The designer’s model
of the CUA Workplace

This paper discusses the details, insights, and
rationale of the Operating System/2® (0S/2°)
Version 2 Workplace Model, an implementation of
the user interface defined by the IBM 1991
Common User Access™ (CUA™) guidelines. The
Workplace Model is described as an object-
oriented user interface where objects represented
by icons are manipulated by selection and
movement, copying and creation of other objects,
and by defining their behavior to accomplish the
user’s desired task.

Models are used in many different fields. Re-
searchers in physics, chemistry, and mo-
lecular biology use models to explore relation-
ships between atomic and molecular components
of systems. Economists and city planners use
models to analyze and predict the performance of
complex economic and social systems. And
teachers use models as an aid in explaining com-
plex systems in a variety of fields. Whether the
model is a plastic replica of an airplane, an ex-
ploded-parts diagram in a book, or an elaborate
computer simulation model, the purpose of the
model is to convey an understanding of the com-
ponents that make up an object or a system and
their interrelationships.

The user interface of a computer system can be
described and analyzed by using models. The re-
lationships among the interface, the programming
system that implements it, and the users of the
interface can be described and analyzed by using
models. Furthermore, a model of the interface
can be implemented as a prototype to support
iterative testing with users.

This paper identifies three models that are rele-
vant in the design of a user interface (UI). Each

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

by R. E. Berry

model gives a different perspective of the inter-
face, including the end-user’s perspective, the Ul
designer’s perspective, and the implementing
programmer’s perspective.

Following the description of the three models, the
designer’s model of IBM’s Common User Access™*
Workplace (CUA* Workplace Model) is described
to provide an example of the types of concepts
that UI designers must address. The Workplace
interface is an object-oriented user interface re-
cently introduced in IBM’s Operating System/2*
(0s/2*) Version 2.0.

This description is intended to provide an in-
depth understanding of the concepts underlying
the cua Workplace Model. It provides detail, in-
sight, and elements of rationale from a designer’s
perspective to supplement the information in-
cluded in other publications."* A few of the fig-
ures from these publications are used here to pro-
vide the reader with points of reference to help
position the supplemental information. Many of
the concepts described in this paper are depicted
in a demonstration program and videotape called
The cua Vision. "

Models for user interface design

We use models in user interface design to de-
scribe an interface in terms of objects, properties,

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

BERRY 429




behaviors, and relationships between objects. A
model provides a framework for analysis, under-
standing, and decision making.

A model does not need to address every aspect
and feature of a system. A level of detail adequate
to understand relationships of interest, explain
observations, and make design tradeoffs is suffi-
cient. In some cases it may be desirable to use
several different models with various levels of de-
tail for the same system. One model might be
adequate for a salesperson to explain the system
to a prospective customer. Another model of the
system might be needed to help develop specifi-
cations for subcontracted components.

A model must be accurate at whatever level of
detail is chosen. Models must be under constant
scrutiny and should be changed to reflect varying
requirements and explain observed behaviors.

There are three basic models on which the cua
user interface design is based:

* The user’s conceptual model
* The user interface designer’s model
e The programmer’s model

While the particular details of these models as
presented in this paper are specific to the cua
interface, the use of these models and the rela-
tionships among them apply to the design of user
interfaces in general.

A diagram depicting how these models relate to
each other is shown in Figure 1.

To show the relationships among these three
models, we have drawn an analogy between the
task of a designer who is designing a user inter-
face and an architect who is designing a house.
These tasks are similar in many respects because
both of them require an understanding of all three
models.

A user interface designer’s job is to create a de-
signer’s model, or blueprint, of the user interface,
just as an architect creates a blueprint of a house.
To do this, the designer must:

* Understand the user’s conceptual model. That
is, just as an architect must understand a cli-
ent’s needs and expectations to design a house
that pleases the client, the user interface de-

430 BERRY

signer needs to understand users, their tasks,
and their expectations.

Use the user interface design principles on
which CUA is based. Architects use basic prin-
ciples that apply to housing design. A good ar-
chitect knows the environment in which the
house will be built with regard to temperature,
weather, humidity, and other factors, and suc-
cessful designs that have been used in that envi-
ronment. Accordingly, the user interface de-
signer needs to have a knowledge of accepted
and proven principles in the field of user inter-
face design.

Understand the capabilities and limitations of
the programming environment, and the skills of
the programmers who will be implementing the
interface. Just as an architect must know the
strengths and weaknesses of building materials
and the skills of the tradespeople who will build
the house, user interface designers must under-
stand the capabilities and restrictions of oper-
ating systems, file systems, window managers,
programming toolkits, and other components
used to implement the interface.

The user’s conceptual model. The user’s concep-
tual model of a system is a mental image that each
user subconsciously forms as he or she interacts
with the system.

The user’s conceptual model is based on each
user’s expectations and understanding of what a
system provides in terms of functions and ob-
jects, how the system responds when the user
interacts with it, and the goals the user wants to
accomplish during that interaction. These expec-
tations, understandings, and goals are influenced
by the user’s experiences, including interaction
with other systems, such as typewriters, calcu-
lators, and video games.

Because each user’s conceptual model is influ-
enced by different experiences, no two users’
conceptual models are exactly alike. Each user
looks at a user interface from a slightly different
perspective.

The problem for the interface designer is to design
an interface that users find predictable and intu-
itive when each user is approaching the interface
from a different perspective. To come as close as
possible to matching users’ conceptual models,
designers should find out as much as they can
about users’ skills, motivations, the tasks they

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




perform, and their expectations. This process in-
volves: using resources, such as task analyses,
surveys, customer visits, and user requirements
lists; incorporating information that users provide
into the user interface design; and conducting us-
ability tests.

This is an iterative process that may require many
cycles. As the design progresses, users may iden-
tify aspects of the interface that are difficult to
learn, that are counter-productive, or aspects
they simply do not like.

Through interaction with the user interface, users’
conceptual models may be expanded, which in turn
may cause them to realize new requirements that
they had not thought of before. As users provide
this level of information, the picture of their con-
ceptual models will become clearer.

Conceptual models of an object-oriented user in-
terface consist of the objects, and the properties,
behaviors, and relationships of those objects, that
are involved in users’ interactions with the inter-
face.

When users first interact with a new interface,
they are likely to attempt to understand its oper-
ation in terms of concepts already existing in their
current conceptual models. Where their existing
models lead to correct expectations, their models
will be reinforced and the users will feel the in-
terface is intuitive. When results are not as ex-
pected, users may rationalize by adding new re-
lationships to their models to explain observed
behavior. If the new extensions are accurate, they
should be reinforced through interaction with
similar aspects in different parts of the system.
Sometimes users develop superstitions about the
interface. These superstitions are incorrect ratio-
nalizations about the interface. They are likely to
cause unexpected results and further contradic-
tions of a user’s intuition. The use of metaphors
and consistency are two approaches that design-
ers can use to build on users’ existing conceptual
models and create intuitive interfaces.

A new interface should resemble something fa-
miliar to help users get started, then allow them
to explore new concepts. It is often said that a
characteristic of a good user interface is that it is
intuitive. Perhaps when used in this sense intu-
ition can best be characterized as a good match

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

between the user’s conceptual model and the de-
signer’s model.

By using metaphors, designers can take advan-
tage of a user’s experience and allow a user to rely
on intuition while expanding the user’s concep-
tual model to take advantage of new capabilities
provided by the interface. Interfaces that use met-
aphors and allow users to safely explore the
computerized environment are popular for this
reason.

For example, a computerized car dealership ap-
plication might provide a worksheet object to be
used by a salesperson in the task of selling a car.
The computerized worksheet contains the same
information and is used in the same way as a pa-
per worksheet. Like the paper worksheet, the
worksheet object allows the salesperson to enter
the car’s price and stock number, the customer’s
name and address, and information about the pro-
posed terms of the sale.

However, the worksheet object also expands the
salesperson’s conceptual model by providing ca-
pabilities that go beyond those of a paper work-
sheet. Instead of typing information into the
worksheet object one field at a time, the sales-
person might simply “drag and drop™ a car object
onto the worksheet. The fields in the worksheet
that are relevant for the car being sold are auto-
matically filled in by the associated fields from the
car object. Monthly payments and finance charges
are calculated automatically. Instead of having to
hand a paper worksheet to the sales manager for
approval, the salesperson can drag and drop the
worksheet into a specific mail out-basket to have it
automatically sent to the sales manager through the
dealership’s computer network.

This worksheet object not only meets the sales-
person’s expectations, it goes beyond them. It is
an object that the salesperson expects to use dur-
ing the task of selling a car, it has behaviors and
characteristics that the salesperson is accus-
tomed to, and it provides additional value by use
of the computer.

The worksheet object acts as a metaphor for an
object that already exists in the salesperson’s
conceptual model of a car dealership and the task
of selling cars. It is an object with which the sales-
person is already comfortable, and it provides

BERRY 431




additional capabilities that make the salesper-
son’s job easier than it is using a paper worksheet.

Users’ conceptual models constantly evolve as
they interact with an interface. Just as users in-
fluence the design of a product, the interface de-
sign influences and modifies users’ concepts of
the system. Designers can help users develop an
accurate conceptual model by using well-defined
distinctions between objects and by being con-
sistent across all aspects of the interface.

For example, given an object-oriented car deal-
ership application, the salesperson opens and
works with familiar objects instead of starting and
running computer programs, opening files, and so
forth. This object-oriented approach has fewer
concepts for the salesperson to deal with and
matches the salesperson’s real world better than
one in which a task is accomplished by starting
applications and opening files. However, it may
require a shift in the conceptual model of a sales-
person who is already accustomed to a computer
program-oriented type of interface.

Naturally, the conceptual model of a salesperson
who is already familiar with using a graphical
computer interface requires little modification.
This salesperson would already know how to use
icons, windows, menu bars, and push buttons.

In any case, the distinctions between objects
must be clear and useful, and the interface must
be consistent. Otherwise, the users’ conceptual
models will be modified in ways other than those
intended by the interface designer.

The interface components and relationships in-
tended to be seen by users and intended to be-
come part of each user’s conceptual model are
described in the designer’s model. This model
represents the designer’s intent in terms of com-
ponents users will see and how they will use the
components to accomplish their tasks.

The designer’s model. The second useful model in
user interface design is the designer’s model. In
the designer’s model the user interface designer
defines objects, how those objects are repre-
sented to users, and how users interact with those
objects. User objects are defined in terms of prop-
erties, behaviors, and relationships with other ob-
jects. Differences in properties and behaviors are
the basis for class distinctions, such as the dis-

432 BERRY

tinctions between folders and documents. Rela-
tionships between objects affect how they are
used in accomplishing users’ tasks. For example,
users can use folders to contain and organize

The designer’s goal is that
the user’s conceptual model
exactly match the
designer’s model.

memos, reports, charts, tables, and many other
classes of objects. Users can discard an object by
“dropping™ the object’s icon on a wastebasket
icon, and users can print an object by dropping
the object’s icon on a printer icon. These actions
are logical in that they maintain real-world rela-
tionships between objects.

