
Naming and  registration 
for IBM distributed 
systems 

by S. Zatti 
J. Ashfield 
J. Baker 
E. Miller 

Today’s trends  toward  interconnection  of 
networks  expose  limitations  and  deficiencies  of 
traditional identification schemes.  The  need 
arises  for  a uniform naming solution that  can 
accommodate the size  and  heterogeneity  of 
worldwide  domains,  while still remaining 
understandable,  usable,  and  manageable  by 
human  users. 

This paper  describes  a  proposal to name objects 
and  resources in distributed environments;  each 
object  or  resource  can be  located,  accessed, 
communicated  with,  operated  on,  managed,  or 
secured using the same, unique name.  The 
solution proposed  here  includes  registration 
mechanisms  necessary to ensure name 
uniqueness.  The  scheme is based on  existing 
standards,  mainly  Open  Systems  Interconnection 
(OS0 Distinguished Names;  whenever  standards 
disagree, the  preference  goes to the  alternative 
that offers  the  widest  usage  across all protocols. 
Clear, consistent  naming  guidelines are given 
that  would enable  ISM  customers  who  have 
purchased IBM networking and  system 
management products to name their  resources 
so that  their  administrative  processes and IBMs 
products and protocols can  support  those 
resources  effectively. A method is suggested to 
encompass existing name  spaces in a  single, 
worldwide  naming space,  and a  migration  path is 
sketched.  The  interoperation  of  different 
protocols across  network  boundaries using the 
same  naming constructs is shown by  means  of 
several  scenarios. The naming  and  addressing 
scheme  proposed  here  requires  nothing  new  or 
different from the  already  defined  standards,  but 
allows  interoperation among  them by  using  a 
subset  of  each. 
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T he  networking world of computer  systems  is 
becoming increasingly complex: networks 

grow in size, new ones  are  introduced,  existing 
ones  are  interconnected or merged. When many 
networks  were originally installed, user friendli- 
ness  and scalability features  were  not  major  con- 
cerns.  Objects in these  networks (e.g., resources, 
applications, or devices)  were named according 
to different proprietary  schemes.  Since  network 
interconnections were limited, incompatibilities 
between  proprietary naming schemes  were not a 
significant problem. But  today  the  existing nam- 
ing spaces,  often limited to specific sizes  and 
scopes,  are  unable  to  cope with the  growth  and 
the  increase of user  needs.  The  need  for  inter- 
connection  and  interoperation  is  no longer satis- 
fied by proprietary  solutions,  but  calls for coop- 
erative  efforts  and a high degree of compatibility. 
The incompatibility and limitations of existing 
naming spaces  are becoming a stumbling block to 
information exchange  and  cooperative  process- 
ing  in a global multivendor  environment. IBM is 
facing this challenge, magnified by  the sheer num- 
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ber and diversity of its  own  network  products. 
Standards  bodies and manufacturers’  consortia 
are addressing the problem as well, developing 
solutions for integrated naming schemes. 

The proposal 

This paper proposes  a uniform, standards-based 
solution to  the naming problem in a widely dis- 
tributed computing environment.  After defining 
the  terms  and  stating  the  requirements for names 
used within a global network (similar to the  one 
IBM networking solutions  are reaching), two  stan- 
dard identification schemes  for  objects in an  open 
network, Distinguished Names and Object Iden- 
tifiers, are reviewed in some detail. Their rela- 
tionship is investigated and trade-offs between 
them  are analyzed. Next,  a solution for global 
identification based on Distinguished Names is 
presented,  together  with  operational guidelines 
that would allow IBM customers to build uniform 
name spaces  that could be progressively inter- 
connected  with each other  to  cover  a  wide range 
of networks.  This naming solution is  consistent 
with existing standards, while at the  same time 
providing additional value  by allowing the  same 
name of a given object  to  be used in different 
protocols for different purposes. Finally, some 
examples are  presented  that  show how the pro- 
posed names  can  be effectively used in complex 
internetwork and interprotocol  situations. 

Terminology. The  word name has a wide range of 
meanings. We use it here to mean any identifier 
used by humans to refer to objects  that  they  seek, 
wish to have  access  to,  or communicate with; in 
other  words,  a name conveys  a  sense of “what” 
we  are talking about. When names of this kind are 
used in computer  systems,  they become a major 
element of the human-machine interface. In  the 
computer  world, names are strings of characters 
“bound”  by  some mechanism to  a  particular  ob- 
ject  or  class of objects. To human users,  the bind- 
ing is often intuitively obvious from the  context of 
use; e.g., a human expects  “San  Francisco”  to 
mean the  city in California. In  computer  systems, 
the binding explicitly associates  attributes of the 
named entity  with  the name in some  data  record, 
such as a  directory  entry. Typically, one of those 
attributes is an address for the named entity. 

Several levels of addressing may be hidden be- 
hind a name, each  supported  by  a particular func- 
tion. Addresses  are normally not seen  by human 
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users,  but in case  they  have to be,  they  can  be 
considered names. An address  conveys  a  sense of 
“where.” Depending on the  perspective,  what  is 
at  one time treated as a name may at  another time 
be regarded as an address.  This definition elimi- 
nates  the classical name-address duality that  has 
generated much confusion in the past. 

A route  is  a  sequence of addresses or explicit 
directional instructions  (such as go  north,  take 
link 7) leading from a particular location to a 
named object.  A  route specifies “how  to get there 
from here.” 

