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IBM’s  Distributed  Data  Management  (DDM) 
architecture is an element of Systems  Application 
Architecturem  that  defines an open  environment 
for sharing data in files  and  relational  databases. 
DDM  is  a  key  element  of  IBM’s  Distributed 
Relational  Database  Architecture.  DDM 
architecture  enables  programs to access  and 
manage  data  stored  on  remote  systems.  It  is  a 
framework for a  wide  range  of  additional 
application  services.  Influenced by the concepts 
of object-oriented  technology,  DDM  architecture 
is  designed to be  object-oriented.  This  paper 
examines  DDM  architecture  from  a  number of 
viewpoints,  considering  why  and  how it was 
created,  what  it  is,  and  how it has  evolved. 

S ystems Application Architecture* (SAA*) de- 
fines a  consistent  set of application  services 

that  span IBM system  platforms from personal 
computers  to large systems,  thereby making ap- 
plication services  a unifying force  for  the  future. 
Distributed application services  are  provided  by 
SAA Common Communications  Support (CCS). 
These SAA elements deal with how systems  work 
together to provide  services  to  applications dis- 
tributed  throughout  a  network. For  the  most  part, 
these ccs services  are  not  seen by the  user.  Soft- 
ware  products  that  companies install provide  the 
interfaces employed by programmers to develop 
applications  that use ccs services. Knowing what 
is within these  products  enhances  an  understand- 
ing of how they  work  and how to  develop effec- 
tive  distributed applications. 

Two  key SAA app 
File Managemenl 

,lication services  are  Distributed 
t ’ and  Distributed Relational Da- 

tabase  Management.*  Both of these  services  are 
built to the specifications provided by IBM’s Dis- 
tributed  Data Management (DDM) architecture. 
DDM architecture  enables  programs  to  access  and 
manage data  stored on remote  systems in a cli- 
entherver relationship. 

This  paper is not  intended  to be a  tutorial on the 
technical  details of DDM architecture.  That level 
of information is available in documents  pub- 
lished on the  architecture  (particularly in Refer- 
ence 3). Rather it examines DDM architecture 
from a  number of points of view,  considering  why 
and how it was  created,  what it is  now, and how 
it has  evolved. The paper begins with a  discussion 
of the role of software architecture in general, and 
continues with a brief history of DDM architecture. 
Next, the role of object-orientation in making DDM 
architecture uniform  in style and  highly consistent 
in structure is presented. It is followed by  a 
presentation of the conceptual framework of the 
architecture in terms of formally  defined layers of 
objects, along with discussions of its key classes of 
objects. Concluding the paper are discussions of 
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product-unique extensions to DDM architecture and 
the relationship Of DDM architecture to international 
standards. 

The role of software architecture 

We begin by distinguishing a  software architec- 
ture from implementations of the  architecture. A 
software  architecture  is really just  a  set of spec- 
ifications, a  set of blueprints, for constructing 
products. As such,  a  software  architecture is not 
installed on  computer  systems.  Rather,  products 
based  on  a  software  architecture  are installed. 
What,  then, is the role of software  architecture in 
developing products? 

Consider,  for  example,  a  suspension bridge over 
a large river. The bridge is designed by  an archi- 
tectural firm to meet  the  requirements of its  own- 
ers and of its  users,  the driving public. It is then 
built by a  separate  construction  company. Only 
after being certified for use by independent build- 
ing inspectors  are people then allowed to drive 
over it. There  are  clear similarities between  this 
example  and designing, constructing, assuring, 
and delivering computer  software  products. 

An architectural firm is responsible  for designing 
the bridge so that it meets  the  needs of the  people 
who will own it and the  people  who will use it. For 
the  owners of the bridge, the  architects  must  con- 
sider  the  cost and schedule of its  construction,  the 
cost of its  operation, and its long-term mainte- 
nance  requirements. For  users of the bridge, they 
must  consider  the  structural integrity of the 
bridge, its  carrying  capacity,  its  relationship to its 
environment,  and  its  aesthetic appeal. All of these 
considerations  must  be reflected in the  blueprints 
produced by the  architects.  Software  architects 
have similar concerns  for  product  owners and 
users. A software design must  meet  the  needs of 
the  companies  that implement products  based on 
the design, and it must  meet  the  needs of the  users 
of those  products.  For large software  develop- 
ment  projects,  these  concerns  are  the  ones  that 
determine  the  success or failure of the  project. 
They  must  be given as much consideration as 
they would be given in designing a major highway 
bridge. 

A construction  company is bound by its  contract 
to build a bridge according  to  the  blueprints  pro- 
vided by  the  architects,  but real-world conditions 
can  require  changes.  In  these  cases,  the  architects 

460 DEMERS ET AL. 

are informed of the  problems  encountered  and 
make changes  to the blueprints. Often,  the  archi- 
tects  visit  the  construction  site to  see for them- 
selves how well their specifications are being re- 
alized and  sometimes  spot  troubles  before  the 
construction  crew is aware of them. The relation- 
ship between  the  architects  and  construction 
company is an  important  factor in the  success of 
the  project. So too, with software  architecture. 
The  architects  must  be  independent of the  pro- 
gramming team  but  have  a  close working rela- 
tionship with them. The design produced by  the 
software  architects  must be  seen  as  the  essence of 
the implementation contract,  but it must  also  be 
open  to change as real-world problems  are  de- 
tected. 

Building inspectors  also  study  the  blueprints,  not 
to build a bridge themselves,  but  to  ensure  that 
the bridge is actually built according to the  spec- 
ifications. They  test  the  quality of materials  and 
construction as  the bridge is being built so that 
they  can  certify it meets  the  requirements of the 
blueprints.  In  software  development,  this role is 
often played by a  systems  assurance  or  quality 
assurance  team.  But  for  the role to  be played ef- 
fectively,  the  assurance  team  must  measure an 
implementation against up-to-date specifications 
that  clearly define what  was  supposed  to  be built. 

Finally, the bridge is opened to traffic, and the 
driving public decides  whether it meets  their 
needs, namely, getting across  the river in a  safe, 
timely, cost-effective manner. Similarly, a  soft- 
ware  product  must fulfill the  needs of its  users. 

After thousands of years of experience in con- 
structing bridges, buildings, and other large, com- 
plex  structures,  this  process  has  been formalized 
in both building codes  and legal practices.  Clear 
divisions of responsibility among independent  ex- 
perts  are carefully observed. We are only now 
beginning to understand  that  this  process  applies 
equally well to software  projects, especially for 
large projects. In particular, we  are slowly learn- 
ing that  software  architecture  requires  a different 
skill than programming and should  be  done by 
people  other  than  programmers. 

The history of DDM architecture 

What we call DDM architecture is actually  an 
evolving set of specifications for distributed  ap- 
plication services. The  story of DDM architecture 
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begins in the mid-1970s when IBM’s Systems  Net- 
work  Architecture (SNA) logical unit (LU) 6.24 
was being designed. An important  feature of 
LU 6.2 is that it is possible  for  a  program  on one 
system  to  create a  conversation  with  a  program 
on  another  system and pass it parameters (effec- 
tively, a  remote  procedure  call),  then  interchange 

DDM architecture is  actually 
an evolving  set of 

specifications for distributed 
application services. 

messages  with it. In addition to application pro- 
grams using LU 6.2, its  architects  saw  the possi- 
bility of requesting  system  services  and using the 
resources of remote  systems  with  this  mecha- 
nism. Indeed,  they  saw LU 6.2 as  the  foundation 
for  the  development of a  distributed  operating 
system,  with  access to remote files and  databases 
a  clear  priority. 

Work began on  an  architecture  that would use 
LU 6.2 capabilities to provide  distributed  data 
management  services,  and it was  thus called DDM 
architecture. Two things quickly  became  obvi- 
ous.  First, the interfaces  and  capabilities of the 
data  management facilities of the participating 
IBM systems  were  quite  varied and would make 
the design of a  common  distributed  data manage- 
ment facility difficult, essentially being an  exer- 
cise in negotiation and standardization.  Second, 
there  was  no  strong demand for LU 6.2 services  on 
IBM large systems at that time because  other com- 
munications  services  were in wide use. As a  re- 
sult,  work on  the DDM architecture languished. 

However,  circumstances were somewhat differ- 
ent for the IBM Systed34 family of midrange com- 
puters. No large installed base of users  was already 
employing other communications services, and 
some  users  were beginning to install System/34s 
in multiples for  both  horizontal  growth  and to de- 
centralize  their processing. These  factors  made  a 
peer-to-peer  communications facility like LU 6.2 
desirable to System/34 users  and  made  access  to 
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data in remote System/34s crucial. From  the ini- 
tial work  that had been  done  on DDM architecture, 
a  product called System/34 Distributed  Data  File 
Facility (DDFF) was  created  and  was  announced 
in 1980. Because it was intended to communicate 
only  with  other System/34s, DDFF was able to by- 
pass  the  problems of nonstandard file interfaces 
and  prove  the  value of the fundamental idea of 
DDM architecture;  that is, it is useful to  be able to 
request  services  from  remote  systems as if they 
are local. 