By relying on a few basic classes and relation-
ships, with well-defined distinctions based on
user task needs, the designer’s model should be
easy for users to learn and understand. That is,
users should quickly develop conceptual models
that closely match the designer’s model.

Reference 5 introduces the CUA designer’s model,
and this paper describes the model in detail. This
model defines objects that are common to many
types of applications. Designers must add objects
that are needed by specific products. This is typ-
ically done by extending existing objects (creating
subclasses) or by defining entirely new types of
objects (creating new classes). Definition of the
designer’s model is crucial to developing prod-
ucts that are easy to learn and understand. Its
definition should comprise the first series of steps
during product design.

If the designer’s model closely matches a user’s
conceptual model, the user should learn quickly
and apply knowledge correctly in new situations.
In other words, the user will feel the interface is
intuitive. Designers can help users to develop a
closely matching conceptual model by creating a
clear and concise designer’s model. A designer’s
model is clear and concise when it has made a

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




minimum number of distinctions among objects,
the distinctions are clear and useful to users, and
they are consistently conveyed throughout the in-
terface.

For the designer’s model to be consistent with the
user’s conceptual model, the designer must know
the users, their tasks, and their expectations. If
designers do not understand their users, the in-
terface will not behave as users will expect it to.
Also, if the system does not behave as users ex-
pect it to, their conceptual model will be different
from the designer’s model and misunderstandings
will occur. Users can lose confidence in the reli-
ability of their conceptual model, and thus in the
system itself, when these misunderstandings oc-
cur. If users form an incorrect conclusion or a
superstition to explain an inconsistency, they
may try to apply it elsewhere in the system. This
can lead to further misunderstandings and dis-
trust of the system.

A misunderstanding may be caused by inconsis-
tency in objects’ behaviors resulting from a par-
ticular action. For example, if a user learns that
double-clicking the mouse button on an object
opens a window on the object, and elsewhere in
the interface the same action discards an object
instead, the user may begin to distrust the system.

In summary, the designer’s model is the model of
objects, properties, behaviors, and relationships
that the designer intends the user to understand.
The designer’s goal is that users’ conceptual mod-
els exactly match the designer’s model. Users
who perceive the interface at this level have a
precise understanding of the interface and can
take full advantage of the capabilities provided by
the designer.

The programmer’s model. The third model of in-
terest in user interface design is the program-
mer’s model. The programmer’s model is the sys-
tem’s implementation of the designer’s model.
The programmer’s model includes details rele-
vant only to the programmer. For example, the
designer’s model might include a directory object
that consists of people’s names, addresses, office
numbers, and so forth. However, the program-
mer’s model of the directory object might consist
of records in a file, with one record for each di-
rectory entry; or, it could be a complex organi-
zation of multiple records from multiple files.
These implementation details from the program-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

mer’s model should not be evident in the design-
er’s model and are therefore transparent to users.

Figure 2 summarizes the three models and iden-
tifies factors that influence each model.

Getting users started—a kernel of
knowledge

In addition to understanding which objects to use,
users must understand the ways in which these
objects can be used. Users unfamiliar with com-
puters and graphical user interfaces may need
some preliminary information on how to use the
system. New users should be provided with
enough information on how to use the system to
get them started. This information establishes a
base conceptual model and gets users started in
the right direction. Both conceptual and proce-
dural information should be included. Given this
base, or kernel, of knowledge they can explore
the interface to learn more about its capabilities
and develop a more complete and accurate con-
ceptual model.

The information user’s need in order to get started
using a computer includes concepts about objects
and techniques for interacting with objects. Some
of the concepts and techniques users must un-
derstand to use the CUA Workplace Model in-
clude:

* How to use the mouse

* Opening views of objects

* Manipulating windows and the views within
them

» Accomplishing actions by dragging objects

* Copying and creating objects

* How various menus relate to objects

* How objects are composed of and contain other
objects

The information in the kernel applies to all appli-
cations developed according to the CUA guide-
lines. This information can be presented in a tu-
torial for new users of a system. Rather than a
complete tutorial about CUA concepts and mech-
anisms, it is just enough information to get users
started. This information should be made avail-
able to users so that they can begin to explore the
system. Designers may also use this information
when developing product-specific tutorials for
users, using product-specific examples.

BERRY 433




Beyond the information found in the kernel, users
can learn more about the system by trying the
same or similar techniques on many different ob-
jects.

A common task is to look at information stored in
the system. From information supplied in the ker-
nel of knowledge, a salesperson understands the
concept that the icons represent objects that can
be opened to view their contents in a window.
The kernel also provides procedural information
about how the objects are opened.

From the kernel information, users can also learn
about other mechanisms for handling objects
such as selecting objects, requesting actions on
objects, changing the view of an object in a win-
dow, and dragging objects. Users should be able
to apply these mechanisms across many different
objects and observe consistent results.

The designer’s model of the CUA Workplace

The designer’s model identifies objects, object re-
lationships, how the objects are represented on
the screen, and how users interact with the ob-
jects.

Figure 3 shows the various parts of the designer’s
model of the CUA Workplace. The figure also
shows the relationships between these parts.
Each of these parts is fundamental to the cua
Workplace user interface and is therefore com-
mon to all products.

The figure does not address product-specific ob-
jects, representations, or input mechanisms.
These extensions to the model are left to the dis-
cretion of the product designer.

The figure is divided into three sections: one for
user objects, one for visual representations, and
one for interaction mechanisms supporting user
actions. Two lines across an arrow means that the
box the lines are closest to has a “more-than-one”
relationship with the box at the other end of that
arrow. For example, a container can contain
more than one object and an object can be rep-
resented by more than one view.

Object classes in the Workplace Model

The top section of Figure 3 shows the classes of
user objects that are fundamental to the CUA

434 BERRY

Workplace Model: data objects, container ob-
jects, and device objects. Objects that users work
with on a computer should be designed in such a
way that users can easily become accustomed to

The designer’s model with
objects, relationships, and
interactions is the
CUA Workplace.

using them. The use of metaphors has become a
popular method of helping users to relate these
objects to objects that they work with in the real
world.

When using metaphors, it is very important to
preserve characteristic behaviors that distinguish
objects in the real world. For example, a user
object that emulates a folder on a computer
should behave much like a real folder. Users
should be able to open it to inspect its contents,
add new items, and rearrange its contents.

Object behaviors. The ways in which objects can
be used to accomplish users’ tasks are called ob-
ject behaviors. Three distinctive behaviors of ob-
jects can be identified through observation of real-
world objects and typical user tasks. Individual
objects may support behavior from one or more
of these fundamental behavior classes:

* Data behavior

Objects provide data behavior to communicate
information. Data behavior includes presenta-
tion of views that show the composition of ob-
jects, and views that allow users to manipulate
the information and the arrangement of objects
that form the composition. For example, a com-
posite memo might contain text, graphs, charts,
and images. Views would typically be provided
to allow a user to edit each of these objects as
well as to allow rearrangement of their layout,
or relationships with each other.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Data objects come in many forms, such as
memos, business graphics, tables, music, re-
corded speech, animations, video clips, and
various combinations.

Container behavior

Objects provide container behavior to store and
hold other objects. Container behavior includes
presenting a list of contained objects, allowing
new objects to be added, and arranging the con-
tents in various ways, such as sorting by object
name or date created. Folders, trash cans, and
in/out baskets are typical examples of objects
providing container behavior.

¢ Device behavior

Objects that have device behavior provide an
interface to the world outside of the user’s do-
main within their computer. Device behavior
includes the ability to print and transfer to ex-
ternal media, such as a diskette.

Individual objects typically provide behaviors
from one or more of these classes. For example,
a queued printer provides both container and de-
vice behaviors. Its input queue behaves like a
folder, but its primary purpose is to transfer in-
formation to an external medium—paper. Each
object is typically intended to serve some primary
purpose in terms of the data, container, and de-
vice distinctions. Objects in the CUA interface are
classified with respect to their primary role in the
interface as data, container, or device.

It is important for designers to understand the
concept of object behavior because the behaviors
of similar types of objects should be consistent
and the behaviors of different types of objects
should provide useful distinctions to users. An
object’s behavior determines such aspects as
which views are provided, which user actions are
supported, and what should happen in data trans-
fer operations, such as when another object’s
icon is dragged to and dropped on that object’s
icon. The following contrast between a container
object and a device object shows how the behav-
iors of these objects affect views and the results
of direct manipulation. -

A container object, such as a folder, is used pri-
marily as a place to store other objects. There-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

fore, if an object is to be used primarily as a con-
tainer, one or more views listing the container’s
contents must be provided. In addition, objects
that are dropped on a container’s icon are moved
into that container.

In contrast, a device object is used primarily to
provide communication between the user’s com-
puter domain and the world outside that domain.
A printer, for example, is a device object that is
connected to a real-world physical printer. It
should provide at least a view of the current
printer settings and a view of the printer’s queue
contents.

The settings view allows a user to ensure that the
desired printer is correctly configured. The con-
tents view allows users to inspect and change
what is in the print queue. Even though a printer
object is not used primarily as a container, its
queue has some of the characteristics of a con-
tainer, which means a contents view is also
needed. This contents view could enable a user to
see, for example, which object is currently being
printed, how many objects are waiting to be
printed, and what the status of those objects is
(ready, on hold, and so forth). It might also allow
the user to rearrange the order of the contents, for
example, to move a particular object to the front
of the queue.

To complete the comparison of containers and
devices, we also need to look at the results of
dragging another object to a printer. Objects that
are dragged to a folder are moved from a current
location to the folder. Objects that are dragged to
a printer are copied. Copy is the default for drag
and drop to devices because it is safe for the user.
Objects will not be inadvertently lost by trans-
ferring them to printers, diskettes, or other des-
tinations external to the user’s workplace do-
main.

Whether an object is moved or copied during drag
and drop operation (drag/drop) is an architectural
distinction for consideration by designers as they
define new actions. The intent is that users simply
think of drag/drop to a printer as causing the print
action, with the obvious consequence of preserv-
ing the object being printed.

Most objects provide more than one class of be-
havior. Therefore, in CUA, objects are classified

BERRY 435




according to their primary behavior, even though
they may support additional behaviors.

An analogy may be helpful in clarifying this con-
cept. You can ride in both a car and a truck, but
each has specific distinctions because each is de-
signed for a specific purpose. Cars are primarily
used to transport people, while trucks are primar-
ily used to haul objects that are too heavy for, or
do not fit inside, cars. Of course, trucks can carry
people as well. Similarly, the following compar-
isons can be drawn for the data, container, and
device behaviors:

* Objects that behave primarily as data objects
may also provide some container behavior.
Composite documents that contain embedded
annotation text, business graphics, charts, and
other objects are primarily data objects and pro-
vide data behavior. However, they may also
provide a list of their contents.

¢ Objects that primarily behave as containers can
also behave as data objects. Folders primarily
provide container behavior. They are used to
store, group, and arrange related contents. Like
a data object, however, they can also be copied,
archived, and mailed.

* Objects that primarily provide device behavior
may also behave as containers. Printers, for ex-
ample, are used for their device behavior, but
may display a list of the jobs waiting to be
printed (printer queue). The printer queue is
displayed in a contents view, and may provide
behavior that is normally associated with a con-
tainer, such as filtering and sorting.

