Naming and registration
for IBM distributed
systems

Today’s trends toward interconnection of
networks expose limitations and deficiencies of
traditional identification schemes. The need
arises for a uniform naming solution that can
accommodate the size and heterogeneity of
worldwide domains, while still remaining
understandable, usable, and manageable by
human users.

This paper describes a proposal to name objects
and resources in distributed environments; each
object or resource can be located, accessed,
communicated with, operated on, managed, or
secured using the same, unique name. The
solution proposed here includes registration
mechanisms necessary to ensure name
uniqueness. The scheme is based on existing
standards, mainly Open Systems Interconnection
(0SI) Distinguished Names; whenever standards
disagree, the preference goes to the alternative
that offers the widest usage across all protocols.
Clear, consistent naming guidelines are given
that would enable IBM customers who have
purchased IBM networking and system
management products to name their resources
so that their administrative processes and IBM’s
products and protocols can support those
resources effectively. A method is suggested to
encompass existing name spaces in a single,
worldwide naming space, and a migration path is
sketched. The interoperation of different
protocols across network boundaries using the
same naming constructs is shown by means of
several scenarios. The naming and addressing
scheme proposed here requires nothing new or
different from the already defined standards, but
allows interoperation among them by using a
subset of each.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

by S. Zatti
J. Ashfield
J. Baker
E. Miller

he networking world of computer systems is

becoming increasingly complex: networks
grow in size, new ones are introduced, existing
ones are interconnected or merged. When many
networks were originally installed, user friendli-
ness and scalability features were not major con-
cerns. Objects in these networks (e.g., resources,
applications, or devices) were named according
to different proprietary schemes. Since network
interconnections were limited, incompatibilities
between proprietary naming schemes were not a
significant problem. But today the existing nam-
ing spaces, often limited to specific sizes and
scopes, are unable to cope with the growth and
the increase of user needs. The need for inter-
connection and interoperation is no longer satis-
fied by proprietary solutions, but calls for coop-
erative efforts and a high degree of compatibility.
The incompatibility and limitations of existing
naming spaces are becoming a stumbling block to
information exchange and cooperative process-
ing in a global multivendor environment. IBM is
facing this challenge, magnified by the sheer num-

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

ZATTI ET AL. 353

ber and diversity of its own network products.
Standards bodies and manufacturers’ consortia
are addressing the problem as well, developing
solutions for integrated naming schemes.

The proposal

This paper proposes a uniform, standards-based
solution to the naming problem in a widely dis-
tributed computing environment. After defining
the terms and stating the requirements for names
used within a global network (similar to the one
IBM networking solutions are reaching), two stan-
dard identification schemes for objects in an open
network, Distinguished Names and Object Iden-
tifiers, are reviewed in some detail. Their rela-
tionship is investigated and trade-offs between
them are analyzed. Next, a solution for global
identification based on Distinguished Names is
presented, together with operational guidelines
that would allow 1BM customers to build uniform
name spaces that could be progressively inter-
connected with each other to cover a wide range
of networks. This naming solution is consistent
with existing standards, while at the same time
providing additional value by allowing the same
name of a given object to be used in different
protocols for different purposes. Finally, some
examples are presented that show how the pro-
posed names can be effectively used in complex
internetwork and interprotocol situations.

Terminology. The word name has a wide range of
meanings. We use it here to mean any identifier
used by humans to refer to objects that they seek,
wish to have access to, or communicate with; in
other words, a name conveys a sense of “what”
we are talking about. When names of this kind are
used in computer systems, they become a major
element of the human-machine interface. In the
computer world, names are strings of characters
“bound” by some mechanism to a particular ob-
ject or class of objects. To human users, the bind-
ing is often intuitively obvious from the context of
use; e.g., a human expects “San Francisco” to
mean the city in California. In computer systems,
the binding explicitly associates attributes of the
named entity with the name in some data record,
such as a directory entry. Typically, one of those
attributes is an address for the named entity.

Several levels of addressing may be hidden be-
hind a name, each supported by a particular func-
tion. Addresses are normally not seen by human

354 zaTTi ET AL

users, but in case they have to be, they can be
considered names. An address conveys a sense of
“where.” Depending on the perspective, what is
at one time treated as a name may at another time
be regarded as an address. This definition elimi-
nates the classical name-address duality that has
generated much confusion in the past.

A route is a sequence of addresses or explicit
directional instructions (such as go north, take
link 7) leading from a particular location to a
named object. A route specifies “how to get there
from here.”

This view is consistent with the one expressed by
Hauzeur.! General concepts of naming and ad-
dressing are formally introduced and elegantly re-
lated to one another by Comer and Peterson.?

Requirements. In a naming scheme for a globally
interconnected network, the following features
are desirable:

* It should be global, i.e., users all over the globe
can use the same name to identify a given ob-
ject, independent of the location from which the
name is referenced or where the named object
resides. Context-dependent or local abbrevia-
tions (nicknames) may be usefully devised at
the margins of the naming scheme, but they
should not be part of the global naming scheme.

e It should be uniform, i.e., users must perceive
they are dealing with the same object indepen-
dent of the protocol or the operation applied on
the object. (At present, the same objects some-
times get different names depending on what
classes of operations are applied to them, and
this is not satisfactory; for example, a particular
printer may be referred to with one name when
printing a file, with another name when check-
ing if a particular job is finished, and with yet
another one when querying about the level of
the toner.)

* It should be flexible, i.e., not mandate any par-
ticular syntax or character representation, in
such a way that existing practices, cultures, and
naming schemes can be easily encompassed by
the global scheme.

e It should be open-ended, i.e., able to accom-
modate growth and change according to prac-
tical needs. Past experience in the Grapevine
and Clearinghouse systems at Xerox shows that
naming schemes always outgrew their limits
both in size and number of name components. **

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

The need for a new definition procedure for
names arose whenever existing networks were
merged and the administrators did not want to
rename all existing objects. So the means to
achieve scalability is to avoid limiting the num-
ber of components in a naming scheme.

¢ It should be conformant, i.e., comply with at
least the minimum requirements common to all
the various standard protocols in which it might
be expected to be used.

In addition, it must be possible to organize nam-
ing responsibilities as decentralized, so that each
organization level can be entitled to name its own
objects. When the administrative requirements
are combined with the quantity of names in-
volved, any solutions based upon flat name
spaces must be eliminated, and names must be
structured. This conclusion has been generally
accepted in the industry and reflected by the rel-
evant standards. The remaining questions are: (1)
what form or forms of name structure should be
used, (2) if multiple forms are accepted, where
should the various forms be employed, and (3)
how should they be related to one another.

The next section reviews the mechanisms defined
in international standards for identification and
clarifies their relationship. The identification and
directory mechanisms of Systems Network Ar-
chitecture (SNA), and their relationships with both
the Open Systems Interconnection (0SI) Refer-
ence Model and the OSI naming and directory
mechanisms, are reviewed and dealt with in depth
in Reference 5.

Distinguished Names, Object Identifiers, and
their relationship

The importance of identifying network objects
was recognized at an early developmental stage of
the oslI standards by the international standards
organization: The basic reference model itself, in
addendum number 3 on naming and addressing,
introduces the concept of Application Entity Title
(AET), a high-level identifier allowing users (hu-
mans or applications) to denote a specific Appli-
cation Entity (AE), the component of an applica-
tion that performs communication functions.® An
AET needs to be mapped by an application layer
directory into lower-level addressing informa-
tion, which is then used by the Association Con-
trol Service Element (ACSE) to establish associ-
ations.’” Neither the addendum to the reference

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1892

model nor the ACSE standard, however, specify
what the syntax of this parameter should be. In
general, the problem of devising a uniform nam-
ing scheme to identify any kind of object within
0sI and in global internetworks was still to be
addressed.

Catering to this clear and urgent requirement,

specific naming efforts have been undertaken by
individual standards. In particular, the joint In-

The importance of identifying
network objects was recognized
at an early developmental stage

of the 0SI standards.

ternational Organization for Standardization-
Consultative Committee on International Tele-
graph and Telephone (ISO-CCITT) X.500 directory
has defined Distinguished Names (DN) within a
general scheme for naming in 0sI. The X.500 di-
rectory service, in its role of name server, is ex-
plicitly designed to perform the mapping of such
high-level names into lower-level presentation
addresses. The same directory can be used in a
more general-purpose manner to store informa-
tion of any kind (in the form of attributes) about
the objects identified by DN. The scope of DN is
thus broader than that of the name-to-address
mapping service specified by the reference
model, since the directory supports not only ap-
plication entities, but a variety of objects (it is
more than just a name server). The standard in-
troduces a number of classes to which objects in
an open system belong, defines the attributes an
object of a given class can have, and specifies a
technique to name instances of such objects and
a mechanism to support them.®

The information framework of the directory is
open-ended, and is not necessarily confined to
objects of the classes specified in the standard
document. Other standards, vendors, or users

ZATTI ET AL. 355

can add new classes of objects to the directory,
with any attributes, and can either publish them
with an appropriate registration procedure (the
classes will be shareable), or keep them confi-
dential for exclusive proprietary usage. Other

This paper concentrates on the
schemes that can be used in any
standard protocol supporting the

named object.

standards have also embraced the notion of DN, in
particular 0SI management® and X.400/MOTIS' (in
the 1988 version). In addition, several schemes
have been proposed to take advantage of DN in de
facto standard communities, such as Internet.!!

In an almost simultaneous but unrelated effort,
the Registration Authority standard has devel-
oped an identification scheme based on Object
Identifiers (oI), defined in the Abstract Syntax
Notation One standard, "? to address certain nam-
ing and registration requirements. "> The next two
sections review, respectively, the concepts of DN
and OI.