This  view  is  consistent  with  the  one  expressed  by 
Hauzeur.’ General concepts of naming and ad- 
dressing are formally introduced and elegantly re- 
lated to  one  another by Comer and Peterson.* 

Requirements. In a naming scheme for a globally 
interconnected  network,  the following features 
are desirable: 

It should beglobal, i.e., users all over  the globe 
can  use  the  same name to identify a given ob- 
ject,  independent of the location from which the 
name is referenced or where  the named object 
resides. Context-dependent or local abbrevia- 
tions (nicknames) may be usefully devised at 
the margins of the naming scheme, but they 
should not be part of the global naming scheme. 
It should be uniform,  i.e., users  must  perceive 
they  are dealing with  the  same  object indepen- 
dent of the  protocol or the  operation applied on 
the  object.  (At  present,  the  same  objects  some- 
times get different names depending on  what 
classes of operations  are applied to them, and 
this is not satisfactory; for example, a particular 
printer may be referred to with one name when 
printing a file, with  another  name  when  check- 
ing if a  particular  job  is finished, and with yet 
another  one  when querying about  the level of 
the toner.) 
It should beflexible, Le., not mandate  any  par- 
ticular syntax  or  character  representation, in 
such  a  way  that existing practices,  cultures, and 
naming schemes  can  be easily encompassed by 
the global scheme. 
It should be  open-ended, Le., able to accom- 
modate growth and change according  to  prac- 
tical needs. Past experience in the  Grapevine 
and Clearinghouse systems at Xerox  shows  that 
naming schemes always outgrew their limits 
both in size and number of name components. 3,4 
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The need  for  a  new definition procedure for 
names  arose  whenever existing networks  were 
merged and  the  administrators did not  want  to 
rename all existing objects. So the means to 
achieve  scalability is to avoid limiting the num- 
ber of components in a naming scheme. 
It should be conformant, i.e., comply  with  at 
least the minimum requirements  common  to all 
the  various  standard  protocols in which it might 
be  expected  to  be used. 

In  addition, it must  be possible to organize nam- 
ing responsibilities as decentralized, so that  each 
organization level can  be entitled to  name  its own 
objects. When the  administrative  requirements 
are combined with the quantity of names in- 
volved, any solutions  based  upon flat name 
spaces  must  be eliminated, and  names  must  be 
structured.  This  conclusion  has  been  generally 
accepted in the industry and reflected by  the rel- 
evant  standards. The remaining questions  are: (1) 
what  form or forms of name  structure should be 
used, (2) if multiple forms are  accepted,  where 
should the  various  forms  be  employed,  and (3) 
how should they  be related to  one another. 

The next  section  reviews  the  mechanisms defined 
in international  standards for identification and 
clarifies their relationship. The identification and 
directory  mechanisms of Systems  Network  Ar- 
chitecture (SNA), and  their  relationships with both 
the Open Systems  Interconnection (OSI) Refer- 
ence Model and  the OSI naming and  directory 
mechanisms,  are reviewed and dealt with in depth 
in Reference 5 .  

Distinguished  Names,  Object  Identifiers,  and 
their  relationship 

The importance of identifying network  objects 
was recognized at an early  developmental  stage of 
the OSI standards  by  the  international  standards 
organization: The basic  reference  model itself, in 
addendum  number 3 on naming and  addressing, 
introduces  the  concept of Application Entity  Title 
(AET), a high-level identifier allowing users (hu- 
mans  or applications) to  denote a specific Appli- 
cation  Entity (AE), the  component of an applica- 
tion that  performs  communication  functions. An 
AET needs  to  be mapped by an application layer 
directory  into lower-level addressing informa- 
tion, which is  then used by  the  Association  Con- 
trol  Service  Element (ACSE) to establish  associ- 
a t i o w 7  Neither  the  addendum  to  the  reference 
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model nor  the ACSE standard,  however, specify 
what  the  syntax of this  parameter should be. In 
general, the problem of devising a uniform nam- 
ing scheme to identify any kind of object within 
OSI and in global internetworks  was still to  be 
addressed. 

Catering to this  clear  and urgent requirement, 
specific naming efforts have  been  undertaken by 
individual standards.  In  particular,  the  joint  In- 

The importance of identifying 
network objects was recognized 
at an early  developmental stage 

of the OS1 standards. 

ternational Organization for  Standardization- 
Consultative  Committee  on  International  Tele- 
graph  and  Telephone (ISO-CCITT) x.500 directory 
has defined Distinguished Names (DN) within a 
general scheme for naming in OSI. The X.500 di- 
rectory  service, in its  role of name sewer, is  ex- 
plicitly designed to perform the mapping of such 
high-level names  into lower-level presentation 
addresses.  The  same  directory  can  be used in a 
more  general-purpose  manner to  store informa- 
tion of any kind (in the form of attributes) about 
the  objects identified by DN. The  scope of DN is 
thus  broader  than  that of the  name-to-address 
mapping service specified by the  reference 
model, since the  directory  supports  not  only  ap- 
plication entities,  but  a  variety of objects (it is 
more  than just a name server). The  standard in- 
troduces  a  number of classes  to which  objects in 
an  open  system belong, defines the  attributes  an 
object of a given class  can  have,  and specifies a 
technique to name instances of such  objects  and 
a mechanism to  support  them.8 

The information framework of the  directory  is 
open-ended,  and is not  necessarily confined to 
objects of the  classes specified in the standard 
document.  Other  standards,  vendors,  or  users 



can add new classes of objects to the  directory, 
with  any  attributes,  and  can  either publish them 
with an appropriate registration procedure  (the 
classes will be shareable), or keep  them confi- 
dential for exclusive  proprietary usage. Other 

This paper  concentrates on the 
schemes  that  can  be  used in any 
standard  protocol  supporting the 

named object. 

standards  have  also  embraced  the notion of DN, in 
particular OS1 management9  and X.400/MOTIS’o (in 
the 1988 version).  In addition, several  schemes 
have  been  proposed to take  advantage of DN in de 
facto  standard communities, such as Internet. l1  

In an almost simultaneous  but  unrelated effort, 
the Registration Authority  standard  has devel- 
oped an identification scheme based on Object 
Identifiers (01), defined in the  Abstract  Syntax 
Notation One standard, l2 to  address  certain nam- 
ing and registration requirements. l3 The  next two 
sections review, respectively, the  concepts of DN 
and 01. 