Establishing containment relationships. The pri-
mary behavior of container objects is to store and
organize other objects. The primary behavior of
data objects is to convey information. However,
data objects can provide some container behavior
and vice versa.

To help identify which should be an object’s pri-
mary behavior, it is useful to consider whether the
relationships between the contained objects are
tight or loose. Tight containment relationships fa-
vor data behavior, while loose containment rela-
tionships favor container behavior.

Tight containment relationships. Tight contain-
ment identifies and preserves relationships be-
tween individual objects, such as text, tables,
graphs, and charts, that are combined to form a

436 BERRY

single composed object, such as a composite doc-
ument. The arrangement of objects in a composite
document is typically very specific and contrib-
utes to the overall communication of information.
Text is wrapped around related figures, which are
kept on the same page when possible, and so
forth, as shown in Figure 4.

The relationships between the objects that are
combined to form a composite document are tight
because they give added meaning to the docu-
ment itself. If the objects in the composite doc-
ument were arranged differently, the communi-
cation of the document’s information could be
affected.

The primary behavior of a data object is opti-
mized around its composed views and the behav-
iors of the entire object as a composed whole.
One aspect of this behavior is that the relation-
ships between the collection of objects is main-
tained as the object is changed. For example,
when a composite document is reformatted, the
relationships between figures, captions, descrip-
tive prose, and footnotes are preserved. These
are examples of tight containment relationships.

Loose containment relationships. Loose contain-
ment does not rely on or preserve relationships
between contained objects. The arrangement of
objects in a container, such as a folder, is loose.
The objects in a container will probably be re-
lated, such as those shown in the folder in Figure
5.

However, changing the arrangement of these ob-
jects within the folder does not change the overall
meaning or purpose of the folder itself.

The user will typically arrange objects in the
folder for convenient access, not to convey any
particular meaning. This is the opposite of the
relationship between objects in a composite doc-
ument, in which changing the arrangement of the
objects could alter the document’s meaning.

As a result of the loose relationships between ob-
jects in a container, the views of containers typ-
ically provide a user with options for changing the
layout of objects, sorting the objects, and so
forth.

Implications of tight and loose containment.
Tight containment relationships tend to contrib-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




g

R

i s

-~

PR SRR S
SCLNIIS 104 - 10y papsies - &




1opou1
remdaraen .
5

FeepouL
-5 abrsa()

pIRogiey

SENOR

swsiteysoy)
wonaeiow|

suonewassiday
R ens|
B0, s

150140




ute to the definition of object type because they
describe an object’s composition, an aspect on
which type classifications are typically based. For
example, consider the classification automobile.

CUA defines three
general-purpose containers:
the folder, the workplace,
and the work areas.

An automobile can be classified as such based on
its composition, which usually consists of an en-
gine, passenger compartment, four wheels, etc.
Its composition is independent of its contents, or
passengers. An automobile is still an automobile
regardless of whether it contains one, two, four,
or no passengers. Taking away components of its
composition may affect whether we still consider
it to be an automobile, or at least whether it is a
complete automobile.

Similarly, it is useful to consider aspects of com-
position when designing computer interface ob-
jects, such as folders, mail baskets, printers, and
other objects that provide container behavior. It
may prove useful to provide additional views that
allow users to see and possibly manipulate com-
ponents that compose the object distinct from and
in addition to views and manipulation of its con-
tents.

Data objects. Data objects are described in terms
of materials and structure. Text, graphics, image,
audio, and video are the materials from which
data objects are composed. These materials are
used in simple structures, such as strings, arrays,
and records, which can be used to form more
complex structures, such as reports, spread-
sheets, and charts. This is analogous to the build-
ing materials wood, steel, concrete, and plastic,
from which chairs, tables, houses, and schools
are built.

The cUA interface does not define specific data
objects. Data objects are typically product-spe-
cific and are therefore defined by product design-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

ers. However, general data object behavior is de-
scribed in the CUA to achieve consistency within
the Workplace Model. Examples of data objects
are graphs, charts, spreadsheets, and composite
documents.

Container objects. The primary purpose of con-
tainer objects is to provide a place to store and
group related objects. For example, CUA-defined
folders can contain charts (data), printers (de-
vices), and even other folders, all at the same
time.

Container uses can range from general-purpose to
product-specific. CUA defines three general-pur-
pose containers: the folder, the workplace, and
the work area. Designers can refine the CUA-
defined containers to create containers for spe-
cific product needs. By using refinements of CUA
containers, common container behavior is pre-
served. This allows users to take advantage of
what they already know about containers while
minimizing the effort to learn the new container’s
differences.

Folders and work areas. A folder is a container
that provides a place to store a group of objects.
A work area is a container that provides a place
to use a group of objects to perform a specific
task. Although these two containers have much in
common, they provide optimizations for different
roles in the interface. The difference between
folders and work areas is based on how each is
used in accomplishing users’ tasks and in some
special behaviors that each provides.

The folder can be thought of as a central storage
place for objects that have a common theme, such
as a group of worksheets, memos, voice mes-
sages, and video sales brochures related to a par-
ticular customer account.

The work area is a place where objects are
brought together to perform a particular task. A
work area might be used to contain mail trays, a
sales catalog, a printer, and a folder that contains
worksheets, used collectively to perform an ac-
count billing task. Work areas provide window
management assistance for windows of objects
that reside in the work area. For example, when
a work area window is closed the windows of all
objects opened from that work area are also
closed. Likewise, when the work area is reopened
those windows are also reopened. By providing

BERRY 439




separate places to perform specific tasks, work
areas can help users manage multiple concurrent
tasks, while still providing a useful separation be-
tween them.

However, when the user closes a folder, any win-
dows that were opened for the objects in that
folder remain open. This allows the user to re-
move the unnecessary clutter of the open folder
from the screen while continuing to work with the
object.

Suppose a salesperson in a car dealership is using
awork area with several open windows to prepare
a report to the sales manager. When interrupted
by a potential customer the salesperson can sim-
ply: close the report work area, open a car sales
work area, complete the sales task with the cus-
tomer, then resume the report task.

All windows related to the report task are closed
when the report work area is closed. Similarly, all
the windows used in selling a car would appear
automatically when the car sales work area is
opened. These windows would typically allow the
salesperson to enter information about the cus-
tomer, search for a car that the customer is in-
terested in, and ultimately complete the sale.
When the sale is complete and the customer
leaves, the salesperson closes the car sales work
area and reopens the report work area to continue
the report task from the point of interruption.

Objects in multiple work areas. A user will typ-
ically find it useful to have some objects in more
than one place. To explain, we can draw on an
analogy from a business environment to show
that the same objects need to be available from
many different places. If you work in an office,
your desktop computer may be attached to a
larger computer in another location. The larger
computer contains product information that you
need when talking to clients. However, you may
also need to have access to this information when
you go out of town to visit a client. You could take
a laptop computer and a modem with you, thus
giving you access to the information through a
telephone line instead of having to take a copy of
the information with you. Thus, although the
product information (the object) is still in the
same place, you have access to it from your cli-
ent’s office (a different work area).

440 BeRRY

Similarly, a folder might contain a set of charts,
all of which are related to the same subject, such
as monthly sales data for a particular business
account. But a user may also need one of the
charts while performing two different tasks. The
Workplace Model allows more than one icon to
represent an individual object. Therefore, an icon
for the chart can be in the folder and in two dif-
ferent work areas at the same time. Each icon
represents exactly the same object, and actions
on the object can be performed from any one of
the icons. Each icon is a reflection of the object.
For most purposes the user need not care that an
object has multiple icons. In 0S/2 2.0 these addi-
tional icons are called shadows.

For example, one task might be to create a
monthly report for selected accounts. The other
task might involve doing a year-to-date sales anal-
ysis. By creating a work area for each task the
user can group the objects required to accomplish
each task, including the chart, while preserving
the storage relationship established by the folder.
By representing the chart with more than one
icon, there are convenient access points for the
chart from each place that the user might need it.

The CUA intent is that users typically need not be
aware of which icon represents the ““original™ ob-
ject. Except for deletion, users need not know or
care that an object has multiple icons. For dele-
tion, users are provided with choices to allow de-
letion of individual icons or the entire object with
all of its icons.

Users, work areas, and products. Some users,
particularly those who perform one task at a time,
may not create work areas. Other users are likely
to create their own work areas that are tailored to
the tasks they perform often.

Some products may provide ready-to-use work
areas for certain tasks, such as a programmer’s
work area that contains standard libraries, debug-
ging tools, and so forth. A car dealership might
provide salespeople with ready-to-use work areas
for preparing standard reports, selling cars, and
determining commissions.

The primary means for distinguishing folders
from work areas is a visible difference that should
be designed into their icons, and the icon labels
and window titles that further help users identify
objects.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




For example, in a car dealership application, the
salesperson’s work area might be titled “Selling
Cars” to reflect the task that the salesperson
would perform when using that work area.

The workplace. The third type of container is the
workplace, which contains all objects accessible
by a user whether local or remote to the user’s
system. In hierarchical storage systems it repre-
sents the apex of the user’s storage hierarchy.
The workplace is represented by the computer
screen. Users typically leave objects that are used
for many tasks on the workplace, such as a waste-
basket, a telephone, an address book, and a cal-
endar.

Device objects. The primary purpose of device ob-
jects is to provide an interface between objects
within the computer system and the world exter-
nal to the computer system. For example, a user
can mail an object to another user by dragging the
object’s icon to a mail tray, or print an object by
dragging the object’s icon to a printer.

Device objects tend to provide specific functions,
but can often operate on many different types of
objects. In the preceding examples, a user could
drag almost any object to a mail tray or to a
printer.

Device objects are typically used in conjunction
with other objects for which they provide some
function. These associations might be specified in
advance, but are typically done during a user’s
task. For example, a user might associate a low-
resolution printer with a document to establish a
default printer, but can drag the document’s icon
to the icon of a high-resolution printer when
higher quality printing is required. Besides print-
ers, examples of other devices are a diskette
drive, a keyboard, a mouse, and a plotter.

How objects are represented to users

In terms of representing objects to users, the most
important questions are:

* What aspects of the object does the user need
to see for each task to be performed?

* How will those aspects be represented?

* What types of actions must users be able to
accomplish and which techniques can be pro-
vided to accomplish them?

iBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

CUA uses views and icons to represent objects.
Views are displayed in windows. The middle sec-
tion of Figure 3 shows how these elements of the
designer’s model relate to user objects and inter-
action mechanisms. Figure 6 shows how users see
them on the screen.

Icons represent objects on the workplace, in work
areas, and in folders. Common object behaviors,
such as creating, copying, moving, printing, and
deleting, are provided by the objects that the
icons represent.

Users can access additional aspects of an object
by opening a window. A window contains a view
of the object. Many objects can provide more
than one view, showing different aspects, or the
same aspects in different formats.

Icons. An icon is a small graphic image that rep-
resents an object. Icons can appear on the work-
place, and can appear in contents views of work
areas and folders, as well. They usually have a
label to identify the object they represent. Figure
5 shows a contents view with icons representing
the objects in a folder.