Naming: Distinguished Names and the DN tree. We
now discuss DNs and show how to organize them
into a tree structure. The syntax of the DN is
defined by the X.500 standard. However, the mean-
ing of the DN and its usage are defined in a nonco-
ordinated fashion by several other standards and
manufacturers’ consortia, in slightly different and
subtly incompatible ways. This paper concentrates
on the schemes that can be used in any standard
protocol supporting the named object—in other
words, on the lowest common denominator DN.

An entry in the X.500 directory is a data structure
storing a set of attributes of an object, which is an
instance of a specific object class. Each attribute
in an entry is composed of an attribute type and
one or more values.

356 zATTI ET AL

All entries can be organized hierarchically in a
global tree, referred to as the Directory Informa-
tion Tree (DIT), reflecting the administrative hi-
erarchies of the real world. The naming approach
of the directory binds the names of the entries to
the structure of the tree. One or more of the en-
try’s attributes can be tagged as Distinguished,
and used to identify the entry and the correspond-
ing object in the following way: An Attribute
Value Assertion (AVA) is an attribute-type value
pair, asserting that the entry contains a distin-
guished attribute of that particular type having
that particular value. The Relative Distinguished
Name (RDN) of an entry is a set of AVAs (each of
which is true) concerning all the distinguished at-
tributes of such an entry.' The DN of an entry is
the ordered sequence of all the RDNs of the entries
starting from the root of the tree down to the entry
itself. Consequently, an entry’s DN is made up of
its superior’s DN concatenated with the entry’s
RDN.

Each directory entry is managed by a particular
Directory System Agent (DSA), an application
process communicating with peers by means of a
standardized application-layer protocol called Di-
rectory System Protocol (DSP). Each DSA is re-
sponsible for the administration of a particular
portion of the DIT and stores the entries of all the
objects contained in that portion. DSAs are bound
to each other in a hierarchical structure that mir-
rors the DIT portions they are responsible for and
their relationships, the Knowledge Information
Tree. Users have access to the directory via a
service interface provided by a user stub called
Directory User Agent (DUA), running locally on
their machine. The DUA requests the services
from the DSA by means of another standardized
application-layer protocol, the Directory Access
Protocol (DAP). When a DSA is queried about a
particular object, it is given the name of the object
as argument to the query. If the object is con-
tained in the domain covered by the DSA, the in-
formation is retrieved and returned to the caller.
If the object is not local, the DSA must locate the
other DSA where the object is contained. It starts
therefore a “navigation” procedure, passing the
initial request to another DSA. Which DSA will be
contacted next depends on the structure of the
naming space, and can be derived directly from
the name of the requested object and the knowl-
edge information possessed by each DSA. The ul-
timate purpose of name navigation is to resolve

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

the given DN into the address of the particular DSA
that contains the directory entry for that object,
i.e., its attributes.

The following examples show a number of DNs,
each consisting of a sequence of RDNs, separated
by the “/” symbol. (For simplicity, in all our ex-
amples RDNs are composed of a single AVA.)

Some sample Distinguished Names:

d* ok ok ok sk ok %k ok ok ok ok ok ok ok ok ok ok ok ok Kk R ok % %k
* The various standards define how DNs should
* be encoded in their protocols. However, there *
* is as yet no standard visual syntax for repre- *
* senting DNs on paper or displaying them on *
* screens. Nor, based upon the intensity with *
* which conflicting recommendations are being *
* advanced, should we expect a consensus to *
* emerge for some time. In the following exam- *
* ples, we show various DNs using a visual syn-
* tax loosely similar to the one being proposed *
* for the Distributed Computing Environment *
* of the Open Software Foundation,”® which is *
* strongly influenced by the graphic conven- *
* tions of the UNIX** world. ' *
sk ook ok ok ook ok ok ok ok ok ok ok ok ok ok ok ook ok ok ok ok ok ok o3k

People

IntOrg=GM/OU=CHEV/OU=ENG/CN=
J.C.Smith III
C=US/NatOrg=ABC/OU=SALES/OU=
NYC/CN=Gino Bartali

Places

C=US/NatOrg=ABC/NET=SALES/SYSID=
ATLVMI1
IntOrg=XYCO/NET=SE/SYSID=RAL

Things

C=CA/NatOrg=BELL/APPL~=ONLINE/FILE=
PRICES

IntOrg=XYCO/NET=SE/SYSID=
RAL/DEVICE=DISK1

A major difference between DNs and other exist-
ing structured names is that DN components con-
tain explicitly the types, as in C=US, whereas the
components of some other existing structured

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

names, like the Internet domain names, consist of
a single value, such as GOV or EDU. The attribute
type, registered with the attribute definition, iden-
tifies the syntax and semantics of the value space
from which the value was selected. (The less-ob-

A major difference between DNs
and other existing structured
names is that DN components

contain explicitly the types.

vious meanings of the attribute types appearing in
the examples of this section are discussed as the
examples are explained in the text.) Graphic sets,
code-point assignments, and any special match-
ing rules (e.g., causing “Smith” and “SMITH” to
match as equal) are part of the value space defi-
nition. When a DN is received, these definitions
are implied; the receiving system is expected to
know how to honor them. However, rules and
conventions do not flow with the DN, or appear in
its visual syntax; they must be predefined to com-
puter systems that need to honor them. A human
user can guess reasonably well what matching rule
to use, e.g., case-ignore. For RDNs with no special
matching rules, a human user can perform the
match by a purely graphic comparison and com-
puter programs by a single compare instruction.

Each component must be unique only within the
scope of the component to its left (assuming a
left-to-right name parsing, with decreasing gen-
erality). Each component must be associated with
a naming authority responsible for administering
the component positioned immediately to its
right. The rightmost component, the “leaf,” iden-
tifies a named object. If the rightmost component
is dropped, the result will itself be a proper DN,
which names a different object. For example, if
FILE=PRICES is dropped from C=CA/NatOrg=
BELL/APPL=ONLINE/FILE=PRICES, the
resulting DN, C=CA/NatOrg=BELL/APPL=
ONLINE, identifies a particular application.

ZATT ET AL 357

The leftmost components of a DN must always be
either explicitly present, or inferable from the
context. The uniqueness of the leftmost compo-
nent is ensured by ISO-CCITT registration tech-
niques described later in the section, Regis-
tration: Object Identifiers and the OI tree.
This means that all DNs are rooted in ISO regis-
tries, and no matter how networks and name
spaces are interconnected and rearranged, there
will be no problems of name collisions. When
the leftmost components are implied by the con-
text and the sender chooses to omit them,
the result is called a partial DN; for example,
.../JOU=SALES/BO=NYC/CN=Gino Bartali,
is sufficient and unambiguous within the context
C=US/NatOrg=ABC.

All the DNs used can be arranged to form a global
tree in which the leftmost RDNs descend from a
single “root” and every RDN to the right descends
from the RDN immediately to its left. If all the DNs
in the tree were represented by directory entries,
then the enterprise DN tree would be a DIT. In
practice, the DIT will contain only a subset of the
enterprise DNs; other standards and implement-
ers’ groups, in fact, have decided to make use of
the DN scheme to name their objects, without re-
quiring that entries for these objects be registered
in the directory. This is the case, for example, of
many network management objects. The relation-
ship between such DNs and those of objects hav-
ing entries in the directory is not specified by any
standard, but is clarified in the section on the sin-
gle-DN, multiobject solution.

The DN tree could contain billions of DNs; Figure
1 shows a tiny fragment of the tree. Each AVA in
an RDN is represented by a capsule from which a
little subtree descends. The capsule contains the
alphanumeric identifier of the attribute type, the
thick line in the subtree represents the equality
relationship that is always asserted in RDN AVAs.
The thick line branches out to all the possible
values that the AVA can contain. In some cases,
a star-shaped symbol is associated with the trunk
of the little subtree. This indicates that compar-
ison and ordering rules beyond simple binary op-
erations are required, as specified by the standard
identified within the symbol. For example, one of
the sample DNs begins with: C=US/NatOrg=
ABC/OU=SALES,. . . This means that the global
DN tree must include a leftmost RDN space iden-
tified by the type “C” (short for country) that

358 zatm ET AL

contains, among others, a value “US” (alphabet-
ic code for United States of America). The global
DN tree shows this RDN immediately below and to
the right of the root. Its capsule contains the “C”

There is no current I1SO registry
for international organizations,
but the need is recognized.

for country, and descending from it is the list of
the two-character country codes. The Ds-labeled
star-shape indicates that the values for this type
of RDN conform to a predefined syntax registered
with the directory services standard, dictating
what kind of entries can be added and how com-
parisons should be made. In the particular case of
countries, for example, the naming value is lim-
ited to the two-character, case-insensitive coun-
try codes defined by 1SO 3166.

The second RDN in the DN, C=US/NatOrg=
ABC/OU=SALES]. . ., identifies the ABC corpo-
ration within some register for national organiza-
tions that is able, through an appropriate regis-
tration procedure, to ensure name uniqueness.
Note that there is also an ABC corporation as a
national organization in Canada; as far as naming
is concerned, it must be considered a different
corporation. In other words, the NatOrg=...
RDN is unique only within a country and can only
occur after a country RDN.