Naming: Distinguished Names and the DN tree. We 
now discuss DNs and show how to organize them 
into  a  tree  structure.  The  syntax of the DN is 
defined by the x.500 standard. However, the mean- 
ing of the DN and its usage are defined  in a nonco- 
ordinated fashion by several other standards and 
manufacturers’ consortia, in  slightly  different and 
subtly incompatible ways. This paper concentrates 
on the schemes that can be used  in any standard 
protocol supporting the named object-in other 
words, on the lowest common denominator DN. 

An entry in the X.500 directory is a  data  structure 
storing  a set of attributes of an object, which is an 
instance of a specific object class. Each  attribute 
in an entry  is  composed of an attribute  type and 
one  or  more  values. 
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All entries  can  be organized hierarchically in a 
global tree, referred to  as  the Directory Informa- 
tion Tree (DIT), reflecting the administrative hi- 
erarchies of the real world. The naming approach 
of the  directory  binds  the  names of the  entries to 
the  structure of the  tree. One or more of the  en- 
try’s attributes  can be tagged as Distinguished, 
and used to identify the  entry and the  correspond- 
ing object in the following way: An Attribute 
Value Assertion (AVA) is  an  attribute-type  value 
pair, asserting  that  the  entry  contains  a distin- 
guished attribute of that particular type having 
that particular value. The Relative Distinguished 
Name (RDN) of an entry is a set of AVAs (each of 
which is true)  concerning all the distinguished at- 
tributes of such  an  entry. l4 The DN of an entry is 
the  ordered  sequence of all the RDNS of the  entries 
starting from the  root of the  tree down to the entry 
itself. Consequently, an entry’s DN is made up of 
its superior’s DN concatenated  with  the entry’s 
RDN. 

Each  directory  entry is managed by a particular 
Directory  System Agent (DSA), an application 
process communicating with peers  by means of a 
standardized application-layer protocol called Di- 
rectory  System Protocol (DSP). Each DSA is re- 
sponsible for the administration of a particular 
portion of the DIT and stores  the  entries of all the 
objects  contained in that portion. DSAS are bound 
to each  other in a hierarchical structure  that mir- 
rors  the DIT portions  they  are responsible for and 
their relationships, the Knowledge Information 
Tree. Users have  access to the  directory  via  a 
service  interface provided by  a  user  stub called 
Directory  User Agent (DUA), running locally on 
their machine. The DUA requests  the  services 
from the DSA by  means of another  standardized 
application-layer protocol,  the  Directory  Access 
Protocol (DAP). When a DSA is  queried  about  a 
particular  object, it is given the  name of the object 
as argument to  the  query. If the  object is con- 
tained in the domain covered  by  the DSA, the in- 
formation is  retrieved and returned to the caller. 
If the  object is not local, the DSA must locate  the 
other DSA where  the  object  is  contained.  It starts 
therefore  a “navigation” procedure, passing the 
initial request to another DSA. Which DSA will be 
contacted  next  depends  on  the  structure of the 
naming space, and can  be  derived directly from 
the name of the  requested object and  the knowl- 
edge information possessed by  each DSA. The ul- 
timate purpose of name navigation is to resolve 
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the given DN into  the  address of the particular DSA 
that  contains  the  directory  entry  for  that  object, 
Le., its  attributes. 

The following examples  show  a  number of DNS, 
each  consisting of a  sequence of RDNs, separated 
by  the “/” symbol. (For simplicity, in  all our  ex- 
amples RDNS are composed of a single AVA.) 

Some  sample Distinguished Names: 

. . . . . . . . . . . . . . . . . . . . . . . .  
* The  various  standards define how DNS should * 
* be encoded in their  protocols.  However,  there * 
* is  as  yet  no  standard visual  syntax  for  repre- * 
* senting DNs on paper or displaying them on * 
* screens.  Nor,  based  upon  the  intensity with * 
* which conflicting recommendations are being * 
* advanced, should we  expect  a  consensus  to * 
* emerge  for  some time. In the following exam- * 
* ples, we  show  various DNs using a  visual  syn- * 
* tax loosely similar to  the  one being proposed * 
* for  the  Distributed Computing Environment * 
* of the  Open  Software  Foundation, which is * 
* strongly influenced by  the graphic  conven- * 
* tions of the UNIX** world. l6 * 
. . . . . . . . . . . . . . . . . . . . . . . .  

People 

IntOrg=GM/OU=CHEV/OU=ENG/CN= 
J.C.Smith I11 
C=US/NatOrg=ABC/OU=SALES/OU= 
NYC/CN=Gino Bartali 

Places 

C=US/NatOreABC/NET=SALES/SYSID= 
ATLVMl 
IntOrg=XYCO/NET=SE/SYSID=RAL 

Things 

C=CA/NatOrg=BELL/APPbONLINE/FILE= 
PRICES 
IntOrg=XYCO/NET=SE/SYSID= 
RAL/DEVICE=DISKl 

A major difference between DNs and  other  exist- 
ing structured  names is that DN components  con- 
tain explicitly the types, as in C=US, whereas  the 
components of some  other  existing  structured 
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names, like the  Internet domain names, consist of 
a single value,  such as GOV or EDU. The  attribute 
type,  registered  with  the  attribute definition, iden- 
tifies the  syntax  and  semantics of the  value  space 
from  which  the  value was selected.  (The less-ob- 

A major difference between DNs 
and  other existing structured 

names is that DN components 
contain explicitly the  types. 

vious meanings of the  attribute  types  appearing in 
the  examples of this  section  are  discussed as  the 
examples are explained in the text.) Graphic  sets, 
code-point  assignments, and any special  match- 
ing rules (e.g., causing  “Smith”  and “SMITH” to 
match as equal) are part of the  value  space defi- 
nition. When a DN is received,  these definitions 
are implied; the receiving system is expected to 
know how to honor  them.  However,  rules  and 
conventions  do not flow with the DN, or appear in 
its visual syntax;  they  must be predefined to com- 
puter  systems  that need to honor them. A human 
user can guess reasonably well what matching rule 
to use, e.g., case-ignore. For RDNs with no special 
matching rules, a human user can perform the 
match by a purely graphic comparison and com- 
puter programs by  a single compare instruction. 