An object’s icon depicts its class. For example,
the icon used to represent a folder conveys its
class by resembling a typical office folder. An
icon should also depict other important aspects of
an object. For example, the icon that represents
a mail in-basket should change in some way to
show that new mail has arrived. An icon need not
convey all of an object’s properties; however, it
should convey those that are useful without con-
fusing the user. The key is to design each icon’s
image so that a user can immediately recognize
the type of object the icon represents, and thus
recognize the basic properties and state of the
object.

Windows. A window is a space on the screen in
which a view of an object is displayed, in which
choices associated with an action are presented,
or in which a message is displayed. Users can
control the position of the information on the
screen and how much is visible by moving and
changing the size of the window.

A window for an object can be opened from the
object’s icon. For example, opening a window
from the icon of a folder allows a user to see the
objects that the folder contains.

BERRY 441




A window for presenting additional choices as-
sociated with an action is displayed when a user
selects an action choice, such as from amenuor a
push button. For example, selectinga “Print . . .”
choice from a menu would display a window in
which a user could specify desired print options.

Views can be larger than the windows in which
they are displayed. When this is the case, the
view is either scaled to fit in the window or it is
clipped. If the view is clipped, the user sees only
a portion of the view. Scrolling techniques are
provided so users can control the portion of a
view displayed at any one time.

A window can also be split into panes, which are
used to display different portions of the same view
concurrently. Or, a user can display multiple
views of an object concurrently by opening more
than one window.

The CUA interface classifies windows in two ways
based on the kind of information presented in a
window and how a window relates to other win-
dows on the screen. Windows are used to present
three basic kinds of information:

* Views of objects, such as the contents of a
folder, the formatted text of a memo, the set-
tings for a printer, or a video sales brochure

¢ Options for an action request, such as the num-
ber of copies and range of pages for a print re-
quest

e Messages, such as a message that indicates the
printer is out of paper

The CUA guidelines for the use of standard push
buttons, window title text, and so forth are based
on these distinctions. For example, the guidelines
specify which push buttons to use with action
choice windows. Different push buttons, appro-
priate to the types of messages CUA defines, are
used with message windows.

CUA defines two types of windows based on how
a window is related to other windows on the
screen. A primary window is one in which the
main interaction with the user takes place. Views
of objects are typically presented in primary win-
dows. Opening and closing of primary windows is
not dependent on opening and closing of other
windows.

442 BERRY

A secondary window is dependent on a primary
window. A secondary window is used for infor-
mation that supports the use of a primary win-

CUA guidelines encourage
designers to make all
windows movable, sizable,
and as modeless as possible.

dow. Each secondary window is associated with
a particular primary window. A secondary win-
dow is closed if its primary window is closed.

For example, a primary window is typically used
for the view of a document that is shown when a
user “double-clicks” to open a window from a
document’s icon. However, a secondary window
would typically be used to display action options
associated with a Search or Print request for the
document.

The primary-secondary window distinction de-
scribes a relationship between two windows.
Each window may have different relationships
with other windows. For example, a Print Op-
tions window would typically be a secondary win-
dow; however, it could also be a primary window
for any message windows displayed that pertain
to the print option.

Any window can be primary for another window,
making that window secondary. A primary win-
dow can have more than one secondary window,
but each secondary window has only one that is
primary, which controls its Close and Open be-
haviors. The CUA guidelines currently only ad-
dress Close and Open behaviors. However, the
primary and secondary relationship should be
thought of as a primitive window grouping mech-
anism that can provide users with explicit control
of window grouping, as well as applicability of
other actions to the groups, like moving a group
of windows while maintaining a particular spatial
arrangement.

The CUA guidelines encourage designers to make
all windows movable, sizable, and as modeless as

1BM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




possible to give users the feeling of being in con-
trol. Differences in these capabilities are typically
not a sound basis for distinctions between win-
dow types. Primary and secondary relationships
should be established on the basis of how the in-
formation in each window is used to support the
user’s tasks.

Because the CUA guidelines recommend that each
window be sizable, they also recommend that
each window provide support for the Maximize
function. However, some simple analysis can be
performed to decide whether a window should
provide the Minimize, or Hide, function.

We characterize the Minimize and Hide actions
as requests to “put aside temporarily,” while
Close is thought of as “put away.” The advantage
of putting a window aside is that the window is
kept close by and handy. It can be easily redis-
played. A disadvantage is that having too many
minimized or hidden windows can cause confu-
sion that outweighs the advantages. Windows
used to present views of objects are often opened
from objects that reside somewhere in the user’s
storage hierarchy, such as from an icon in a
folder. The icon’s location may be many levels
deep within the hierarchy and the user may have
closed the windows used to access the icon, thus
making it difficult or tedious to redisplay the ob-
ject if its window is closed. Therefore, the ability
to put a window aside is an important function for
windows showing views of objects. However, a
window that displays options for an action re-
quest, such as “Print ... ", can be easily redis-
played from its menu choice. Therefore, a put
aside action is not recommended for these win-
dows.

Views. A view is intended to convey certain as-
pects of an object to its users. In the Workplace
Model, views resemble as closely as possible real-
world counterparts of the objects. This resem-
blance helps users recognize objects and under-
stand how they are intended to be used. Each
view provided by an object:

 Displays particular aspects of an object, such as
the contents of a container

* Supports a set of actions related to those as-
pects, such as moving an object from one con-
tainer to another

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Users can interact with objects through object
views displayed in windows. Designers must
know what information users need and which
user interactions need to be supported in order to
design useful views. Often, there are so many as-
pects of an object that multiple views must be
provided. Groups of related aspects are then
shown in different views. For example, a com-
posite document might provide a composed
(“what you see is what you get”) view, an outline
view, a print preview, and a settings view.

Each view is provided in support of particular
user tasks. For example, a settings view might
allow a user to change the font type and size for
a string of selected text. Also, each view can be
presented in a separate window. In other words,
opening a different view of an object need not
cause the contents of the current window to be
replaced by the new view.

Types of views. CUA identifies four common types
of views:

¢ Composed view
* Contents view
 Settings view

¢ Help view

Composed views use visible representations that
show important relationships within an object.
The intent is to convey the meaning of the com-
posed object as a whole.

Composed views are provided for data objects, in
which relationships of the parts contribute to the
overall meaning. For example, documents,
graphs, and charts provide composed views be-
cause the relationships of the components in each
determine the meaning of the object as a whole.
This is the tight containment relationship de-
scribed earlier. Figure 4 shows an example of a
composed view.

Contents views list the objects within a container.
The intent is to convey the contents of an object
in a way that helps understanding which objects
it contains. Rearranging the order or changing the
layout in which the contained objects are dis-
played or grouped in a contents view has no effect
on the overall meaning of the object that contains
them. This is the loose containment relationship
described earlier.

BERRY 443




Contents views are provided for container ob-
Jects, such as work areas and folders. They can
also be provided for any object that has container
behavior. For example, data objects, such as
composite documents, and device objects, such
as queued printers, can have contents views.

Contents views can have various layouts, de-
pending on a user’s needs. One commonly used
layout is the iconic layout, shown in Figure 7.

Layouts other than iconic layouts are sometimes
preferred because icons take up more space than
text, thus allowing a user to see fewer objects
than the user could see if icons were not used.
Three commonly used contents layout views are:

* Iconic layout, which uses icons to represent ob-
jects

* Small-icon layout, which uses small icons ac-
companied by text descriptions to the right of
the small icons

¢ Details layout, which uses small icons accom-
panied by text descriptions plus additional de-
tails about the objects

See Figure 8 for an example.

The distinction between composed and contents
views cannot be rigid. The relationship is more
like a spectrum with contents views at one end
and composed views at the other. For example,
an outline view of a document might list the sec-
tions, but it also shows them in order. Designers
should consider users’ needs in deciding which
views to provide. Our intent is to raise an aware-
ness of the potential for each object to provide
different types of views to support various user
tasks. In particular, providing views that treat ob-
jects as compositions of other objects can poten-
tially provide very powerful, flexible, and extend-
able capabilities to users.

Settings views provide a way to change the prop-
erties associated with an object. Settings views
are typically provided for all types of objects.
This way, users can change settings such as fonts,
font sizes, colors, and so forth in a document, or
output quality and destination of printed output
for a printer device.

By convention, CUA specifies that settings views
be presented using a “tabbed” notebook meta-
phor, typically provided as a control in the pro-

444 BeERRY

grammer’s toolkit. Use of this control provides
quick access to all of the properties of an object.
Related properties are grouped together in tabbed
sections for easy access. Use of the notebook
shortens pull-down menus because most of the
settings choices no longer need to appear in the
menus. Figure 9 shows an example of a notebook
used to display a settings view.

Help views provide information to assist users in
using an object. Help views should be provided
for all objects. The type of information that a par-
ticular help view contains depends on the choice
that a user selects from the Help menu. These
choices are described in Reference 2. Figure 10
shows an example of a help view for the work area
setting.

Using different views. Users can learn the capa-
bilities of an object by exploring its different
views.

Users learn object behavior by observing the re-
sults of actions performed on the object when
menu choices are selected, when the object is
dragged, and so forth.

When an object is opened, a user can perform
actions that are not available directly from the
object’s icon. For example, by dragging an icon
that represents a graph, a user can move the graph
to a different folder, copy it, print it, and delete it.
But to change its color or shape, or to delete part
of the graph without deleting all of it, the user
must open a window that contains a view of the
graph.

To use a particular aspect of an object, users must
look through the available views to find a view in
which the aspect is represented. To allow users to
change an aspect, some view must support inter-
action with that aspect. For example, to deter-
mine which font a text title uses, some view must
represent the font, the title, or both. A composed
view may show the usage of different fonts, but
not provide a way for users to change them. A
settings view is typically used for such things as
changing fonts, colors, and sizes. Figure 11 shows
a composed view with a string of text selected. A
settings view is open on top of the composed view
and shows the different settings that a user could
select to change the way the selected text string
is displayed on the screen or printed.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




The designer’s challenge is to provide the right
combination of views, each representing logically
related aspects, and supporting interactions re-
quired by users to accomplish their tasks. De-
signers can help users associate different views
with what those views contain and the tasks for
which they are intended through careful selection
of names used for views in menus and elsewhere
in the interface.

User distinctions between types of views. Users
do not have to consciously think about distinc-
tions between the types of views to use the in-
terface. They need only find a view that presents
the aspects of the object they want to use.

The distinctions between the view types are pre-
sented to help designers develop views based on
logical groupings of object aspects. The actual
terms used in the interface should be appropriate
for users and should describe as accurately as
possible the role of the view. For example, “Com-
posed” is not intended to be a user term. A de-
signer might call a composed view of a document
“Formatted Text” or “Print Preview.” Also,
“Contents” is not intended to be a user term. A
designer might call a contents view of a folder
“Icons” or “Details.”

