Inside IBM’s Distributed
Data Management
architecture

IBM’s Distributed Data Management (DDM)
architecture is an element of Systems Application
Architecture™ that defines an open environment
for sharing data in files and relational databases.
DDM is a key element of IBM’s Distributed
Relational Database Architecture. DDM
architecture enables programs to access and
manage data stored on remote systems. It is a
framework for a wide range of additional
application services. Influenced by the concepts
of object-oriented technology, DDM architecture
is designed to be object-oriented. This paper
examines DDM architecture from a number of
viewpoints, considering why and how it was
created, what it is, and how it has evolved.

ystems Application Architecture* (SAA*) de-

fines a consistent set of application services
that span IBM system platforms from personal
computers to large systems, thereby making ap-
plication services a unifying force for the future.
Distributed application services are provided by
SAA Common Communications Support (CCS).
These SAA elements deal with how systems work
together to provide services to applications dis-
tributed throughout a network. For the most part,
these CCS services are not seen by the user. Soft-
ware products that companies install provide the
interfaces employed by programmers to develop
applications that use CCS services. Knowing what
is within these products enhances an understand-
ing of how they work and how to develop effec-
tive distributed applications.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

by R. A. Demers
D. Fisher

S. Gaitonde
R.

R.
J.
S.
R. Sanders

Two key SAA application services are Distributed
File Management' and Distributed Relational Da-
tabase Management.? Both of these services are
built to the specifications provided by 1BM’s Dis-
tributed Data Management (DDM) architecture.
DDM architecture enables programs to access and
manage data stored on remote systems in a cli-
ent/server relationship.

This paper is not intended to be a tutorial on the
technical details of DDM architecture. That level
of information is available in documents pub-
lished on the architecture (particularly in Refer-
ence 3). Rather it examines DDM architecture
from a number of points of view, considering why
and how it was created, what it is now, and how
it has evolved. The paper begins with a discussion
of the role of software architecture in general, and
continues with a brief history of DDM architecture.
Next, the role of object-orientation in making DDM
architecture uniform in style and highly consistent
in structure is presented. It is followed by a
presentation of the conceptual framework of the
architecture in terms of formally defined layers of
objects, along with discussions of its key classes of
objects. Concluding the paper are discussions of

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royaity provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

DEMERS ET AL. 459

product-unique extensions to DDM architecture and
the relationship of DDM architecture to international
standards.

The role of software architecture

We begin by distinguishing a software architec-
ture from implementations of the architecture. A
software architecture is really just a set of spec-
ifications, a set of blueprints, for constructing
products. As such, a software architecture is not
installed on computer systems. Rather, products
based on a software architecture are installed.
What, then, is the role of software architecture in
developing products?

Consider, for example, a suspension bridge over
a large river. The bridge is designed by an archi-
tectural firm to meet the requirements of its own-
ers and of its users, the driving public. It is then
built by a separate construction company. Only
after being certified for use by independent build-
ing inspectors are people then allowed to drive
over it. There are clear similarities between this
example and designing, constructing, assuring,
and delivering computer software products.

An architectural firm is responsible for designing
the bridge so that it meets the needs of the people
who will own it and the people who will use it. For
the owners of the bridge, the architects must con-
sider the cost and schedule of its construction, the
cost of its operation, and its long-term mainte-
nance requirements. For users of the bridge, they
must consider the structural integrity of the
bridge, its carrying capacity, its relationship to its
environment, and its aesthetic appeal. All of these
considerations must be reflected in the blueprints
produced by the architects. Software architects
have similar concerns for product owners and
users. A software design must meet the needs of
the companies that implement products based on
the design, and it must meet the needs of the users
of those products. For large software develop-
ment projects, these concerns are the ones that
determine the success or failure of the project.
They must be given as much consideration as
they would be given in designing a major highway
bridge.

A construction company is bound by its contract
to build a bridge according to the blueprints pro-
vided by the architects, but real-world conditions
can require changes. In these cases, the architects

460 DEMERS ET AL.

are informed of the problems encountered and
make changes to the blueprints. Often, the archi-
tects visit the construction site to see for them-
selves how well their specifications are being re-
alized and sometimes spot troubles before the
construction crew is aware of them. The relation-
ship between the architects and construction
company is an important factor in the success of
the project. So too, with software architecture.
The architects must be independent of the pro-
gramming team but have a close working rela-
tionship with them. The design produced by the
software architects must be seen as the essence of
the implementation contract, but it must also be
open to change as real-world problems are de-
tected.

Building inspectors also study the blueprints, not
to build a bridge themselves, but to ensure that
the bridge is actually built according to the spec-
ifications. They test the quality of materials and
construction as the bridge is being built so that
they can certify it meets the requirements of the
blueprints. In software development, this role is
often played by a systems assurance or quality
assurance team. But for the role to be played ef-
fectively, the assurance team must measure an
implementation against up-to-date specifications
that clearly define what was supposed to be built.

Finally, the bridge is opened to traffic, and the
driving public decides whether it meets their
needs, namely, getting across the river in a safe,
timely, cost-effective manner. Similarly, a soft-
ware product must fulfill the needs of its users.

After thousands of years of experience in con-
structing bridges, buildings, and other large, com-
plex structures, this process has been formalized
in both building codes and legal practices. Clear
divisions of responsibility among independent ex-
perts are carefully observed. We are only now
beginning to understand that this process applies
equally well to software projects, especially for
large projects. In particular, we are slowly learn-
ing that software architecture requires a different
skill than programming and should be done by
people other than programmers.

The history of DDM architecture

What we call DDM architecture is actually an
evolving set of specifications for distributed ap-
plication services. The story of DDM architecture

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

begins in the mid-1970s when IBM’s Systems Net-
work Architecture (SNA) logical unit (LU) 6.2°
was being designed. An important feature of
LU 6.2 is that it is possible for a program on one
system to create a conversation with a program
on another system and pass it parameters (effec-
tively, a remote procedure call), then interchange

DDM architecture is actually
an evolving set of
specifications for distributed
application services.

messages with it. In addition to application pro-
grams using LU 6.2, its architects saw the possi-
bility of requesting system services and using the
resources of remote systems with this mecha-
nism. Indeed, they saw LU 6.2 as the foundation
for the development of a distributed operating
system, with access to remote files and databases
a clear priority.

Work began on an architecture that would use
LU 6.2 capabilities to provide distributed data
management services, and it was thus called DDM
architecture. Two things quickly became obvi-
ous. First, the interfaces and capabilities of the
data management facilities of the participating
IBM systems were quite varied and would make
the design of a common distributed data manage-
ment facility difficult, essentially being an exer-
cise in negotiation and standardization. Second,
there was no strong demand for LU 6.2 services on
IBM large systems at that time because other com-
munications services were in wide use. As a re-
sult, work on the DDM architecture languished.

However, circumstances were somewhat differ-
ent for the IBM System/34 family of midrange com-
puters. No large installed base of users was already
employing other communications services, and
some users were beginning to install System/34s
in multiples for both horizontal growth and to de-
centralize their processing. These factors made a
peer-to-peer communications facility like LU 6.2
desirable to System/34 users and made access to

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

data in remote System/34s crucial. From the ini-
tial work that had been done on DDM architecture,
a product called System/34 Distributed Data File
Facility (DDFF) was created and was announced
in 1980. Because it was intended to communicate
only with other System/34s, DDFF was able to by-
pass the problems of nonstandard file interfaces
and prove the value of the fundamental idea of
DDM architecture; that is, it is useful to be able to
request services from remote systems as if they
are local.

The DDFF product was carried forward to the suc-
cessor of the System/34, the System/36*, in 1982.
But in the attempt to do this for the System/38*
family of computers, the problem of data man-
agement standardization again arose because of
the different data management interfaces and
facilities of the System/38. This time, however,
the people interested in solving it were all part of
the same IBM programming laboratory, in IBM’s
Rochester, Minnesota facility, responsible for the
System/34, System/36, and System/38 families. A
new architecture group was formed in Rochester
in 1983 to work with representatives of these sys-
tems and to define the syntax and semantics of
DDM messages. The result was Level 1 of DDM
architecture, which was announced and pub-
lished in 1986. At the same time, IBM announced
DDM products developed by the Rochester labo-
ratory for use with the IBM Personal Computer
Disk Operating System (PC-DOS), System/36, Sys-
tem/38, and Customer Information Control Sys-
tem/Multiple Virtual Storage (CICS/MVS*).

The next step in the evolution of DDM architecture
was the support of stream-oriented files. Client/
server products for the System/36 and System/38
required the ability to store, access, and manage
PC-DOS stream-oriented files and hierarchical di-
rectories on a System/36 or System/38. This work
resulted in Level 2 of DDM architecture, which
was published in 1988.

At about the same time, the SAA subset of the
record file support of DDM architecture was de-
fined and announced as an SAA Common Com-
munications Support Architecture. As such, IBM
also announced its intention to provide Distrib-
uted File Management (DFM) products on all four
IBM SAA systems: Operating System/2* (0S/2*),
Operating System/400* (0S/400*), Virtual Ma-
chine/Enterprise Systems Architecture (VM/ESA*),
and Multiple Virtual Storage/Enterprise Systems

DEMERS ET AL. 461

Architecture (MVS/ESA™). The DFM product effort,
led by the IBM laboratory in San Jose, California,
has also involved IBM laboratories in Boca Raton,
Florida; Boulder, Colorado; Cary, North Caro-
lina; Endicott, New York; Rochester, Minnesota;
and Sindelfingen, Germany—truly a worldwide
1BM effort.