Each  component  must  be unique only within the 
scope of the  component to its left (assuming  a 
left-to-right name parsing, with decreasing gen- 
erality). Each  component  must  be  associated with 
a naming authority  responsible  for administering 
the  component positioned immediately to its 
right. The rightmost component,  the  “leaf,”  iden- 
tifies a named object. If the rightmost component 
is dropped,  the  result will  itself be a  proper DN, 
which names  a different object. For example, if 
FILE=PRICES is dropped from C=CA/NatOrg= 
BELL/APPL=ONLINE/FILE=PRICES, the 
resulting DN, C=CA/NatOrg=BELL/APPL= 
ONLINE, identifies a particular application. 
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The leftmost components of a DN must always be 
either explicitly present, or inferable from the 
context.  The  uniqueness of the leftmost compo- 
nent is ensured  by ISO-CCITT registration tech- 
niques described later in the  section, Regis- 
tration: Object Identifiers and the 01 tree. 
This  means  that all DNs are rooted in IS0 regis- 
tries, and no matter how networks and name 
spaces  are  interconnected and rearranged,  there 
will be  no problems of name collisions. When 
the leftmost components  are implied by  the  con- 
text and the  sender  chooses to omit them, 
the result is called a partial DN; for example, 
. . ./OU = SALES/BO = NYC/CN = Gin0 Bartali, 
is sufficient and unambiguous within the  context 
C=US/NatOrg=ABC. 

All the DNS used can be arranged to form a global 
tree in which the leftmost RDNS descend from a 
single “root” and every RDN to the right descends 
from the RDN immediately to its left. If all the DNs 
in the  tree  were  represented  by  directory  entries, 
then the  enterprise DN tree would be  a DIT. In 
practice,  the DIT will contain only a  subset of the 
enterprise DNS; other  standards and implement- 
ers’ groups, in fact,  have decided to make use of 
the DN scheme to name their objects, without re- 
quiring that  entries for these  objects  be registered 
in the  directory.  This  is  the  case, for example, of 
many network management objects.  The relation- 
ship  between  such DNs and  those of objects hav- 
ing entries in the  directory is not specified by  any 
standard,  but is clarified  in the  section  on  the sin- 
gle-DN, multiobject solution. 

The DN tree could contain billions of DNs; Figure 
1 shows  a tiny fragment of the  tree.  Each AVA in 
an RDN is  represented  by  a  capsule from which a 
little subtree  descends.  The  capsule  contains  the 
alphanumeric identifier of the  attribute  type,  the 
thick line in the  subtree  represents  the equality 
relationship that is always asserted in RDN AVAs. 
The thick line branches  out to all the possible 
values  that  the AVA can contain. In  some  cases, 
a  star-shaped symbol is associated with the  trunk 
of the little subtree.  This  indicates  that  compar- 
ison and ordering rules beyond simple binary op- 
erations  are required, as specified by  the  standard 
identified within the symbol. For example, one of 
the sample DNS begins with: C=US/NatOrg= 
ABC/OU=SALES/. . . This  means  that  the global 
DN tree must include a leftmost RDN space iden- 
tified by  the  type “C” (short for country)  that 

358 Z A ~ I  ET AL. 

contains, among others,  a  value  “US” (alphabet- 
ic code for United  States of America). The global 
DN tree  shows this RDN immediately below and to 
the right of the root. Its capsule  contains  the “C” 

There is no current IS0 registry 
for international organizations, 

but the need is recognized. 

for country, and descending from it is the list of 
the  two-character  country  codes.  The Ds-labeled 
star-shape  indicates  that  the  values for this type 
of RDN conform to  a predefined syntax registered 
with the  directory  services  standard, dictating 
what kind of entries  can be added and how com- 
parisons should be made. In  the  particular  case of 
countries, for example, the naming value is lim- 
ited to the  two-character,  case-insensitive  coun- 
try  codes defined by ISO 3166. 

The  second RDN in the DN, C=US/NatOrg= 
ABC/OU=SALES/. . ., identifies the ABC corpo- 
ration within some register for national organiza- 
tions  that is able, through an appropriate regis- 
tration  procedure, to ensure name uniqueness. 
Note  that  there is also an ABC corporation as a 
national organization in Canada; as far as naming 
is concerned, it must  be  considered  a different 
corporation. In other  words,  the  NatOrg=. . . 
RDN is unique only within a  country and can  only 
occur after a  country RDN. 