Leftmost RDNs do not have to necessarily identify
a country: the “IntOrg” attribute identifies a hy-
pothetical worldwide registry for international or-
ganizations that are not primarily associated with
a single country. Such organizations might find it
convenient to get from one registry an identifier
that has no connotation of country. Otherwise,
the organization would either have to choose a
particular country RDN for the name of each inter-
national object it administers (and thereby risk of-
fending people of other countries) or have multiple
names for the same object (which complicates man-
agement). Currently there is no IS0 registry for in-

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 1 An extract from the global DN tree

"APPL"

ONLINE “FILE"

FileServer
PRICES

"NatOrg"

/etc/bin/service

“NatOrg” "SYSID"

PACBELL ATLVM1
OLYMPO NYCVMI

IntOrg John Doe

UNICEF Van Allen
UNO Fausto Coppi
RC Gino Bartali
DEC Max Bocchiola

CHEVY Billy Kid s

PONTIAC J. C. Smith 111

BUICK Sergio Bianchi

CADILL Guido Rindi

~

REFRESH4
REFRESHS
FIX(5.1.3)

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992 ZATTI ET AL. 359

ternational organizations, but the need for such a
registry is recognized, and while an ISO registry
would be preferred, if necessary, vendor-adminis-

The attribute-type and value pair
structure of the RDN is flexible.

tered registries could be enhanced to help interna-
tional organizations to create country-independent
DNs. The 1SO registration standards and IBM’s use of
them is described in a following section, Registra-
tion: Object Identifiers and the 01 tree.

The portion of the global naming tree closest to
the root tends to be fully specified by international
organizations, such as 1SO and CCITT, reflecting
the political and administrative structure of the
world. Within specific countries, naming respon-
sibility will be delegated to specific organizations,
who will build their portion of the tree according
to their own policies. Other organizations, such
as industry groups and vendors, including IBM,
will provide certain registry services as well. Mid-
portions of RDNs tend to be less rigidly defined,
their meaning depending entirely upon their po-
sition in the DN subtree of a specific enterprise.
For example, in the DN, IntOrg=GM/OU=
CHEVY/OU=ENG/CN=J.C.Smith III, one ouU
(organizational unit) RDN is qualified by another.
It is the middle portion of the DN tree where the
enterprise DN designer has the greatest scope,
since the root part is largely defined by standards,
and the leaf part is often defined by vendors and
customers.

In some cases, the shapes of the rightmost
portions of DNs can be predefined into archi-
tected subtrees, used by services that depend
upon the presence of certain information in the
DN of the object being referenced. For example,
in the DN, IntOrg = XYCO/NET = SE/SYSID =
RAL/DATA = PROG15/CHANGE = FIX(5.1.3),
the RDN CHANGE = FIX(5.1.3) is architected

360 zATTn ET AL

by IBM; IBM’s change management service'’
will recognize its presence and use the value
in its logic. Architected subtrees are also
used in DNs that are automatically generated.
For example, . . /MACAddr = 12345/LSAPId =
12345/LSAPPairld = 12345/ThresholdControl = 5
denotes a control object within a pair of LSAPs
(link-level service access points), describing the
state of a particular service parameter. Millions of
such LSAP pairs may exist in a darge enterprise,
automatically named and monitored by network
management agents. Similarly, some standards
specify leaf-portions of DNs for particular objects,
for example, Application Entity Titles, the DNs
given to Application Entities, always end with
two Common Names (CN), an Application Pro-
cess CN and an Application Entity CN.

The enterprise name administrators would exer-
cise their freedom by designing the midportion of
the DN subtree administered by their enterprise
(possibly using RDNs such as Location=
SouthEast/LocalAreaNet=Atlanta, or NatOrg=
PacBell/OU=Billing), and grafting to it the archi-
tected or standard-defined subtree. Management
programs would generate the DNs by automati-
cally determining or assigning the values of the
RDNs in the architected subtree of management
services for each of the millions of control objects
in the network. Management services would also
be the primary, perhaps the only, user of those
DNs. In normal operations, human users would
not even need to see them.

In concluding this section on DNs, we can thus
summarize their advantages: The attribute-type
and value pair structure of the RDN accomplishes
a potential utilization and flexibility unmatched
by other naming schemes, supporting matching
rules ranging from the richest variety of character
sets (very important for natural language sup-
port), to the simplest, most computer-efficient
and culturally-neutral naming techniques. The
presence of the attribute type, in particular, fa-
cilitates the parsing of a name and the identifica-
tion of its components. DNs are globally unique,
since at any given level the uniqueness of the
name component (RDN) at that level is guaranteed
by a naming authority; they are flexible, since the
individual components comply with specific syn-
taxes according to requirements specified by the
responsible naming authorities; and they are
open-ended, since the components are deter-
mined level-by-level in a decentralized fashion, at

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

any depth. They provide the flexibility and the
ability to name any entity anywhere in the world,
at the cost of having no definite limit on their
length. As such, they satisfy the naming require-
ments expressed in the introduction.

Registration: Object Identifiers and the Ol tree. To
understand DNs it is crucial to note that name
components are assigned types; each AvVA con-
tains an attribute type followed by the value.
Types are assigned within the scope of each of the
standards in which attributes and their syntaxes
are defined, but no matter where they are defined,
they conform to the special syntax of Object Iden-
tifiers. ™® OIs are themselves sequences of integers
representing nodes of another global tree, the reg-
istration authority tree; this tree, different and un-
related to the global DN tree, is designed to allow
independent identification by registration author-
ities (RA) throughout the world of the different
standards they control and the object types (but
not the objects themselves) defined within those
standards. Countries, organizations, standard
bodies, postal, and telephone organizations, ap-
pear as nodes in the Ol tree in their capacity of
RAs; standard-administered registries of entities
such as country names, and standard-identified,
but privately administered registries for persons
and common names, telephone numbers, etc., ap-
pear in the OI tree as well. New entries in the OI
tree can be registered in a decentralized fashion
according to specific procedures defined in the
1SO 9834 standard.” Tracing a path down the OI
tree uniquely generates a sequence of integers
that comprise a particular OI. Figure 2 shows an
example of a small fraction of the OI tree. In this
example, the 01 for the management services (MS)
standard is (29); in the context of the directory
standard (2 5), the oI for the “countryName” at-
tribute type is (2 5 4 6), which is what the attribute
type “C” used in the examples really looks like.

Just as in object-oriented systems the concept of
class of objects is distinct from that of instance of
such an object class, the concept of a standard is
distinct from that of instance of such a standard.
Standards are typically defined by RAs. As these
introduce a new standard they define new classes
of objects as part of that standard. When custom-
ers install implementations of that standard, and
populate their databases, they create instances of
objects of those classes. Moreover, in many
cases, as systems and applications operate, they

1BM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

create and destroy object instances dynamically.
At this point the identification of those object in-
stances in the world does not depend on the reg-
istration of their object class definition, but on
their administrative situation: an instance of an
X.400 Message Transfer Agent (MTA), for exam-
ple, may be located with a particular company in
some country, whereas the MTA as an abstract
concept was originally defined by 1SO and CCITT

The uniqueness property of DNs
depends upon registration and
delegation.

within the X 400 standard. Such MTA instances are
named by customer-administered DNs, whereas
the definition of the concept of MTA is identified
by a registered OI.

The uniqueness property of DNs depends upon
registration and delegation. Each RA is given a
number by the higher-level RA that registered it.
The concatenation of these numbers forms an 01
uniquely identifying the authority within the
world. Each RA in the tree has the power to reg-
ister its own object classes and to delegate further
the registration to other lower-level authorities.
IBM, in particular, has become an RA with 1SO,
with International Code Designator 0018. As such,
it is entitled to create new OI subtrees and to del-
egate authority to new RAs. Also, as an issuing
organization as described in ISO 6523, IBM can
register organizations and assign codes identify-
ing them for data interchange.

1BM is fulfilling its role as a registration authority
by establishing a distributed registration structure
under which its internal organizations are able to
generate and administer identifiers. The registra-
tion mechanisms, when properly followed, will
eliminate the possibility of the same identifier be-
ing assigned to multiple objects. This means that
IBM-registered identifiers can be used in any field
conforming to the 0sI definition of object identi-
fier, both inside and outside IBM. Similarly, other

zatn ET AL 361

Figure 2 The Ol registration tree

(0 O,

(19) O 2)

surname
commonName

IBM

1BM Corporate Standards

1BM Communications Services

(142

ISO

CCITT
3 =

SMmI

identified-

organization e

DS part2
e attribute o
serviceElement .
attribute Type systemID
e \m
organizationalUnitName
countryName
FONTS DIR

(2)

JOINT ISO-CCITT

®

IBM Registry of
International Enterprises

vendor- and customer-assigned identifiers can
also share those fields with no possibility of col-
lision. The registration procedures for reviewing
new requests against existing assignments, and
for publishing the registry, will tend to reduce the
assignment of multiple identifiers to the same ob-
ject, thereby improving the extent to which two
parties can share object knowledge.

362 zATTi ET AL

In addition, IBM is fulfilling its role as an issuing
organization by developing a coding system for
Network Service Access Points (NSAPs), which is
based on SNA Network Identifiers (NETIDs) as re-
corded in the SNA Network Registry. Customers
who have registered their network names can use
those names plus additional identifiers that they
administer in creating worldwide unique NSAPs.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

It should be noted that formal registration is in-
tended for creating identifiers that will have a rel-
atively long life and that will be used many times.
Formal registration typically has some form of
publication associated with it to facilitate shared
use and promote interoperation. Short-lived iden-
tifiers such as transaction or connection identifi-

During run-time operations, it is
not necessary to decompose the
Ol in its internal structure.

ers, which survive only for the duration, respec-
tively, of a distributed transaction or of a
connection, are not registered in this sense, and
their originator is not an RA.