The DDFF product was carried  forward to  the  suc- 
cessor of the System/34, the System/36*, in  1982. 
But in the  attempt  to do this  for  the System/38* 
family of computers,  the problem of data man- 
agement standardization again arose  because of 
the different data management interfaces and 
facilities of the Systed38. This time, however, 
the  people  interested in solving it were all part of 
the  same IBM programming laboratory, in IBM’s 
Rochester, Minnesota facility, responsible for the 
System/34, System/36, and System/38 families. A 
new architecture  group was formed in Rochester 
in  1983 to  work with  representatives of these  sys- 
tems  and to define the  syntax  and  semantics of 
DDM messages. The result was  Level 1 of DDM 
architecture,  which was announced  and  pub- 
lished in  1986. At the  same time, IBM announced 
DDM products  developed by  the  Rochester  labo- 
ratory  for  use with the IBM Personal  Computer 
Disk Operating  System (PC-DOS), System/36, Sys- 
tem/38, and  Customer  Information  Control Sys- 
tem/Multiple Virtual Storage (CICS/MVS*). 

The next step in the  evolution of DDM architecture 
was  the  support of stream-oriented files. Client/ 
server  products for the System/36 and System/38 
required  the ability to  store,  access,  and manage 
PC-DOS stream-oriented files and  hierarchical di- 
rectories on a System/36 or System/38. This  work 
resulted in Level  2 of DDM architecture,  which 
was published in  1988. 

At  about the same time, the SAA subset of the 
record file support of DDM architecture  was  de- 
fined and  announced as an SAA Common Com- 
munications  Support  Architecture. As  such, IBM 
also  announced  its  intention to provide  Distrib- 
uted File Management (DFM) products  on all four 
IBM SAA systems:  Operating  System/2*   OS/^*), 
Operating System/400* (OS/400*), Virtual Ma- 
chine/Enterprise Systems Architecture (VM/ESA*), 
and Multiple Virtual Storage/Enterprise  Systems 
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Architecture (MVSIESA*). The DFM product effort, 
led by  the IBM laboratory in San  Jose, California, 
has  also involved IBM laboratories in Boca Raton, 
Florida;  Boulder,  Colorado;  Cary,  North  Caro- 
lina; Endicott,  New  York;  Rochester,  Minnesota; 
and Sindelfingen, Germany-truly a  worldwide 
IBM effort. 

Level 3 of the DDM architecture, published  in  1990, 
supports IBM’s Distributed Relational Database Ar- 
chitecture (DRDA).5 This, too, was and continues to 
be an IBM-wide effort. DRDA is based on the Sys- 
tem/R research originally done by  the IBM Almaden 
Research Laboratory in San Jose, California. Un- 
der the leadership of the IBM Santa Teresa labora- 
tory, also in San Jose, the DRDA design group in- 
cludes individuals representing IBM Research, the 
relational database management products of  all four 
S A A  systems, DDM architecture, Formatted Data: 
Object Content Architecture (FDLOCA), Character 
Data Representation Architecture, and SNA. DDM 
Level 3 architecture defines messages for request- 
ing relational database (RDB) services, for example, 
binding Structured Query Language (SQL) state- 
ments into RDB packages and subsequently execut- 
ing those packaged statements. Included in these 
messages are DDM structures for carrying SQL state- 
ments and responses and for carrying FD:OCA data 
descriptors. DDM also defines how SNA Lu 6.2 com- 
munications protocols are used by DRDA. 

Level 4 of DDM architecture is expected  to  be 
published in  1992. For  the DFM products,  storage 
management  attributes  are  supported for files, as 
defined by  the IBM Enterprise  Storage Manage- 
ment* architecture,‘j as well as support  for  user- 
defined attributes  for files. For DRDA, two-phase 
commitment control  protocols  are defined for  ap- 
plication-directed distributed  units of work. And 
for the OSi400 DDM and OS/400 PC Support  prod- 
ucts,  data queuing and  system  command  pro- 
cessing  classes  are defined. 

Clearly, there is a lag in time between  the com- 
pletion of architectural  work  and  the  shipment of 
products.  Each of the IBM products implementing 
some  part of DDM architecture is doing so within 
the  context of a  complex  system  development 
environment,  competing  priorities,  and limited 
resources.  In  general,  a new level of DDM archi- 
tecture is announced  when  at least one imple- 
menting product is ready  to  be  announced.  In  this 
way,  feedback  from  at  least  one  product  on any 
ambiguities or problems found can go to  the  ar- 
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chitects.  The result is that published levels of DDM 
architecture  have  been of high quality, with little 
need for  subsequent  corrections. Although non- 
IBM vendors  have  not  been invited to  participate 
in the design of DDM architecture,  they  have had 
the benefit of quality specifications without sig- 
nificant delay. 

Blueprints by themselves  are of little value  to  end 
users.  What  counts  to  them  are  products  they  can 
use. IBM products using DDM architecture are 
given in the  appendix. 

Numerous  other  companies  have  also  expressed 
an  interest in implementing products  that  provide 
connectivity with IBM’S Distributed  File Manage- 
ment and  Distributed Relational Database  prod- 
ucts. An example of such  a  product  is  one  under 
development by Object  Technology  International 
for 0s/2 and  Windows**  that  supports  the  devel- 
opment of cooperative  applications  with OS/4OOs. 
Written in Smalltalk/V**,  this  product  supports 
the  development of 0s/2 and Windows applica- 
tions  written in SmalltalkN that  use OW400 serv- 
ices. Among other  services, it implements DDM 
client architecture  for  accessing  and managing 
record files. 

The  relationship of DDM architecture to  various 
products is illustrated by Figure 1. 

Object-orientation and DDM architecture 

Being object-on’ented is a  frequent claim in the 
computer  industry  today,  but it is not  always  clear 
what  that means. Calling all the  entities  that com- 
prise an  architecture objects is not sufficient (but 
is certainly  a  start).  More  important is a  careful 
adherence to the  fundamental  concepts of object- 
orientation  and  the design discipline they imply. 

Before we look at how DDM architecture  uses  ob- 
ject-oriented  concepts,  a few definitions are  nec- 
essary.  From  the  object-oriented point of view, 
an object is a self-contained entity  that  has  its own 
private  data  and  a  set of operations to manipulate 
those  data. 

Objects  are  created by special  objects called 
classes and  are  known as instances of a  class. 

As defined by Wegner’ there are  three  primary 
characteristics of object-oriented  systems: 
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Figure 1 DDM architecture  and its product  environments 

t I I I 

I DDM 
1 

1 ARCHITECTURE I 
I OTHERVENDORS 

I 
I 

I I 

I ABSTRACT, 
I OBJECT-ORIENTED 

I 

I SPECIFICATIONS 
I 

I 

IBM SYSTEM/38 I IBM AIX 
I u I r""""""_ I - 

I - RECORD FILES 
I 

I -STREAM FILES 
I 

I - RELATIONAL DATABASES I 
I 

I 

I I 
I IBM AS/400 I -OTHER OBJECTS 

(SAA) 
IBM STORE 
SYSTEMS 

I I 

LZ IBM PC-DOS i OS400 PC SUPPORT 
PC SUPPORT/36 

IBM OS2 

I I L I 

1. Encapsulation: A technique for minimizing in- 
terdependences  among  separately  written 
modules by defining strict  external  interfaces. 
In  this definition, the  word object could be ex- 
changed for module. 

2. Inheritance: A technique  that allows new, 
more specialized classes  to  be built from the 
existing  classes while retaining all of the  char- 
acteristics  and  capabilities of the existing 
class. 

3. Polymorphism: A technique  that allows the 
same  command (or message in object-oriented 
terms) to  be understood by different objects, 
which respond differently. Often,  this  goes 
hand in hand  with dynamic binding. Polymor- 
phism eliminates  much of the  control  structure 
traditionally  needed to differentiate between 

objects,  such as case statements  and if then 
else statements. 

All entities in DDM architecture  are  objects,  and 
the  architecture  consists of a large number of 
classes to which  these  objects belong. The refer- 
ence  manual8 for DDM architecture  actually  con- 
sists of formatted  printouts of a large set of 
classes.  These  classes  each  have  a  name  and  are 
arranged  alphabetically  for  ease of reference. Be- 
cause  these  terms  refer  to  each  other  extensively, 
the  reference manual is actually  a  hypertext  doc- 
ument.  Extensive  cross-referencing information 
and  indexes  are  also  provided. 

The variables of a DDM architecture  class  specify 
its  inheritance,  describe  the  variables of the  class 
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and the  variables of its instances, and specify the 
commands to which the  class  responds and the 
commands to which its  instances  respond.  The 
variables of the  class object are  encapsulated by 
the  commands of the  class, and the  variables of 
the  instances of the  class  are  encapsulated by  the 
instance  commands of the class. 

DDM architecture  uses  the  concept of inheritance 
to simplify the  architectural specifications. For 
example, the  class of MANAGER defines the  struc- 
ture  and  private  data  that  are common to all DDM 
managers. The  class of FILE, which is a subclass 
of MANAGER, inherits  variables and commands 
from the  class of MANAGER. Since many manag- 
ers respond to some of the  same commands, poly- 
morphism is an inherent  attribute of DDM archi- 
tecture. 