Level 3 of the DDM architecture, published in 1990,
supports IBM’s Distributed Relational Database Ar-
chitecture (DRDA).® This, too, was and continues to
be an IBM-wide effort. DRDA is based on the Sys-
tem/R research originally done by the IBM Almaden
Research Laboratory in San Jose, California. Un-
der the leadership of the IBM Santa Teresa labora-
tory, also in San Jose, the DRDA design group in-
cludes individuals representing IBM Research, the
relational database management products of all four
SAA systems, DDM architecture, Formatted Data:
Object Content Architecture (FD:0CA), Character
Data Representation Architecture, and SNA. DDM
Level 3 architecture defines messages for request-
ing relational database (RDB) services, for example,
binding Structured Query Language (SQL) state-
ments into RDB packages and subsequently execut-
ing those packaged statements. Included in these
messages are DDM structures for carrying SQL state-
ments and responses and for carrying FD:OCA data
descriptors. DDM also defines how SNA LU 6.2 com-
munications protocols are used by DRDA.

Level 4 of DDM architecture is expected to be
published in 1992. For the DFM products, storage
management attributes are supported for files, as
defined by the 1BM Enterprise Storage Manage-
ment* architecture,® as well as support for user-
defined attributes for files. For DRDA, two-phase
commitment control protocols are defined for ap-
plication-directed distributed units of work. And
for the 08/400 DDM and 0S/400 PC Support prod-
ucts, data queuing and system command pro-
cessing classes are defined.

Clearly, there is a lag in time between the com-
pletion of architectural work and the shipment of
products. Each of the IBM products implementing
some part of DDM architecture is doing so within
the context of a complex system development
environment, competing priorities, and limited
resources. In general, a new level of DDM archi-
tecture is announced when at least one imple-
menting product is ready to be announced. In this
way, feedback from at least one product on any
ambiguities or problems found can go to the ar-

462 DEMERS ET AL.

chitects. The result is that published levels of DDM
architecture have been of high quality, with little
need for subsequent corrections. Although non-
IBM vendors have not been invited to participate
in the design of DDM architecture, they have had
the benefit of quality specifications without sig-
nificant delay.

Blueprints by themselves are of little value to end
users. What counts to them are products they can
use. IBM products using DDM architecture are
given in the appendix.

Numerous other companies have also expressed
an interest in implementing products that provide
connectivity with IBM’s Distributed File Manage-
ment and Distributed Relational Database prod-
ucts. An example of such a product is one under
development by Object Technology International
for 082 and Windows** that supports the devel-
opment of cooperative applications with 0S/400s.
Written in Smalltalk/V**, this product supports
the development of 0S/2 and Windows applica-
tions written in Smalltalk/V that use 0S/400 serv-
ices. Among other services, it implements DDM
client architecture for accessing and managing
record files.

The relationship of DDM architecture to various
products is illustrated by Figure 1.

Object-orientation and DDM architecture

Being object-oriented is a frequent claim in the
computer industry today, but it is not always clear
what that means. Calling all the entities that com-
prise an architecture objects is not sufficient (but
is certainly a start). More important is a careful
adherence to the fundamental concepts of object-
orientation and the design discipline they imply.

Before we look at how DDM architecture uses ob-
ject-oriented concepts, a few definitions are nec-
essary. From the object-oriented point of view,
an object is a self-contained entity that has its own
private data and a set of operations to manipulate
those data.

Objects are created by special objects called
classes and are known as instances of a class.

As defined by Wegner’ there are three primary
characteristics of object-oriented systems:

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 1 DDM architecture and its product environments

IBM MVS/ESA IBM CICS IBM VM/ESA
(SAA) (SAA) (SAA)
IBM SYSTEM/36 | DDM \ OTHER VENDORS
: ARCHITECTURE h
!
! I
! I
F-- T T |
| ABSTRACT, |
| OBJECT-ORIENTED I
IBM SYSTEM/38 | SPEGCIFICATIONS ’ L 1BM AIX
1 i
| |
- T === |
|~ RECORD FILES |
| — STREAM FILES I
: ~ RELATIONAL DATABASES !
IBM AS/400 | ~ OTHER OBJECTS : IBM STORE
(SAA)) h SYSTEMS
L__....]._l,_l____,._l
IBM PC-DOS IBM IBM 0S/2
PC SUPPORT/36 (SAA)
08/400 PC SUPPORT

1. Encapsulation: A technique for minimizing in-
terdependences among separately written
modules by defining strict external interfaces.
In this definition, the word object could be ex-
changed for module.

2. Inheritance: A technique that allows new,
more specialized classes to be built from the
existing classes while retaining all of the char-
acteristics and capabilities of the existing
class.

3. Polymorphism: A technique that allows the
same command (or message in object-oriented
terms) to be understood by different objects,
which respond differently. Often, this goes
hand in hand with dyramic binding. Polymor-
phism eliminates much of the control structure
traditionally needed to differentiate between

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

objects, such as case statements and if then
else statements.

All entities in DDM architecture are objects, and
the architecture consists of a large number of
classes to which these objects belong. The refer-
ence manual® for DDM architecture actually con-
sists of formatted printouts of a large set of
classes. These classes each have a name and are
arranged alphabetically for ease of reference. Be-
cause these terms refer to each other extensively,
the reference manual is actually a hypertext doc-
ument. Extensive cross-referencing information
and indexes are also provided.

The variables of a DDM architecture class specify
its inheritance, describe the variables of the class

DEMERS ET AL 463

and the variables of its instances, and specity the
commands to which the class responds and the
commands to which its instances respond. The
variables of the class object are encapsulated by
the commands of the class, and the variables of
the instances of the class are encapsulated by the
instance commands of the class.

DDM architecture uses the concept of inheritance
to simplify the architectural specifications. For
example, the class of MANAGER defines the struc-
ture and private data that are common to all DDM
managers. The class of FILE, which is a subclass
of MANAGER, inherits variables and commands
from the class of MANAGER. Since many manag-
ers respond to some of the same commands, poly-
morphism is an inherent attribute of DDM archi-
tecture.

The fundamental concepts of object-orientation
used in DDM architecture were derived from the
book Smalltalk-80: The Language and Its Imple-
mentation.® Although the DDM architects attempt
to remain faithful to these concepts, there are a
number of important differences between DDM ar-
chitecture and Smalltalk:

* The DDM architecture class library is not de-
signed for the same purposes as a Smalltalk
class library. A Smallitalk class library provides
programmers with a computer-aided software
engineering (CASE) environment and includes a
wide variety of classes that can be reused when
creating Smalltalk applications. In contrast, the
class library of DDM architecture contains only
classes related to the services covered by the
architecture. Although DDM architecture can be
implemented in Smalltalk, the DDM architecture
class specifications are not intended to be a
working prototype of the architecture.

* The Smalltalk concept of meta-classes as first-
class objects was considered both confusing
and of marginal value to DDM architecture. In-
stead, DDM architecture collapses each meta-
class into its corresponding class. That is, each
class defines its own variables and its own be-
havior (with inheritance).

* Because DDM architecture is concerned with
the form of the messages that flow between cli-
ents and servers, each command message is for-
mally defined by its own class object. For ex-
ample, the Clear File message is defined by the
CLEAR class. Each class whose instances can be

464 DEMERS ET AL.

a receiver for this message specifies CLEAR as
an instance command.

* Smalltalk defines only one error message: Does
not understand. 1t is returned if the class of a
receiving object does not recognize a request.
This action was not considered adequate given
the heterogeneous nature of DDM architecture
clients and servers. Therefore, for each com-
mand message, DDM architecture defines the set
of reply messages that can be returned by any
methods that implement the command. Each
reply message is also defined by its own class
object, and all reply messages are subclasses of
class RPYMSG, which defines a set of instance
variables that they all inherit. DDM architecture
defines a separate reply message class for each
exception that can occur. These reply messages
are then specified for whatever commands can
raise each exception.

¢ Also, because DDM architecture is particular
about message formats, each instance variable
of a command or reply class is fully typed. That
is, DDM architecture specifies precisely what
classes of objects can be specified for each vari-
able. Clients are required to create messages
within the range of this typing. Servers type
check each variable of a command before it is
passed on to its receiver.

* Perhaps the most original aspect of the object-
orientation of DDM architecture is the division
of its objects and their classes into hierarchical
layers. Whereas Smalltalk considers all objects
to exist in a single, uniform space within a single
virtual image, DDM architecture considers them
to exist in a multilayer space where the objects
in one layer are composed of objects from the
next lower layer. This difference is discussed in
the next section.

With the exception of the Object Technology In-
ternational product that is being implemented in
Smalltalk/V, DbM products have been implemented
using procedural programming languages, such as
C, because object-oriented programming languages
were not available or because the products had to
be integrated with other products. They have, nev-
ertheless, benefited from the clarity, conciseness,
and completeness of the object-oriented specifica-
tions of DDM architecture.

