) and 
declaration  translators. 

The design requirements for the ADL encodings 
were  the following: 

Isomorphism with ADL. The  encodings of ADL 
are  just  another form of the language. Anything 
that  can be expressed in ADL can  be  expressed 
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in its  encodings,  and all relationships specified 
in ADL are maintained in the encodings. This led 
to  the  adoption of object-oriented  technology in 
the encodings. The  objects of the  encodings  are 
instances of classes  that model each  aspect of 
the language. For example,  instances of the 
ADLBINARY class  represent  descriptions of var- 
iables of the ADL BINARY data  type. 
Processing efficiency. The ADL encodings  are 
directly  processable,  without  any  need  for  pars- 
ing or  other  forms of analysis. Any  indirection 
allowed by ADL, such  as named references to 
variables, are fully resolved in the ADL encod- 
ings. Optimization information that  can  be in- 
ferred  from ADL, such  as field lengths  and off- 
sets,  is explicitly encoded. 
Extendability. ADL covers a large number of 
representation  domains,  but  many additional 
languages and  systems  exist  that  were  not  con- 
sidered in the initial design of ADL. Further, 
ADL was designed to  meet  only the require- 
ments of IBM SAA Distributed  File Management. 
It is anticipated  that  additional  data  types,  at- 
tributes,  and  features will be required in ADL as 
additional representation  domains  and  areas of 
application are considered.  Therefore,  the 
method of encoding ADL also allows for exten- 
sions in all of the  directions in which ADL is 
likely to  be  extended.  This  requirement effec- 
tively rules out control-block  forms of encoding 
and  points  to  the  use of linked-object struc- 
tures. 
Transmission efficiency. The efficiency with 
which a  data  structure  can  be  transmitted  be- 
tween  systems is affected by its  size  and  by  the 
transformations  required to linearize it as a  data 
stream. Most ADL descriptions  are  relatively 
small, so size was not  considered  an  important 
factor.  The  primary  concern,  here, was  the  de- 
sign of a  data  stream  architecture  that linearized 
the  linked-object  structure  selected  for ADL en- 
codings. ADL encoding objects  are  created 
within a single space-type  object,  with all rela- 
tionships among them specified by offsets from 
the beginning of the  space.  In  this  way,  the  en- 
tire  space  can  be  transmitted and received  with- 
out  any  further  processing of its  contents  by  the 
sender  or  the receiver. 
Malleability. Various  aspects of an ADL data 
description  are  subject to change  over time, in- 
cluding when  a  description  is initially being cre- 
ated  and  when it is  subsequently modified as 
application  requirements  change. To allow this 
level of malleability, it must  be  possible to add, 

508 DEMERS AND YAMAGUCHI 

delete,  and modify the  objects of the  space  that 
encode an ADL description. All objects of the 
encoding (except  for  an  anchor  object)  are in- 
dependent of their location in the  space. 
Integrity. As changes  are  made to an ADL de- 
scription,  errors  introduced by failing tools  be- 
come  a possibility. These  errors  can  be  avoided 
by allowing only  proven tools, invoked through 
well-defined interfaces, to  make changes. En- 
capsulation  can  be  enforced for the  space  con- 
taining the  description and for  each  class of ob- 
ject  contained  within  the  space.  It  further 
justifies the use of object-oriented programming 
techniques in the encoding of ADL. 
Storage efficiency. As with transmission effi- 
ciency,  the  size of a  data  structure is only one 
aspect of storage efficiency. In  a paged memory 
environment, locality of reference is of great 
importance.  That is, objects  that  are  frequently 
used  together  (especially small objects)  should 
be in close proximity in the  space,  whereas 
large, infrequently used objects should be 
stored  where  they  do  not  interfere  with normal 
reference  patterns. The location independence 
of objects in a  space is the prime requirement 
for  this rule. 

The  encoded  forms of ADL are specified and con- 
trolled through formal architecture specifications 
that  can be published and thereby  made available 
to  the developers of CASE tools. 

The ADL compiler. An ADL compiler consists of 
two  components,  a  parser  capable of converting 
ADL source  text  into  encoded  objects  and  a  pro- 
gram generator  that  creates  conversion  programs 
for  each specified plan of a module. Unlike most 
other  compilers,  these DD&C architecture com- 
ponents  are  separate.  The ADL parser is actually 
the  parse  function of an ADL declaration  transla- 
tor,  and  what is called the ADL compiler is  actu- 
ally just  the program generator.  This division 
makes  sense in DD&C architecture  for  several  rea- 
sons: 

A full ADL declaration  translator was needed 
anyway  to  support representation  domains 
without their own declaration  translators. 
Any  number of declaration  translators  can  be 
created  that  produce  the  object  encoding Of ADL 
as  the  output of their  parse  function. 
It  is  possible  for  other CASE tools to generate or 
use the information in the  object  encodings of 
ADL. 
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The object encodings of ADL for files are  stored 
with  the files and  can  be  used in multiple ADL 
modules. 
In  Distributed File Management, it is occasion- 
ally necessary to regenerate  conversion  pro- 
grams on  the fly, so it is desirable  to avoid the 
parse  phases. 