OIs are often misunderstood as an alternative
naming methodology to DNs, and in the loose
sense of the word ““name,” which we are here
trying to avoid, they may be. However, OIs serve
their purpose in uniquely and compactly identi-
fying object classes, attribute types, and various
other entities used in information systems. In the
context of ISO registries and the hierarchy of RAs
that descend from them, the OI is the only stra-
tegic identification mechanism. In some contexts,
however, 01 identification has become a compet-
itor of distinguished naming. For example, the
File Transfer Access and Management standard
(FTAM), uses OIs to identify Virtual Storages.” As
will be seen in the subsequent section on a uni-
form naming solution for IBM systems, our nam-
ing scheme takes a clear position on this issue,
supporting the use of OIs for registered identifi-
cation of classes and class-like entities, but dis-
couraging it for naming object instances.

Relationship between OIs and DNs. We have seen
that an OI sequence of integers defines a unique
path down the OI registration tree. Each arc of the
Ol tree corresponds to a single numeric identifier.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

In contrast, an RDN contains an attribute type and
an attribute value, the former being itself a com-
plete oI.

In the visual form of the DN, the OI is usually
displayed as an alphabetic abbreviation such as C
for country, or oU for organizational unit. The
alphabetic abbreviations are not standardized,
and will probably be multidefined in the future,
according to the various natural languages. Ac-
tually, when used across a network, a DN is en-
coded in a transfer syntax according to some ne-
gotiated encoding algorithm, most likely the basic
encoding rules (BER) associated with ASN.1.%' In
the encoded form, the oI appears as a language-
independent bit string where the registration in-
formation is hidden in a packed, user-unfriendly
construct. Figure 3 zooms into a particular OI in
a BER-encoded DN and shows how it can be de-
composed into its string of integers and how its
path down the 0OI tree can be determined. A re-
ceiving system is expected to have prior knowl-
edge of the OIs in a DN in order to present to the
users the proper alphabetic equivalent for each
one of them, possibly according to the local lan-

guage.

The RDN attribute values, on the other hand, do
not gain or lose information when they are
changed from encoded to visual form. Therefore,
receiving systems do not require predefinitions of
every possible value, since these values are de-
coded and displayed as received, but must how-
ever support the particular character set defined
for the value space. This may not always be pos-
sible, especially when the receiving system is not
located in the same cultural context as the send-
ing one, as in the case of exchanges between sys-
tems in the Far East and in the Western world.
Whether or not those alphanumeric values have
language- or culture-specific connotations de-
pends upon the users who assign the values.

During run-time operations, it is not necessary to
decompose the OI in its internal structure; the OI
is treated as a flat binary string. The internal
structure of each OI serves the vital purpose of
ensuring global uniqueness by capturing the chain
of delegation of administrative responsibility that
led to the creation of that oI, but is irrelevant to
a running program. All that matters at run time is
the ability to perform 01 matching uniquely and
efficiently.

ZaTT ET AL. 363

Figure 3 Analyzing an Ol in a DN

"IntOrg"
IDENTIFIER LENGTH OF CONTENTS
CONTENTS
CLASS TAG
up Ol ["IntOrg"
‘06’ ‘06’ \\‘281 20000810E’ N N
. N
VY NN
Y NN
(WA NN
\ \ AY AN
\ \ \ \
\ \ \
b \ NN
® ® O \) :
Y [\28 N2 (%0 ['w [BLOE [N
IS0 AR Y Y I AN
\ \ R
corT JOINT PR NN N N N
() \ | 18] 18| 00 | 00| 1e2
() @, \
a Countries
Standards
. " Registration
identified- L
organization Authorities
1BM
1BM Corporate Standards
1BM Communications Services 0
FONTS DIR
“IntOrg"
IBM Registry of
International Enterprises

We now compare the properties of OIs and DNs.
Ols are concise, structured, and open-ended, but
suffer for the following major shortcomings:

* They are not user friendly; this may not be a real
problem, as long as computer systems are de-

364 zatTI ET AL

signed to ensure that no human users will be
ever confronted with Ols.

» They are intended to represent object classes,
including all the authorities responsible for their
definition, and not instances of such objects;
normally, an instance of a particular object will

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

be assigned a DN based on the administrative
hierarchy the object belongs to (such as country
or organization), whereas the structure of Ols
reflects the RA hierarchy, which most likely
does not coincide with the administrative one.
They are the expression of a mechanism de-
vised to register standards and object classes in
a worldwide unique fashion, and not to associ-
ate information to whatever objects they name.
Directory support for OIs is therefore not easy
to provide. In particular, OIs are not well-suited
to efficiently access the X.500 directory, whose
worldwide navigation mechanism is keyed on
DNs. A possible way to fold the OI name space
into the DN tree has been proposed by one of the
authors of this paper.?

DNs, on the other hand, have shortcomings too.
Since each RDN contains one attribute type (or
more), and since attribute values tend to describe
the object in an extensive, unshortened form, in-
dividual RDNs will be large; moreover, due to the
flexibility of the naming scheme in reflecting real-
world hierarchies, DNs may end up being made up
of numerous RDNs. Thus DNs may be expected to
be larger than untyped names, especially untyped
OIs whose components are tightly-encoded inte-
gers.

In reality, the use of types may actually reduce
the number of components in DNs, avoiding ex-
plicit mention in RDNs of names like “identified
organization” or “department,” so common
within OIs. Thus, it is not a given that DNs will be
significantly longer than other alternative names.
What difference there may be is, however, of de-
creasing concern in view of current trends toward
increasing memory size, processor power, and
network bandwidth.

It can be argued, however, that while expressive-
ness and redundancy are welcome at the level of
human users, where names must be friendly and
mnemonic, alphabetics are not necessary for use
by computer programs, which usually do best
with integer identifiers. But if efficiency is at
stake, in many cases DNs may have integer values
in their RDNs, particularly in the rightmost ones,
and may be thus kept short and easy to treat ef-
ficiently, just as OIs.

In addition, the presence of types confers a sig-

nificant programming advantage to the DN: the
structure of the hierarchical name is defined by

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

the customer and changes from object to object,
enterprise to enterprise, and day to day. The DN
is essentially self-defining. If a programmed ser-
vice needs to find the country code, or the archi-
tected change management subtree, it can readily
do so, no matter where they appear in that par-
ticular name. An untyped name, such as the OI, is
essentially positional, and thus is more con-
strained to design and difficult to change, and
tends to require more system definition among
programs that process it.

The naming scheme proposed by this paper, in
conformity to 0SI directory and management
standards, takes a clear position in using Ols to
identify classes of objects, but not the individual
instances or members of a class. This makes
sense when one remembers that OIs are static reg-
istered values, whereas individual instances of
objects might have a very dynamic existence. It
would not be appropriate to formally register a
name for each one. (There is no mechanism for
deregistering, so this would result in a rapid ac-
cumulation of inactive registrations.) A class def-
inition, on the other hand, tends to have a long life
and might be widely used; thus registration of its
identification would be quite appropriate. The fol-
lowing section states the proposal in detail and
justifies the choices taken.

A uniform naming solution for IBM systems

This section focuses on the IBM world and shows
how the previously described naming methodol-
ogies could be used within IBM networks to iden-
tify objects and resources independent of the pro-
tocols in which the names are used. The naming
and addressing scheme proposed here utilizes the
already defined standards, and allows interoper-
ation among them by using a subset of each.

The features of the DN scheme allow the same
name to refer to the same physical object when
used or operated upon by different standards with
different protocols, thereby achieving a uniform
user view. This goal corresponds to that only par-
tially achieved in the real world by people’s
names, whereby the same physical person can be
identified with the same name for different, un-
related purposes (e.g., registry, banking, credit,
airline reservation, employment). Most likely,
each service provider will make use of different
attributes of the person and perform different op-
erations on these attributes, yet accomplish this

ZATTI ET AL. 365

without forcing the person to carry different
names. Similarly, our scheme strives to assign to
the same object—possibly used by several appli-
cations with different protocols—the same name
(i.e., a DN), thus giving the user a consistent view
of the various objects the user is dealing with.

The primacy principle. The bottom line of this

proposal is: DN is the primary form of naming.
Other past, present, and potential future name

Experience suggests a need for a
single, primary identification
scheme.

forms are secondary and are supported in a co-
existence mode. In most cases, coexistence will
be accompanied by gradual migration to the pri-
mary name form.

DNs should be assigned to every instance of any
object that needs to: have its location determined,
be communicated with or accessed, be operated
on and managed, be secured or administered, be
moved from place to place, or be otherwise re-
ferred to in a distributed environment.

Various classes are typically defined by RAs while
introducing new standards and new object classes
within them, making those object classes known
by registration. Then, various organizations de-
cide to implement or use those standards, and
must therefore instantiate a number of those ob-
jects. At this point the “position” of those object
instances in the world will not depend on their
registration, but on their administrative situation.
An X.400 mail service user, an Originator/Recip-
ient (O/R), will be located with a particular com-
pany or at a particular residential location in some
country, even though the concept of O/R was orig-
inally defined by ISO-CCITT within the X.400 stan-
dard. Such instances are always named by DNs.

Some entities have both class-like and instance-
like properties. For example, in SNA a transaction

366 zaTTi ET AL

program (TP), an entity performing application
functions and using LU 6.2 (logical unit 6.2) pro-
tocols for communication, is named with a TP
name. Some TP names are registered, and copies
of that TP appear at many nodes. Those TP names
identify a class-like entity whose instances are the
copies. Other Tp names identify individual pro-
grams that exist as a single copy at one location,
in other words, programs that are instance-like.
So TP names are sometimes class-like, sometimes
instance-like, and there is no precise test that can
make the distinction. However, the fact that the
class-like properties might have resulted in an 01
being assigned to the entity, does not affect
whether or not a DN should be assigned. If the
object requires any of the functions in the above
list it will also require that a DN be assigned. In the
case of TPs, therefore, individual DNs should be
assigned to each individual instance running on a
particular system within a particular administra-
tive domain.