The DDM architecture framework

The initial services defined by DDM architecture
pertain to data management, but these services

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 2 The structural layers of DDM architecture

DISTRIBUTED SYSTEM LAYER:
AN INTERACTING GROUP OF SERVERS

CLIENT/SERVER LAYER:
ENCAPSULATED GROUPS OF RESOURCE MANAGERS

— CICS/DDM -D82 — MVS/ESA DFM
— SYSTEM/36 DDM —-8QL/DS - VM/ESA DFM
— SYSTEM/38 DDM —0S/2 DBM — 0S/2 DFM
- DDM/PC —08/400 DDM — 4680 DFM
- PC SUPPORT/36 —PC SUPPORT/400
MANAGER LAYER:
ENCAPSULATED GROUPS OF OBJECTS
~ COMMUNICATIONS MANAGERS — SECURITY MANAGER
- AGENTS — LOCK MANAGER
— DIRECTORIES — CLASS DICTIONARIES
—FILES - RELATIONAL DATABASES
OBJECT LAYER:
ENCAPSULATED DATA ENTITIES
— COMMANDS - SERVER ATTRIBUTES
— PARAMETERS — MANAGER ATTRIBUTES
— OPERANDS — OBJECT ATTRIBUTES
— REPLIES - FIELD ATTRIBUTES
— RECORDS — DATA DESCRIPTORS
DATA LAYER:
- BIT STRINGS —INTEGERS
— CHARACTER STRINGS — FIXED-POINT NUMBERS

are specified within the context of a framework
designed to accommodate the full range of appli-
cation services typically provided by operating
systems. This framework, illustrated in Figure 2,
consists of nested structural layers. It is similar to
what we see in natural world systems, where mol-
ecules are composed of atoms, atoms of particles,
and particles of quarks. For DDM architecture, the
following five layers are defined:

» The Distributed System Layer consists of one

or more distributed systems in a network of het-
erogeneous computer systems. Each distrib-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

uted system provides a single system image of
operating system services for its client pro-
grams. Each is composed of DDM architecture
clients and servers.

~ The Client/Server Layer consists of the various
clients and servers of a distributed system. The
clients provide requesting programs with local
or remote transparency, and the servers man-
age and provide access to the resources of a
single system. A client or server is composed of
DDM architecture resource and service man-
agers.

~ The Manager Layer consists of the major com-

DEMERS ET AL 465

ponents of a server. For clients, managers pro-
vide local or remote transparency, routing serv-
ices, communications services, and support
services. For servers, managers provide re-
source access and management services, rout-
ing services, communications services, and
support services. A manager is composed of
DDM architecture objects.

* The Object Layer consists of self-identifying
data used by managers, stored by managers, or
communicated between managers. An object
consists of DDM architecture data elements.

* The Data Layer consists of the data elements
that describe objects or represent their value.

The Distributed System Layer. A distributed sys-
tem is one in which users and programs see a
single system image of the services available to
them through a network of heterogeneous, net-
worked systems. In DDM architecture, a distrib-
uted system consists of clients and servers that
interact to process application requests. The cli-
ents and servers use whatever communication
links and whatever communication protocols are
available between them in a peer-to-peer fashion.
In this sense, a DDM architecture distributed sys-
tem is independent of the topology of the network
used by its servers. Multiple DDM architecture
distributed systems can reside in the same net-
works, each with clients and servers in some of
the same systems. A DDM architecture distributed
system is illustrated in Figure 3.

There are two possibilities to be considered when
designing a single system image: canonical serv-
ices and mapped services. With canonical serv-
ices, a single programming interface is defined for
each service, all client programs use that interface
torequest it, and all servers support precisely that
interface for that service. A client program need
not be concerned with what server will actually
provide the service, and a server need not be con-
cerned with who is requesting it. The design of the
messages that flow between the client and server
systems is a simple translation of each service
interface into a transmittable stream of bytes.
Client programs are highly portable between sys-
tems but have to be specially written to the canon-
ical interfaces. This approach is generally being
taken by the Open Software Foundation Distrib-
uted Computing Environment (OSF/DCE**). The
presumption is that new client and server products
will be developed over time to provide the canon-
ical services and interfaces.

466 DEMERS ET AL

The second possibility for a single system image
is the one adopted for DDM architecture: mapped
services. Client programs use the interfaces of

Multiple DDM architecture
distributed systems can
reside in the same
networks.

their local system to request services, regardless
of the system that actually provides them. If a
request is for a local service, it is directed to the
local facility that provides that service. But if it is
for a remote service, the client system translates
the request into a message designed for that class
of service. The remote server translates the mes-
sage into a request specified through a program-
ming interface of the server. Thus, three program-
ming interfaces are involved in a mapped request
for a remote service:

1. The programming interfaces of the client sys-
tem

. The abstract programming interfaces defined
by messages

. The programming interfaces of the remote
server

W N

In this way, client programs can request services
without concern for what programming interfaces
actually need to be used. And conversely, a sys-
tem can provide services without concern for the
programming interfaces actually used by the re-
questing application program. Any existing or
new program that uses a service can be a client of
either the local system or of a remote system, but
these programs are not portable to another sys-
tem without conversion to its service interfaces.

Whether canonical services or mapped services
are used in the design of a single system image is
largely a matter of objectives. Local interfaces
can often be mapped to canonical services, and
local interfaces can be designed to match the mes-
sages of mapped services. In both cases, the syn-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 3 DDM distributed systems and servers

DDM DISTRIBUTED SYSTEM

REGIONAL CORPORATE
HEADQUARTERS HEADQUARTERS
DDM SERVER ‘ DDM CLIENT DDM SERVER
‘« TN
4 2
SHIPPING ACCOUNTING
DEPARTMENT DEPARTMENT
DDM SERVER DDM SERVER
> - >
4
WORKSTATION WORKSTATION
DDM CLIENT | DDM SERVER
y >

tax and semantics of the services must be care-
fully and formaily defined for both clients and
servers. The real issue is whether existing client
programs and existing services should be changed
to meet the requirements of canonical services.
For DDM architecture, the choice of mapped serv-
ices was dictated by the very large number of
existing programs, files, and databases on IBM
systems. Ease of migration from single systems to
distributed systems mandated the mapped serv-
ices approach.

A final comment on this subject is that the ap-
proach taken affects what services are defined. To
define canonical services is largely an academic
exercise, based on knowledge of similar services

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

(in the UNIX** environment for OSF/DCE), with
attention to consistency and completeness, and
certainly with review and approval by peers in the
sponsoring body. In contrast, the design of
mapped services is largely a standards exercise,
requiring participation by representatives of mul-
tiple client and server systems. As a mapped ser-
vice model is designed, each representative must
critique it in terms of the local services and in-
terfaces available on his or her system, either
finding good mappings or arguing for changes that
would allow good mappings. This process is ar-
duous and time-consuming, but it leads to dis-
tributed service models that better match the
needs of existing client programs and the capa-
bilities of existing system services.

DEMERS ET AL. 467

Figure 4 Client/server architecture

CLIENT SYSTEM SERVER SYSTEM
’ APPLICATION PROGRAM t
4
v
‘ CLIENT }4..--------------..,{ SERVER
'y p'y 'Y 7Y
v A 4 A 4 h 4
LOCAL FILES SNALUS6.2 SNALUG.2 FILE X
COMMUNICATIONS | g I a COMMUNICATIONS
FACILITY - AN T FACILITY

The Client/Server Layer. In general terms, a client
is a layer of software in one system that routes
service requests to the server that owns a needed
resource, such as a file, database, printer, or pro-
cessor. The server can be either local or remote.
The client/server model is illustrated by Figure 4.
DDM architecture is in the client/server category.

DDM architecture calls clients source servers be-
cause they are the source of requests for services,
and it calls servers target servers because they
are the target of those requests. This difference in
terminology is simply the result of DDM architec-
ture predating what is now called client/server
processing. This paper uses client/server termi-
nology to avoid further confusion.

The servers in DDM architecture can be special-
ized to handle specific resources. For example,
one server (CICS/DDM) handles only files, whereas
another server (MVS DATABASE 2*) handles only
relational databases, and a third (Operating Sys-
tem/400*) handles both files and relational data-
bases. Multiple servers can reside in the same
system.

A product implementing DDM architecture can
provide both client and server support, or it can

468 DEMERS ET AL.

be specialized as just a client or just a server. As
examples, AS/400 DDM is both a client and a server,
the DDM/PC product is only a client, and the
CICS/DDM product is only a server.

The Manager Layer. A client or server in DDM
architecture consists of a set of entities each of
which manages some aspect of the service, such
as a file, a database, or a conversation linking the
server to other servers. These entities are all
called managers in DDM architecture. A client or
server can have zero or more instances of each
kind of manager defined by the architecture. For
example, each file in a server is an instance of one
of the file manager classes in DDM architecture.

If a server supports only a subset of DDM archi-
tecture, it has the managers of that subset, plus
any managers on which they are dependent. For
example, if a server supports only files, it only has
instances of the manager classes required by files,
but it does not have instances of the managers
concerned with relational databases.

The manager classes currently defined by DDM
architecture can be categorized as files, data-
bases, queues, access managers, Support manag-
ers, agents, and communications managers.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 5 File manager request processing

CLIENT SYSTEM SERVER SYSTEM
APPLICATION PROGRAM
CLEAR FILE(X)
S
CLIENT SERVER
vy L L
CLIENT DDM CLRFIL MESSAGE SERVER
FILE X g O B R
MANAGER MANAGER
! U T AT
SERVERS
CLEAR FILE
INTERFACE
v v v
LOCAL SNALU 6.2 SNALU 6.2 FILE X
FILES COMMUNICATIONS | _| COMMUNICATIONS
FACILITY ¢ ® FaciLITY

Files. DDM architecture defines file classes for
both record-oriented files typically found on large
systems and stream files typically found in work-
stations.