As with declaration  translators, it is likely that 
ADL compilers will be  needed  on  many different 
types of systems, and the  programs  produced by 
them  must  convert  data identically on all systems. 
These  are  strong  arguments  for  the  development 
of a single highly portable compiler. And since  the 
inputs  to  the compiler consist of encoded  objects, 
an  object-oriented compiler design would also be 
appropriate. 

Conversion programs. The  output of the ADL 
compiler is a program that  can  be called to  per- 
form data  conversions.  Consideration was given 
to both  interpreted  programs and directly  execut- 
able programs. Initially, interpreted  programs 
were  favored  because  they could be easily trans- 
mitted  between Distributed File Management 
systems. The system  best able to perform con- 
versions could then be dynamically selected  to  do 
them.  However, this method  was  rejected  be- 
cause it led to considerable  complexity in the Dis- 
tributed  Data Management (DDM) architecture12 
flows defined for Distributed File Management, 
because  the  dynamic  selection of the  conversion 
system  proved  less  important  than initially 
thought,  and  because  the  performance of inter- 
preted  programs is generally inferior to that of 
directly  executed  code. 

Further,  we believe that it is  important  for ADL 
compilers  to  generate as much in-line conversion 
logic as possible. Run-time subroutines will be 
used for many  conversions, especially complex 
numeric  conversions  and CDRA character  conver- 
sions,  but in general, in-line logic should be used 
because it allows more optimization to  be done. 
This is especially  true  for  predicate logic, for the 
conversions of constructors,  and for simple scalar 
conversions. 

Data interchange layer. The  data  interchange 
layer is a  conceptual  layer,  concerned  with how 
application programs  are  developed  for  inter- 
change  and how ADL conversion  programs  are 
created and invoked. The Distributed  File Man- 
agement answers  to  these  questions for record- 
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oriented files are  discussed,  but similar consider- 
ations apply to  other interchange mechanisms. 

The following two  subsections  describe how file 
access DD&C is used by SAA Distributed File Man- 

It  is important for ADL compilers 
to generate  in-line conversion 
logic  because it  allows  more 

optimization to be done. 

agement for the  record-oriented files. For  more 
information on SAA Distributed  File Manage- 
ment, see Reference 13. 

File data description. Record-oriented file sys- 
tems evolved as repositories of data  produced  and 
used by programs  written in a  variety of program- 
ming languages. Each programming language in- 
cludes  interfaces for reading, writing, and updat- 
ing records. When matching  interfaces  are  used, 
the  records  written  to  a file by  one program can 
be  read by another  program of the  same language. 
These  interfaces  consist of programming lan- 
guage statements for accessing  records,  such as 
READ and WRITE statements, and statements  for 
describing the  data  contained in the  records. 

The  declaration  statements  can  be specified 
within the  source  text of a program, but  for im- 
portant files, they  are  often  stored in a  library  and 
dynamically included in the program by the  pro- 
gramming language compiler. This  method  en- 
sures  that all programs  that include the  declara- 
tion statements  share  a common definition of the 
records of the file. However, it is not  a  complete 
solution.  First, it works  only for programs of a 
single programming language. Second, if any 
change  is  made  to the  stored  data  declarations  for 
any  one  program, all programs  that include it 
must be recompiled. Without adequate  support 
tools, it can  be difficult to  determine which pro- 
grams need to  be recompiled, especially  when the 
file is accessed by programs  on  remote  systems. 
Third,  there  is no managed relationship between 
the  data  declarations  and  the file they  describe. 
Even if all  of the  programs  that  access  a file in- 
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cluded  the  same  data  declarations, nothing guar- 
antees  that  the file actually  matches  those  de- 
scriptions. 

These  problems  are  solved by the  System/38  and 
its  successor,  the ASI400, for  their  common lan- 
guage environment.  Language-independent, ex- 
ternal data  descriptions, called data  description 
specifications (described  earlier in this  paper),  are 
created by programmers during application  de- 
velopment.  These  descriptions  are  stored with a 
file when the file is created.  Compilers  can  re- 
quest  these  descriptions  from  a file and  generate 
appropriate  data  declarations within programs 
that  access  the file. 