The fundamental concepts of object-orientation 
used in DDM architecture  were derived from the 
book Smalltalk-80: The Language and Its Imple- 
mentation.’ Although the DDM architects  attempt 
to remain faithful to  these  concepts,  there  are a 
number of important differences between DDM ar- 
chitecture and Smalltalk: 

The DDM architecture  class library is not de- 
signed for the  same  purposes as a Smalltalk 
class library. A Smalltalk class library provides 
programmers with a computer-aided software 
engineering (CASE) environment and includes a 
wide variety of classes  that  can be reused  when 
creating Smalltalk applications. In  contrast,  the 
class  library of DDM architecture  contains  only 
classes related to  the  services  covered  by  the 
architecture. Although DDM architecture  can  be 
implemented in Smalltalk, the DDM architecture 
class specifications are not intended to  be a 
working prototype of the  architecture. 
The Smalltalk concept of meta-classes as first- 
class  objects was considered  both confusing 
and of marginal value to DDM architecture.  In- 
stead, DDM architecture  collapses  each  meta- 
class  into  its  corresponding class. That is, each 
class defines its  own  variables  and  its  own  be- 
havior (with inheritance). 
Because DDM architecture is concerned  with 
the form of the messages that flow between cli- 
ents and servers,  each command message is  for- 
mally  defined by  its  own  class  object.  For  ex- 
ample, the Clear File message is defined by  the 
CLEAR class. Each  class  whose  instances  can be 

a receiver for this message specifies CLEAR as 
an instance command. 
Smalltalk defines only  one  error message: Does 
not understand. It  is  returned if the  class of a 
receiving object does not recognize a request. 
This  action  was not considered  adequate given 
the  heterogeneous  nature of DDM architecture 
clients and servers.  Therefore, for each com- 
mand message, DDM architecture defines the set 
of reply messages that  can be returned by  any 
methods  that implement the command. Each 
reply message is also defined by  its own  class 
object, and all reply messages are  subclasses of 
class RPYMSG, which defines a set of instance 
variables  that  they all inherit. DDM architecture 
defines a separate  reply message class for each 
exception  that  can  occur.  These reply messages 
are  then specified for whatever commands can 
raise each  exception. 
Also, because DDM architecture is particular 
about message formats, each instance  variable 
of a command or reply  class  is fully typed. That 
is, DDM architecture specifies precisely what 
classes of objects  can be specified for each vari- 
able. Clients are required to  create messages 
within the range of this typing. Servers  type 
check  each  variable of a command before it is 
passed on to its  receiver. 
Perhaps  the most original aspect of the object- 
orientation of DDM architecture  is  the division 
of its  objects and their classes  into hierarchical 
layers. Whereas Smalltalk considers all objects 
to exist in a single, uniform space within a single 
virtual image, DDM architecture  considers  them 
to exist in a multilayer space  where  the  objects 
in one  layer  are composed of objects from the 
next lower layer. This difference is discussed in 
the  next  section. 

With the  exception of the Object Technology In- 
ternational  product  that is being implemented in 
SmalltalkN, DDM products have been implemented 
using procedural programming  languages, such as 
C,  because object-oriented programming  languages 
were not available or because the products had to 
be integrated with other products. They have, nev- 
ertheless, benefited  from the clarity, conciseness, 
and completeness of the object-oriented specifica- 
tions of DDM architecture. 

The DDM architecture  framework 

The initial services defined by DDM architecture 
pertain to data management, but  these  services 



Figure 2 The  structural  layers of DDM architecture 
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are specified within the  context of a  framework 
designed to accommodate  the full range of appli- 
cation  services  typically  provided by operating 
systems.  This  framework,  illustrated in Figure 2, 
consists of nested  structural  layers.  It is similar to 
what  we  see in natural  world  systems,  where mol- 
ecules  are  composed of atoms,  atoms of particles, 
and  particles of quarks. For DDM architecture, the 
following five layers  are defined: 

The Distributed  System Layer  consists of one 
or  more distributed  systems in a  network of het- 
erogeneous  computer  systems.  Each  distrib- 

uted  system  provides  a single system image of 
operating  system  services  for  its client pro- 
grams. Each  is composed of DDM architecture 
clients  and  servers. 
The  ClientEerver  Layer  consists of the  various 
clients  and  servers of a  distributed  system. The 
clients  provide  requesting  programs with local 
or remote  transparency, and the  servers man- 
age and  provide  access to  the  resources of a 
single system. A client or  server  is composed of 
DDM architecture  resource  and  service man- 
agers. 
The Manager Layer  consists of the major com- 
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ponents of a server.  For  clients,  managers  pro- 
vide local or remote  transparency, routing serv- 
ices, communications services, and support 
services. For  servers, managers provide re- 
source  access and management services,  rout- 
ing services, communications services, and 
support  services. A manager is composed of 
DDM architecture  objects. 
The  Object  Layer  consists of self-identifying 
data used by managers, stored by managers, or 
communicated between managers. An object 
consists of DDM architecture  data elements. 
The  Data  Layer  consists of the  data  elements 
that  describe  objects or represent their value. 

The  Distributed  System  Layer. A distributed  sys- 
tem  is  one in which users and programs  see a 
single system image of the  services available to 
them through a network of heterogeneous,  net- 
worked  systems.  In DDM architecture, a distrib- 
uted  system  consists of clients and servers  that 
interact to  process application requests.  The cli- 
ents and servers  use  whatever communication 
links and whatever communication protocols  are 
available between them in a peer-to-peer fashion. 
In this  sense, a DDM architecture  distributed  sys- 
tem  is  independent of the topology of the  network 
used by its servers. Multiple DDM architecture 
distributed  systems  can reside in the  same  net- 
works,  each  with  clients and servers in some of 
the  same  systems. A DDM architecture  distributed 
system is illustrated in Figure 3. 

There  are  two possibilities to  be considered  when 
designing a single system image: canonical serv- 
ices and mapped services. With canonical serv- 
ices, a single programming interface  is defined for 
each  service, all client programs  use  that  interface 
to request it, and all servers  support precisely that 
interface for that  service. A client program need 
not  be  concerned  with  what  server will actually 
provide the service,  and a server need not  be  con- 
cerned  with  who  is requesting it. The design of the 
messages that flow between  the client and server 
systems is a simple translation of each  service 
interface  into a transmittable  stream of bytes. 
Client programs are highly portable between sys- 
tems but have to be specially written to the canon- 
ical interfaces. This approach is generally being 
taken by  the Open Software Foundation Distrib- 
uted Computing Environment (OSFDCE**). The 
presumption is that new client and server products 
will be developed over time to provide the canon- 
ical services and interfaces. 
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The  second possibility for a single system image 
is the  one adopted for DDM architecture: mapped 
services. Client programs  use  the  interfaces of 

Multiple DDM architecture 
distributed systems  can 

reside in the same 
networks. 

their local system to request  services, regardless 
of the  system  that actually provides them. If a 
request is for a local service, it is directed  to  the 
local facility that  provides  that  service. But if it is 
for a remote  service,  the client system  translates 
the  request  into a message designed for that  class 
of service.  The  remote  server  translates  the mes- 
sage into a request specified through a program- 
ming interface of the  server.  Thus,  three program- 
ming interfaces  are involved in a mapped request 
for a remote service: 

1. The programming interfaces of the client sys- 

2. The  abstract programming interfaces defined 

3. The programming interfaces of the  remote 

tem 

by messages 

server 

In  this  way, client programs can  request  services 
without  concern for what programming interfaces 
actually need to be used. And conversely, a sys- 
tem can provide services  without  concern for the 
programming interfaces actually used by  the re- 
questing application program. Any existing or 
new program that  uses a service  can be a client of 
either  the local system or of a remote  system,  but 
these  programs  are not portable to another  sys- 
tem  without  conversion to its  service interfaces. 

Whether canonical services or mapped services 
are used in the design of a single system image is 
largely a matter of objectives. Local  interfaces 
can  often be mapped to canonical services, and 
local interfaces  can be designed to match  the mes- 
sages of mapped services.  In  both  cases,  the syn- 
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Figure 3 DDM distributed  systems and servers 
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tax and  semantics of the  services  must  be  care- 
fully and formally defined for  both  clients  and 
servers.  The  real  issue is whether  existing client 
programs  and existing services should be changed 
to  meet  the  requirements of canonical  services. 
For DDM architecture,  the  choice of mapped  serv- 
ices was dictated by the  very large number of 
existing programs, files, and  databases  on IBM 
systems.  Ease of migration from single systems  to 
distributed  systems  mandated  the mapped serv- 
ices  approach. 

A final comment on this  subject is that  the ap- 
proach  taken affects what  services are defined. To 
define canonical  services is largely an  academic 
exercise,  based  on knowledge of similar services 

(in the UNIX** environment  for OSFIDCE), with 
attention to  consistency and  completeness,  and 
certainly with review and  approval by  peers in the 
sponsoring  body. In contrast,  the design of 
mapped services  is largely a  standards  exercise, 
requiring participation by  representatives of mul- 
tiple client and server  systems. As a mapped ser- 
vice  model is designed, each  representative  must 
critique it in terms of the local services  and in- 
terfaces available on his or  her  system,  either 
finding good mappings or arguing for  changes  that 
would allow good mappings. This  process  is  ar- 
duous  and time-consuming, but it leads  to dis- 
tributed  service models that  better  match  the 
needs of existing client programs  and  the  capa- 
bilities of existing system  services. 