The DDM architecture model of a file consists of
information about the file (its attributes), the data
content of the file (either records or a stream), and
for keyed files, an index over the records of the
file. Messages can be sent to a server to create,
delete, rename, lock, unlock, or clear files. Fur-
ther, data can be loaded into or unloaded from a
file. Figure 5 illustrates how a request to clear a
file of its data is passed from the client file sur-
rogate to the server. The client file surrogate
knows where the real file is located and how to
access it.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Some of the attributes of a file must be specified
by the requester when the file is created to de-
termine its size, capabilities, and status in the sys-
tem. Other attributes can also be specified to pro-
vide application or user information about the file.
And still other attributes, such as the date the file
was last changed, are managed by the file system.
For each file class, DDM architecture allows cer-
tain attributes to be retrieved from the file and
certain attributes to be changed.

Record-oriented files. A record-oriented file con-
sists of a set of slots in which application-defined
units of data, called records, can be stored. In
some files, all records are the same length and
have the same data structure, whereas in other
files, records can vary in length and have varying,

DEMERS ET AL. 469

sometimes quite complex, structures. Most file
systems contain no information about the data
content of the records in files. A record-oriented
file simply stores, and provides access to, the rec-
ords of a file as whole units. DDM architecture
record-file classes also treat records in this way,
but metadata about records would allow many
additional services to be provided, as discussed in
References 10 and 11.

DDM architecture defines several subclasses of
record-oriented files in order to better match the
semantics of existing file systems:

* Sequential files: These files simply consist of a
set of numbered slots with no relationships de-
fined among them. The records in these files can
be accessed relative to the position of an access
method cursor (next or previous slot) or ran-
domly by slot number.

* Direct files: These files consist of a set of num-
bered slots, but there is an application-defined
relationship between the data contents of the
records in the slots and the number of the slot.
The records in these files can be accessed rel-
ative to the position of an access method cursor
(next or previous slot) or randomly by slot num-
ber.

* Keyed files: These files consist of a set of num-
bered slots and an index that associates the val-
ues of the key fields of each record with slot
numbers. In addition to relative and random ac-
cessing by slot number, these files can be ac-
cessed by using the index. The record with a
key value that is next or previous, relative to the
key value of the current record addressed by
the access method cursor, can be accessed.
Any record can be randomly accessed by spec-
ifying its key value.

* Alternate index files: These files consist of only
an index that associates alternate fields of the
records of a base file with their slot numbers in
the base file. They provide an alternate access
path to the records in the base file. The base file
can be a direct file, a sequential file, or a keyed
file. The access path of the index maintains a
specified ordering relationship for these fields.

Stream files. These files consist of a single stream
of bytes. Applications can access or update any
part of the stream by specifying the starting po-
sition and length of a portion of the stream. As

470 DEMERS ET AL.

with the record file classes, the DDM architecture
stream file class has no knowledge of the contents
of the stream.

File access managers. DDM architecture file ac-
cess manager classes each define a model of how
a file can be used by a single local or remote user.
Here too, the key problem is that each host sys-
tem includes access managers with unique inter-
faces. The DDM architecture file access managers
each define a single, consistent set of interfaces
for working with a file that can be mapped to and
from the interfaces of host systems. An example
of a file access manager is the Relative by Record
Number Access Method of DDM architecture.

Figure 6 shows how an application accesses a re-
mote file. When the application program opens
the file, an instance of a client file access manager
is created. The client file access manager obtains
the location of the file from the client file surro-
gate and sends a request to create an access
manager to the server. This server opens a path
to the real file. The bound path remains in exist-
ence until the application closes the client access
method.

Figure 7 shows multiple application programs in
the same server accessing the same remote file.
Note that they share the use of the same com-
munications facility.

Relational databases. Relational databases (RDBs)
have been implemented on many systems, each
with its own interfaces and internal structures. But
they also have much in common; in particular, sup-
port for Structured Query Language (SQL). Distrib-
uted Relational Database Architecture (DRDA) s the
SAA CCS architecture concerned with distributed re-
lational databases. DRDA is a composite architec-
ture, as shown in Figure 8.

* DDM architecture defines the DRDA model of re-
lational databases, the DRDA model of an SQL
access manager, the messages and replies trans-
mitted between a DRDA client and server, the
means by which SQL statements and Formatted
Data:Object Content Architecture (FD:0CA) de-
scriptors are transmitted, and the ways in which
SNA communications protocols are used.

* SNA LU 6.2 is the communications facility used
by DRDA.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 6 Access manager request processing

CLIENT SYSTEM

APPLICATION PROGRAM
h

CLIENT

\ 4

CLIENT
FILE ACCESS
MANAGER

4

v

CLIENT
FILEX
MANAGER

v

SNALU 6.2
COMMUNICATIONS

DDM MESSAGES

o o e o

SERVER SYSTEM

SERVER

SERVER
FILE ACCESS
MANAGER

T 1

CLIENT
FILE X
MANAGER

h 4

SNALUG6.2
COMMUNICATIONS

FACILITY

"1 FACILITY

* FD:OCA is used by DRDA to describe data.'* The
data are either input data to an SQL statement to
be executed or a result of executing an SQL
statement.

e Character Data Representation Architecture
(CDRA)® is used by FD:OCA to tag character data
with its encoding scheme (such as ASCII and
EBCDIC).

All database operations performed by the RDB oc-
cur within a logical unit of work. A logical unit of
work identifies the processing performed to take
a set of recoverable resources from one state (A)
to another (B) in an atomic fashion. If the pro-
cessing succeeds, the new state of the recover-
able resources is B, and if the processing fails, the
recoverable resources return to state A. The

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

changes made by the application during the de-
sired transition from state A to state B become
permanent (committed) when the processing suc-
ceeds, and the changes are undone (rolled back)
when the processing fails.

Using normal SQL interfaces, applications and
users can interact with local or remote relational
databases. Consider the following types of sup-
port for distributed relational databases:

e User-assisted distribution, in which users are
involved in extracting data from an RDB, mov-
ing the data to another system, and then loading
the data into their RDB.

Remote request, in which each request for serv-

DEMERS ET AL. 471

Figure 7 Multiple file access processing

APPLICATION
PROGRAM A

APPLICATION
PROGRAM B

CLIENT

A v

CLIENT FILE
ACCESS
MANAGER 8

CLIENT FILE
ACCESS
MANAGER A

r 3

CLIENT
FILE X
MANAGER

A 4

SNALU 6.2
COMMUNICATIONS

SERVER

SERVER FILE
ACCESS
MANAGER A

SERVER FILE
ACCESS
MANAGER B

A [A 4

[

1.

SERVER
FILE X
MANAGER

A 4

SNALU 6.2
COMMUNICATIONS

FACILITY

FACILITY

ices is independently sent to a remote RDB and
executed, and the results are then returned.
Each request is an independent unit of work.
Remote unit of work, in which related requests
for services from a remote RDB are exe-
cuted within a single unit of work whose effects
on the RDB can then be committed or rolled
back.

Distributed unit of work, in which related re-
quests for services from multiple RDBs, local or
remote, are executed within a single unit of
work, whose effects on all of the RDBs can be
committed or rolled back.

472 DEMERS ET AL.

e Distributed requests, in which each request
within a distributed unit of work can result in
interactions with multiple remote RDBs.

Initially, DRDA defines support for a remote unit
of work. The DDM architecture model for per-
forming these operations is independent of the
hardware architecture, the operating system, and
the local RDB interfaces and facilities of either the
client system where the application executes or
the server system where the RDB is located. The

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

model consists of the SQL Application Manager
(SQLAM) and the relational database manager.

DDM architecture defines a single-system model
of the relationships between an application and its
local RDB. This model is illustrated by Figure 9. In
this model, the application uses the SQLAM to
communicate with the local RDB. The SQLAM uses
other system services, such as directories and the
security manager, in establishing a connection
with the RDB.

This model is extended to distributed processing
as shown in Figure 10 by allowing the processing
of the SOLAM to be split between the client and
server systems. Communications between the cli-
ent and server SQLAMs are provided by agent and
communications managers of the DDM architec-
ture that are themselves functionally split be-
tween the client and server systems. The client
system and the server system can be of different
types. The individual DDM architecture imple-
mentations can be designed in whatever manner
best utilizes their system environment.

The process for obtaining access to a remote RDB
is as follows. A client application obtains RDB
services by interfacing with a client SQLAM. The
client SQLAM establishes a connection to the re-
mote RDB. Client directory services are used to
determine the network location of the RDB being
contacted. The client SQLAM then creates a client
AGENT and sends the Access Relational Database
(ACCRDB) command to that agent for transmission
to the server system. When the server system
processes the ACCRDB command, a connection is
established between the server SQOLAM and the
server RDB. In general, the database requests sent
by the application to the client SQLAM are routed
to the server SQLAM for processing. However, the
client and server SQLAMs cooperate in the pro-
cessing of many commands. For example, during
query processing, data are buffered by both the
client and server SQLAMs to optimize the use of
the communications facilities. The server SQLAM
manages all accesses to the RDB by a single re-
mote requester. The server SQLAM is bound be-
tween the server agent and a single RDB. DDM
architecture commands are then received by the
SQLAM for processing by the bound RDB.