The usefulness of providing these different types
of views can be demonstrated through a simple
analogy. For example, suppose you purchase a
component stereo system with a glass-front cab-
inet. The user’s manual typically contains a figure
showing the system completely installed, with the
components in the cabinet and the speakers on
either side. This is a composed view showing all
of the components in appropriate relationships. If
there are several possible arrangements of the
components, several composed views might be
shown.

The packing slip typically lists the components,
and the quantities when multiples of certain com-
ponents are used, like speakers. Sometimes pic-
tures of the components are shown beside the
names to help you identify them. These are ex-
amples of contents views of the stereo system.

If the user’s manual contains a listing of the pro-
grammable remote control functions, these are
examples of settings views. The specifications for
the system are also a settings view but since users

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

can’t easily change the specifications they aren’t
quite as interesting.

Finally, the Quick Reference Chart for the con-
trols and In Case of Trouble pages are both ex-
amples of help views. Each of these views serves
a specific purpose and supports certain user tasks
in installing and using the stereo system.

Pointers and cursors. Pointers and cursors pro-
vide visible connections between input devices
and representations of objects. Each pointer and
cursor is associated with an input device. Pointers
and cursors show a user where the next interac-
tion will occur when the respective input device
is used.

There is typically only one pointer. It is associ-
ated with a pointing device such as a mouse, track
ball, or joy stick. If a system were to support more
than one pointing device at a time, there could be
a pointer for each pointing device. Pointers can be
moved over the entire screen. User actions, such
as mouse button clicks, are transmitted to the ob-
ject over which the pointer is positioned. If that
object can accept input from the input device that
controls the cursor as well, and it should if pos-
sible, the cursor is moved to the pointer’s posi-
tion.

Cursors associate an input device such as a key-
board with a particular view. A cursor moves
within its associated view, between the objects
that are presented in that view. Keystrokes are
transmitted to the cursor’s current position.
However, a cursor cannot move from one view to
another. Therefore, each view has its own cursor.
This means that the keyboard can be associated
with only one view at a time; only the view that
has the input focus shows its cursor. If a system
supported more than one keyboard at a time,
there could be a cursor in each view for each
keyboard, but, again, the cursors would only be
visible in the views that have the input focus.

The shapes displayed for pointers and cursors
give the user information about the current state
of the object and which actions are available. For
example, the pointer is normally displayed as an
arrow, which shows that the pointing device can
be used for selection and dragging. Another com-
mon shape for the pointer is an I-beam for posi-
tioning a text cursor.

BERRY 445




CUA defines two types of cursors associated with
the keyboard: a selection cursor and a text cur-
sor. A selection cursor is used to select objects,
choices in menus, controls in action option win-
dows, and so forth. It typically appears as a dot-
ted-outline box around a control, such as a radio
button or check box.

A text cursor is used to type text. It typically
appears as a vertical line between text characters
during insert mode, or as a bar of color during
replace mode. Refer to Reference 2 for more in-
formation about pointers and cursors.

How users work with objects

CUA identifies six general types of actions that
users can perform on objects:

* Copy
¢ Create
* Move
Connect
Change
Discard

These actions are enabled or initiated through
icons and views.

Copy and create. Both the copy and create actions
allow a user to create a new object from an ex-
isting one. Because these two actions have similar
but different results some examples of usage are
first provided to give an appreciation of the pos-
sible benefits users may derive from the differ-
ences between the two.

Taking advantage of the differences. Users can
generate new objects from existing objects by us-
ing either create or copy. In the most simple case
the copy action results in an exact replica of the
object for which copy was requested while the
create action results in an initialized, “empty™
object. In this simple case the object designer has
decided not to use the object’s current context or
some other information to tailor the newly cre-
ated object. The created object contains no in-
formation other than initial settings of its prop-
erties, which may or may not match those of the
object from which the create action was re-
quested.

However, object designers can provide users
with powerful and productive capabilities by de-

446 BERRY

signing the create action so it creates new objects
dynamically tailored to specific user needs. For
example, invoices are typically numbered with a
unique sequential invoice number. The create ac-
tion for an invoice object can be designed so that
it automatically generates the next valid invoice
number. This saves the user time and avoids po-
tential errors if the invoice number uses some spe-
cial format or numbering sequence.

Using the copy action on an existing invoice will
result in a new invoice object that has the same
invoice number, customer name and address, and
item list as the invoice being copied. Using the
create action would result in a new invoice with
the next valid invoice number, no items, and po-
tentially a customer address already filled in,
based on the folder the invoice is in. Tailoring
information might also come from connections,
or links, between an invoice and other related
objects, such as customer records and history
data. The amount of tailoring done on create is
entirely up to the designer of the object. Design-
ers can provide significant work-saving assis-
tance to users by thoroughly understanding users’
tasks and designing “intelligent” create actions.
These actions can use information within the cur-
rent context to help users be more productive.

Copy. The copy action creates a new object that
is an exact replica of an existing object. In cases
where objects must have unique names, such as
in a folder within some file systems, the names of
the two objects will be different.

Create. The create action is used to make a new
initialized object from an existing one. The new
object is the same type as the existing object. The
new object may inherit properties and content
from the existing object, from other related ob-
jects, from the current context, or from whatever
source the object designer deems useful and
meaningful to the users of the object.

Templates. Designers are encouraged to provide
objects specifically designed to be used as tem-
plates for creating new objects of the same type.
For example, folder and work area templates
should be provided by the system. Users can then
create their own folders and work areas from
these templates.

Products should provide versions of product-spe-
cific templates, such as documents, charts,

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




graphs, and spreadsheets, that users can use to
create new objects in an identical manner. Tem-
plates provide basic settings and content. They do
not have to be complete, final-form objects. For

Designers are encouraged
to provide objects
specifically designed to be
used as templates.

instance, a template of a document might provide
basic settings for document format, fonts, style,
and print options. It might also contain some stan-
dard paragraphs of text. A new document created
using the template document would have the
same settings and would contain the same para-
graphs of text.

Any object can be used as a template to create
new objects of the same type. For example, a user
might want to create a memo template using a
personalized letterhead and logo. The user could
edit any memo to contain the letterhead, logo,
and desired settings. New letterhead memos
could then be created from this memo template
using the create action.

Furthermore, since creation of new objects is typ-
ically a very frequent action, the CUA interface
provides a shortcut technique for creating objects
using drag and drop. Create-on-drag is a property
that a user can set for any object. When users
choose this property the object’s icon changes to
indicate that one of its drag and drop behaviors
will be the create action.

Systems often have various naming requirements
for objects, and names often must be unique
within some scope, for example within a given
folder. The copy and create actions should gen-
erate a default name and ensure its uniqueness for
objects when this requirement exists.

Move. Users can use the move action to change

the location of an object. They can move objects
on the workplace, between folders and work ar-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

eas, and to any location that is acceptable for the
object.

Connect. Objects can be connected, or linked, to
provide inter-object relationships. For example,
the model name of a car in a view that lists cars
in stock can be connected to a picture of the car.
When a user activates the connection, which
might be done by “double-clicking” on the model
name, the picture of the car appears in a window.
In addition, once a connection is established be-
tween two objects, data can be transferred be-
tween the objects. For example, certain cells of a
spreadsheet might be connected to the bars in a
business chart. When users type new numbers in
the cells the bars would change. Likewise, if
users could change the size of the bars by some
direct manipulation technique the numbers in the
cells would change at the same time.

Designers determine the connection relationships
that need to be supported for each object they
design. They enable the connections by following
CUA-specified guidelines for the user interactions
and through object-to-object communication, us-
ing methods such as named pipes and dynamic
data exchange. The Workplace Model estab-
lishes the direction for generalized and consistent
object connections. Over time, CUA will evolve to
include these capabilities and the necessary sup-
porting tools to make object connections a gen-
erally available capability.

Change. Users use a variety of actions to alter
settings and otherwise modify the contents of ob-
jects, for example, typing text, changing a font,
and changing colors. These are collectively called
change actions.

Discard. The discard action removes an object
from the computer system. When an object is dis-
carded, its visible representation disappears and
it is no longer accessible by users.

The term discard is used here in a generic sense
to represent any action that removes an object
from the system. Delete and Clear are the names
of two CUA-defined discard actions that appear on
menus and in push buttons. While both actions
remove an object from the system there are dif-
ferences at the point formerly occupied by the
discarded object. These differences are described
in Reference 2.

BERRY 447




Multiple levels of discard should be provided to
create a forgiving environment for users. For ex-
ample, the first discard action for an object might
simply move the object to a container for objects
to be discarded, such as a wastebasket. The user
can retrieve objects from this container at any
time until a discard action is taken on this con-
tainer.

How users interact with objects

Users’ interactions with objects are described in
several models of interaction:

s How information is displayed describes how
users accomplish tasks by interacting with
views of objects displayed in windows.

¢ Direct manipulation of objects describes how
actions are accomplished by using drag and
drop, and pop-up menus.

s Selection of objects describes how users select
objects on which to operate and the effects of
view layout on selection techniques.

s Moving the cursor in object views and scrolling
an object view describe how users move the
cursor within a view and scroll a view within a
window.

¢ Role of the menu describes how menu organi-
zation relates to selection and the information in
a view in an object-oriented interface.

In the following discussion of each topic the em-
phasis is on describing concepts that will help de-
signers understand and accurately implement the
CUA Workplace interface.

How information is displayed. Each view of an
object serves a particular purpose by displaying
certain aspects and enabling certain user actions.
Controls such as menus, entry fields, buttons, and
others can be used to display information in a
view and enable user actions. Some user actions
are common to all views, such as selecting, mov-
ing the cursor, and scrolling. Users may also find
it useful to have more than one view of an object
open at a time.

By convention, views are rectangular so they
have top, bottom, left, and right edges. Cursor
and scrolling functions are bounded by these
edges, and some of these functions are designed
specifically to allow users to move quickly to an
edge of the view.

448 BeERRY

Views are displayed in windows. The Open action
opens a window on a particular view. The window
provides an area of the display screen in which a
portion of the view is displayed. Views often con-
tain more information than can be displayed in a
window at one time. If the view is small enough
to be completely contained within the window the
user can see all of the information at one time. If
the view does not fit entirely within the window
the user must scroll. Scrolling actions allow users
to control the portion of the view that is visible in
the window.

Different views for different tasks. Object design-
ers provide views that allow users to perform
tasks using individual objects and groups of ob-
jects. Designers should look for situations in
which the same information is used in several
tasks. The goal is to provide as few views as nec-
essary to support the tasks while not compromis-
ing optimizations that allow each task to be per-
formed efficiently. This is a design tradeoff that is
made based on an understanding of users, their
skills, and their expectations. For example, CUA
identifies Icon and Detail layouts as useful for
content views. Both of these two layouts show
the contents of a container, such as a folder, but
show different levels of detail to accommodate
various user tasks.

CUA identifies the four types of views——com-
posed, contents, settings, and help—based on the
kind of information contained in them. This is a
coarse distinction and for many objects designers
may need to provide views with finer degrees of
distinction.

Distinctions between views are based on differ-
ences in the type of information in the views and
hence in the tasks supported by them. For exam-
ple, a contents view of a compound document
would identify the individual objects included
within the document. This view is useful for de-
termining in which documents a particular object
is used, and for accessing that object as an entity,
for example to copy or delete it. In a composed
view, such as a print preview, the individual ob-
jects may not be apparent. A composed view is
useful for formatting and otherwise assessing the
appearance of the final form of the document as
a whole.