It can be argued that designating one form as su-
preme and relegating all others to a second-class
status is neither necessary nor reasonable. Con-
sidering the analogy of natural language support,
we reason that all languages are theoretically
equal and no one of them shall be declared su-
preme over all others. Extending this reasoning to
the increasing heterogeneous world of computing
networks, with a correspondingly increasing va-
riety of naming mechanisms, we reason that the
principle should be that no one naming mecha-
nism should be declared supreme. All naming
mechanisms should be conceptually equal, al-
though practical constraints will force vendors to
limit the variety they support. The main advan-
tage of this approach is that it avoids offending the
proponents of other naming forms and, by making
no decision, eliminates the risk of making the
wrong one.

But experience in other widely-distributed, inter-
connected, human activities, such as the follow-
ing, suggests that there is a need for a single, pri-
mary identification mechanism.

» Telephony. In a process that took almost a cen-
tury, telephone naming mechanisms slowly
purged themselves of route connotations, and
while local phone networks were progressively
interconnected, the notion of a single, world-
wide, telephone-number space developed.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

e Languages. Although the peoples of the world
are extremely proud of their own languages, at
different times and different places in history
particular languages were used as lingua franca
just as means of communication. For example,
Latin, Swabhili, and French at different times
enjoyed some form of primacy that stretched
beyond the national boundaries of their native
speakers. Today English plays that role and is
used by an unprecedentedly wide community,
mainly technical and scientific.

e Currency. In the past, currencies were often
very localized, sometimes individual banks
each issued its own. Commerce was much fa-
cilitated by national currencies. Now the needs
of international business are pushing toward in-
ternational primacy for particular currencies,
extending far beyond the political influence of
the countries officially using them. Examples
today are the U.S. dollar and the increasingly
popular ECU (European currency unit).

These “primacy” experiences are pertinent to
computer network naming for the following rea-
sons. First, the evolutionary process is the same,
starting with small isolated localities and then in-
terconnecting them into bigger and bigger groups
until finally there is just one global grouping. Sec-
ond, the user group is the same: the population of
the planet. Market success depends upon reduc-
ing the need for computer specialists to intercede
between the true end user and the network, ex-
actly as telephone networks had to minimize the
need for human operators. Third, the size of nam-
ing spaces are in the same range, i.e., 10® through
10*2. Experience with name spaces in the range of
10? through 10* (which is more typical for local
operating systems) does not scale up by factors of
10*. Individual and group idiosyncrasies, readily
tolerated in small, labor-intensive environments,
do not scale up to huge, highly automated envi-
ronments.

The conclusion is that the basic principle of a
global naming solution must be: The computer-
using public must perceive one and only one
name space. Anything that detracts from that per-
ception is either not done or at least not exposed.
Anything old, and already routinely used by the
public, must be gracefully folded into the primary
name space for the sake of uniformity and con-
sistency.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

The single-DN, multiobject solution. The X.500 di-
rectory is designed specifically to associate a di-
rectory entry, containing attributes, to an object

From the user’s viewpoint, the
object is the union of all the
protocol objects.

identified by a given DN, and other standards and
applications are expected to exploit this ability,
by adding new attributes of any nature to the di-
rectory entry for that object. But the fact that this
is possible does not necessarily mean that all the
objects named by DNs must correspond to direc-
tory entries, contained in the directory informa-
tion base. In many cases, actually, objects have
a highly dynamic and location-dependent nature,
which makes them not suitable for being repre-
sented by a directory entry, typically fairly static
and location-independent. Such objects may still
take advantage of the DN naming scheme, without
requiring an associated entry to be stored in the
directory.

Additional naming problems arise with objects of
manifold nature, that are amenable to use by dif-
ferent services with different protocols, each act-
ing upon some of their different aspects and dif-
ferent semantics. In the strict protocol sense,
there would be actually different computer ob-
jects, each reflecting a particular aspect of an ob-
ject from the real world. We will use the term user
object for these “real” objects as perceived by the
human user, and the term protocol object for the
various abstractions of this object within a spe-
cific standard or using application. If a user object
is to be serviced by multiple standards, there will
be multiple protocol objects defined for a single
user object. From the human user’s point of view,
the user object is the union of all the specialized
protocol objects defined for it, and possesses all
of their attributes.

zaTTI ET AL 367

A global naming solution should ensure that the
need for multiple protocol object definitions for
the same user object does not result in the re-

Although a user object may
belong to multiple object
classes, it must have
only one DN.

quirement for the customer to assign to it different
DNs. Although a user object may belong to mul-
tiple object classes, it must have only one DN. The
goal is to maintain a single naming scheme while
allowing for separate object definitions. This
property can be achieved by introducing an ad-
ministrative procedure to be followed when in-
stantiating and registering new objects, whereby
the attributes common to all protocol objects are
forced to have the same values. As a minimal
requirement, the distinguished (naming) attribute
must be the same for all protocol objects, includ-
ing the numeric form of the 01 registered for it.
The procedure makes sure those attributes, and in
particular those composing the name, are uniquely
assigned.

For example, 0SI management, like the X.500 di-
rectory, is object oriented, and like the X.500 di-
rectory uses DNs to identify its own objects. But
object classes and attributes are defined in the
context of a somewhat different model. If an en-
terprise name designer pursued these two models
independently, the result would be not only two
object definitions for one resource, but two DNs.
The total number of objects to be named can be
estimated to be between 100 and 1000 per end
user, so that a typical enterprise may have to
manage many millions of names; any solution that
doubles the number of those names is not only
inelegant, but also extremely undesirable. Simi-
larly, as other standards develop object definition
techniques, the danger grows that they will en-
courage special flavors of DNs for their objects,

368 zaTm ET AL

and the administration and correlation problems
will become unmanageable. The procedure
sketched above avoids the problem of multiple
names by providing a uniform way to instantiate
new objects and assign names to them.

Figure 4 shows an example of one user object, a
printer, with four different corresponding proto-
col objects, each used by a different service acting
upon the printer. The user refers to the printer
consistently using one DN. In this illustration, the
user has four different reasons to refer to the
printer, and each reason requires one of four dif-
ferent services (and corresponding protocols):

1. A security service, which the user may query
to find out whether the printer is suitable for
some classified output

2. A print service application, which actually
sends a document to the printer for printing

3. A directory service to find the address at
which the printer resides on the network (log-
ically this would be the first service to be used)

4. A management service to determine the cur-
rent level of toner

Each of these services treats the printer differ-
ently, and deals with different kinds of operations
related to it. Each of them has its own definition
of its view of the printer, including the DN for that
object. In other words, each protocol considers
that it “owns” a protocol-specific name for a pro-
tocol-specific object. From a definitional stand-
point the managed-object name and the directory-
object name refer to different objects with
different sets of attributes. If this specialization
were allowed to proceed to its natural conclusion,
the managed-object DN, the directory-object DN,
and all the others, would not only be distinct in
definition, but possibly even in the actual values.
(The illustration shows only four protocols, but
there are several more that behave the same
way.) However, users certainly do not want to
have to know four or more names for one (from
their perspective) object. The naming procedure
ensures that name designers are not forced to as-
sign multiple DNs to one object, no matter how
many protocols might need to identify it. The suc-
cess in reconciling the different protocol defini-
tions depends basically upon the care the admin-
istrator exerts in avoiding any specific DN features
(like multiple-AVA RDNs) that are not supported
by all protocols.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 4 Many protocol objects with one Distinguished Name

MY LOCAL PRINTER IS:
INOrg=ABC/OU=SALES/-
Sysid=ATLVNN/P1r=3620B

]

I o e o o
e e e e o e e t m hm y

-
-

WHAT'S THE

1§ ...38208 WHAT'S THE
OK FOR ADDRESS OF LEVEL OF
CONFIDENTIAL TONER IN

..382087

QUTPUT? ...3820B7

osl PRINT oSl oS!
SECURITY SERVICE DIRECTORY MANAGEMENT

s.0. AO. D.O. M.O.

DN DN DN DN
MANAGED @
OBJECT (M.O)

M.O. DN=...38208
M.O. TONER=40%

APPLICATION
OBJECT (AO)
AO. DN=...38208

SECURITY
OBJECT (8.0.)
S.0. DN=...38208
8.0. LEVEL=CONF

DIRECTORY
OBJECT (D.0.)

D.O. DN=...38208 .

D.0. ADDRESS=NODES,

osi PRINT osl| osl
SECURITY SERVICE DIRECTORY MANAGEMENT

|
1
1
| el L LT

i
1
1
[iy —————

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

ZATTI ET AL 369

Unification of different naming spaces. In addition
to applying this naming methodology to new ob-
jects, it is also important to be able to insert ex-
isting names, not necessarily standards-based, in
the global DN tree. The DN scheme, in fact, is
sufficiently open and flexible to gracefully encom-
pass existing naming schemes, in a process of
gradual migration. Whether existing naming
spaces are flat or structured, they can be encom-
passed by the DN scheme by using either of the
two techniques: encapsulation and grafting.

Encapsulation. The existing name is wholly in-
serted into one single RDN, with an appropriately
selected attribute type. For example, as shown in
Figure 1, a UNIX file name such as “/etc/bin/ser-
vice”, could be inserted under the DN of the
file server managing it as: C=CA/NatOrg=
Bell/APPL.=FileServer/FILE =(/etc/bin/service).
(The parentheses are used to mean that the whole
file name becomes a single attribute value.) The
advantage of this solution is that the existing
structure is perfectly preserved and the impact on
existing programs can be minimized. The com-
ponents of the encapsulated name are not bur-
dened with any extra meanings their original de-
signers had not foreseen. The disadvantage is that
the hierarchical structure of the old name ends up
being totally hidden within the RDN, and is there-
fore unavailable to standard services for purposes
such as name navigation.