The client and server SQLAMs exchange the

FD:OCA data representation specifications when
the connection is established with the relational

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 8 The architectures used by DRDA

DRDA
DRDA RULES
CDRA
FD:0CA
DDM
SNALU 6.2

Figure 9 The single-system model of RDB access

SINGLE-SYSTEM MODEL

APPLICATION

DICTIONARY

SQLAM

DIRECTORY

RDB

SECURITY
MANAGER

SUPERVISOR

DEMERS ET AL 473

Figure 10 The remote system model of RDB access

1 R ——— N

CLIENT SYSTEM SERVER SYSTEM
APPLICATION RDB
- S
h 4 A 4
DICTIONARY CLIENT SQLAM ¢ ——— p| SERVER SQLAM DICTIONARY
L 3 A
A 4 4
DIRECTORY CLIENT AGENT ¢ p| SERVER AGENT DIRECTORY
r' L
¥ v
SECURITY CLIENT SERVER SECURITY
MANAGER COMMUNICATIONS COMMUNICATIONS | | MANAGER
MANAGER MANAGER
SUPERVISOR SUPERVISOR
v == wmmmpp LOGICAL CONNECTIVITY
e COMMUNICATIONS CONNECTIVITY

database. These specifications provide the infor-
mation necessary for the SQLAMs to determine
how their counterparts represent data, for exam-
ple, character data or floating-point data. The
SQLAMs can then decide whether any data con-
versions are necessary. When necessary, the data
conversions are performed by the SQLAM (client
or server) that receives the data.

When an application runs, a call is made to the
client SQLAM for each executable SQL statement
in the application. The type of call to the SQLAM
depends on the RDB function to be performed as
determined by the precompiler from the SQL
statement. The client SQLAM builds a DDM archi-
tecture command to send to the server SQLAM

474 DEMERS ET AL.

based on the type of call received from the ap-
plication.

Queues. Queues are important to many applica-
tions because they allow either data or requests
for services to be passed asynchronously from
one program to another. DDM Level 4 architecture
defines three subclasses of queues:

¢ First-in-first-out queues that act as an asynchro-
nous pipe between the enqueuing and dequeu-
ing programs

s Last-in-first-out queues that act as a push-down
stack

¢ Keyed queues that act as a fan-out mechanism,

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

allowing different programs to dequeue only se-
lected entries

As with files, the contents of the entries on a
queue, called records, are application-defined
and can be of any format or complexity. The in-
stance commands defined by DDM architecture
allow a queue to be created, deleted, or cleared in
a remote server. The attributes of a queue can be
retrieved, and selected attributes can be changed.
Records can be added to a queue or received from
a queue. When receiving a record from a queue, the
client specifies the amount of time to wait before
timing-out, if there is no entry on the queue.

Support managers. These managers support the
use of the resource and access managers by mul-
tiple local and remote users.

Supervisor. Every client and server has a single
instance of a manager called the supervisor. In the
current levels of DDM architecture, the supervisor
is only responsible for exchanging information
between clients and servers about their class
name, product release level, and the architectural
levels of the manager classes supported.

Class dictionaries. When two people speak to
each other in the same language, they can under-
stand each other because they share common
words, common syntax, common protocols, and
common concepts. So too with distributed sys-
tems. In DDM architecture, the common words
exchanged between clients and servers are in-
stances of the command, reply, and data classes.
The common syntax consists of the ways in which
DDM architecture allows these objects to be re-
lated to each other. The common protocol con-
sists of the rules in DDM architecture governing
when each server can send messages. And the
common concepts consist of the semantics of the
DDM architecture manager models in response to
predefined commands.

With the exception of protocols, which are the
responsibility of communications managers, the
syntax and semantics of messages in DDM archi-
tecture are defined by special objects, called
classes, that reside in managers called class dic-
tionaries. To be able to communicate with each
other, the client and the server must each have a
copy of the same class dictionaries.

Security manager. When a local user logs onto a
system, the user’s rights to use the system are

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

validated by the security facilities of the system.
When that user then attempts to use a system
resource, such as a file or database, his or her
authorization to use the resource in the way in
which an attempt is being made to use it is also
validated. Each type of system has its own se-
curity facilities, each with its own model of se-
curity and its own programming interfaces to that
model. Among these interfaces are those that al-
low a user to be authorized to the system as a
whole, and those that allow authorizations to spe-
cific resources to be granted, revoked, and shared
with other users. Examples of security facilities
are the Resource Access Control Facility (RACF*)
on MVS/ESA and VM/ESA, the security manager of
08/400, and the GRANT/REVOKE functions of rela-
tional database managers.

Validation of authorizations must also be per-
formed when a remote user attempts to use a DDM
architecture server or one of its resources. When
an SNA LU 6.2 conversation is used for communi-
cations, the user identity and password of the re-
quester are passed to the communications facility
of the server system for validation. This process
occurs before any part of a DDM architecture
server is invoked, thereby guaranteeing that all
remote requesters are authorized to the server.
Although no interfaces are defined by DDM archi-
tecture between SNA LU 6.2 and the security man-
ager, their existence and use is assumed. Any se-
curity violations are reported back to the client by
SNA LU 6.2 messages.

But not all communications facilities provide this
level of security. For example, if Transmission
Control Protocol/Internet Protocol (TCP/P) is
used, a communications manager for TCP/IP
would have to pass the user identity and password
in special messages and then call the security
manager to validate the requested authorization.
In general, communications managers must make
up for any deficiencies in the communications fa-
cilities they use.

Similarly, when a DDM architecture command is
received by a server, the remote requester’s
rights to issue the command and to use the re-
sources it requests are validated by the security
manager. Here too, no interfaces are defined by
DDM architecture for performing these valida-
tions. The use of local security facilities are as-
sumed. However, DDM architecture does define a

DEMERS ET AL 475

variety of messages for reporting any authoriza-
tion violations back to the client.

In the current levels of the DDM architecture, the
security manager is essentially just a stub that
represents whatever security facilities are avail-
able on the local system. No DDM architecture
messages have yet been defined for working with

Files that are created, deleted,
renamed, or moved are
addressed by techniques used
in ECF and AFS.

or modifying the authorizations of users to server
resources. All such changes to user authoriza-
tions must be performed by logging onto the sys-
tem that owns the resource. Clearly this is an
inconvenience to users, and clearly, supporting
these services would be a desirable enhancement
to DDM architecture.

Directories. When an application accesses a local
resource, it does so by specifying its name, ac-
cording to the naming scheme of the local system.
This name is used to search the directories of
resources maintained by the local system to ob-
tain addressability to the resource. Each type of
system has its own model of directory services
and its own programming interfaces for using
them. For example, MVS/ESA has a catalog that
supports multipart names, Virtual Machine/Con-
versational Monitor System (VM/CMS) has mini-
disks, 08/400 has libraries, and 0S/2 has hierarchical
directories.

But how can these directories be extended to in-
clude resources that are actually located in other
systems and have names that are foreign in syntax
to the local directory services? Several answers
to this question are available among the IBM prod-
ucts that have implemented DDM architecture.

In the System/36 DDM product, a side directory
called the Network Resource Directory (NRD) was
developed in which the information required to
locate a remote file can be placed. Names in the

476 DEMERS ET AL.

System/36 are simple eight-byte tokens, and the
system maintains only a single directory of all
such names. The NRD is really just an extension
of the system directory such that there is still only
one name space in the system. If a name cannot
be found in the system directory, the NRD is
searched, and if the name is found, the following
information is available about the file:

* The real name of the file on the server system

e The network address of the DDM architecture
server

* Other communications-related parameters

Thus, it is possible for the client to specify the
name expected by the server in the DDM archi-
tecture commands to open and access the file,
while a System/36 name is used as an alias in the
client. An NRD entry is actually a surrogate for the
remote file, or, in DDM architecture terminology,
it is a client manager of class FILE.

A similar approach was taken with the System/38
and the AS/400, except that these systems support
multiple user libraries and allow a remote file to
be addressed from any of them. In these systems,
a special type of system object, called a bDM File,
is created in a library to contain the real name of
the file and communications information. These
objects also act as file surrogates.

In contrast, the DDM/PC and PC Support products
took the view that they were primarily acting as
clients attached to known hosts. Therefore, it was
only necessary to redirect requests to the correct
server. The name specified by an application pro-
gram is then just a drive letter, indicating the re-
mote host system, followed by the server system
name. Although the concept of a client file sur-
rogate is a bit vague in this approach, it is none-
theless implicit.

These approaches all serve to provide address-
ability to a remote file. It is a programmer’s or
administrator’s responsibility to set up conditions
correctly so that needed remote files can be lo-
cated. But such approaches clearly have limits.

First, these approaches ignore the problems that
arise because new files are created and old files
are deleted, renamed, and moved to different
servers for a variety of application reasons. Ex-
cept for relatively static applications, maintaining
file surrogates in the servers of a distributed sys-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

tem can quickly become a major usability prob-
lem. A variety of solutions have been devised for
dealing with this problem:

e The 1IBM Enhanced Connectivity Facilities

(ECF) product, which implemented a client/
server architecture, provided name-mapping
services. Given that a client workstation could
only be attached to a limited number of host
servers of known types, it is possible to map
client names to host names for a broad range of
names. The 0S/2 name a.:FLOWERS.SCR, for
example, can be mapped to the VM/CMS name
FLOWERS SCRIPT A. But this approach
clearly has limited scope.
The Andrew File System (AFs)' has taken a
more comprehensive approach. AFS provides
hierarchical directories that allow the name
space to be of indefinite size and depth. This
name space is mapped over all AFS file servers
giving all clients the ability to locate any An-
drew file. Communications between AFS clients
and servers, along with caching and other op-
timizations, are required to provide directory
services with good performance. In broad
terms, the same approach is also being taken by
Open Systems Interconnection (0SI) directory
services and the X.500 network interface stan-
dard. By making the assumption that the lowest
levels of a qualified name actually specify a lo-
cal name, this approach allows the local direc-
tory services of each system to become a part
of the encompassing distributed, hierarchical
directory.