This distinction between types of views should
not be confused with the need to provide different

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




views that vary in layout but otherwise display
the same type of information. For example, a con-
tents view of a folder might provide options for an
iconic view and a text view. Both views display
the contents of the folder and thus enable basi-
cally the same actions. They are both contents
views.

Views can often be tailored in other ways as well.
Options to display information in different sort
orders, to include only certain objects, and to
show more or less detail are common. Since these
options affect only the layout or amount of infor-
mation displayed but not fundamentally a differ-
ent kind of information, essentially the same user
actions are enabled in each view.

The cUA guidelines for menus reinforce distinc-
tions between types of views and options within
a view. The intent is to help users quickly locate
a view having the kind of information needed for
the task desired. Users can then select layout op-
tions based on personal preference and optimi-
zation for a particular situation.

Multiple concurrent views. Users can open mul-
tiple windows containing the same type of view.
This can be useful, for example, to look at dif-
ferent pages of a document at the same time.
Since both views contain portions of the same
object, changes in either window may affect what
is seen in the other. When this is the case the
changes should appear simultaneously to rein-
force that both views are representations of the
same object.

Multiple windows can also be used to display dif-
ferent views of an object concurrently. This can
be useful, for example, to observe the effect of
changing formatting properties in one window
while the document is displayed in another.
Again, the changes should appear simultaneously
in both windows.

Using visuals and controls in views. Views are
composed of visuals. Visual is the term used to
refer to any drawing on the display regardless of
whether it is text, graphics, image, or video. Au-
dio can also be a component in a view and is not
meant to be excluded by use of the general term
visual.

Designers use visuals to convey object informa-
tion to users. Whether a visual is a string of text

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

or a picture is up to the designer. Designers
should decide which forms to use by understand-
ing what information users need, which forms of
presentation might be most easily recognized,
and which forms might be most efficient in sup-
porting user interaction.

Controls are special views that are provided as
part of a programmer’s toolkit because they are
common across a wide variety of applications.
Designers can use controls to provide views of
specific aspects within a larger view. For exam-
ple, a check box control can be used to provide a
view of the Bold property in a settings view for a
document. Similarly, multiline entry field con-
trols can be used to provide views of the header
and footer text.

Direct manipulation of objects. CUA defines direct
manipulation actions as those actions in which
users interact directly with the desired object, for
example, by clicking on or dragging an icon that
represents the object. Such actions are contrasted
with actions accessed by using the menu bar, in
which the object is implied by prior selection.

CUA specifies two direct manipulation tech-
niques:

s Drag and drop
s Pop-up menus

Drag and drop allows users to “pick up” an ob-
ject and drop it on another object to accomplish
some action involving the two objects. For ex-
ample, dragging the icon of a spreadsheet to the
icon of a printer would cause a view of the spread-
sheet to be printed. Also, dragging a string of text
to an entry field would cause the string to fill in the
field. Dragging a numeric string in the proper for-
mat to a telephone icon could cause the number
to be dialed. Figure 12 shows an example of drag
and drop.

Pop-up menus are accessed by directly interact-
ing with an object. A Menu action is defined to
provide access from both the mouse and the key-
board. Pop-up menus dynamically appear beside
the object and contain only actions pertinent to
the particular object in its current context. The
context is affected by factors such as the type of
container within which the object resides, the
state of the object, and the contents of the object
itself.

BERRY 449




The use of direct manipulation techniques rein-
forces the object model for users. When it is nec-
essary to design object-specific interaction tech-
niques it is helpful to consider how they relate to
the direct manipulation and other action tech-
niques specified in the CUA.

The degree of direct manipulation is probably
best thought of as a characteristic of interaction
techniques. The degree to which any technique
reflects this characteristic can be mapped across
a spectrum of possibilities. For example, typed
commands are at one end of the spectrum, pro-
viding little if any direct manipulation “feel.”
Drag and drop techniques are at the opposite end
of the spectrum, providing much direct manipu-
lation feel. Pop-up menus do not provide as great
a degree of direct manipulation as do drag and
drop techniques, but they provide more direct
manipulation feel than does the menu bar and as-
sociated pull-downs and cascade menus. Figure
13 depicts this spectrum.

Drag and drop actions usually involve a source
object and a target object. For example, when a
spreadsheet icon is dragged to a printer icon the
spreadsheet is the source object and the printer is
the target object. The result of drag and drop de-
pends on the classes of the source and target ob-
jects.

CUA specifies a general paradigm for drag and
drop on the workplace, based on the container,
data, and device distinctions described earlier.
The paradigm is based on the principles that:

* Drag and drop should provide, as much as pos-
sible, results that are intuitive for the source and
target involved.

» The results should be comparatively safe, not
allowing users to unexpectedly lose informa-
tion.

* Overrides should be available to allow users to
explicitly request useful alternative results.

These principles provide the basis for the CUA
paradigm for drag and drop of objects that can
exist on the workplace. During drag and drop the
source object is displayed with source-emphasis
as a reminder of which object is being dragged.
The pointer remains visible and the source object
is dragged with the pointer. While the pointer is
over a target object the object being dragged and
the pointer are changed in appearance to show

450 BERRY

whether the result of dropping will be a move, a
copy, a link, or whether no action will occur. The
target object is displayed with target emphasis

CUA defines direct
manipulation actions,
e.g., dragging an icon

that represents the object.

while the pointer is over it, to help users discrim-
inate between overlapping target objects.

Dragging a data object, container object, or de-
vice object to a workplace container results in
moving the source object into the target con-
tainer. For example, dragging a document, a
printer, or another folder to a folder on the work-
place causes the object being dragged to be
moved into the target folder.

Containers that exist on the user’s local fixed disk
and fixed disks in network servers to which the
user has access are considered to be within the
user’s workplace. Containers on removable me-
dia are considered to be outside the user’s work-
place and are treated like devices.

If the target is a device that provides containment
behavior, the source object is copied into the tar-
get container. For example, dragging an object to
a printer or a folder on a diskette causes the
source object to be copied into the target object.
The source object remains in its location within
the workplace containment hierarchy. This pro-
tects users from inadvertently losing information
from the workplace environment.

Users can override the impending result, shown
by the appearance of the source outline and
pointer, to explicitly cause a move, a copy, or a
link.

The drag and drop technique is used only with
pointing devices, such as a mouse. Equivalent
actions are available using menus, which can be
accessed by using the keyboard as well as the
mouse.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




Selection of objects. Selection encompasses a set
of techniques and an object state with which users
can indicate objects and actions they want to ma-
nipulate. In a point-select object-action interface,
users identify an object, then an action. Selection
is necessary because the same mechanism, for
example a mouse and pointer, is used to do both.
The mechanism is first used to select an object,
which puts the object in the selected state, then
the same mechanism is used to identify the action
to be performed. The action is applied to the se-
lected object. When an object is in the selected
state it is displayed with a form of visual emphasis
called selected emphasis.

In the real world, users manipulate objects di-
rectly. The concept of selection is implicit in the
manipulation. Likewise, direct manipulation in
the user interface does not require selection. In
the CUA, selection and direct manipulation are
independent techniques. With one exception, ob-
jects need not be selected to be dragged, and drag-
ging does not alter the current selection. For ex-
ample, a document need not be selected to print
by dragging it to a printer, and dragging does not
affect what is selected. The exception to this in-
dependence of dragging and selection is when
users want to manipulate a group of objects. Se-
lection is used to identify the group. For example,
three documents can be printed with one drag
operation by first selecting the three documents
as a single group and then dragging the group to
the printer icon.

Pop-up menus also provide a degree of direct ma-
nipulation, and access to them is independent of
selection to the same degree as is dragging.

Scope of selection. A selection scope identifies a
domain of objects from which users can make
selections. Objects from several different selec-
tion scopes can be selected concurrently. For ex-
ample, each primary window establishes a selec-
tion scope. Objects in several primary windows
can be selected at the same time. Selected em-
phasis is displayed only for the window that has
the keyboard focus, but the selections in each
window are preserved and selected emphasis is
redisplayed as users switch between them. When
a window is split, each resulting pane establishes
a separate selection scope. Similarly, list boxes,
groups of radio buttons, entry fields, and other
controls that support selection each establish a
selection scope.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Within a selection scope two important aspects
define how users can select choices:

¢ The number of choices that can be selected at
one time (one or many)

¢ The fewest number of selected choices allowed
(zero or one)

These aspects are the basis for different types of
selection.

Types of selection. There are three types of se-
lection with respect to the number of choices that
can be selected at one time: single-choice selec-
tion, multiple-choice selection, and extended se-
lection. Single-choice selection is used when only
one choice within a selection scope can be se-
lected. Selecting a choice in a single-choice se-
lection scope supersedes any previously selected
choice. Multiple-choice selection is used when
more than one choice within a selection scope can
be selected. Selecting a choice does not affect
other previously selected choices. Extended se-
lection is used when it is likely that users will
select one choice but occasionally may need to
select more than one. This type of selection is
intended to accommodate less experienced users
who are likely to select and act on choices one at
a time, as well as more experienced users who
may want to act on several choices at once. Ex-
tended selection behaves like single-choice selec-
tion unless the user decides to override this be-
havior and select multiple choices. Specific
keyboard and mouse override techniques are
specified in the CUA guidelines.

Each type of selection must also specify the min-
imum number of selected choices allowed as ei-
ther zero or one. In zero-based selection it is valid
to have no choices selected. In one-based selec-
tion at least one choice must always be in the
selected state; having nothing selected is not al-
lowed. For example, zero-based single-choice se-
lection does not require that a choice be selected
at all times, but if one is selected it must be the
only one. In one-based single-choice selection
one choice is always selected.

The menu bar contains one group of choices and
supports single-choice selection. Pull-down, cas-
cade, and context menus can contain one or more
groups of choices. Each group of choices is either
single-choice or multiple-choice even though only
one choice can be selected at a time because these

BERRY 451




menus disappear each time a selection is made.
When these menus contain multiple-choice
groups or more than one group, users can access
the menu as often as necessary to make multiple
selections.

Selection techniques. CUA specifies interaction
techniques to support the types of selection. Each
selection technique must address two aspects of
selection:

¢ Which choices are to be selected
e Whether the selected state of other choices is
affected or not

The CUA mouse selection techniques use a Select
button on the mouse and keyboard modifier keys.
The selection techniques follow a general selec-
tion paradigm that is common across different
types of objects and view layouts. In general, the
techniques support selection of an individual
item, selection of groups of individual items, and
selection of areas and ranges of contiguous items.

Selection of an individual item is provided by
clicking a mouse Select button. Selection of a
group can be accomplished by pressing a key-
board key while clicking the mouse Select button,
or by touching each individual selection while the
mouse Select button is held down. Selection of
areas and ranges of contiguous items can be done
by clicking at begin and end points, or by swiping
between the two points. A “stretchable” outline
box called a marquee box is shown in some types
of views.