DEMERS ET AL. 467 IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 



Figure 4 Clientkerver architecture 
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The  Client/Server  Layer. In general terms,  a client 
is  a  layer of software in one system  that  routes 
service  requests  to  the  server  that  owns  a  needed 
resource,  such as a file, database,  printer, or pro- 
cessor.  The  server  can  be  either local or  remote. 
The  clientherver model is  illustrated by Figure 4. 
DDM architecture is in the client/server  categoly. 

DDM architecture  calls  clients source sewers be- 
cause  they  are  the  source of requests  for  services, 
and it calls  servers taqget sewers because  they 
are  the  target of those  requests.  This difference in 
terminology is simply the  result of DDM architec- 
ture  predating  what  is now called clientherver 
processing. This  paper  uses  clientherver termi- 
nology to avoid further confusion. 

The  servers in DDM architecture  can  be  special- 
ized to handle specific resources. For example, 
one  server (CICWDDM) handles  only files, whereas 
another  server (MVS DATABASE 2*)  handles  only 
relational databases,  and  a third (Operating Sys- 
tem/400*) handles  both files and relational data- 
bases. Multiple servers  can  reside in the same 
system. 

A product implementing DDM architecture  can 
provide  both client and  server  support,  or it can 

be specialized as  just a client or  just a  server. As 
examples, AS/400 DDM is  both  a  client  and  a  server, 
the DDMIPC product is only  a  client,  and  the 
CICSDDM product is only  a  server. 

The  Manager  Layer. A client or  server in DDM 
architecture  consists of a  set of entities  each of 
which  manages  some  aspect of the service,  such 
as a file, a  database,  or a  conversation linking the 
server  to  other servers.  These  entities  are all 
called managers in DDM architecture. A client or 
server  can  have  zero  or  more instances of each 
kind of manager defined by  the  architecture. For 
example,  each file  in a  server  is  an  instance of one 
of the file manager classes in DDM architecture. 

If a  server  supports  only  a  subset of DDM archi- 
tecture, it has  the  managers of that  subset,  plus 
any  managers  on  which  they are dependent. For 
example, if a  server  supports  only files, it only  has 
instances of the manager classes  required by files, 
but it does  not  have  instances of the  managers 
concerned  with relational databases. 

The manager classes  currently defined by DDM 
architecture  can  be  categorized as files, data- 
bases,  queues,  access  managers,  support manag- 
ers,  agents, and communications managers. 
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Figure 5 File manager  request  processing 

CLIENT SYSTEM SERVER SYSTEM 

1 APPLICATION PROGRAM 
CLEAR FILE(X) 

CLIENT 

I 1 CLIENT I 

SERVER 

SERVER 

I 

t 

I 1 A I  I pE; I 1 SNALU6.2 ~ 

COMMUNICATIONS 
FACILITY - 

I I I  1 1  

"_" 
t t  

I 

SERVERS 
CLEAR FILE 
INTERFACE m-dl COMMUNICATIONS 

Files. DDM architecture defines file classes for 
both  record-oriented files typically found on large 
systems  and  stream files typically found in work- 
stations. 

The DDM architecture model of a file consists of 
information about  the file (its  attributes), the  data 
content of the file (either  records or a  stream),  and 
for  keyed files, an index  over  the  records of the 
file. Messages  can  be  sent to a  server  to  create, 
delete,  rename,  lock,  unlock, or clear files. Fur- 
ther,  data  can  be  loaded  into  or unloaded from a 
file. Figure 5 illustrates how a  request to clear  a 
file  of its  data  is  passed  from  the  client file sur- 
rogate to  the  server.  The client file surrogate 
knows  where the real file is  located  and how to 
access it. 

Some of the  attributes of a file must be specified 
by  the requester  when  the file is created  to de- 
termine  its  size,  capabilities,  and status in the  sys- 
tem. Other  attributes  can  also  be specified to pro- 
vide  application or  user information about  the file. 
And still other  attributes,  such as  the  date  the file 
was last  changed,  are managed by  the file system. 
For  each file class, DDM architecture allows cer- 
tain attributes  to  be retrieved from the file and 
certain  attributes  to  be changed. 

Record-oriented  files. A record-oriented file con- 
sists of a set of slots in which application-defined 
units of data, called records,  can be  stored.  In 
some files, all records  are  the  same length and 
have the  same  data  structure,  whereas in other 
files, records  can  vary in length and  have  varying, 
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sometimes  quite complex, structures. Most file 
systems  contain  no information about  the  data 
content of the  records in files. A  record-oriented 
file simply stores,  and  provides  access to, the  rec- 
ords of a file as whole units. DDM architecture 
record-file classes  also  treat  records in this  way, 
but  metadata  about  records would allow many 
additional services  to be provided, as discussed in 
References 10 and 11. 

DDM architecture defines several  subclasses of 
record-oriented files  in order  to  better match  the 
semantics of existing file systems: 

Sequential files: These files simply consist of a 
set of numbered  slots  with  no  relationships de- 
fined among  them. The  records in these files can 
be accessed relative to  the position of an  access 
method  cursor  (next or previous  slot) or ran- 
domly by slot  number. 
Direct files: These files consist of a set of num- 
bered  slots,  but  there is an application-defined 
relationship  between  the  data  contents of the 
records in the  slots  and  the  number of the  slot. 
The  records in these files can  be  accessed rel- 
ative to  the position of an access  method  cursor 
(next or previous slot) or  randomly by slot num- 
ber. 
Keyedfiles: These files consist of a  set of num- 
bered  slots  and  an  index  that  associates the val- 
ues of the  key fields of each  record  with  slot 
numbers.  In addition to relative and  random  ac- 
cessing by slot  number,  these files can be ac- 
cessed by using the index. The  record with a 
keyvalue  that is next or previous, relative to  the 
key  value of the  current  record  addressed by 
the  access  method  cursor,  can  be  accessed. 
Any  record  can  be  randomly  accessed by  spec- 
ifying its  key  value. 
Alternate indexfiles: These files consist of only 
an  index  that  associates  alternate fields of the 
records of a  base file with their slot  numbers in 
the  base file. They  provide an alternate  access 
path to  the records in the  base file. The  base file 
can  be  a  direct file, a  sequential file, or a  keyed 
file. The  access  path of the  index  maintains  a 
specified ordering  relationship  for  these fields. 

Stream files. These files consist of a single stream 
of bytes.  Applications  can  access  or  update  any 
part of the  stream  by specifying the  starting po- 
sition and length of a  portion of the  stream. As 
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with the  record file classes,  the DDM architecture 
stream file class  has  no knowledge of the  contents 
of the  stream. 

File access managers. DDM architecture file ac- 
cess manager classes  each define a model of how 
a file can  be used by a single local or remote  user. 
Here too,  the  key problem is  that  each  host  sys- 
tem includes  access  managers with unique inter- 
faces.  The DDM architecture file access  managers 
each define a single, consistent set of interfaces 
for working with  a file that  can  be mapped to and 
from the  interfaces of host  systems. An example 
of a file access manager is the Relative by Record 
Number Access Method of DDM architecture. 

Figure 6 shows how an application accesses  a  re- 
mote file. When the application program opens 
the file, an  instance of a client file access manager 
is created.  The client file access manager obtains 
the  location of the file from the  client file surro- 
gate and sends  a  request  to  create  an  access 
manager to  the  server.  This  server  opens  a  path 
to  the real file. The bound  path  remains in exist- 
ence until the application closes  the  client  access 
method. 

Figure 7 shows multiple application programs in 
the  same  server  accessing  the  same  remote file. 
Note  that  they  share  the use of the  same  com- 
munications facility. 

Relational databases. Relational databases (RDBS) 
have been implemented on many systems, each 
with its own interfaces and internal structures. But 
they also have much in common; in particular, sup- 
port for Structured Query Language (SQL). Distrib- 
uted Relational Database Architecture (DRDA) is the 
SAA ccs architecture concerned with distributed re- 
lational databases. DRDA is a composite architec- 
ture, as shown in Figure 8. 

DDM architecture defines the DRDA model of re- 
lational databases,  the DRDA model of an SQL 
access  manager,  the  messages  and replies trans- 
mitted between  a DRDA client and  server,  the 
means by which SQL statements  and  Formatted 
Data:Object Content  Architecture (FD:OCA) de- 
scriptors  are  transmitted,  and  the  ways in which 
SNA communications  protocols are used. 
SNA LU 6.2 is  the  communications facility used 
by DRDA. 
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Figure 6 Access  manager  request  processing 
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FD:OCA is used by DRDA to describe  data.  The 
data  are  either input data  to an SQL statement to 
be executed or a result of executing an SQL 
statement. 
Character  Data  Representation  Architecture 
(CDRA)13 is used by FD:OCA to tag character  data 
with its encoding scheme  (such as ASCII and 
EBCDIC). 

All database  operations performed by the RDB oc- 
cur within a logical unit of work.  A logical unit of 
work identifies the processing performed to  take 
a set of recoverable  resources from one  state (A) 
to another (B) in an atomic fashion. If the pro- 
cessing succeeds,  the new state of the  recover- 
able  resources is B, and if the processing fails, the 
recoverable  resources  return  to  state A. The 

changes made by  the application during the  de- 
sired transition from state  A  to  state B become 
permanent (committed)  when  the processing suc- 
ceeds, and the  changes  are  undone (rolled back) 
when  the processing fails. 