A second problem with the approaches taken by
early DDM architecture products is that it is not
possible to work with the directories on remote
servers; that is, to list their entries, create and
delete subdirectories, or establish a current di-
rectory to shorten the length of transmitted
names. Given the range of directory systems
found on IBM systems, it is clear that many of
these services cannot be supported. However, it
is possible to adopt a general hierarchical model
of directories and allow each server to support
whatever common services it can. In Level 2 of
DDM architecture, such a hierarchical directory
model was added. Because transparent support of
PC-DOS and 0S/2 interfaces was considered crucial
to the PC Support products, the DDM architecture
directory model and its capabilities were based on
those of PC-DOS and 0S/2. This still does not pro-
vide the level of distributed directory support that

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

has been pioneered by AFS and should be added
to DDM architecture. Clearly it is needed.

Lock manager. When an application program
opens a file, there is always the possibility that
some other application program has already
opened it or will open it while the first program is
still using it. The potential exists, therefore, for
programs to interfere with one another’s use of
the file and to corrupt one another’s data. To
avoid these problems, each system provides
some level of concurrency control that serializes
the use of a file or parts of a file by multiple ap-
plications. In general, control is in the form of
locks that are requested on a file prior to its use
and that are released afterward.

If one client has a lock on a file and another client
requests a lock, the requested lock may or may
not conflict with the locks already held. If there is
no conflict, the lock is granted; otherwise, the
requester must wait for the lock. But waiting for
locks leaves open the possibility of deadlocks oc-
curring. To prevent deadlocks, DDM architecture
requires lock requests to time-out, that is, to fail
after a period of time determined by each server.

The lock manager of a server is the DDM archi-
tecture abstraction of local system concurrency
control facilities. Whereas relational databases
provide their own concurrency control for their
internal resources, files and other resources typ-
ically depend on a system concurrency control
facility.

Recovery manager. It is one thing to access and
manage remote files and databases, but quite an-
other to do so in support of complex application
transactions that can update multiple files and da-
tabases in a variety of systems. Each transaction
must be completed successfully or all of its effects
on all files and databases must be backed out. No
data can be allowed to remain in a file or database
in a partially updated, inconsistent form.

The recovery manager of DDM architecture is
based on whatever local facility each system pro-
vides for transaction commitment or rollback. No
special flows are defined in DDM architecture for
these operations. Instead, these operations are
managed by the sync point manager of the com-
munications facility. The purpose of the recovery
manager is to allow the semantics of recovery

DEMERS ET AL 477

operations on files and databases to be correctly
defined in the architecture.

System command processor. Each system on
which a DDM architecture server product is im-
plemented provides many more services than are
available through DDM architecture messages.
These services are requested through command
language statements unique to that system. For
example, through AS/400 commands, operations
on jobs, spooling queues, and user profiles can be
requested, none of which is yet covered by bDM
architecture. Other systems have many similar
services, but there is no common command lan-
guage syntax for requesting them. DDM Level 4
architecture allows a client to submit commands,
in the syntax of the command language of a spe-
cific system, to a remote server. A client system
command processor sends the command to the
system command processor of the remote server
for execution.

Here DDM architecture provides a common model
of system command processing but not of the ex-
ecution of any particular commands. It is cer-
tainly contrary to the concept of a single system
image but is of great use when a client knows what
type of server it is using, which is often the case.
As products identify a need for a single system
image in a given area, DDM architecture can be
formally enhanced to meet that need.

Agents. As shown in Figures 11 and 12, agents
have several functions, but they can be viewed
primarily as message routers. In a client, an agent
routes a request for services to a communications
manager and routes responses back to the re-
questing resource or access manager. In the
server, an agent routes requests to a resource or
access manager and routes responses back to a
communications manager.

Agents also represent an application program
within a DDM architecture client or server. A cli-
ent agent keeps track of the access paths that
have been opened by its application to various
resources and knows which communications
managers have outstanding requests pending re-
sponses. A server agent also keeps track of paths
opened by its application and represents its ap-
plication in regard to security and concurrency
considerations. Together, they perform various
cleanup and recovery functions in cases of com-
munications failures or failures in the application.

478 DEMERS ET AL

Communications managers. When one server
communicates with another server, the program-
ming interfaces provided by local communica-
tions facilities must be used to initiate communi-
cations, send messages, receive messages, and
eventually to terminate communications. The
programming interfaces defined for SNA LU 6.2
communications facilities, for example, are rich
in options, supporting a wide variety of commu-
nications requirements, and can be used in many
different ways. The designers of a distributed ap-
plication are free to use whatever communica-
tions capabilities they want. But to achieve con-
nectivity among DDM architecture clients and
servers implemented in a variety of products,
communications must be tightly and specifically
defined. That is, only certain communications ca-
pabilities can be used, in only predefined ways, in
support of predefined protocols. Otherwise, the
client and server simply do not understand each
other.

Two principles that have guided DDM architecture
communications usage are the following:

. Only a small number of protocols are neces-
sary to support the communications require-
ments of a wide range of distributed services.

. If each protocol is kept relatively simple, it can
be mapped to a wide variety of different com-
munications facilities.

The DDM architecture communications managers
that have been defined are the following, but this
should not be viewed as an exhaustive list.

* SNA LU 6.2 conversational: This communica-

tions manager defines how the basic DDM ar-
chitecture conversational protocol should be
implemented when using SNA LU 6.2 conversa-
tions. It is a straightforward I speak and you
listen, and then you speak and I listen protocol.
The client sends commands and data to the
server; the server executes the commands and
then returns reply messages and data to the cli-
ent.
SNA LU 6.2 multitasking: This communications
manager also defines how the basic conver-
sational protocol is implemented when using
SNA LU 6.2 conversations but adds the ability to
multiplex concurrent conversations for several
tasks onto a single SNA LU 6.2 conversation.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 11

Agent routing to resource and access managers

APPLICATION PROGRAM A
ACCESS ACCESS
PATH 1 PATH 2
TOFILE X TO FILE X
y 7'y
CLIENT
) 4 A 4
CLIENT FILE CLIENT FILE
ACCESS ACCESS
MANAGER MANAGER
PATH 1 PATH 2
A 4 I A
vy v vy v
CLIENT - CLIENT AGENT
FILE X FOR
MANAGER PROGRAM A
»
v
CLIENT
COMMUNICATIONS
MANAGER FOR A
a
y
LOCAL SNA LU 6.2
FILES COMMUNICATIONS
FACILITY

AR

SERVER
SERVER FILE SERVER FILE
ACCESS ACCESS
MANAGER MANAGER
PATH 1 PATH 2
7'y I 3 4
A A vy v
SERVER AGENT SERVER
FOR FILE X
PROGRAM A MANAGER
7Y 7Y
v
CLIENT
COMMUNICATIONS
MANAGER FOR A
3
| |
SNA LU 6.2 FILE X
COMMUNICATIONS
P FACILITY

Products are free to define whatever additional
communications managers are required for the
network protocols they have available. For ex-
ample, DDM architecture communications could
be implemented using the Remote Procedure Call
(RpC) facility of the Open Software Foundation’s
DCE instead of SNA LU 6.2.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

The Object Layer. Although all entities of DDM
architecture are objects (that is, instances of
classes), the entities in the Object Layer are
called objects because they closely resemble the
objects found in object-oriented programming en-
vironments with dynamic binding, such as Small-
talk. In this layer, an object is a self-identifying

DEMERS ET AL 479

Figure 12 Agent routing to communications managers

SERVER
SERVER
ACCESS
APPLICATION PROGRAM A MANAGER
PATH 2
ACCESS ACCESS x
PATH 1 PATH 2
TOFILEY TOFILE X
v
i i SERVER SERVER
AGENT A FILE X
PATH 2 MANAGER
CLIENT
F 3 r 3
v \ 4
CLIENT CLIENT | L
ACCESS ACCESS
SERVER
MANAGER MANAGER COMMUNICATIONS
PATH 1 PATH 2 MANAGER PATH 2
S r F 3
F 3
) v
$ $ ¢ TCPAP FILE X
CLIENT CLIENT CLIENT | >
FILEY FILE X AGENT
FOR A
3 2
y v SERVER
CLIENT CLIENT
COMMUNICATIONS | | COMMUNIGATIONS SERVER
MANAGER MANAGER ACCESS
PATH 1 PATH 2 MANAGER
PATH 1
t F 3
F 3
v 4 I v
SERVER SERVER
';ﬁ‘éQL SNALUG2 | | TCP/P . AGENT A FILE Y
< \Y PATH 1 MANAGER
» 2 1
v
SERVER
COMMUNICATIONS
MANAGER
PATH 1
r 3
\ 4 b 4
SNALUB.2 FILEY
AY 1

480 DEMERS ET AL. IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 13 DDM architecture objects

A MANAGER MEMORY SPACE
A B c
LENGTH LENGTH LENGTH LENGTH
— | —) — K — |
— C NUMBER FIELD M LONG
ARRAY N STRING
— D STRUCTURE P
FIELD Q
— B
E F G
LENGTH LENGTH LENGTH LENGTH
—_— - L - | —p K
NUMBER LONG — H FIELD M
STRING ARRAY N
— F STRUCTURE P
FIELDQ
—
DDM ARCHITECTURE CLASS DICTIONARY
I J K
LENGTH LENGTH LENGTH LENGTH
e CLASS =P CLASS wP CLASS =P CLASS
CLASS CLASS CLASS CLASS
DESCRIPTION DESCRIPTION DESCRIPTION DESCRIPTION

data structure. Each object specifies the following
about itself:

e Its total length in bytes
e The identifier of its class
e Its data variables

Only three kinds of DDM architecture objects are
in this layer, as shown in Figures 13 and 14:

* Simple scalars, which contain only a single in-
stance of a DDM architecture data class, such as
a single number or a single character string.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

DDM architecture attributes, such as the
LENGTH attribute, are simple scalars, consisting
of their length, class identifier, and the data
value of the attribute. The memory space for-
mat and data stream format of simple scalars
are the same.