Another  concept of the AS/400 pertinent to DD&C 
is  that of logical files. A logical file is one  that 
contains no  records of its  own,  but  instead  pro- 
vides an alternate  view of the  data in aphysical 
file. In  the alternate  view,  the  format of the rec- 
ords,  their  representation, or their  order  can differ 
from those of the  base  physical file. If a  program 
needs  the  data  view  or  access  path defined by  the 
logical file, it opens  the logical file. Any  opera- 
tions  requested  on logical file records  are  actually 
performed  on  the  base  physical file. 

VIEWfiles are  the  means  by which ADL conversion 
programs  are managed and used for files. A view 
file is similar to  an ASI400 logical file  in that  a  pro- 
gram opens  a  view file when it needs  data  con- 
version  services  to  use  a  base file. Conversion 
programs  produced by the ADL compiler are 
stored with the  view file and called as needed  to 
convert  records. View files can  be managed the 
same  as  any  other files  in a file system with regard 
to naming, directory  services,  security,  and  lock- 
ing. 

These  concepts of view files and of language-in- 
dependent  data  descriptions  stored with files are 
central to  the DD&C approach  to file data  inter- 
change.  This  approach is illustrated by Figure 9, 
with  the following steps  keyed  to  that figure. Note 
that  these  steps  are  assumed  to  occur within the 
context of CASE tools  that guide and aid program- 
mers in performing them. 

1. When a file is created,  an ADL description of 
its  records  can  be specified as an  attribute of 
the file. This  description  is specified in terms 
of the  representation domain of the primary 
set of programs  that will work  with the file, 
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MVS COBOL in this example. The COBOL dec- 
laration of the  records is obtained from a li- 
brary of program source  text  and  passed  to 
the  parse  function of the MVS COBOL decla- 
ration  translator. 

2. The resulting ADL description is passed to  the 
create file function of the file system  to  be 
stored  as an attribute of the file. 

3. When it is time to compile a program of the 
same  representation domain as  the file (an 
MVS COBOL program),  the ADL description 
stored with the file is requested  and  passed to 
the  generate  function of the MVS COBOL dec- 
laration  translator. 

4. The resulting COBOL declarations  can  then  be 
included in the COBOL program  and  com- 
piled. Although it would be  possible  to  use 
the original COBOL declarations from the 
source  text  library, it is  better  to  use  the  dec- 
larations  generated  from  the ADL description 
of the file. The  source  library  declarations 
could  have  been changed and  therefore  be  out 
of synchronization  with  the file. 

5.  When it is time to compile a program from a 
different representation domain (an os12 C 
program in this  example),  the ADL declara- 
tion stored  with  the file can be used to  create 
appropriate  declarations  for  the new pro- 
gram. The ADL declaration of the file is 
passed  to  the  translate function of the os12 C 
declaration  translator. 

6. The resulting ADL declarations  can  then  be 
passed to  the generate  function of the OW C 
declaration  translator to produce  C  declara- 
tions. 

7. The C  declarations  can be edited by a  pro- 
grammer  as  needed for the program being de- 
veloped. For example,  the  programmer could 
reverse  the  order of the NUMBER and INI- 
TIALS fields, change  the  declaration of the 
NUMBER field from short integer to  integer, 
change the CCSID (in the ADL annotation) of 
the INITIALS field, delete one of the field dec- 
larations, or  add WHEN clauses  to field dec- 
larations  (as ADL annotation) to select  the 
records of the file to  be processed by  the os12 
C program. Although this  example  is very 
simple,  a  variety of changes would be  possi- 
ble in more  complex  cases to allow the  new 
program to  work with  the  data as it requires. 
However,  the  fewer  changes  made from the 
declaration  produced  by  the  translate  func- 
tion of the  declaration  translator,  the  easier it 
is  to  keep  data  declarations  up  to  date  with 
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Figure 9 Application  development  process 
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the original COBOL declaration of the  records 
of the file. 

8. The  edited C declarations  can  then be in- 
cluded in a  new C program  and compiled. 

9. The  edited C declaration  can  also be passed 
to  the  parse function of the os12 C declaration 
translator  to  produce  an  updated ADL de- 
scription of the program’s view of the data. 

10. The final task is to  create  a  view file that  can 
be  used by  the ow2 C program  to  access  the 
records in the MVS COBOL file. The ADL dec- 
laration  stored  with  the MVS COBOL file and 
the  new ADL declaration for the ow2 C pro- 
gram’s view of the  records of the file are  both 
passed to  the  create  view function of the file 
system. Default ADL PLANS for converting 
records  read from the file (similar to  the Get- 
Plan in Figure 7) and  for  converting  records 
written  to  the file (similar to  the  PutPlan in 
Figure 7) are provided by  the file system. 