Using normal SQL interfaces, applications and 
users  can  interact  with local or  remote relational 
databases.  Consider  the following types of sup- 
port for distributed relational databases: 

User-assisted distribution, in which users  are 
involved in extracting  data from an RDB, mov- 
ing the  data  to  another  system, and then loading 
the  data  into their RDB. 
Remote request, in which each  request for serv- 
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Figure 7 Multiple  file  access  processing 
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ices is independently  sent  to  a  remote RDB and Distributed requests, in which each  request 
executed,  and  the  results  are  then  returned. within a  distributed unit of work  can  result in 
Each  request is an  independent unit of work. interactions with multiple remote RDBs. 
Remote ;nit  of work,  inwhich related  requests 
for  services from a  remote RDB are  exe- 
cuted  within  a single unit of work  whose effects 
on  the RDB can  then  be  committed or rolled 
back. 
Distributed unit of work, in which  related  re- 
quests  for  services  from multiple RDBS, local or 
remote,  are  executed  within  a single unit of 
work,  whose effects on all  of the RDBs can  be 
committed  or rolled back. 

Initially, DRDA defines support  for  a  remote unit 
of work. The DDM architecture model for  per- 
forming these  operations is independent of the 
hardware  architecture,  the  operating  system, and 
the local RDB interfaces and facilities of either  the 
client system  where  the application executes  or 
the  server  system  where  the RDB is located. The 
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model consists of the SQL Application Manager 
(SQLAM) and the relational database manager. 

DDM architecture defines a single-system model 
of the relationships between an application and its 
local RDB. This model is illustrated by  Figure 9. In 
this model, the application uses  the SQLAM to 
communicate  with the local RDB. The SQLAM uses 
other  system  services,  such as directories and the 
security manager, in establishing a  connection 
with  the RDB. 

This model is  extended to distributed processing 
as shown in Figure 10 by allowing the processing 
of the SQLAM to be split between  the client and 
server  systems. Communications between  the cli- 
ent and server SQLAMs are provided by agent and 
communications managers of the DDM architec- 
ture  that  are  themselves functionally split be- 
tween  the client and server  systems.  The client 
system and the  server  system  can  be of different 
types.  The individual DDM architecture imple- 
mentations  can  be designed in whatever manner 
best utilizes their  system  environment. 

The  process for obtaining access  to  a  remote RDB 
is as follows. A client application obtains RDB 
services by interfacing with  a client SQLAM. The 
client SQLAM establishes  a  connection to the re- 
mote RDB. Client directory  services  are used to 
determine  the  network  location of the RDB being 
contacted.  The client SQLAM then  creates  a client 
AGENT and sends the Access Relational Database 
(ACCRDB) command to that agent for transmission 
to the  server  system. When the  server  system 
processes  the ACCRDB command, a  connection  is 
established between  the  server SQLAM and  the 
server RDB. In general, the  database  requests  sent 
by  the application to  the client SQLAM are routed 
to  the  server SQLAM for processing. However,  the 
client and server SQLAMs cooperate in the pro- 
cessing of many commands. For  example, during 
query processing, data  are buffered by both  the 
client and server SQLAMS to optimize the  use of 
the communications facilities. The  server SQLAM 
manages all accesses to the RDB by  a single re- 
mote  requester.  The  server SQLAM is bound be- 
tween  the  server agent and a single RDB. DDM 
architecture  commands  are  then received by  the 
SQLAM for processing by  the bound RDB. 

The client and server SQLAMS exchange  the 
FD:OCA data  representation specifications when 
the  connection is established with  the relational 
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Figure 8 The architectures used  by DRDA 
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Figure 10 The remote system model of RDB access 
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database.  These specifications provide  the infor- 
mation necessary for the SQLAMs to determine 
how their  counterparts  represent  data,  for  exam- 
ple, character  data  or floating-point data. The 
SQLAMS can  then  decide  whether  any  data  con- 
versions  are  necessary. When necessary,  the  data 
conversions  are performed by  the SQLAM (client 
or  server)  that  receives  the  data. 

When an application runs,  a call is made to  the 
client SQLAM for  each  executable SQL statement 
in the application. The  type of call to  the SQLAM 
depends on the RDB function  to be performed as 
determined by  the  precompiler from the SQL 
statement.  The client SQLAM builds a DDM archi- 
tecture command to  send  to  the  server SQLAM 

based on the  type of call received  from  the ap- 
plication. 

Queues. Queues are important to many applica- 
tions  because  they allow either  data or  requests 
for  services  to  be passed  asynchronously from 
one  program to another. DDM Level 4 architecture 
defines three  subclasses of queues: 

First-in-first-out queues  that  act  as  an  asynchro- 
nous pipe between  the  enqueuing  and  dequeu- 
ing programs 
Last-in-first-out queues  that  act  as  a  push-down 
stack 
Keyed  queues  that  act  as  a  fan-out  mechanism, 
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allowing different programs to  dequeue only  se- 
lected  entries 

As with files, the  contents of the  entries on a 
queue, called records,  are application-defined 
and  can  be of any format or complexity. The in- 
stance  commands defined by DDM architecture 
allow a  queue  to  be  created, deleted, or cleared in 
a  remote  server.  The  attributes of a  queue  can  be 
retrieved,  and  selected  attributes  can  be  changed. 
Records  can  be  added  to  a  queue or received from 
a queue. When receiving a record from a queue, the 
client specifies the amount of time to wait before 
timing-out, if there is no entry on the queue. 

Support  managers. These  managers  support  the 
use of the  resource  and  access  managers by mul- 
tiple local and  remote  users. 

Supervisor. Every client and  server  has  a single 
instance of a manager called the supervisor. In the 
current  levels of DDM architecture,  the  supervisor 
is only  responsible  for exchanging information 
between  clients and servers  about  their  class 
name,  product  release level, and the architectural 
levels of the manager classes  supported. 

Class  dictionaries. When two people  speak  to 
each  other in the same language, they  can  under- 
stand  each  other  because  they  share  common 
words,  common  syntax,  common  protocols, and 
common  concepts. So too with distributed  sys- 
tems.  In DDM architecture,  the  common  words 
exchanged  between  clients and servers  are in- 
stances of the  command,  reply,  and  data  classes. 
The  common  syntax  consists of the  ways in which 
DDM architecture allows these  objects  to  be  re- 
lated  to  each  other. The common  protocol  con- 
sists of the  rules in DDM architecture governing 
when  each  server  can  send  messages. And the 
common  concepts  consist of the  semantics of the 
DDM architecture manager models in response to 
predefined commands. 

With the  exception of protocols, which are  the 
responsibility of communications  managers, the 
syntax  and  semantics of messages in DDM archi- 
tecture  are defined by special  objects, called 
classes, that  reside in managers called class dic- 
tionaries. To  be able to communicate with each 
other,  the client and  the  server  must  each  have  a 
copy of the  same  class  dictionaries. 

Security manager. When a local user logs onto a 
system,  the  user’s rights to use  the  system are 
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validated by the  security facilities of the system. 
When that  user  then  attempts to use  a  system 
resource,  such  as  a file or  database, his or  her 
authorization to  use  the resource in the  way in 
which  an  attempt is being made to use it is  also 
validated. Each  type of system  has  its own se- 
curity facilities, each  with  its  own model of se- 
curity  and  its own programming interfaces to that 
model. Among these  interfaces  are  those  that al- 
low a  user to  be authorized to  the system as a 
whole,  and  those  that allow authorizations to  spe- 
cific resources  to  be granted,  revoked, and shared 
with other  users.  Examples of security facilities 
are  the  Resource  Access  Control  Facility (RACF*) 
on MVSIESA and VMIESA, the  security manager of 
OS/400, and  the GRANT/REVOKE functions of rela- 
tional database managers. 

Validation of authorizations  must  also be per- 
formed when  a  remote  user  attempts to use  a DDM 
architecture  server or  one of its  resources.  When 
an SNA LU 6.2 conversation is used for communi- 
cations, the user  identity  and  password of the re- 
quester  are  passed  to  the  communications facility 
of the  server  system for validation.  This  process 
occurs  before any part of a DDM architecture 
server  is  invoked,  thereby  guaranteeing  that all 
remote  requesters  are  authorized  to  the  server. 
Although no interfaces  are defined by DDM archi- 
tecture  between SNA LU 6.2 and the  security  man- 
ager, their  existence  and  use is assumed.  Any  se- 
curity  violations  are  reported  back  to  the client by 
SNA LU 6.2 messages. 

But  not all communications facilities provide  this 
level of security. For example, if Transmission 
Control  Protocol/Internet  Protocol (TCPIIP) is 
used,  a  communications manager for TCP/IP 
would have to  pass  the  user identity  and  password 
in special messages  and  then call the  security 
manager to validate the requested  authorization. 
In general, communications  managers  must  make 
up for any deficiencies in the  communications fa- 
cilities they use. 

Similarly, when  a DDM architecture  command is 
received by a  server,  the  remote  requester’s 
rights  to  issue  the command and to use the  re- 
sources it requests  are  validated  by  the  security 
manager. Here too, no interfaces are defined by 
DDM architecture  for performing these  valida- 
tions.  The  use of local security facilities are  as- 
sumed.  However, DDM architecture  does define a 
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variety of messages for reporting any  authoriza- 
tion violations  back to the client. 