Leftmost RDNS do not have to necessarily identify 
a  country:  the  “IntOrg”  attribute identifies a hy- 
pothetical worldwide registry for international or- 
ganizations that  are  not primarily associated  with 
a single country.  Such organizations might  find  it 
convenient to get from one registry an identifier 
that  has  no  connotation of country.  Otherwise, 
the organization would either  have to choose  a 
particular country RDN for the name of each inter- 
national object it administers (and thereby risk of- 
fending people of other countries) or have multiple 
names for the same object (which complicates man- 
agement). Currently there is no ISO registry for in- 
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Fiaure 1 An extract  from the global DN tree 
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ternational organizations, but the need for such a 
registry is recognized, and while an ISO registry 
would be preferred, if necessary, vendor-adminis- 

The attribute-type and value  pair 
structure of the RDN is flexible. 

tered registries could be enhanced to help interna- 
tional organizations to  create country-independent 
DNs. The I s0  registration standards and IBM’s use of 
them is described in a following section, Registra- 
tion: Object Identifiers and the 01 tree. 

The  portion of the global naming tree  closest to 
the  root  tends to  be fully specified by international 
organizations,  such as IS0 and CCITT, reflecting 
the political and administrative  structure of the 
world. Within specific countries, naming respon- 
sibility will be delegated to specific organizations, 
who will build their portion of the  tree  according 
to their own policies. Other  organizations,  such 
as industry  groups  and  vendors, including IBM, 
will provide  certain  registry  services as well. Mid- 
portions of RDNs tend  to  be  less rigidly defined, 
their meaning depending  entirely upon their po- 
sition in the DN subtree of a specific enterprise. 
For example, in the DN, IntOrg=GM/OU= 
CHEVY/OU=ENG/CN=J.C.Smith 111, one ou 
(organizational  unit) RDN is qualified by another. 
It is the middle portion of the DN tree  where  the 
enterprise DN designer has  the  greatest  scope, 
since  the  root  part  is largely defined by  standards, 
and  the leaf part  is  often defined by  vendors  and 
customers. 

In  some  cases,  the  shapes of the rightmost 
portions of DNs can  be predefined into archi- 
tected subtrees, used by  services  that  depend 
upon  the  presence of certain information in the 
DN of the  object being referenced.  For  example, 
in the DN, IntOrg = XYCO/NET = SE/SYSID = 
RALDATA = PROGlS/CHANGE = FIX(5.1.3), 
the RDN CHANGE = FIX(5.1.3) is architected 
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by IBM; IBM’s change management service” 
will recognize  its  presence  and  use  the  value 
in its logic. Architected  subtrees  are  also 
used in DNs that are automatically  generated. 
For  example, . . ./MACAddr = 12345/LSAPId = 
12345/LSAPPairId = 12345/ThresholdControl = 5 
denotes  a  control  object  within  a pair of LSAPS 
(link-level service  access points), describing the 
state of a  particular  service  parameter. Millions of 
such LSAP pairs may exist in a k r g e  enterprise, 
automatically named and  monitored by network 
management agents. Similarly, some  standards 
specify leaf-portions Of DNs for  particular  objects, 
for example, Application Entity  Titles,  the DNS 
given to Application Entities,  always end with 
two Common Names (cN), an Application Pro- 
cess CN and an Application Entity CN. 

The  enterprise name administrators would exer- 
cise  their  freedom by designing the midportion of 
the DN subtree  administered by their  enterprise 
(possibly using RDNs such as  Location= 
SouthEast/LocalAreaNet=Atlanta, or  NatOrg= 
PacBell/OU=Billing), and grafting to it the  archi- 
tected or standard-defined  subtree. Management 
programs would generate  the DNS by automati- 
cally determining or assigning the  values of the 
RDNs in the  architected  subtree of management 
services  for  each of the millions of control  objects 
in the  network. Management services would also 
be  the  primary,  perhaps  the only, user of those 
DNs. In normal operations,  human  users would 
not  even need to  see them. 

In concluding this  section  on DNS, we can  thus 
summarize their advantages:  The  attribute-type 
and value pair structure of the RDN accomplishes 
a  potential utilization and flexibility unmatched 
by  other naming schemes,  supporting matching 
rules ranging from the  richest  variety of character 
sets  (very  important for natural language sup- 
port), to  the simplest,  most computer-efficient 
and culturally-neutral naming techniques. The 
presence of the  attribute  type, in particular, fa- 
cilitates  the parsing of a  name  and  the identifica- 
tion of its  components. DNs are globally unique, 
since  at  any given level the  uniqueness of the 
name component (RDN) at  that level is guaranteed 
by a naming authority;  they  are flexible, since the 
individual components  comply with specific syn- 
taxes  according to requirements specified by  the 
responsible naming authorities;  and  they are 
open-ended,  since  the  components  are  deter- 
mined level-by-level in a  decentralized fashion, at 
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any depth. They provide the flexibility and the 
ability to name any  entity  anywhere in the world, 
at  the  cost of having no definite limit on their 
length. As such,  they  satisfy  the naming require- 
ments  expressed in the introduction. 

Registration:  Object  Identifiers  and  the 01 tree. To 
understand DNS it is crucial to note  that name 
components  are assigned types; each AVA con- 
tains an attribute  type followed by  the  value. 
Types  are assigned within the  scope of each of the 
standards in which attributes and their syntaxes 
are defined, but  no  matter  where  they  are defined, 
they conform to the special syntax of Object Iden- 
tifiers. l8 01s are themselves sequences of integers 
representing  nodes of another global tree,  the reg- 
istration  authority  tree;  this  tree, different and un- 
related to the global DN tree, is designed to allow 
independent identification by registration author- 
ities (RA) throughout the world of the different 
standards  they  control and the object types  (but 
not  the  objects themselves) defined within those 
standards. Countries, organizations, standard 
bodies, postal, and telephone organizations, ap- 
pear as nodes in the 01 tree in their capacity of 
RAS; standard-administered registries of entities 
such  as  country names, and standard-identified, 
but privately administered registries for persons 
and common names, telephone numbers, etc., ap- 
pear in the 01 tree as well. New entries in the 01 
tree  can  be registered in a decentralized fashion 
according to specific procedures defined  in the 
ISO 9834 standard.” Tracing a  path down the 01 
tree uniquely generates  a  sequence of integers 
that comprise a particular 01. Figure 2 shows an 
example of a small fraction of the 01 tree. In this 
example, the 01 for the management services (MS) 
standard  is (29); in the  context of the  directory 
standard (2 5),  the 01 for the  “countryName7’  at- 
tribute  type is (2 5 4 6), which is what  the  attribute 
type “C” used in the examples really looks like. l8 