11. The ADL compiler is called by the  create  view 
function and passed  the ADL declarations  and 
plans. 

12. The resulting GetPlan  and  PutPlan  conver- 
sion programs are  stored  with  the  new  view 
file for  later  use during data  access. 

13. The ADL description of the OS/2 C view is 
stored  as  an  attribute of the  view file so that 
it can  be  used by  other 0s/2 C programs  (via 
step 3, above). 

File data conversion. Figure 10 shows how data 
are  converted by ADL conversion  programs as 
records  are  accessed  through  a  view file with the 
following steps keyed to  the figure. 

1. When a program opens a file by name, the file 
system  creates  a  bound  path  to  the file that  its 
access  method  services  can  use  to efficiently 
work  with  the  records of the file. Since  an MVS 
COBOL program is  opening  a file that  is  also in 
the MVS COBOL representation  domain,  there 
is no  need  for  conversion  services. 

2. The MVS COBOL program  can assign values  to 
the fields of RECORD in its  process  memory  and 
then  use  the COBOL WRITE statement  to call 
access  method  write  services to add  the  record 
to  the file. Note  that  the  record  is  written  to  the 
file essentially as it was mapped to  process 
memory by  the MVS COBOL compiler. 

3. When a program opens a  view file by name,  the 
file system  creates  a  bound  path  through  the 
view file to  its  base file. Since  an 0s/2 C pro- 
gram needs  to  access an MVS COBOL file, a 
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view file must  be  opened to provide  the  nec- 
essary  conversion  services. 

4. When the 0s/2 C program reads  records from 
the view file, the  access  method  read  service 
obtains  the  record  from  the  base file and calls 
the  GetPlan of the  view file. 

5. The  GetPlan  converts  the  record to the  form 
required by  the 0s/2 C program. The  converted 
record is returned to  the  access method  and is 
then  presented  to  the 0s/2 C program. 

6. When  the ow2 C program  writes  a  record  to the 
view file, the  access  method  write  service  calls 
the  PutPlan of the  view file. 

7. The  PutPlan  converts  the  record to  the form 
required by  the MVS COBOL base file and re- 
turns it to  the  access method. 

8. The  access  method  writes  the  converted 
record to  the  base file. 

Program call DD&C. Although DD&C architec- 
ture  has  been designed for  data  interchange 
through files, the  need  for  data  conversion  sup- 
port  when using other  data  interchange  mecha- 
nisms is readily apparent.  Without going to  the 
depths of explanation  provided for files, the ap- 
plication of DD&C to program calls is illustrated in 
Figure 8. An ADL conversion  program is used as 
an  intermediary  when  a program of one  represen- 
tation domain (OSD COBOL) calls  a program of a 
different representation domain (OSD C ) .  

The ADL module consists of the following: 

The first DECLARE statement  describes  the  var- 
iables of the 0s/2 COBOL program being passed 
as arguments to  the 0s/2 C program. 
The  second DECLARE statement  describes  the 
variables of the 0s/2 C program  that  are defined 
as  its  parameters. 
The PLAN statement, named glueplan,  must  be 
called by PGMA, instead of PGMB. The input pa- 
rameter, INITIALS, is converted to  the repre- 
sentation  required by PGMB, and  space is allo- 
cated  for  the  output argument returned by 

ing  it the  converted INITIALS argument and  the 
address of the  space  for  the  returned NUMBER 
argument. On return from PGMB, the  value of 
NUMBER returned is converted to  the  represen- 
tation  required by PGMA, and  the glueplan ter- 
minates. If PGMB had failed, any exceptions 
would have  been  forwarded to PGMA from 
PGMB. 

PGMB, NUMBER. The glueplan calls PGMB, pass- 
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The primary issues to be resolved are  the kinds of 
programming issues  discussed for files in the  sub- 
section  “File  Data Description,’’ namely how the 
declarations of interfaces  are to be  stored,  trans- 
lated, and managed. These  issues  are  best  con- 
sidered within the  context of a CASE system. As 
with files, considerable benefit can  be derived 
from declaration translator  parse,  generate, and 
translate functions. 

The concept  shown in this example can  be easily 
extended to interlanguage remote  procedure 
calls. 

Concluding  remarks 

Within its initial scope of the SAA languages and 
systems, DD&C architecture  enhances  the  inter- 
change of data  stored in record-oriented files. In 
the design of DD&C architecture,  equal  consider- 
ation was given to the problems of describing data 
and of converting  the  data. Initially designed for 
record-oriented files, DD&C architecture  can  also 
be applied to other  areas of data interchange. 
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