In  the  current levels of the DDM architecture,  the 
security manager is essentially  just  a  stub  that 
represents  whatever  security facilities are avail- 
able on  the local system. No DDM architecture 
messages have yet been defined for working with 

Files that are created, deleted, 
renamed, or moved are 

addressed by techniques  used 
in ECF and AFS. 

or modifying the  authorizations of users  to  server 
resources. All such  changes to user  authoriza- 
tions must be performed by logging onto  the  sys- 
tem  that  owns  the  resource. Clearly this  is  an 
inconvenience to users, and clearly, supporting 
these  services would be a  desirable  enhancement 
to DDM architecture. 

Directories. When an application accesses  a local 
resource, it does so by specifying its name, ac- 
cording to  the naming scheme of the local system. 
This name is used to  search  the  directories of 
resources maintained by the local system to ob- 
tain addressability to the  resource.  Each  type of 
system  has  its own model of directory  services 
and its  own programming interfaces for using 
them. For example, MVS/ESA has  a  catalog  that 
supports multipart names, Virtual Machine/Con- 
versational Monitor System (VMKMS) has mini- 
disks, OS/400 has libraries, and 0s/2 has hierarchical 
directories. 

But how can  these  directories  be  extended  to in- 
clude  resources  that  are actually located in other 
systems and have  names  that  are foreign in syntax 
to  the local directory  services?  Several  answers 
to this question are available among the IBM prod- 
ucts  that  have implemented DDM architecture. 

In  the Systed36 DDM product,  a  side  directory 
called the Network Resource Directory (NRD) was 
developed in which the information required to 
locate  a  remote file can be placed. Names in the 
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System/36 are simple eight-byte  tokens, and the 
system maintains only  a single directory of all 
such names. The NRD is really just  an  extension 
of the  system  directory  such  that  there is still only 
one  name  space in the  system. If a name cannot 
be found in the  system  directory,  the NRD is 
searched, and if the name is found, the following 
information is available about  the file: 

The real name of the file on  the  server  system 
The  network  address of the DDM architecture 

Other communications-related parameters 

Thus, it is possible for the client to specify the 
name expected by  the server in the DDM archi- 
tecture  commands to open and access  the file, 
while a System/36 name is used as an alias in the 
client. An NRD entry is actually a  surrogate for the 
remote file, or, in DDM architecture terminology, 
it is  a client manager of class FILE. 

A similar approach  was  taken  with  the Systed38 
and the AS/400, except  that  these  systems  support 
multiple user libraries and allow a  remote file to 
be addressed from any of them. In these  systems, 
a special type of system  object, called a DDM File, 
is  created in a library to contain the real name of 
the file and communications information. These 
objects  also  act as file surrogates. 

In  contrast,  the DDMPC and PC Support  products 
took  the view that  they  were primarily acting as 
clients  attached to known hosts.  Therefore, it was 
only  necessary  to  redirect  requests to  the  correct 
server.  The name specified by an application pro- 
gram is  then  just  a drive letter, indicating the re- 
mote host system, followed by  the  server  system 
name. Although the  concept of a client file sur- 
rogate is a bit vague in this  approach, it is none- 
theless implicit. 

These  approaches all serve  to provide address- 
ability to a  remote file. It is a programmer’s or 
administrator’s responsibility to  set up conditions 
correctly so that needed remote files can be lo- 
cated. But such  approaches clearly have limits. 

First,  these  approaches ignore the problems that 
arise because new files are  created and old  files 
are  deleted,  renamed, and moved to different 
servers for a  variety of application reasons. Ex- 
cept for relatively static applications, maintaining 
file surrogates in the  servers of a distributed sys- 

server 
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tem  can  quickly  become  a major usability  prob- 
lem. A variety of solutions  have  been  devised  for 
dealing with this problem: 

The IBM Enhanced  Connectivity Facilities 
(ECF) product,  which implemented a client/ 
server  architecture,  provided name-mapping 
services. Given that  a client workstation could 
only  be  attached  to  a limited number of host 
servers of known types, it is  possible to  map 
client  names to host  names  for  a  broad range of 
names. The os12 name a:FLOWERS.SCR, for 
example, can  be  mapped to  the VM/CMS name 
FLOWERS SCRIPT A .  But  this  approach 
clearly  has limited scope. 
The  Andrew File System (AFS)'~ has  taken  a 
more  comprehensive  approach. AFS provides 
hierarchical  directories  that allow the  name 
space  to  be of indefinite size  and  depth.  This 
name  space is mapped over all AFS file servers 
giving  all clients the ability to  locate  any  An- 
drew file. Communications  between AFS clients 
and  servers, along with  caching  and  other  op- 
timizations, are required  to  provide  directory 
services  with good performance.  In  broad 
terms,  the  same  approach  is  also being taken by 
Open  Systems  Interconnection (OSI) directory 
services  and  the X.500 network  interface  stan- 
dard.  By making the  assumption  that the lowest 
levels of a qualified name  actually  specify  a lo- 
cal  name,  this  approach allows the local direc- 
tory  services of each  system to become  a  part 
of the  encompassing  distributed,  hierarchical 
directory. 

A second  problem with the  approaches  taken by 
early DDM architecture  products is that it is  not 
possible to  work with the  directories  on  remote 
servers;  that  is,  to list their  entries,  create  and 
delete  subdirectories, or establish  a  current di- 
rectory  to  shorten  the length of transmitted 
names. Given the range of directory  systems 
found  on IBM systems, it is  clear  that  many of 
these  services  cannot  be  supported.  However, it 
is  possible  to  adopt  a  general  hierarchical model 
of directories  and allow each  server  to  support 
whatever  common  services it can. In Level 2 of 
DDM architecture,  such  a  hierarchical  directory 
model was added.  Because  transparent  support of 
PC-DOS and os/2 interfaces was considered  crucial 
to  the PC Support  products,  the DDM architecture 
directory  model and its  capabilities were based  on 
those of PC-DOS and 0s/2. This still does  not  pro- 
vide  the level of distributed  directory  support  that 
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has  been  pioneered by AFS and should be  added 
to DDM architecture.  Clearly it is needed. 

Lock manager. When an application program 
opens  a file, there  is  always  the possibility that 
some  other  application program has  already 
opened it or will open it while the first program is 
still using it. The potential  exists,  therefore, for 
programs to interfere  with  one  another's  use of 
the file and to  corrupt  one another's  data. To 
avoid these  problems,  each  system  provides 
some level of concurrency  control  that  serializes 
the  use of a file or  parts of a file by multiple ap- 
plications. In  general,  control is in the form of 
locks that  are  requested  on  a file prior  to  its  use 
and  that are released  afterward. 

If one  client has a lock on  a file and another  client 
requests  a  lock,  the  requested lock may  or may 
not conflict with the locks  already held. If there  is 
no conflict, the lock is  granted;  otherwise,  the 
requester  must  wait  for  the  lock.  But waiting for 
locks  leaves  open  the possibility of deadlocks  oc- 
curring. To prevent  deadlocks, DDM architecture 
requires  lock  requests to time-out, that is, to fail 
after  a period of time determined by  each  server. 

The lock manager of a  server  is  the DDM archi- 
tecture  abstraction of local system  concurrency 
control facilities. Whereas relational databases 
provide  their  own  concurrency  control  for  their 
internal  resources, files and  other  resources  typ- 
ically depend  on  a  system  concurrency  control 
facility. 

Recovery manager. It  is  one thing to  access  and 
manage remote files and  databases,  but  quite an- 
other  to  do so in support of complex application 
transactions  that  can  update multiple files and  da- 
tabases in a  variety of systems. Each transaction 
must  be  completed  successfully or all of its  effects 
on all files and  databases  must  be  backed  out. No 
data  can  be allowed to remain in a file or  database 
in a  partially  updated,  inconsistent form. 

The  recovery manager of DDM architecture  is 
based  on  whatever local facility each  system  pro- 
vides  for  transaction  commitment or rollback. No 
special flows are defined in DDM architecture  for 
these  operations.  Instead,  these  operations  are 
managed by  the  sync point manager of the  com- 
munications facility. The  purpose of the  recovery 
manager is  to allow the  semantics of recovery 
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operations  on files and  databases  to  be  correctly 
defined in the architecture. 

System command  processor. Each  system  on 
which a DDM architecture  server  product is im- 
plemented  provides  many  more  services  than are 
available through DDM architecture  messages. 
These  services  are  requested  through command 
language statements  unique  to  that  system.  For 
example,  through AS/400 commands,  operations 
on  jobs, spooling queues,  and  user profiles can  be 
requested,  none of which is yet covered by DDM 
architecture.  Other  systems  have  many similar 
services,  but  there  is  no  common command lan- 
guage syntax for requesting them. DDM Level 4 
architecture allows a  client to submit  commands, 
in the  syntax of the  command language of a  spe- 
cific system, to a  remote  server.  A client system 
command processor  sends  the  command  to  the 
system command processor of the  remote  server 
for  execution. 

Here DDM architecture  provides  a  common  model 
of system command processing  but  not of the  ex- 
ecution of any  particular  commands.  It is cer- 
tainly contrary  to  the  concept of a single system 
image but is of great  use  when  a client knows  what 
type of server it is using, which is often  the  case. 
As  products identify a need for  a single system 
image in a given area, DDM architecture  can be 
formally enhanced to meet  that need. 