The CUA mouse button mappings support the use
of different buttons for selection and direct ma-
nipulation. This allows a variety of selection tech-
niques to be provided, some of which require
moving the mouse with the Select button pressed,
as well as supporting drag and drop of selected
groups of objects by moving the mouse with the
Drag button pressed.

Keyboard selection techniques parallel those for
the mouse in most respects. For example, CUA
specifies that a Select key on the keyboard and
the Shift key provide a range selection capability
similar to that provided using a mouse. Single-
choice and multiple-choice selection is performed
by moving the cursor to the desired choice and
pressing the Select key. A range can be selected

452 BERRY

by moving the cursor to the desired end point and
pressing Shift plus the Select key.

CUA also specifies two selection techniques opti-
mized for keyboard use:

* Mnemonic selection allows users to select a
choice by typing a single character, which is
typically one of the letters of the choice text.

¢ Automatic selection using the cursor’s position
is provided when only one group of choices is
available and the group allows only one selec-
tion. This saves the keystroke of pressing the
Select key.

Mnemonic selection should not be confused with
a technique of moving the cursor to the first letter
of each choice in a list. This latter technique sim-
ply moves the cursor and does not necessarily
select the choice, depending on whether the list
also uses automatic selection.

View layout affects selection. The selection tech-
niques made available to users depend on the type
of information to be manipulated and the layout of
the view in which it is displayed. CUA defines var-
ious selection techniques optimized to different
information organizations and view layouts. Se-
lection techniques such as swipe range, swipe
touch, and marquee are available in various types
of views. Information order and overlap are some
of the aspects of a view that determine which
selection techniques can be provided. There are
typically three types of view layouts that deter-
mine which selection techniques are supported:

e Strings, such as text

* Arrays, such as lists and tables

e Free-form layouts, such as fill-in-forms and
graphics

For selection, a string can be thought of as a linear
ordered set of selectable objects. For example, a
text string is a linear ordered set of characters.
The order of characters is important to the se-
mantics of the string and remains fixed even
though the viewing layout may change. Text
views typically flow a text string from left-to-
right, top-to-bottom in one or more columns.

Range selection depends on the definition of some
order between the selectable objects. Since text is
ordered, views of text typically support the range
selection techniques. Users can select one point

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




in the text, move to another point in the text and
select a range of characters between the two
points regardless of how the text flows.

Arrays typically support range selection by de-
fining a range as a rectangular group of array cells.

CUA defines selection
techniques optimized to
different information organizations
and view layouts.

Users can select one cell as the corner of a range
and another cell as the opposite corner. Single-
column lists are simple cases of arrays and similar
selection techniques apply.

Marquee and swipe touch selection are most use-
ful in unordered views such as user-arranged icon
views of folders, fill-in-forms and graphics draw-
ings.

Information characteristics, such as order, and
view layout are important factors that influence
the decision of which selection techniques to pro-
vide. Over time, and with increasing emphasis on
the use of image and video, new uses for existing
selection techniques as well as new techniques
are likely to be identified.

Moving the cursor in object views. A cursor pro-
vides a visual connection between an input de-
vice, such as a keyboard, and the information in
a view. When input is entered it appears at or
affects the information at the cursor location. CUA
specifies guidelines for several aspects related to
cursors such as types of cursors, what cursors
look like, where cursors can be positioned in
views, how cursors are moved, what happens to
cursors during scrolling, and how cursors relate
to pointers.

Cursors are visuals that show points within in-
formation being viewed where the effects of in-
teraction from a related device will occur. CUA
defines two types of cursors based on the type of
information in which the cursor exists:

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

s A selection cursor is used within groups of se-
lectable choices.
s A text cursor is used within textual information.

Designers may need to define other cursor types
for object-specific information manipulation. For
example, if graphics are to be manipulated using
a keyboard, a graphics cursor is needed.

The standard selection cursor visual defined in
CUA is a dashed-outline box. Some of its uses are
around icons on the workplace, in views of folder
contents, and around choices in property views
and action windows.

Menus typically use a selection technique called
automatic selection in which the choice indicated
by the cursor is automatically selected. When au-
tomatic selection is used, the selection cursor is
not shown. Selected emphasis provides both cur-
sor location and selected state indications. Figure
14 shows an example of automatic selection in a
menu.

A text cursor represents a point within textual
information where new text can be inserted and
existing text can be changed. A vertical between-
characters bar is used for text insertion and ed-
iting. When entry field controls are used in a win-
dow the text cursor identifies the point where
keyboard interaction will occur. A separate se-
lection cursor is not shown. For example, the se-
lection cursor is typically a dashed-outline box
around controls such as radio button and check
box choices, but when the cursor is moved to an
entry field the dashed-outline box disappears and
the text entry cursor appears within the field. Fig-
ure 15 shows an example of text cursor.

Cursors show points within the information being
viewed where user interaction can occur. There-
fore, cursors can only be positioned at valid in-
teraction points. For example, a selection cursor
can only be positioned on choices. It cannot be
positioned between choices, on field prompts, or
on column headings. Similarly, text cursors can
only be positioned at valid text entry and revision
points. This behavior is based on a design prin-
ciple of error avoidance. Users are prevented
from positioning the cursor at invalid points and
errors that would result from attempted entry are
avoided.

Users can move the selection cursor and text cur-
sor by using keyboard cursor movement keys.

BERRY 453




When using the mouse the select action causes
the cursor to move to the pointer location. This is
called pointer-cursor join. For example, when the
user selects an icon on the work area the selection
cursor moves to that icon.

This joining of the cursor and pointer keeps both
devices focused on the same point in the view.
This allows users to switch back and forth be-
tween the two devices to take advantage of
whichever device is the most convenient and ef-
ficient in each situation.

A first-letter cursoring technique allows users to
quickly move the cursor to a choice by typing the
first character of the choice text. For example, in
a lengthy list such as the states of the United
States, a user could cursor from Alabama directly
to Hawaii by typing the letter “H.” The cursor is
positioned on the choice but the choice is not
selected, unless the field also uses automatic se-
lection. Each time a letter is typed the cursor is
moved to the next choice starting with that letter.

When a cursor is used in a view that can be
scrolled, the cursor may be scrolled out of sight.
Because cursors are only positioned on valid in-
formation interaction points, if the point on which
the cursor is positioned is scrolled out of sight the
cursor can disappear with it. The scrolling tech-
nique used determines whether the cursor disap-
pears or not.

Scrolling an object view. Users can sce the entire
view of an object only if the window can be made
large enough to contain the entire view, or if the
view can be scaled, or reduced in size, to fit within
the window. Otherwise, users must scroll the
view. CUA identifies two categories of scrolling
actions, based on the role of the cursor:

* Cursor-driven scrolling
* Cursor-independent scrolling

In cursor-driven scrolling, cursor movement
causes automatic scrolling when the cursor meets
awindow border. For example, if a user is moving
a selection cursor down a list of choices that ex-
tends beyond the border of the window, the view
will be scrolled up to reveal the next choice in the
list when the cursor meets the window border.
Figure 16 shows an example of cursor-driven
scrolling.

454 BERRY

Actions that move the cursor cause cursor-driven
scrolling. These actions include: Up Arrow,
Down Arrow, Left Arrow, and Right Arrow cur-
sor keys; Beginning of Data (Ctrl + Home) and
End of Data (Ctrl + End); and Beginning of Line
(Home) and End of Line (End).

In cursor-independent scrolling the view is
scrolled without affecting the cursor position. For
example, when users scroll a view using a mouse
and scroll bars the cursor stays in its position
within the information. It will disappear from
view if the information it is on is scrolled out of
the window. The Select button on the mouse
causes the cursor to join with the pointer and can
be used to bring the cursor back into view. Cursor
movement keys on the keyboard cause the view
to be scrolled to make the cursor visible again.

If designers find it necessary to provide additional
scrolling techniques, they should decide what the
effects on the cursor position should be, if any.
For example, sometimes it is desirable to scroll
the view while maintaining the position of the cur-
sor in the window. The appearance is that the
cursor is fixed in the window and the information
is scrolled underneath it. This requires that each
scrolling action result in a data point underneath
the cursor, which is typically only possible in in-
formation views that have a repeating structure
such as in lists and tables.

Role of the menu. Menus have been a mainstay of
various user interfaces for many years. They have
been used to present lists of objects, actions,
properties, and various other types of choices.
Menu forms have also been varied, ranging from
full-screen to dynamic pop-up menus. In point-
select object-oriented interfaces the primary role
of menus has been to present action and property
choices for objects. With the evolution to direct
object-oriented manipulation, the role of menus
needs to be re-examined.

Types of menus and menu choices. CUA specifies
the use of menus for three types of choices: ac-
tions, routings, and settings. Action choices allow
users to perform actions on selected objects, such
as when the user deletes a memo. Routing
choices result in continuation of the dialog by
presenting additional information, such as
“Print . .. ”, which leads to a window in which
users specify printing options, or Open View,
which leads to a cascade menu containing view

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




choices. Settings choices allow users to change
the properties of selected objects, such as setting
Bold and Underline for text.

CUA specifies the use of the notebook control in
settings views for object properties. Therefore,
the use of settings in menus should decline over
time. Settings notebooks offer the advantage of
having many related properties visible concur-
rently and they can accommodate types of con-
trols, such as entry fields, not permitted in menus.

CUA also specifies several types of menus: a menu
bar, pull-down menus, cascade menus, and pop-up
menus. Figure 17 shows some examples.

The menu bar is a list of choices that appears
across the top of many windows, just below the
window’s title bar. It is used only for routings to
pull-down menus. A pull-down menu is displayed
below a menu bar choice when the menu bar
choice is selected. The choices in pull-down
menus can represent actions, routings, and set-
tings. A routing choice leads to a cascade menu or
causes a window to be displayed. Routings to
windows are used to present action options. A
cascade menu is displayed beside another menu
from which it is displayed when a routing choice
is selected. Cascade menus contain the same
types of choices as do pull-down menus.

A pop-up menu is dynamically displayed when a
user points to an object and clicks the Menu but-
ton on the mouse or presses the Menu key on the
keyboard. The choices in pop-up menus typically
represent actions and routings. The choices are
arranged in the following three groups, from the
top to the bottom of the pop-up menu:

¢ View choices
¢ Data transfer choices
¢ Convenience choices

View choices provide alternative views of the ob-
ject. Data transfer choices result in moving,
copying, connecting (linking), and creating.
These actions provide a menu-driven alternative
to corresponding direct manipulation actions.
Convenience choices are frequently used
choices, such as Print and Delete, that can be
placed in the pop-up menu for the user’s conve-
nience. Frequency of use for each choice may
vary with different users. Therefore, user custom-
ization of this section of the pop-up menu is en-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

couraged. User customization should support
choices for settings as well as for actions and rout-
ings.

Styles of menus bars. Menu bars are popular in
graphical user interfaces because they provide
users with visual cues to the actions that are avail-
able. The menu bar and its pull-down menus pro-
vide a domain in which users can explore to de-
termine what functions are available. The menu
bar provides a “home base” from which users can
venture out and to which they can return when
they begin to feel lost.