Just  as in object-oriented systems  the  concept of 
class of objects is distinct from that of instance of 
such an object  class,  the  concept of a  standard is 
distinct from that of instance of such  a  standard. 
Standards  are typically defined by RAS. As these 
introduce  a new standard  they define new classes 
of objects as part of that  standard. When custom- 
ers install implementations of that  standard, and 
populate their databases,  they  create  instances of 
objects of those classes. Moreover, in many 
cases, as systems and applications operate,  they 
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create and destroy object instances dynamically. 
At this point the identification of those object in- 
stances in the world does not depend on  the reg- 
istration of their object class definition, but on 
their administrative situation: an instance of an 
x.400 Message Transfer Agent (MTA), for exam- 
ple, may be located with  a particular company in 
some country,  whereas  the MTA as an abstract 
concept  was originally defined by ISO and C C I n  

The  uniqueness  property of DNs 
depends  upon registration and 

delegation. 

within the X.400 standard.  Such MTA instances are 
named by customer-administered DNs, whereas 
the definition of the concept of MTA is identified 
by  a registered 01. 

The  uniqueness  property of DNS depends upon 
registration and delegation. Each RA is given a 
number by  the higher-level RA that registered it. 
The  concatenation of these  numbers  forms an 01 
uniquely identifying the  authority within the 
world. Each RA in the  tree  has  the power to reg- 
ister  its own object classes and to delegate further 
the registration to  other lower-level authorities. 
IBM, in particular, has become an RA with ISO, 
with International  Code Designator 0018. As such, 
it is entitled to  create new 01 subtrees and to del- 
egate  authority  to new RAs. Also, as an issuing 
organization as described in ISO 6523, l9 IBM can 
register organizations and assign codes identify- 
ing them for data interchange. 

IBM is fulfilling its role as a registration authority 
by establishing a distributed registration structure 
under which its internal organizations are  able to 
generate and administer identifiers. The registra- 
tion mechanisms, when  properly followed, will 
eliminate the possibility of the  same identifier be- 
ing assigned to multiple objects. This means that 
IBM-registered identifiers can be used in any field 
conforming to the OSI definition of object identi- 
fier, both inside and outside IBM. Similarly, other 
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Figure 2 The 01 registration  tree 
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vendor- and customer-assigned identifiers can 
also  share  those fields with no possibility of col- 
lision. The registration procedures for reviewing 
new requests against existing assignments, and 
for publishing the registry, will tend to  reduce  the 
assignment of multiple identifiers to  the  same  ob- 
ject,  thereby improving the  extent to which two 
parties  can  share  object knowledge. 

In addition, IBM is fulfilling its role as an issuing 
organization by developing a coding system for 
Network  Service  Access  Points (NSAPS), which is 
based  on SNA Network Identifiers (NETIDS) as re- 
corded in the SNA Network Registry. Customers 
who  have registered their network names can  use 
those  names plus additional identifiers that  they 
administer in creating worldwide unique NSAPS. 
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It should be noted  that formal registration  is in- 
tended  for  creating identifiers that will have  a rel- 
atively long life and  that will be  used  many times. 
Formal  registration  typically  has  some form of 
publication associated  with it to  facilitate  shared 
use  and  promote  interoperation.  Short-lived  iden- 
tifiers such  as  transaction or connection identifi- 

During run-time operations, it is 
not  necessary to decompose the 

01 in its  internal structure. 

ers,  which  survive  only  for  the  duration,  respec- 
tively, of a  distributed  transaction or of a 
connection, are not registered in this  sense, and 
their originator is  not an RA. 

01s are  often  misunderstood as  an alternative 
naming methodology to DNs, and in the  loose 
sense of the word  “name,” which we  are  here 
trying to avoid,  they  may be. However, 01s serve 
their  purpose in uniquely and  compactly identi- 
fying object  classes,  attribute  types,  and  various 
other  entities  used in information systems.  In the 
context of I s 0  registries  and  the  hierarchy of RAs 
that  descend from them, the 01 is the only  stra- 
tegic identification mechanism. In  some  contexts, 
however, 01 identification has  become  a  compet- 
itor of distinguished naming. For example, the 
File  Transfer  Access  and Management standard 
(FTAM), uses 01s to identify Virtual Storages. ’O As 
will be  seen in the  subsequent  section  on  a uni- 
form naming solution  for IBM systems,  our nam- 
ing scheme  takes  a  clear position on  this  issue, 
supporting  the  use of 01s for  registered identifi- 
cation of classes and class-like entities,  but  dis- 
couraging it for naming object  instances. 

Relationship  between 01s and DNs. We have  seen 
that  an 01 sequence of integers defines a unique 
path  down  the 01 registration tree. Each  arc of the 
01 tree  corresponds  to  a single numeric identifier. 

IBM SYSTEMS  JOURNAL, VOL 31, NO 2, 1992 

In  contrast,  an RDN contains  an  attribute  type  and 
an  attribute  value,  the  former being itself a com- 
plete 01. 