Agents. As  shown in Figures 11 and 12, agents 
have  several  functions,  but  they  can be viewed 
primarily as message  routers. In a  client,  an  agent 
routes  a  request  for  services  to  a  communications 
manager and  routes  responses  back  to  the  re- 
questing  resource  or  access manager. In  the 
server,  an agent routes  requests  to  a  resource  or 
access manager and  routes  responses  back  to  a 
communications manager. 

Agents  also  represent  an application program 
within a DDM architecture client or  server. A cli- 
ent agent keeps  track of the  access  paths  that 
have  been  opened by its application to  various 
resources  and  knows  which  communications 
managers  have  outstanding  requests pending re- 
sponses.  A  server agent also  keeps  track of paths 
opened by its application and  represents  its  ap- 
plication in regard to  security and  concurrency 
considerations.  Together,  they perform various 
cleanup  and  recovery  functions in cases of com- 
munications  failures or failures in the application. 
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Communications managers. When one  server 
communicates  with  another  server, the program- 
ming interfaces  provided by local communica- 
tions facilities must  be used to initiate communi- 
cations,  send  messages,  receive  messages,  and 
eventually  to  terminate  communications.  The 
programming interfaces defined for SNA LU 6.2 
communications facilities, for  example,  are rich 
in options,  supporting  a  wide  variety of commu- 
nications  requirements,  and  can be used in many 
different ways.  The  designers of a  distributed ap- 
plication are  free  to  use  whatever communica- 
tions  capabilities  they  want.  But to achieve  con- 
nectivity among DDM architecture  clients  and 
servers implemented in a  variety of products, 
communications  must be tightly and specifically 
defined. That  is,  only  certain  communications  ca- 
pabilities can  be  used, in only predefined ways, in 
support of predefined protocols.  Otherwise,  the 
client and  server simply do not  understand  each 
other. 

Two principles that  have guided DDM architecture 
communications usage are  the following: 

1. Only a small number of protocols  are  neces- 
sary  to  support  the communications  require- 
ments of a  wide range of distributed  services. 

2.  If each  protocol is kept  relatively simple, it can 
be  mapped  to  a  wide  variety of different com- 
munications facilities. 

The DDM architecture  communications  managers 
that  have  been defined are  the following, but  this 
should not  be  viewed as an  exhaustive list. 

SNA L u  6.2 conversational:  This communica- 
tions manager defines how the  basic DDM ar- 
chitecture  conversational  protocol should be 
implemented when using SNA LU 6.2 conversa- 
tions. It  is  a  straightforward Z speak and you 
listen, and then you speak and I listen protocol. 
The client sends  commands  and  data to  the 
server;  the  server  executes  the  commands  and 
then  returns  reply  messages  and  data  to  the cli- 
ent. 
SNA L u  6.2 multitasking: This  communications 
manager also defines how the  basic  conver- 
sational  protocol is implemented when using 
SNA LU 6.2 conversations  but  adds  the ability to 
multiplex concurrent  conversations  for  several 
tasks  onto  a single SNA LU 6.2 conversation. 
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Figure 11 Agent  routing to resource and  access  managers 
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Products  are  free  to define whatever additional The  Object Layer. Although all entities of DDM 
communications  managers are required  for the architecture are  objects  (that  is,  instances of 
network  protocols  they  have available. For ex- classes),  the  entities in the Object Layer  are 
ample, DDM architecture  communications could called objects  because  they  closely  resemble  the 
be implemented using the Remote  Procedure Call objects found in object-oriented programming en- 
(RPC) facility of the Open Software  Foundation's vironments with dynamic binding, such  as Small- 
DCE instead of SNA LU 6.2. talk. In  this  layer, an object is a self-identifying 
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Figure 12 Agent routing  to  communications  managers 
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Figure 13 DDM architecture  objects 
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data  structure.  Each  object specifies the following 
about itself: 

Its total length in bytes 
The identifier of its  class 
Its  data  variables 

Only three  kinds of DDM architecture  objects  are 
in this  layer, as shown in Figures 13 and 14: 

Simple scalars, which contain  only  a single in- 
stance of a DDM architecture  data  class,  such  as 
a single number  or  a single character  string. 

DDM architecture  attributes,  such as  the 
LENGTH attribute,  are simple scalars,  consisting 
of their length, class identifier, and  the  data 
value of the  attribute.  The  memory  space  for- 
mat and data  stream  format of simple scalars 
are  the  same. 
Mapped  scalars,  which  contain  a  sequence of 
instances of the  data  classes.  Records  are  an 
example of mapped scalars,  consisting of their 
length, class identifier, and  a  sequence of data 
values.  The  memory  space  format  and  data 
stream  format of mapped  scalars  are  the  same. 
Collections, which  contain  a  sequence of ob- 
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Figure 14 DDM architecture  object  interchange  format 
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jects  or collections of objects. DDM architecture 
commands and reply messages are  examples of 
collection objects. There  are  two  formats for 
collections, a memory space format and a  data 
stream format. In  the memory space  format, 
each  variable of a collection is actually a pointer 
to an object of the collection. For example, col- 
lectionA  contains  pointers to the mapped scalar 
C, the simple scalar D, and the simple scalar B. 
In  the  data  stream format, the  tree  structure of 
collection A has  been linearized. The length of 
collectionA now includes the  sum of the lengths 
of the  scalars C, D,  and B, and the  pointers of 
A have been replaced by full copies of the  sca- 
lars C, D,  and B. 

DDM architecture defines many subclasses of 
these kinds of objects. Although there  have been 
many temptations to define classes of objects  that 
are  a hybrid of mapped scalars and collections 
(structures containing both  scalar  values and 
pointers to  other  objects),  the DDM architects 
have, so far, resisted doing so. The marginal gains 
in efficiency that  can be obtained have not been 
considered  worth  the tradeoff of increased com- 
plexity. 
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In  the  abstract model of DDM architecture, man- 
agers store information as objects and communi- 
cate  by exchanging objects. Within a client or 
server,  the memory space  format of objects  is 
used, and between  clients and servers,  the  data 
stream  format is used. Consider, for example, the 
creation of DDM architecture  commands in re- 
sponse to a  service  request through a local inter- 
face. First,  objects  are individually created in a 
memory space for each command, parameter, 
and data item to  be transmitted.  The  values of the 
variables of collection objects,  such as com- 
mands, point to  other  objects.  The result is an 
easily processed  structure of objects linked by 
pointers. This  structure  is  passed through a client 
agent to a client communications manager, which 
linearizes it  in a  data  stream.  The communica- 
tions manager of the receiving server  reverses 
this process to recreate linked objects in a  server 
memory space  that  can  be easily processed by  the 
server’s agent, resource managers, or  access 
managers. 

The  key  advantages of this  approach  are  that  only 
the communications managers need be concerned 
with building or parsing linearized data  streams 
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and  that  many different forms of linearized data 
streams  can  be used. One such form is defined by 
DDM architecture,  but as an  alternative,  the  Basic 
Encoding Rules of OSI could also  be used. 

The Data Layer. Each  type of system  supports  a 
number of ways of representing  data of different 
types.  For example, Personal System/2* comput- 
ers support ASCII character  data encodings, byte- 
reversed two’s complement binary  numbers,  and 
IEEE (Institute of Electrical and Electronics  En- 
gineers) floating-point numbers. In  contrast,  a 
System/390* supports EBCDIC character  data  en- 
codings, two’s complement binary  numbers,  and 
hexadecimal floating-point numbers. Fundamen- 
tal to communications between  systems  is  estab- 
lishing how each  type of data  is  to  be  represented. 
Several  approaches to this problem have  been 
taken. 

The first is to convert all data  to or from a  ca- 
nonical form that  is used primarily for communi- 
cations.  This  approach  was  taken  by  the  Basic 
Encoding Rules of OSI as the  concrete  represen- 
tation of its  Abstract  Syntax  Notation 1 (ASN.~) .  
In general, this  approach  requires all data  items to 
always be  converted twice, once from the  data 
representations of the client to  the canonical 
form, and then from the canonical form to  the 
representations of the  server  system.  These  con- 
versions  are performed whether or not  the client 
and  server  systems  are of the  same  type or have 
any  representations in common. 

The OSI approach  does  achieve universal connec- 
tivity, but  only if both  the sending and receiving 
applications  agree  on  what  data  are being trans- 
mitted. os1 assumes  that ASN.l descriptions of the 
transmitted  data  are  separately communicated 
between  the programmers of the sending and re- 
ceiving applications. It  is  then up to  the program- 
mers  to include the  necessary  conversions in their 
communicating applications. 

A  second  approach is based on  the  fact  that for 
each  type of data  only  a small number of different 
representation  schemes  are commonly used. 
Therefore,  a flag can  be  sent from the client sys- 
tem to the  server  system, identifying which 
schemes  the client system will use for each type. 
Where  the client and the  server  use  the  same 
scheme, no conversions  are required. Otherwise, 
conversions need be performed only  once  by  the 
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server  system.  This general approach  has  been 
adopted by  the Open Software Foundation’s DCE 
for  remote  procedure calls. As  with  the OSI ap- 
proach,  a  separate flow of information is required 
between  the programmers of the sending and re- 
ceiving applications. For DCE, a file containing 
Network  Interface Description Language, essen- 
tially enhanced C-language data  declarations, 
must  also  be  transmitted. 