The CUA-defined menu bar has evolved based on
requests for greater consistency across products.
However, with the evolution to an object-ori-
ented interface, further evolution is necessary.
The traditional application-oriented File, Edit,
View, Help (FEVH based on the first letter of each
of the choices) menu bar cannot adequately cope
with the rich object-oriented environment typi-
fied by composite documents. In response to
these evolutionary pressures CUA is designing an
object-oriented menu bar. This new menu bar
style directs the user’s focus to four objects as-
sociated with each window: the window itself
(W), the object (O) being viewed in the window,
objects that are selected (S) within that view, and
Help (H). This new style is called WOSH, based on
the four objects it addresses.

The evolution of existing applications and devel-
opment tools to the WOSH style will take time. To
aid this migration an intermediate style called
FSEVH has been defined. This style is similar to
FEVH with an added choice (S) for actions affect-
ing selected objects within the current window.
The FSEVH style can be created using existing
development tools, yet it begins to focus users on
working with objects. Figure 18 depicts the cur-
rent FEVH and FSEVH styles, and it shows a po-
tential configuration of the WOSH style in which
the menu bar has been combined with the win-
dow’s title bar. The following paragraphs provide
additional detail on the characteristics of each
style and the pressures contributing to this evo-
lution.

The FEVH menu bar. For the Graphical Model,
CUA specifies standard menu bar choices of File,
Edit, View, and Help (FEVH). Window actions are
available using a system pull-down menu from the

BERRY 455




window title bar. The FEVH style has evolved
with traditional interfaces oriented to application
programs and concepts of starting programs, find-
ing and using objects to be processed, and exiting
the program.

Problems associated with using the application-
oriented FEVH menu bar with the object-oriented
Workplace Model have led to the evolution of
alternative menu-bar styles. Some of the prob-
lems associated with the FEVH style have been:

« Difficulty in achieving adequate consistency
across applications

» Inadequate support for container objects

» Inability to gracefuily handle large numbers of
actions found in composite objects

* Ambiguity of the relationship to object-based
pop-up menus

Despite the efforts of style guidelines, arbitrary
inconsistencies between the menu bars of differ-
ent applications that provide similar functions
continue to occur. Guidelines can only address
pervasive functions, like the File, Edit, View, and
Help actions specified in the FEVH style. Product-
specific actions such as Format, Color, Style, and
so forth often appear in quite different places in
the menus of different products. It is not practical
to address this level of consistency through guide-
lines. The FEVH style does not provide designers
with a clear and adequate basis for distinctions
between menu-bar choices and pull-downs.

When used with container objects the FEVH style
can support actions on the container, or its con-
tents, but not both. For example, Print is one of
the actions specified in the File pull-down menu.
When an FEVH menu bar is used on a view of a
container, such as a folder, the Print action might
be made to apply to either the folder itself, or the
selected object within the folder. Most implemen-
tations today apply it to the selected object.
Therefore, in order to print a listing of the con-
tents of the folder the user must navigate to the
folder’s container, open a view if one is not al-
ready open, select the folder, and request Print.
It would be more natural to allow users to print
the contents view of a folder while they are look-
ing at it.

The object-oriented Workplace interface pro-
vides the opportunity for users to nest objects
within objects as deeply as they desire, and to use

456 BERRY

any combination of objects they find useful. The
FEVH menu bar is a collection of actions that can
be applied to the objects within the window to
which it applies. Actions that are not applicable to
the selected object are typically shaded in gray.
When the set of objects becomes large and un-
predictable, the FEVH menu bar becomes imprac-
tical. Work-around techniques, such as changing
the menu bar for each different selected object,
can be employed, but these techniques typically
detract from the stability and familiarity that
makes users comfortable with menu bars in the
first place.

Finally, with the advent of pop-up menus that
relate directly to a particular object, there is a
question of relationship between these menus and
the menu bar. Are they two independent mech-
anisms? Or, should users continue to be able to
explore the interface by using the menu bar and
transition to pop-up menus as they become more
familiar and comfortable with the functions pro-
vided?

These problems and questions are addressed by a
new object-oriented menu-bar architecture called
WOSH.

The WOSH menu bar. Problems with the FEVH
menu style can be solved while still providing the
advantages of a menu bar by using object-orien-
tation in the menu-bar organization. The WOSH
style (the window itself, the object being viewed,
the selected object, and help) is evolving with the
trend toward object-oriented interfaces where
concepts associated with starting and running
programs are replaced with concepts such as ob-
ject views and object containment.

The WOSH style establishes a clear and distinct
framework for the location of actions. Actions
appear in the menus of their respective objects.
Thus, in contrast to the FEVH style, using the
WOSH style allows a user to Print both the folder
and a document in the folder from the same win-
dow. The Print choice will appear in the menu for
the folder and in the menu for the selected doc-
ument. For users experienced with FEVH style
menus, having the same action appear in two dif-
ferent places may seem confusing at first, but
when users realize the object-based distinction it
becomes very natural. Current interfaces using
the FEVH style may have the same actions in ad-
jacent windows, and pop-up menus provide the

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




same actions on different objects as well, so the
concept is not entirely new to users.

When used with composite objects, the WOSH
style enables graceful and consistent decomposi-
tion to any desired level. For example, while
viewing the contents of a folder the Object menu
contains action choices for the folder, such as
alternative views, Print, Send, and Delete. The
Selected menu contains action and view choices
for the selected object contained within the
folder, such as a selected document. When the
user chooses one of the view choices for the se-
lected document a new window is opened con-
taining a view of the document. The WOSH menu
in the new window applies to the document. That
is, the Object menu applies to the document and
the Selected menu applies to any objects selected
within the document, such as a business graph.

This decomposition could continue indefinitely.
At each level of the decomposition the user has a
clear indication of the objects involved and the
associations between actions and objects, and the
technique is consistent regardless of object types.

The WOSH style also establishes a clear and useful
relationship between the menu bar and pop-up
menus. The Selected menu is essentially the same
menu as the pop-up menu for the selected object.
Just as the user might see a different pop-up menu
using different objects, the contents of the Se-
lected menu may vary depending on which object
is selected. As new users who begin by using the
menu bar become more comfortable with the in-
terface, they can make the transition to using
pop-up menus and will find the same actions
available for each object regardless of the menu
they use.

The actual appearance of the WOSH style is yet to
be determined. It is likely that both iconic and
text versions will be provided. An additional goal
of the WOSH menu style is to merge the menu bar
and title bar, thus providing more space for the
display of the user’s information. This evolution
is not yet complete and several alternatives for
presentation and interaction using a converged
menu bar and title bar are being evaluated.

The FSEVH menu bar. In the interim, the CUA
guideline published in 1991"? has taken a first ev-
olutionary step toward the WOSH style by speci-
fying an addition to the FEVH menu bar. This ad-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

dition provides some of the advantages of the
WOSH orientation. The addition consists of a Se-
lected choice, added between File and Edit, for
objects that are containers of other objects. This
extension of FEVH is called FSEVH, again based on
the first letters of the standard menu choices. Us-
ing the FSEVH style, window actions are still ac-
cessed using the system menu pull-down. Con-
tainers are accommodated by using the File menu
for the object actions. The File choice can also be
renamed to the class of the object being viewed,
such as Calendar, or Folder. The Selected menu
provides access to actions on selected objects
within the view. The Edit and Help menus remain
essentially unchanged from FEVH to ease user mi-
gration.

Object-specific choices are allowed in addition to
the CUA-defined standard choices. CUA also spec-
ifies guidelines for the types of choices in the pull-
down menus for each of the standard menu-bar
choices in each menu-bar style. These are de-
scribed in Reference 2.

Concluding remarks

Models can be very useful in user interface de-
sign. They can help us better understand our
users, concisely define the concepts we want
users to understand, and match our intent to the
programming capabilities that are available.

The cUA interface has evolved considerably since
its introduction in 1987. The cuA Workplace
Model is the latest stage in this evolution, and the
evolution will continue. We must fully exploit the
potential of composite objects and object connec-
tions. We must also integrate new capabilities
from the realm of multimedia and new interaction
technologies such as pens and handwriting rec-
ognition.

When a model is implemented in a prototype it
provides us with a proving ground to explore new
ideas, potential relationships between objects,
new presentation approaches, and new interac-
tion techniques. It can can also help us under-
stand users’ expectations and measure their re-
actions to new concepts.

Through the use of models, designers are encour-
aged to think more explicitly about the elements
of their design and the relationships between the
elements. Only through a clear and concise un-

BERRY 4§57




derstanding of our design intent can we begin to
evaluate the capabilities and abilities to extend an
interface with respect to users’ needs, and to as-
sess its acceptability by those users.

Acknowledgment

I would like to express my appreciation to Tony
Temple for providing the inspiration and initial
impetus that led to the creation of the CUA Work-
place Model; to Dave Roberts and the CUA team
who completed its design; to the 0872 Version 2.0
programmers who implemented the first product
version; to Fred Brown and Jennifer Adame who
helped in the preparation of this paper; and to
John Bennett whose devotion to excellence and
the methods necessary to achieve it have pro-
vided an unending source of motivation.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. Systems Application Architecture Common User Access
Guide to User Interface Design, SC34-4289, IBM Corpo-
ration (October 1991); available through IBM branch of-
fices.

2. Systems Application Architecture Common User Access
Advanced Interface Design Reference, SC34-4290, 1IBM
Corporation (October 1991); available through IBM branch
offices.

3. The CUA Vision: Bringing the Future into Focus, G242-
0215 (a DOS-compatible demonstration program and bro-
chure), IBM Corporation (October 1991); available
through IBM branch offices.

4. The CUA Vision: Bringing the Future into Focus, GV26-
1003 (a VHS format videotape), IBM Corporation (October
1991); available through IBM branch offices. (GV26-1004 is
in PAL format, GV26-1005 is in SECAM format.)

5. R. E. Berry and C. Reeves, “The Evolution of the Com-
mon User Access Workplace Model,” IBM Systems Jour-
nal 31, No. 3, 414428 (1992, this issue).

Accepted for publication March 17, 1992.

Richard E. Berry IBM Personal Systems Programming,
11400 Burnet Road, Austin, Texas 78758. Mr. Berry is a Sen-
ior Technical Staff Member in the object technology area in
IBM’s Personal Systems Programming group in Austin,
Texas. He joined IBM in 1968 in the Albuquerque, New Mex-
ico, branch office where he performed a variety of program-
ming maintenance and systems engineering duties. Since
moving to programming development in 1971, he has held
various technical and management positions including: lead
programmer and chief designer of the user programming fa-
cility for the IBM 3650 Retail Store System; programming
development manager for the Retail Store System; lead ar-
chitect for the IBM 5520 Administrative System Files Pro-
cessing, and architecture manager for the IBM 5520 Externals

458 BERRY

Design. Throughout his career Mr. Berry has concentrated on
defining product function and user interfaces. In 1982 he was
appointed lead architect of IBM’s User Interface Architecture
which became the Common User Access (CUA) component
of Systems Application Architecture (SAA) in 1987. He was
one of the codesigners of the Workplace Model.

Reprint Order No. G321-5481.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992