In  the  visual form of the DN, the 01 is usually 
displayed as an  alphabetic  abbreviation  such as C 
for  country, or ou for  organizational unit. The 
alphabetic  abbreviations  are  not  standardized, 
and will probably  be multidefined in the  future, 
according to  the  various  natural languages. Ac- 
tually, when used across  a  network,  a DN is  en- 
coded in a  transfer  syntax  according to some ne- 
gotiated  encoding algorithm, most likely the  basic 
encoding rules (BER) associated  with A S N . ~ . ’ ~  In 
the  encoded form, the 01 appears as a language- 
independent bit string  where the registration in- 
formation is hidden in a  packed,  user-unfriendly 
construct.  Figure 3 zooms  into  a  particular 01 in 
a BER-encoded DN and  shows how it can be de- 
composed  into  its  string of integers  and how its 
path  down  the 01 tree  can  be  determined.  A  re- 
ceiving system  is  expected  to  have prior knowl- 
edge of the 01s in a DN in order  to present to  the 
users  the  proper  alphabetic  equivalent  for  each 
one of them, possibly  according  to the local lan- 
guage. 

The RDN attribute  values, on the  other hand, do 
not gain or lose information when  they  are 
changed from encoded to visual form. Therefore, 
receiving systems  do not  require predefinitions of 
every  possible value, since  these  values  are  de- 
coded and displayed as received,  but  must how- 
ever  support  the  particular  character  set defined 
for  the  value  space.  This may not  always  be  pos- 
sible,  especially  when  the receiving system is not 
located in the  same  cultural  context as the  send- 
ing one, as in the  case of exchanges  between  sys- 
tems in the  Far  East  and in the  Western world. 
Whether or not  those  alphanumeric  values  have 
language- or culture-specific connotations  de- 
pends upon the  users  who assign the  values. 

During run-time operations, it is  not  necessary  to 
decompose the 01 in its internal structure;  the 01 
is  treated as a flat binary string. The internal 
structure of each 01 serves  the  vital  purpose of 
ensuring global uniqueness  by  capturing  the  chain 
of delegation of administrative  responsibility  that 
led to  the  creation of that 01, but  is  irrelevant to 
a running program. All that  matters  at  run time is 
the ability to perform 01 matching uniquely and 
efficiently. 



Figure 3 Analyzing  an 01 in a  DN 
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We  now compare  the  properties of 01s and DNs. signed to ensure  that  no human users will be 
01s are  concise,  structured, and open-ended,  but ever  confronted  with 01s. 
suffer for the following major shortcomings: They  are intended to represent  object  classes, 

including all the  authorities responsible for their 
They  are  not  user friendly; this may not be a real definition, and not  instances of such  objects; 
problem, as long as computer  systems  are  de- normally, an instance of a particular object will 

1 
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be assigned a DN based on  the administrative 
hierarchy  the  object  belongs  to  (such as country 
or organization),  whereas  the  structure of 01s 
reflects the RA hierarchy, which most likely 
does  not  coincide  with  the  administrative  one. 
They  are  the expression of a mechanism de- 
vised to register  standards  and  object  classes in 
a  worldwide unique fashion,  and  not to associ- 
ate information to  whatever  objects they  name. 
Directory  support  for 01s is  therefore  not  easy 
to provide. In particular, 01s are not well-suited 
to efficiently access  the xsoo directory,  whose 
worldwide navigation mechanism is keyed on 
DNs. A possible  way to fold the 01 name  space 
into  the DN tree  has  been  proposed  by  one of the 
authors of this  paper.” 

DNs, on  the  other hand,  have  shortcomings too. 
Since  each RDN contains  one  attribute  type  (or 
more), and  since  attribute  values  tend  to  describe 
the  object in an  extensive,  unshortened form, in- 
dividual RDNs will be large; moreover, due  to  the 
flexibility of the naming scheme in reflecting real- 
world  hierarchies, DNS may  end  up being made  up 
of numerous RDNs. Thus DNs may be expected to 
be larger than  untyped  names,  especially  untyped 
01s whose  components  are tightly-encoded inte- 
gers. 

In reality, the  use of types  may  actually reduce 
the  number of components in DNs, avoiding ex- 
plicit mention in RDNS of names like “identified 
organization” or  “department,” so common 
within 01s. Thus, it is not  a given that DNs will be 
significantly longer than  other  alternative names. 
What difference there  may  be is, however, of de- 
creasing  concern in view of current  trends  toward 
increasing  memory  size,  processor  power, and 
network bandwidth. 

It  can  be  argued,  however,  that while expressive- 
ness  and  redundancy  are  welcome  at  the level of 
human  users,  where  names  must  be friendly and 
mnemonic, alphabetics are not  necessary for use 
by computer  programs,  which usually do  best 
with integer identifiers. But if efficiency is at 
stake, in many  cases DNs may  have integer values 
in their RDNs, particularly in the rightmost ones, 
and  may  be thus kept  short and easy  to  treat ef- 
ficiently, just  as 01s. 

In addition, the  presence of types  confers  a sig- 
nificant programming advantage to the DN: the 
structure of the hierarchical  name is defined by 
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the  customer  and  changes from object to object, 
enterprise to enterprise,  and day  to  day.  The DN 
is  essentially self-defining. If a programmed ser- 
vice  needs  to find the  country  code,  or  the archi- 
tected  change management subtree, it can  readily 
do so, no  matter  where they  appear in that  par- 
ticular name. An  untyped name, such as the 01, is 
essentially positional, and  thus is more  con- 
strained to design and difficult to change, and 
tends  to require  more  system definition among 
programs  that  process it. 

The naming scheme  proposed by this  paper, in 
conformity to OSI directory and management 
standards,  takes  a  clear position in using 01s to 
identify classes of objects,  but  not the individual 
instances or members of a  class.  This  makes 
sense  when  one  remembers  that 01s are  static reg- 
istered  values,  whereas individual instances of 
objects might have  a very dynamic  existence. It 
would not be appropriate  to  formally  register  a 
name  for  each  one.  (There is no mechanism for 
deregistering, so this would result in a rapid ac- 
cumulation of inactive registrations.) A class def- 
inition, on  the  other  hand,  tends  to  have  a long life 
and might be widely used;  thus  registration of its 
identification would be  quite  appropriate. The fol- 
lowing section states  the proposal in detail and 
justifies the choices  taken. 