A third approach simply acknowledges that all 
data  have to be  represented  according to some 
scheme,  and if all senders and receivers  use  the 
same  scheme,  only  some  conversions will be re- 
quired some of the time. The  key  is to pick the 
representation  schemes  that  are  most  frequently 
used in order  to minimize the number of conver- 
sions performed. 

The primary products involved in the definition of 
DDM architecture (in 1982) were  the System/36, 
System/38, and System/370*. Most of the  data 
representation  schemes used by  these  systems 
are identical, and DDM architecture was not con- 
cerned  with  those  data  types  that were not, such 
as the floating-point formats. But along came  the 
DDMPC and PC Support  products which use dif- 
ferent  schemes for binary  numbers  and  character 
data.  In  order to communicate with  the  Sys- 
tem/36, System/38, and System/370 DDM archi- 
tecture  products,  the PC products  were forced to 
construct and parse  objects according to the rep- 
resentations previously chosen  by DDM architec- 
ture. 

Given the DDM architecture  two-step model of 
translating programming interfaces to data  stream 
structures  (see  the  previous  subsection),  the PC 
products  are able to create  objects  whose  values 
are  represented according to PC representations. 
The client communications manager can  then 
convert them, as needed, to the  representations 
required by DDM architecture. But it would also 
be possible to enhance  the  architecture along the 
lines of the DCE approach. If this  were  done,  a flag 
sent  by  the client to the  server could identify the 
representation  schemes to be  used,  thereby al- 
lowing DDM architecture  objects to  be transmitted 
in whatever  way  the communicating servers 
choose.  In particular, it would allow like systems, 
such as an os12 client and an 0s/2 server,  to com- 
municate using their native  representation 
schemes. 
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The  approach used by DDM architecture  works 
well for objects defined by the  architecture,  but it 
ignores mapped scalars  that  contain application 
data,  such as file records,  which DDM architecture 
treats  as  streams of undefined bytes.  There is no 

Distributed relational database 
support in  Level 3 of DDM 

architecture  addresses data 
representations  and any 
necessary conversions. 

way for DDM architecture  products  to  know  what 
these  data  look like or  to know how the  data  are 
wanted.  Any  necessary  conversion of these  data 
is a responsibility of the  requesting application 
program. 

With the  introduction of distributed relational da- 
tabase  support in Level 3 of DDM architecture, 
this  situation changed. Clearly, the client  and 
server  database  managers  each  know their rep- 
resentations of the SQL data  types,  and  conver- 
sions  can  be performed by either  server if de- 
scriptions of these  data  are  also  transmitted.  The 
IBM Formatted Data:Object Content  Architecture 
(FD:OCA) was selected by  the Distributed Rela- 
tional Database  Architecture to  convey this  de- 
scriptive information. Previously defined as a 
means of describing tabular  data included in doc- 
uments, FD:OCA was well-suited to describing tab- 
ular relational database  data.  New DDM architec- 
ture  objects  were defined to  carry FD:OCA data 
streams  between  the client and  server SQL appli- 
cation  (access)  managers,  which performed any 
necessary  conversions. 

The  approach being considered  for describing and 
converting file records is discussed in References 
10 and 11. 

Product-unique extensions 

File and relational database  managers of DDM ar- 
chitecture define standardized models of data 
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managemen t. DD I M  architecture  also defines ab- 
stract  services  to complement these models and 
defines common  data  stream  structures for the 
canonical  representation of data  objects,  com- 
mands,  and replies. 

This  framework  has also been designed to support 
extensions to DDM architecture  for homogeneous 
product  connectivity.  Any  extensions  that  per- 
tain to multiple products  are  candidates for the 
development of standardized DDM architecture. 
But  other  requirements are unique to single prod- 
ucts,  especially  requirements  for  horizontal  prod- 
uct  growth or function  distribution. Although 
product-unique  extensions  are  not  candidates  for 
standardization,  architectural definition, by  the 
product,  is still required. 

In both  cases,  the  framework of existing DDM ar- 
chitecture  classes  can  be used as  the  basis  for 
extensions to  the architecture. DDM architecture 
allows the following types  ofproduct-unique  en- 
hancements: 

Whole new classes of managers (such as librar- 
ies or mailboxes)  can  be defined, either  with 
new commands  and replies unique to  the  class 
or reusing DDM architecture  commands  and  re- 
plies as appropriate. 
The  function of DDM architecture managers can 
be  enhanced by defining new commands  for  a 
class. 
New  parameters  can  be  added  to existing DDM 
architecture  commands. 
New  values  can  be defined for existing DDM ar- 
chitecture  parameters. 

A good example of product-unique  extensions is 
provided by  the AS/400. When connected to a  non- 
AS/400 server, an AS/400 server  complies  strictly 
with DDM architecture.  But  when  connected to an 
AS/400 server,  a  wide  variety of extensions are 
used to  make  the full function of the  data man- 
agement system of the AS/400 available to remote 
AS/400 users, including many  capabilities not cov- 
ered by DDM architecture. 

DDM architecture and international 
standards 

The  International Organization for  Standardiza- 
tion (KO) has defined an evolving set of standards 
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for OSI. The OSI standards  are  formulated arou Ind 
a powerful, seven-layer  framework  whose  pur- 
pose is to allow venders  to mix and  match imple- 

The DDM architecture fits into 
the IS0 standard in the  Open 

Systems  Interconnection layer 7, 
which is the application layer. 

mentations of each  layer  and  thereby  achieve 
interconnectivity among their  various implemen- 
tations. 

How  does IBM’s DDM architecture fit into  this 
framework? The simple answer is that all of the 
architecture fits into  the OSI layer 7, the applica- 
tion layer. As mentioned previously, DDM archi- 
tecture  was designed to  be  independent of the 
communications facilities that  are  used  to  actu- 
ally transmit  messages  between  systems.  We 
have  even  noted  that OSI’S Basic  Encoding Rules 
could be  used to encode  messages in DDM archi- 
tecture. 

But  what  about  the OSI File  Transfer,  Access,  and 
Management (FTAM) standard  that  appears  to  be 
in competition with the file support of DDM ar- 
chitecture in layer 7? A  comparison of the file 
manager classes of DDM architecture with FTAM 
shows  that  they  are  actually  complementary  and 
not really in competition, since  they  were  de- 
signed to meet different requirements. For DDM 
architecture,  the prime requirement was an abil- 
ity to provide local or remote  transparency  to  ex- 
isting application  programs  and file systems.  For 
FTAM, the prime requirement was  to define a pow- 
erful new file model for  use by new applications 
in accessing new file systems.  As  an  international 
standard,  AM certainly sets a goal for long-term 
file system  revolution,  but  not  evolution, as  does 
DDM architecture. 

Since IBM has  committed to supporting OS1 on  its 
S A A  systems,  a challenge to DDM architecture is to 
integrate  the FTAM file models into  the DDM ar- 
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chitecture  framework,  and  for DDM architecture 
to make use of OSI level 6  communications facil- 
ities. 

Summary 

As  discussed in this  paper, DDM architecture is a 
framework  for  distributed application services. 
Multilayered and  object-oriented, DDM architec- 
ture  has defined a  variety of distributed file and 
relational database  services  that  can  be provided 
over  many different communications facilities. 
These  services  have  evolved  as  a  series of pub- 
lished levels of the architecture was developed. 
The  openness of the DDM architecture  framework 
invites  the addition of a  wide range of additional 
distributed application services. 
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Appendix:  Products  using DDM architecture 

The specifications of DDM architecture  have  been 
used to build and deliver a  variety of IBM products 
allowing users  to  access and manage distributed 
files, including: 

System/36 System  Support Program Distrib- 
uted Data Management 
System/38 Control Program Facility Distrib- 
uted  Data Management 
Operating System/400 Distributed  Data Man- 
agement 
The DDMPC and NetView/PC*  client  products 
for PC-DOS systems 
The CICSDDM server  product for use  under  the 
IBM Customer Information Control  System (for 
both Multiple Virtual Storage  and Virtual Stor- 
age Extended) l5 

PC Support/36  and AS/400 PC Support client/ 
server  products 
4680 Store  Systems  Distributed File Manage- 
ment 

New  products  are  under  development  to  extend 
distributed file services to: 
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Operating Systed2 Distributed File Manage- 

MVS/ESA Distributed File Management ( w s  

VMESA Distributed File Management (VM DFM) 

Additional IBM products will provide distributed 
relational database  services to  users of: 

ment (os12 DFM) 

DFM) 

DATABASE 2 (MVS DB2*) 
Structured  Query  LanguageData  System 

0s/2 Extended  Services  Database Manager 

RISC System/6000* Advanced  Interactive Ex- 

(SQL/DS*) 

(os12 DBM) 

ecutive* (AIX*) 

*Trademark or registered trademark of International Business 
Machines  Corporation. 

**Trademark  or registered trademark of Microsoft Corpora- 
tion, Digitalk, Inc., Xerox,  Inc., the  Open  Software  Founda- 
tion, or UNIX  Systems  Laboratories, Inc. 
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