* Mapped scalars, which contain a sequence of
instances of the data classes. Records are an
example of mapped scalars, consisting of their
length, class identifier, and a sequence of data
values. The memory space format and data
stream format of mapped scalars are the same.

 Collections, which contain a sequence of ob-

DEMERS ET AL. 481

Figure 14 DDM architecture object interchange format

INTERCHANGE DATA STREAM FORM OF OBJECT A NOTE: LENGTH OF A INCLUDES TOTAL

LENGTH OF THE DATA STREAM
LENGTH OF A CLASS | REPRESENTING A AND ALL OF ITS
CODEPOQINT COMPONENT OBJECTS

LENGTHOF C CLASS K FIELD M ARRAY N STRUCTUREP | FIELDQ

CODEPOINT
LENGTHOF D CLASS L LONG STRING

CODEPOINT
LENGTH OF 8 CLASS J NUMBER

CODEPOINT

jects or collections of objects. DDM architecture
commands and reply messages are examples of
collection objects. There are two formats for
collections, a memory space format and a data
stream format. In the memory space format,
each variable of a collection is actually a pointer
to an object of the collection. For example, col-
lection A contains pointers to the mapped scalar
C, the simple scalar D, and the simple scalar B.
In the data stream format, the tree structure of
collection A has been linearized. The length of
collection A now includes the sum of the lengths
of the scalars C, D, and B, and the pointers of
A have been replaced by full copies of the sca-
lars C, D, and B.

DDM architecture defines many subclasses of
these kinds of objects. Although there have been
many temptations to define classes of objects that
are a hybrid of mapped scalars and collections
(structures containing both scalar values and
pointers to other objects), the DDM architects
have, so far, resisted doing so. The marginal gains
in efficiency that can be obtained have not been
considered worth the tradeoff of increased com-

plexity.

482 DEMERS ET AL.

In the abstract model of DDM architecture, man-
agers store information as objects and communi-
cate by exchanging objects. Within a client or
server, the memory space format of objects is
used, and between clients and servers, the data
stream format is used. Consider, for example, the
creation of DDM architecture commands in re-
sponse to a service request through a local inter-
face. First, objects are individually created in a
memory space for each command, parameter,
and data item to be transmitted. The values of the
variables of collection objects, such as com-
mands, point to other objects. The result is an
easily processed structure of objects linked by
pointers. This structure is passed through a client
agent to a client communications manager, which
linearizes it in a data stream. The communica-
tions manager of the receiving server reverses
this process to recreate linked objects in a server
memory space that can be easily processed by the
server’s agent, resource managers, Or access
managers.

The key advantages of this approach are that only
the communications managers need be concerned
with building or parsing linearized data streams

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

and that many different forms of linearized data
streams can be used. One such form is defined by
DDM architecture, but as an alternative, the Basic
Encoding Rules of 0SI could also be used.

The Data Layer. Each type of system supports a
number of ways of representing data of different
types. For example, Personal System/2* comput-
ers support ASCII character data encodings, byte-
reversed two’s complement binary numbers, and
IEEE (Institute of Electrical and Electronics En-
gineers) floating-point numbers. In contrast, a
System/390* supports EBCDIC character data en-
codings, two’s complement binary numbers, and
hexadecimal floating-point numbers. Fundamen-
tal to communications between systems is estab-
lishing how each type of data is to be represented.
Several approaches to this problem have been
taken.

The first is to convert all data to or from a ca-
nonical form that is used primarily for communi-
cations. This approach was taken by the Basic
Encoding Rules of 0SI as the concrete represen-
tation of its Abstract Syntax Notation 1 (ASN.1).
In general, this approach requires all data items to
always be converted twice, once from the data
representations of the client to the canonical
form, and then from the canonical form to the
representations of the server system. These con-
versions are performed whether or not the client
and server systems are of the same type or have
any representations in common.

The osI approach does achieve universal connec-
tivity, but only if both the sending and receiving
applications agree on what data are being trans-
mitted. OST assumes that ASN.1 descriptions of the
transmitted data are separately communicated
between the programmers of the sending and re-
ceiving applications. It is then up to the program-
mers to include the necessary conversions in their
communicating applications.

A second approach is based on the fact that for
each type of data only a small number of different
representation schemes are commonly used.
Therefore, a flag can be sent from the client sys-
tem to the server system, identifying which
schemes the client system will use for each type.
Where the client and the server use the same
scheme, no conversions are required. Otherwise,
conversions need be performed only once by the

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

server system. This general approach has been
adopted by the Open Software Foundation’s DCE
for remote procedure calls. As with the 0SI ap-
proach, a separate flow of information is required
between the programmers of the sending and re-
ceiving applications. For DCE, a file containing
Network Interface Description Language, essen-
tially enhanced C-language data declarations,
must also be transmitted.

A third approach simply acknowledges that all
data have to be represented according to some
scheme, and if all senders and receivers use the
same scheme, only some conversions will be re-
quired some of the time. The key is to pick the
representation schemes that are most frequently
used in order to minimize the number of conver-
sions performed.

The primary products involved in the definition of
DDM architecture (in 1982) were the System/36,
System/38, and System/370*. Most of the data
representation schemes used by these systems
are identical, and DDM architecture was not con-
cerned with those data types that were not, such
as the floating-point formats. But along came the
DDM/PC and PC Support products which use dif-
ferent schemes for binary numbers and character
data. In order to communicate with the Sys-
tem/36, System/38, and System/370 DDM archi-
tecture products, the PC products were forced to
construct and parse objects according to the rep-
resentations previously chosen by DDM architec-
ture.

Given the DDM architecture two-step model of
translating programming interfaces to data stream
structures (see the previous subsection), the PC
products are able to create objects whose values
are represented according to PC representations.
The client communications manager can then
convert them, as needed, to the representations
required by DDM architecture. But it would also
be possible to enhance the architecture along the
lines of the DCE approach. If this were done, a flag
sent by the client to the server could identify the
representation schemes to be used, thereby al-
lowing DDM architecture objects to be transmitted
in whatever way the communicating servers
choose. In particular, it would allow like systems,
such as an 0S/2 client and an 0S/2 server, to com-
municate using their native representation
schemes.

DEMERS ET AL. 483

The approach used by DDM architecture works
well for objects defined by the architecture, but it
ignores mapped scalars that contain application
data, such as file records, which DDM architecture
treats as streams of undefined bytes. There is no

Distributed relational database
support in Level 3 of DDM
architecture addresses data

representations and any
necessary conversions.

way for DDM architecture products to know what
these data look like or to know how the data are
wanted. Any necessary conversion of these data
is a responsibility of the requesting application
program.

With the introduction of distributed relational da-
tabase support in Level 3 of DDM architecture,
this situation changed. Clearly, the client and
server database managers each know their rep-
resentations of the SQL data types, and conver-
sions can be performed by either server if de-
scriptions of these data are also transmitted. The
1BM Formatted Data:Object Content Architecture
(FD:0CA) was selected by the Distributed Rela-
tional Database Architecture to convey this de-
scriptive information. Previously defined as a
means of describing tabular data included in doc-
uments, FD:0CA was well-suited to describing tab-
ular relational database data. New DDM architec-
ture objects were defined to carry FD:OCA data
streams between the client and server SQL appli-
cation (access) managers, which performed any
necessary conversions.

The approach being considered for describing and
converting file records is discussed in References
10 and 11.

Product-unique extensions

File and relational database managers of DDM ar-
chitecture define standardized models of data

484 DEMERS ET AL.

management. DDM architecture also defines ab-
stract services to complement these models and
defines common data stream structures for the
canonical representation of data objects, com-
mands, and replies.

This framework has also been designed to support
extensions to DDM architecture for homogeneous
product connectivity. Any extensions that per-
tain to multiple products are candidates for the
development of standardized DDM architecture.
But other requirements are unique to single prod-
ucts, especially requirements for horizontal prod-
uct growth or function distribution. Although
product-unique extensions are not candidates for
standardization, architectural definition, by the
product, is still required.

In both cases, the framework of existing DDM ar-
chitecture classes can be used as the basis for
extensions to the architecture. DDM architecture
allows the following types of product-unique en-
hancements:

Whole new classes of managers (such as librar-
ies or mailboxes) can be defined, either with
new commands and replies unique to the class
or reusing DDM architecture commands and re-
plies as appropriate.

* The function of DDM architecture managers can
be enhanced by defining new commands for a
class.

New parameters can be added to existing DDM
architecture commands.

New values can be defined for existing DDM ar-
chitecture parameters.

A good example of product-unique extensions is
provided by the AS/400. When connected to a non-
AS/400 server, an AS/400 server complies strictly
with DDM architecture. But when connected to an
AS/400 server, a wide variety of extensions are
used to make the full function of the data man-
agement system of the AS/400 available to remote
AS/400 users, including many capabilities not cov-
ered by DDM architecture.