Grafting. The structure of the existing name is
exploded into its components, each of which
becomes an RDN with appropriately selected
attribute types. For example, the UNIX file sys-
tem name ““/etc/bin/service”, inserted under the
DN of the managing file server, becomes:
C = CA/NatOrg = Bell/APPL = FileServer/DIR =
etc/DIR=bin/FILE=service. Even names per-
ceived to be untyped can be inserted in this
scheme by imposing an appropriately registered
attribute type on each of their name components.
The main advantage of this solution is the elegant
uniformity of name spaces it generates: all serv-
ices using these names are able to exploit all com-
ponents without need for any special decoding.
The disadvantage is that each RDN-level name
component must conform to the requirement of
all pertinent standards. In particular, the resulting
name must be open-ended: Shorter DNs can
be obtained by dropping components such as:
C = CA/NatOrg = Bell/APPL = FileServer/DIR =
etc/DIR = bin, or: C = CA/NatOrg = Bell/APPL =

370 zarTi ET AL

FileServer/DIR=etc. Longer DNs can be built to
further qualify objects within the scope of other
objects, such as records within a file, e.g.,
. . /APPL=FileServer/DIR=etc/DIR=bin/FILE=
service/Record=1122. The objects thus named
have certain obligations in each one of the protocols
supporting them. These obligations are not partic-
ularly heavy, but they represent a change from the
closed-ended, semipositional naming models that
permeate many operating systems and the hearts
and minds of users familiar with them. Despite the
migration difficulties it entails, the DN solution has
a greater potential and will be increasingly used
over time.

The techniques of encapsulation or grafting can
both be used for tree merging, depending on the
circumstances. In both cases, though, the funda-
mental step is that a point in the global DN tree be
selected, or created, to be the root of the subtree
of the existing name space.

The subtree root, with its directory entry, repre-
sents an object manager responsible for all the
objects contained in the subtree. In many cases,
an object manager will be aware of the existence
of other peer managers, and explicitly query the
directory to locate them, using their own DNs,
i.e., the upper portion of the object’s DN. In some
cases, the manager will not know this and will
query the directory with the complete name. Al-
though this query fails, the failure report does
describe how much of the DN was matched, and
may even, as a desirable optimization, return the
address of the right manager. Otherwise, more
generally, a follow-up query with the truncated
DN will locate the peer manager.

The extensive usage of DNs recommended by this
paper does not imply that users are compelled to
constantly see and enter complete DNs. The no-
tion of “context,”” omitting high-order name com-
ponents when they coincide with default ones, is
as normal and natural as not dialing one’s area
code when making local calls. Modern user in-
terfaces can also greatly simplify the task of en-
tering and interpreting complex constructs. Tra-
ditional nickname facilities can always be used for
DNs that are frequently used, as already done to-
day by the administrative facility of IBM’s OSI/CS
product, where DNs are exposed to the user only
the first time they are used, and nicknames are
used instead from then on.® In some application

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

areas, such as X.400 messaging, there is little vari-
ation in types, so type-suppressed displays are
appropriate most of the time.

Language and culture specifics in DNs. In a world-
wide internetwork spanning national and cultural
boundaries, every user should be allowed to use
names in the language of the user’s choice. At

A global naming solution has to
compromise between two
philosophies.

least, the user should not be forced to use names
in a language the user finds offensive. In a perfect,
unilingual, unicultural enterprise this could be
achieved to a considerable extent.

Unilingual, unicultural situations. The limita-
tions that arise even in this ideal environment de-
rive from ambiguities inherent to the culture,
combined with the requirements for multimedia
operation and interchangeability of human and
programmed operators. Humans, for example,
tend to use lower and upper cases of letters in-
terchangeably; so a human user would not react
differently seeing the name “Zatti” written
“ZATTI” or even (apart from aesthetic consid-
erations) “ZAtTi.” It is not the case for comput-
ers, though, since lower and upper cases corre-
spond to different character encodings. The
ambiguities are resolved by associating with each
name space particular matching rules such as
case-exact or case-ignore, as done by X.500.

Although the processing power of computers can
take care of the ambiguities of human represen-
tation of characters, the multimedia and discon-
nected operations requirements state that com-
puters will not always be present. Names may
have to be exchanged on paper, by telephone,
copied down from white boards, or yelled down
the hallway; how can humans cope with errors
and instinctive cultural assumptions? The con-
clusion is that special matching rules should only

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

be used in cases where all humans who may use
the name can intuitively and reliably exercise
them.

When all the media are considered, unilingual,
unicultural situations are almost nonexistent. A
decision has to be taken on a case-by-case basis
when assigning new RDNs. If the list of alternative
interpretations of a particular name is small, and
the context is narrow, the 0SI directory philoso-
phy of rich matching rules—equating for example
Washington and WASH—works well within the
appropriate linguistic and cultural boundaries; if
the list of possibilities is large and the context is
broad, and therefore prone to ambiguity and con-
fusion, then the 0SI management philosophy of no
special matching rules works better.

A global naming solution has to compromise be-
tween these two conflicting philosophies, even in
situations that are nearly perfectly unilingual and
unicultural. Of all the name attributes used in the
DN tree, perhaps 30 or 40, such as country, city,
or common name can be expected to have hu-
mans intuitively know the appropriate matching
rules. These are in most cases those defined by
the directory. The remaining 100s or 1000s of
name attributes should be defined with no special
matching rules and used in RDNs to the right of the
limited set of directory name attributes.

Multilingual, multicultural situations. Customers
will require products that support naming in en-
terprises whose users come from different linguis-
tic and cultural backgrounds. In such situations it
is useful to distinguish between names derived
from natural languages and those that are lan-
guage-neutral. For example, in Canada, Ontario
is a neutral name between French and English
since its spelling is the same. Quebec has an ac-
cent in French, so P.Q. (Provence de Québec or
Province of Quebec) is used instead. Switzerland
chose the Latin name “Confoederatio Helvetica™
as its own official name, to avoid privileging any
one of its four languages; India chose the old Eu-
ropean name “India” to avoid privileging any of
its 14 official languages. The principle is that or-
ganizations that span linguistic groups like to use
names that are as neutral as possible across all
their languages. True neutrality across all the
world’s languages is obviously impossible, but
fortunately all over the world the computer-using
public has been tolerant of the Latin graphics,
readily accepting names such as US, GB, ATLVM1,

zatT ET AL 371

London, ENG. Local, culture-specific forms of
names (such as the Kanji equivalents in the Orient
or Cyrillic in Russia) can always be supported by
means of synonyms (inserting in the directory en-
try alternate naming attributes describing the ob-
ject’s name with different character sets), as nor-
mally happens in the real world where a Japanese
person knows and uses the name both in Kanji
and in Latin. Note, however, that OSI manage-
ment’s reports on object status do not include
name synonyms or aliases, so heavy use of this
solution will reduce manageability and increase
definition requirements.

To allow global naming, each enterprise should
strive for the level of neutrality appropriate to the
mix of languages it spans. Neutrality is most
needed for those resources that are referred to
across the entire enterprise, and least needed for
resources that are of local-only interest (assuming
that everyone at that locality speaks the same lan-
guage). Since the leftmost RDNs are used in the
DNs of so many objects, they will usually need
considerable language neutrality, in order to be
successfully displayed and exchanged throughout
the world. As country names are registered in a
language-neutral standard (ISO 3166), so compa-
nies that want their names understood and used
by many cultures should select names as lan-
guage-neutral as possible.

Examples of uniform naming and usage

We now turn to showing how names can be ef-
fectively used within the enterprise and how
name uniqueness can be turned to advantage by
several integrated services. We do this by means
of a few examples showing integrated uses of DNs
by several services. No specific reference to IBM
products is implied.

Distribution of services across the enterprise.
Names are exchanged between the various dis-
tributed services that make use of them in basi-
cally four different ways:

1. Across interfaces within a node where the
services are invoked

2. Through service-providing programs that re-
side at a node

3. Within collections of data residing in nodes

4. In protocol flows between the nodes that make
nonlocal parts of the service available and
maintain the distributed data

372 zaTn ET AL

The last is rigorously defined by standards, the
first not at all.

DNs have the potential of being used by a large
number of services, and are stored and moved in
a variety of media. Although the enterprise per-
ceives only one DN space, the different services
use DNs as if they each had an independent DN
space dedicated to their particular service. Al-
though all service protocols share electronic com-
munications media, the only points where DNs
can be exchanged between services are within
nodes. Such exchanges have little or no repre-
sentation in the standards, but the need remains
for a local solution to allow this exchange.

On the other hand, when the DN is used outside
the computer, in external media like paper, chalk
board, or voice waves, if it has been constructed
in the multiprotocol-compliant manner intro-
duced in the previous section on the single-DN,
multiobject solution, it has no connotation of be-
ing associated with any particular service. The
notion of a single global DN tree is the natural
default assumed by humans. In order to preserve
that notion, the external users of the DNs must be
shielded from the peculiarities of the various in-
ternal services. This shielding is much facilitated
by the presence of a set of interfaces, above
which the enterprise-oriented programs work
with enterprise-oriented DNs, and below which
each distributed service performs its speciality,
interacts with the others, and cooperates in de-
livering a combined service to the enterprise-ori-
ented programs and their end users.

Structure description. Traditional, vertically-ori-
ented diagrams based on layering and the appli-
cation/service dichotomy will not suffice to ex-
press the structure needed to support the
enterprise DN, when applications interact with
other applications exchanging DNs. The node
structure shown in Figure 5 is horizontally ori-
ented, reflecting the fact that in this situation the
various distributed services interact as peers. The
node is depicted containing all the key distributed
services involved in naming and addressing both
as service users and providers. (Not all of this
function is required at every type of node.) The
communication services, containing alternative
stacks supporting different families of protocols
(SNA, 0OSI, TCP/IP), are involved in all electronic
communications between different nodes. How

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 5 Internal structure of a system

CUSTOMER VENDOR HIGH-LEVEL HIGH-LEVEL
APPLICATION APPLICATION SERVICE MANAGER
PROGRAM PROGRAM PROGRAM PROGRAM
T —— |
CPls CMA / XOM XDS / XOM
CONTROL POINT TCP/IP SMAE MIB OTHER DIRECTORY USER
SERVICES STACK SERVICES SERVICES AGENT (DUA)
SNA osl miB DIRECTORY SERVICE
STACK STACK DATA AGENT (DSA}
F Y
l LSt J

ELECTRONIC
COMMUNICATIONS
MEDIA

MAGNETIC
MEDIA

different stacks can be integrated in the same
node is explained in Reference 5.

Between the enterprise-oriented applications and
the distributed services is a set of interfaces. As
shown in Figure 5, there is at least one interface
for each service, but that need not be the way
interfaces are implemented. The more services
are accessed through a common interface, the

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

better the coherence and consistency is likely to
be. Notice that the top of each interface is
stepped. The steps represent different levels of
generality. The highest level of each interface
(represented by a heavier line) supports DNs and
is expected to be as system-independent as pos-
sible. The lower steps represent less-generic,
more-efficient interfaces that tend to vary from
system to system.

ZATTI ET AL 373

In general, either enterprise-oriented applications
or service programs can use any level of inter-
face, but normally customers write most of their
enterprise-oriented applications to the high-level
DN-supporting interfaces. For reasons of effi-
ciency the services will often call each other using
the lower-level interfaces.

Scenarios. The following sections illustrate how
various end-user, management, and operations
activities are performed within and between the
various system components, using DNs to name
objects on which the operations are performed.
Numbered steps are used in the figures to depict
the sequence of events, and correspond to la-
belled explanations in the accompanying text. In
the figures, arrowheads indicate the direction of
the caller/callee relationship, while merging an
outgoing and an incoming arrow into one line in-
dicates a call and the subsequent reply. The icons
with their various shadings indicate the DNs or
addresses that are being passed and returned.

Setting up an association. This example, shown
in eight steps, illustrates the interactions between
communication services and directory services
that allow identification of remote destinations
via DNs, through a high-level Common Program-
ming Interface (CPI). (See Figure 6.)

1. The DN of the application with which the as-
sociation is to be established is entered (or se-
lected) by the end user in a visually-oriented
form. The presentation services support that
converts this visually-oriented form into the
standard internal form is expected to be pro-
vided by the system. The user does not see any
other form of name for that destination.

2. Customer application code then issues a call to
the high-level Common Programming Inter-
face for the integrated communication serv-
ices requesting that an association be made
with the specified remote application.

3. Somewhere below the CPI boundary a piece of
control code builds and issues a directory
query requesting the address attribute for the
application named by the DN.

4. The DUA passes the request to the local DSA,
and in this example, finds the entry locally and
returns the requested address to the requester
(it can be an SNA address, OSI address, or
whatever else, but in a form that the destina-
tion system supports).

374 zATT ET AL

5. The interface code then builds a protocol-spe-
cific call (SNA LU 6.2, OSI ACSE, or whatever is
available), which is routed to the appropriate
communication subsystem in order to set up
an association with the destination applica-
tion. Although DNs are not required to identify
the partners in the actual communication pro-
tocol, management policies may require that
both ends be aware of each other’s DNs, so that
accounting records and any exception report-
ing are properly identified. Therefore, at least
one DN must flow in the protocol during the
association setup.

6. Communications services at the target end set
up the appropriate control blocks and pass a
handle to the partner application program
(step 8). The association requires that at least
one, and probably several, managed object in-
stances be created in the Management Infor-
mation Base (MIB) at both ends to represent it
for management and operations purposes. Ac-
cordingly, this step introduces the required in-
formation into its local MIB and then responds
to the requesting node.

7. The requesting node inserts both DNs and han-
dles into its MIB and returns a handle to the
requesting application.

8. Control is returned to the requesting applica-
tion as the handle is passed to it, and the ap-
plication can use the association identified by
that handle for further communication.

Opening a remote file. The next example, shown
in nine steps, illustrates the interactions between
communications, directory, and file services to
allow transparent file naming and file server lo-
cation (Figure 7). Both the file server and the DSA
containing its entry are remote in this case.

1. A user application program issues a file system
call, FOPEN(CO=US/IntOrg=IBM/LOC=
PA/DIR=2a/DIR=b/FILE=c), identifying the
file with a DN in internal form (a data structure
in a high-level language like C, such as defined
in the X/Open** interface for directory access,
XDs™).

2. The file server does not have the file locally,
nor is it aware of the structure of the file space;
it must then locate another file server that has
the file, using a directory call. Therefore, it
issues a DS_Read(filename) to its locally avail-
able DUA.

3. The DUA accesses a remote DSA via a directory
association (via the available communication

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 6 Setting up an association for a customer application

_ CUSTOMER
APBLICATION
* PROGRAM

SMAE MIB OTHER DIRECTORY USER
SERVICES || SERVICES AGENT (DUA)
A 4
l‘_‘l:l DIRECTORY SERVICE
AGENT (DSA)
8
A
| "L
6

DISTINGUISHED NAME (DN)
IN VISUAL DISPLAY / ENTRY FORMAT

! DN IN INTERNAL INTERNALLY FORMATTED DN IN
CALL FORMAT COMMUNICATIONS CALL/RETURN

ADDRESS OR HANDLE
INTERNALLY FORMATTED ADDRESS/HANDLE
IN INTERNAL CALL FORMAT D IN COMMUNICATIONS CALL/RETURN

zaTT €T AL 375

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 7 A file system example

CO=US/ORG=IBM/LOC=PA/DIR=a/DIR=b/FILE=c

COMMUNICATIONS FILE DSA
SERVICES SERVICES
NODE CONTAINING DIRECTORY ENTRY l Ne NODE CONTAINING FILE I N3

ﬁ ﬂ 2 A ﬁ ﬁ v A

ADDRESS OR HANDLE

F DISTINGUISHED NAME (DN)
IN INTERNAL CALL FORMAT

/

KIl' N INTERNAL GALL FORMAT
BER ENCODED DN IN

m LEFT PART OF DN COMMUNICATIONS CALL / RETURN

‘]j BER ENCODED ADDRESS OR HANDLE

m RIGHT PART OF DN
IN COMMUNICATIONS CALL / RETURN

376 ZATTI ET AL. IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

protocol, whether it be 0SI, SNA, or something
else).

4. The remote DSA is able to resolve, through a
partial match of the DN, the file name into that
of the file server managing the file, and its ad-
dress, which it returns to the calling DUA. (This
phase may actually require a number of direc-
tory calls.)

5. The DUA at the requesting node passes the in-
formation back to file services.

6. File services uses the address of the node con-
taining the file (N3) to send via communications
services to N3 an OPENfile request with
the unresolved part of the file’s DN (DIR=
a/DIR=b/FILE=C).

7. File services at N3 OPENSs the file and returns
a handle which can be used henceforth for
other operations, on the same file-system con-
nection.

8. File services at N1 returns the handle to the
application program.

9. The application program, which had been
waiting for control since step 1, now knows
that the file is open and has the handle for sub-
sequent operations. It neither knows nor cares
that the file resides at a different node.

Printing a file on the most appropriate printer.
This example illustrates, in twelve steps, the in-
teractions between communications, directory,
printing, and file services to allow printing of a file
on a particular printer, selected on the basis of
printer service features stored with the directory
(Figure 8). The file server is still remote, while the
DSA containing its entry is local in this case.

1. The user issues a command to print a par-
ticular file C=US/IntOrg=IBM/.. ./DIR=
a/DIR=b/FILE=c on the best of a named
group of printers where “best” corresponds
to a computable function according to some
metric.

2. Print services first calls file services, opening
the remote file via an FOPEN(filename) as in
example 2.

3-6. Same as example 2.

7. File services at N1 passes the handle to print
services just the way it would have passed it
to an application program.

8. Now that print services has the handle, and
knows where the file resides, it has to locate the
best printer. It calls directory services with
a DS_Read(CO=US/. . ./devName=Printers),
looking for service attributes of the printers of

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

a particular site. Here the name refers to a
whole group of printers, all the printers in a
particular location. In other cases, the group
name might define all printers in a domain that
possess a particular service attribute (e.g., their
ability to print in colors).

9. Directory services returns a list of all the
printers in the group, with several attributes
for each, one of which is the printer’s ad-
dress. In this case, directory services found
the data locally.

10. Print services determines that the “best”
printer is controlled by the other print serv-
ices at node N3 and sends the print request
there, specifying the handle and address of
the file.

11. Print services at N3 accepts responsibility for
the print request and returns an acknowledg-
ment to N1.

12. When the printer becomes available, print
services at N3 uses the handle and address
received in step 11 to set up a session with N2
and begin the process of retrieving the file
from N2 and printing it at N3.

Conclusion

Today’s trends toward interconnection of net-
works expose limitations and deficiencies of the
traditional identification schemes. Mechanisms
that are scalable to worldwide domains and can
still be understood, used, and managed by hu-
mans are required to identify the communicating
principals, authorize the use of shared or network
resources, and secure the information being ex-
changed. This connectivity and identification re-
quirement has been recognized by the standards
community and building blocks such as Distin-
guished Name, Object Identifier, and OSI address-
ing are being developed.