DDM architecture and international
standards

The International Organization for Standardiza-
tion (1SO) has defined an evolving set of standards

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

for 0sI. The 0sI standards are formulated around
a powerful, seven-layer framework whose pur-
pose is to allow venders to mix and match imple-

The DDM architecture fits into
the I1SO standard in the Open
Systems Interconnection layer 7,
which is the application layer.

mentations of each layer and thereby achieve
interconnectivity among their various implemen-
tations.

How does IBM’s DDM architecture fit into this
framework? The simple answer is that all of the
architecture fits into the 0SI layer 7, the applica-
tion layer. As mentioned previously, DDM archi-
tecture was designed to be independent of the
communications facilities that are used to actu-
ally transmit messages between systems. We
have even noted that 0SI’s Basic Encoding Rules
could be used to encode messages in DDM archi-
tecture.

But what about the 0SI File Transfer, Access, and
Management (FTAM) standard that appears to be
in competition with the file support of DDM ar-
chitecture in layer 7? A comparison of the file
manager classes of DDM architecture with FTAM
shows that they are actually complementary and
not really in competition, since they were de-
signed to meet different requirements. For DDM
architecture, the prime requirement was an abil-
ity to provide local or remote transparency to ex-
isting application programs and file systems. For
FTAM, the prime requirement was to define a pow-
erful new file model for use by new applications
in accessing new file systems. As an international
standard, FTAM certainly sets a goal for long-term
file system revolution, but not evolution, as does
DDM architecture.

Since IBM has committed to supporting OSI on its
SAA systems, a challenge to DDM architecture is to
integrate the FTAM file models into the DDM ar-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

chitecture framework, and for DDM architecture
to make use of 0SI level 6 communications facil-
ities.

Summary

As discussed in this paper, DDM architecture is a
framework for distributed application services.
Multilayered and object-oriented, DDM architec-
ture has defined a variety of distributed file and
relational database services that can be provided
over many different communications facilities.
These services have evolved as a series of pub-
lished levels of the architecture was developed.
The openness of the DDM architecture framework
invites the addition of a wide range of additional
distributed application services.

Acknowledgments

When as many people have worked on a project
as have worked on DDM architecture and its im-
plementations, it is impossible to acknowledge
them all. However, special acknowledgment
must be given to John L. Bondy, the IBM manager
who encouraged the DDM architects to explore
innovative approaches to software architecture.

Appendix: Products using DDM architecture

The specifications of DDM architecture have been
used to build and deliver a variety of IBM products
allowing users to access and manage distributed
files, including:

* System/36 System Support Program Distrib-
uted Data Management
System/38 Control Program Facility Distrib-
uted Data Management
Operating System/400 Distributed Data Man-
agement

* The pDM/PC and NetView/PC* client products
for PC-DOS systems

* The CICS/DDM server product for use under the
1BM Customer Information Control System (for
both Multiple Virtual Storage and Virtual Stor-
age Extended)"®
PC Support/36 and AS/400 PC Support client/
server products
4680 Store Systems Distributed File Manage-
ment

New products are under development to extend
distributed file services to:

DEMERS ET AL. 485

s Operating System/2 Distributed File Manage-
ment (0S/2 DFM)

s MVS/ESA Distributed File Management (MVS
DFM)

» VM/ESA Distributed File Management (VM DFM)

Additional IBM products will provide distributed
relational database services to users of:

s DATABASE 2 (MVS DB2%)

s Structured Query Language/Data System
(sQL/DS*)

» 052 Extended Services Database Manager
(0s/2 DBM)

& RISC System/6000* Advanced Interactive Ex-
ecutive® (AIX*)

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corpora-
tion, Digitalk, Inc., Xerox, Inc., the Open Software Founda-
tion, or UNIX Systems Laboratories, Inc.

Cited references

1. R. A. Demers, “Distributed Files for SAA,” IBM Sys-
tems Journal 27, No. 3, 348-361 (1988).

2. R. Reinsch, “Distributed Database for SAA,” IBM Sys-
tems Journal 27, No. 3, 362-369 (1988).

3. IBM Distributed Data Management Architecture: Imple-
mentation Programmer’s Guide, SC21-9529-03, IBM
Corporation; available through IBM branch offices.

4. SNA Transaction Programmer’s Reference Manual for
LU Type 6.2, GC30-3084, IBM Corporation; available
through IBM branch offices.

5. IBM Distributed Relational Database Architecture Ref-
erence, SC26-4651, IBM Corporation; available through
IBM branch offices.

6. J. P. Gelb, “System-Managed Storage,” IBM Systems
Journal 28, No. 1, 77-103 (1989).

7. P. Wegner, “Concepts and Paradigms of Object-Oriented
Programming,” OOPS Messenger 1, No. 1, 7-87 (August
1990).

8. IBM Distributed Data Management Architecture: Refer-
ence Manual, SC21-9526-03, IBM Corporation; available
through IBM branch offices.

9. A. Goldberg and D. Robson, Smalltalk-80: The Language
and Its Implementation, Addison-Wesley Publishing Co.,
Reading, MA (1983).

10. R. A. Demers and K. Yamaguchi, “Data Description and
Conversion Architecture,” IBM Systems Journal 31, No.
3, 488-515 (1992, this issue).

11. IBM Distributed Data Management Architecture: Spec-
ifications for A Data Language, SC21-8286, IBM Corpo-
ration; available through IBM branch offices.

12. Formatted Data Object Content Architecture Reference,
SC31-6806, IBM Corporation; available through IBM
branch offices.

13. Character Data Representation Architecture Level 1,
Reference, SC09-1390, IBM Corporation; available
through IBM branch offices.

486 DEMERS ET AL

14. J. H. Morris, M. Satyanarayanan, M. H. Conner, J. H.
Howard, D. S. H. Rosenthal, and F. D. Smith, “Andrew:
A Distributed Personal Computing Environment,” Com-
munications of the ACM 29, No. 2, 184-201 (March 1986).

15. K. Deinhart, “SAA Distributed File Access to the CICS
Environment,” IBM Systems Journal 31, No. 3, 516-534
(1992, this issue).

Accepted for publication March 6, 1992.

Richard A. Demers 110 Salem Point SW, Rochester, Min-
nesota 55902. Mr. Demers is a consultant on software archi-
tecture. In 1968 he joined IBM as an applications programmer
in White Plains, New York. He received a B.A. degree in
philosophy from Canisius College in 1969. In 1972, he moved
to Endicott, New York, where he worked on systems software
for the IBM 3895 Optical Check Reader. Mr. Demers moved
to Rochester in 1975 to design the message handling and ser-
vice components of the System/38 operating system. From
1982 to 1991, he was the lead architect in the design of IBM’s
Distributed Data Management (DDM) architecture, partici-
pated in the design of IBM’s Distributed Relational Database
Architecture (DRDA), and was the lead architect for IBM’s
data description and conversion architecture. He has received
IBM Qutstanding Innovation Awards for his work on DDM
architecture (1987) and DRDA (1991). A member of the As-
sociation for Computing Machinery, his professional interests
include operating systems, distributed processing, data man-
agement, programming languages, and object-oriented pro-
gramming.

Jan David Fisher IBM Application Business Systems, 3605
Highway 52 North, Rochester, Minnesota 55901. Mr. Fisher
is a senior programmer in the Rochester programming labo-
ratory. He has been with IBM for 27 years. He joined the
Wichita, Kansas, IBM branch office as a systems engineer,
then moved to Rochester to join the Plastics Competency
Center (IBM System/7s and plastic injection molding ma-
chines). He also worked in the Rochester Marketing Support
Center and System/34, System/36 planning organization as the
communications software product planner. He joined the Dis-
tributed Data Architecture Department in 1985 as a senior
planner and later became the team leader of the architects
working on the Distributed Data Management architecture.
Mr. Fisher graduated from Purdue University with a B.S.E.E.
in 1965, and has been taking graduate courses. He is a member
of Toastmasters International, and his interests include both
history and science fiction. He is a judge for Odessey of the
Mind.

Sunil S. Gaitonde IBM Application Business Systems, 3605
Highway 52 North, Rochester, Minnesota 55901. Dr. Gai-
tonde is an advisory programmer working on the operating
system of the AS/400. He received his bachelor’s degree from
the Indian Institute of Technology, Kharagpur, India in elec-
trical engineering and holds a master’s degree and Ph.D. in
computer engineering from Iowa State University. He joined
IBM at Rochester in 1988. Dr. Gaitonde worked on the Dis-
tributed Data Management architecture to extend it to support
IBM’s Distributed Relational Database Architecture. His cur-
rent focus is on the Open Software Foundation’s Distributed

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Computing Environment. His interests include operating sys-
tems, computer network protocols, and object-oriented pro-
gramming languages.

Richard R. Sanders IBM Application Business Systems, 3605
Highway 52 North, Rochester, Minnesota 55901. Mr. Sanders
is a senior programmer in the AS/400 Data Management De-
sign Control group. He was an architect of the Distributed
Data Management (DDM) architecture for over five years and
spent over two years as the AS/400 representative to the Dis-
tributed Relational Database Architecture (DRDA). He has
received two IBM Outstanding Technical Achievement
Awards for his contributions to DDM and DRDA. Mr. Sand-
ers received a B.S. in computer science and mathematics from
Mankato State College in 1972. He joined IBM in Rochester
in 1977.

Reprint Order No. G321-5482.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

DEMERS €T AL 487