The challenge for standards bodies, govern-
ments, consortia, vendors, and large enterprises
is to quickly put in place a single global name tree
with the underlying registration and addressing
mechanisms that will simplify the administration
and management of this huge and complex net-
work that continues to grow as economics dictate
and the underlying technology evolves.

The solution described in this paper is based on
the use of the 0sI Distinguished Name and its
supporting registration and addressing mecha-
nisms. One of the most significant advantages of

ZATTI ET AL 377

Figure 8 A file system and printer example

CO=US/ORG=IBM/LOC=PA/DiRea/DIR=b/FILE=c

CUSTOMER i

APPLICATION

[re=———————

CO=US/ORG=IBM/LOC=PA/devName=Printers

K Postscript=yes/pels>=300

- PROGRAM -

FILE PRINT DSA
g;?mgﬁgl SERVICES SERVICES
SERVICES
_—P
NODE CONTAINING THE FILE l N2 NODE CONTROLLING THE PRINTER I N3
| —_—y A) * \ﬁ v iy J &

Lo

DISTINGUISHED NAME (DN)
IN INTERNAL CALL FORMAT

m LEFT PART OF DN

[E RIGHT PART OF DN

BER ENCODED DN IN

STRING OF ATTRIBUTE VALUE
COMMUNICATIONS CALL / RETURN

ASSERTIONS (AVAs)

ADDRESS OR HANDLE
IN INTERNAL CALL FORMAT

ol
0

BER ENCODED ADDRESS OR HANDLE
IN COMMUNICATIONS CALL / RETURN

378 zatmi ET AL

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

the os1 Distinguished Name and the supporting
X.500 directory is that it will allow easy and non-
disruptive migration and coexistence with exist-
ing naming, registration, and addressing mecha-
nisms including SNA.

Acknowledgments

Roger Cheung, Mike Gering, Jim Gray, Phil Jan-
son, Vlad Klicnick, Lucille Lee, and Liba Svo-
bodova have greatly improved the quality and
readability of the paper with their technical com-
ments. John Hunter has provided invaluable sup-
port and encouragement.

**Trademark or registered trademark of UNIX Systems Lab-
oratories, Inc., or X/Open Co., Ltd.

Cited references and notes

1. B. M. Hauzeur, “A Mode! for Naming, Addressing, and
Routing,” ACM Transactions on Office Information Sys-
tems 4, No. 4, 293-311 (October 1986).

2. D. Comer and L. Peterson, “Understanding Naming in
Distributed Systems,” Distributed Computing 3, 51-60
(1989).

3. A. Birrel, R. Levin, R. Needham, and M. Schroeder,
“Grapevine: An Exercise in Distributed Computing,”
CACM 25, No. 4, 260-274 (April 1982).

4. D. Oppen and Y. Dalal, “The Clearinghouse: A Decen-
tralized Agent for Locating Named Objects in a Distrib-
uted Environment,” ACM TOIS 1, No. 3, 230-253 (July
1983).

5. P. Janson, R. Molva, and S. Zatti, “Architectural Direc-
tions for Opening IBM Networks: The Case of OSI,”” IBM
Systems Journal 31, No. 2, 313-335 (1992, this issue).

6. Information Processing Systems, Open Systems Inter-
connection, Basic Reference Model, Part 3: Naming and
Addressing, 1SO 7498-3, International Organization for
Standardization, Geneva (1987).

7. Information Processing Systems, Open Systems Inter-
connection, Service Definition for the Association Con-
trol Service Element, ISO 8649, International Organiza-
tion for Standardization, Geneva (1988).

8. CCITT X.500-X.521, The Directory, 1SO 9594 1-8, Inter-
national Organization for Standardization, Geneva (1989).

9. Information Processing Systems, Open Systems Inter-
connection, Common Management Information Proto-
col, 1SO 9596, International Organization for Standardi-
zation, Geneva (1990).

10. CCITT X.400 Message Handling Systems: Information
Processing Systems, Text Communications, MOTIS, 1SO
10021, International Organization for Standardization,
Geneva (1988).

11. S.Kille, “X.500 and Domains,” RFC 1279, SRI Network
Information Center (December 1991).

12. Information Processing Systems, Open Systems Inter-
connection, Specification of Abstract Syntax Notation
One (ASN.1), 1SO 8824, International Organization for
Standardization, Geneva (1987).

13. Information Processing Systems, Open Systems Inter-
connection, Procedures for the Operation of OSI Regis-

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

tration Authorities, 1SO 9834, International Organization
for Standardization, Geneva (1990).

14. In an X.500 DN, each RDN can contain multiple AVAs,
i.e., an entry can have more than one distinguished at-
tribute. Some other standards (e.g., OSI network man-
agement) make use of DNs as well, but limit RDNSs to one
single AVA; if multiple-AVA DNs were specified to a
management service, they would be rejected. Therefore,
in some cases, multiple-AVA RDNs can generate prob-
lems in standards interoperability.

15. W. Tuvell, “Proposal for Global Typed Name Syntax,”
Open Software Foundation, Cambridge, MA (1991).

16. For several years the electronic mail community has used
a different visual syntax (with “;” as separator) to repre-
sent X.400 Originator/Recipient (O/R) names, which have
then been folded into DNs. No effort is apparent at the
moment for unifying these syntaxes.

17. C. P. Ballard, L. Farfara, and B. J. Heldke, “Managing
Changes in SNA Networks,” IBM Systems Journal 28,
No. 2, 260-272 (1989).

18. The visual syntax used here to represent Ols on paper is
purely arbitrary.

19. Data Interchange, Structure for the ldentification of
Organizations, 1ISO 6523, International Organization for
Standardization, Geneva (1984).

20. Information Processing Systems, Open Systems Inter-
connection, File Transfer, Access, and Management,
1SO 8571, International Organization for Standardization,
Geneva (1987).

21. Information Processing Systems, Open Systems Inter-
connection, Specification of Basic Encoding Rules for
Abstract Syntax Notation One (ASN.1), 1SO 8825, Inter-
national Organization for Standardization, Geneva
(1987).

22. S. Zatti, “Naming in OSI: Distinguished Names or Object
Identifiers?,” Proceedings of IEEE Compeuro 91, Bolo-
gna (1991), pp. 258-262.

23. MV'S and VM OSI/Communications Subsystem, Config-
uration and Administration Guide, Chapter 12, SL23-
0186-00, IBM Corporation (March 1990); available
through IBM branch offices.

24. XDS Interface, X/Open Company Ltd., Order Nr. XO/
Prelim/90/030 (1990).

Accepted for publication January 21, 1992.

Stefano Zatti /BM Research Division, Zurich Research
Laboratory, CH-8803 Rueschlikon, Switzerland. Mr. Zatti
joined IBM as a research staff member in 1985 and has since
been operating in the area of application services for commu-
nications, with particular interest in naming, addressing, and
directory services. In 1989-1990, he was on international as-
signment with the IBM West Coast programming laboratory
in Palo Alto, California, where he was responsible for the
architecture of IBM directory services for the OSI product
line. Mr. Zatti received the Laurea in mathematics (cum
laude) from the University of Pavia, Italy, in 1980, and the
M.S. degree in computer science from the University of Cal-
ifornia, Berkeley, in 1985. His research interests include op-
erating systems, distributed systems, network security, and
computer communication. He is a member of the IEEE Com-
puter Society and a Senior Member of IEEE.

ZATTI ET AL 379

James C. Ashfield /BM Networking Systems, 200 Silicon
Drive, P.O. Box 12195, Research Triangle Park, North Caro-
lina 27709. Mr. Ashfield is a senior scientist/engineer. He
joined IBM in 1961 and held a variety of positions in marketing
for IBM Canada, Americas/Far East, and World Trade. In
1981 he transferred to architecture development. Mr. Ashfield
holds a B.Eng. (electrical) from McGill University and an
M.B.A. from the University of Western Ontario.

James Baker IBM Networking Systems, 200 Silicon Drive,
P.O. Box 12195, Research Triangle Park, North Carolina
27709. Mr. Baker joined IBM at the Federal Systems Division,
in Bethesda, Maryland, with initial assignments in software
development under contract to various federal agencies.
Later, in Poughkeepsie, Mr. Baker worked in various assign-
ments planning and designing transportation-industry-ori-
ented products. Mr. Baker has worked on communications
systems projects since 1979 in Raleigh, including development
of NCP software and performance analysis on OSI products.
He has also worked on the development and use of SNAP-
SHOT in capacity planning for customers’ network studies.
Mr. Baker received a bachelor’s degree in mathematics from
the University of Delaware, a master’s degree in operations
research from American University, and attended IBM Sys-
tems Research Institute in 1971. He is currently an advisory
programmer in communications standards development,
working on upper layer issues in OSI.

Ellis L. Miller IBM Networking Systems, 200 Silicon Drive,
P.O. Box 12195, Research Triangle Park, North Carolina
27709. Mr. Miller joined IBM in 1964 at Huntsville, Alabama,
as a member of the FSD team responsible for the develop-
ment, assembly, and test of the NASA Saturn Apollo Launch
Vehicle Instrument (IU). During this time he participated in
the testing and launch operations of the guidance and control
system of the Saturn Apollo Launch Vehicle. He later worked
on diverse FSD projects including performance monitoring
systems for diesel electric locomotives and in the moderniza-
tion of the B52 bombing and navigation systems for which he
received an IBM Outstanding Contribution Award. In 1978,
he joined the SNA architecture group where he received IBM
Invention and Outstanding Contribution Awards for his work
on SNA network interconnection. Mr. Miller is currently
technical staff to John Hunter, Director of Architecture and
Telecommunication, with multivendor connectivity and OSI
as one of his major areas of interest.

Reprint Order No. G321-5478.

380 zaTn ET AL IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