A uniform  naming  solution  for IBM systems 

This  section  focuses  on the IBM world  and  shows 
how the  previously  described naming methodol- 
ogies could be used within IBM networks  to iden- 
tify objects  and  resources  independent of the  pro- 
tocols in which the names  are  used. The naming 
and addressing  scheme  proposed  here utilizes the 
already defined standards,  and allows interoper- 
ation among them by using a  subset of each. 

The  features of the DN scheme allow the  same 
name to refer to  the  same physical object  when 
used or  operated upon by different standards with 
different protocols,  thereby achieving a uniform 
user view. This goal corresponds  to  that only  par- 
tially achieved in the  real  world by people’s 
names,  whereby  the  same physical person  can  be 
identified with the  same name for different, un- 
related  purposes (e.g., registry, banking, credit, 
airline reservation, employment). Most likely, 
each  service  provider will make use of different 
attributes of the  person  and perform different op- 
erations  on  these attributes,  yet accomplish this 
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without forcing the  person  to carry different 
names. Similarly, our  scheme  strives to assign to 
the  same object-possibly used by  several appli- 
cations  with different protocols-the same name 
(i.e., a DN), thus giving the  user  a  consistent  view 
of the  various  objects  the  user is dealing with. 

The  primacy  principle. The  bottom line of this 
proposal is: DN is the primary form of naming. 
Other  past,  present,  and  potential  future name 

Experience  suggests a need for a 
single, primary identification 

scheme. 

forms  are  secondary  and  are  supported in a  co- 
existence  mode. In most  cases,  coexistence will 
be accompanied by gradual migration to  the pri- 
mary name form. 

DNS should be assigned to  every  instance of any 
object  that  needs to: have  its location determined, 
be  communicated  with or  accessed,  be  operated 
on  and managed, be secured  or administered, be 
moved from place to place, or  be otherwise  re- 
ferred to in a  distributed  environment. 

Various  classes  are typically defined by RAS while 
introducing new standards  and  new  object  classes 
within them, making those  object  classes  known 
by registration. Then,  various  organizations  de- 
cide to implement or  use  those  standards,  and 
must  therefore  instantiate  a  number of those  ob- 
jects. At this point the  “position” of those  object 
instances in the world will not depend on their 
registration,  but on their  administrative  situation. 
An x.400 mail service  user,  an Originator/Recip- 
ient (o/R), will be  located with a  particular  com- 
pany or  at a  particular  residential  location in some 
country,  even though the concept of O/R was orig- 
inally defined by ISO-CCITT within the X.400 stan- 
dard.  Such  instances  are  always named by DNs. 

Some  entities  have  both class-like and  instance- 
like properties. For example, in SNA a  transaction 
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program (TP), an  entity performing application 
functions  and using LU 6.2 (logical unit 6.2) pro- 
tocols  for  communication,  is named with a TP 
name.  Some TP names  are  registered,  and  copies 
of that TP appear  at  many nodes. Those TP names 
identify a class-like entity  whose  instances  are  the 
copies.  Other TP names identify individual pro- 
grams  that  exist as a single copy  at  one  location, 
in other  words,  programs  that are instance-like. 
So TP names  are  sometimes class-like, sometimes 
instance-like, and  there  is  no  precise  test  that  can 
make the  distinction.  However, the fact  that the 
class-like properties might have  resulted in an 01 
being assigned to  the entity,  does not affect 
whether  or not a DN should be assigned. If the 
object  requires any of the  functions in the  above 
list it will also  require  that  a DN be assigned. In  the 
case of TPs, therefore, individual DNs should be 
assigned to  each individual instance running on  a 
particular  system within a  particular  administra- 
tive domain. 

It  can  be argued that designating one form as su- 
preme  and relegating all others to a  second-class 
status is neither  necessary nor reasonable.  Con- 
sidering the analogy of natural language support, 
we  reason  that all languages are  theoretically 
equal  and  no  one of them shall be  declared  su- 
preme  over all others.  Extending  this  reasoning to 
the increasing heterogeneous  world of computing 
networks, with a  correspondingly increasing va- 
riety of naming mechanisms, we reason  that the 
principle should be  that  no one naming mecha- 
nism should  be  declared  supreme. All naming 
mechanisms  should  be  conceptually equal, al- 
though practical constraints will force  vendors  to 
limit the  variety  they  support.  The main advan- 
tage of this  approach is that it avoids offending the 
proponents of other naming forms  and, by making 
no decision,  eliminates  the risk of making the 
wrong  one. 

But  experience in other  widely-distributed,  inter- 
connected, human activities,  such as  the follow- 
ing, suggests  that  there is a need for  a single, pri- 
mary identification mechanism. 

Telephony.  In  a  process  that  took almost a  cen- 
tury,  telephone naming mechanisms  slowly 
purged themselves of route  connotations,  and 
while local phone  networks  were  progressively 
interconnected,  the  notion of a single, world- 
wide, telephone-number  space  developed. 
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Languages. Although the peoples of the  world 
are extremely  proud of their own languages, at 
different times and different places in history 
particular languages were used as linguafranca 
just  as  means of communication. For example, 
Latin, Swahili, and  French  at different times 
enjoyed  some form of primacy  that  stretched 
beyond  the  national  boundaries of their native 
speakers.  Today English plays  that  role  and is 
used by an unprecedentedly  wide  community, 
mainly technical  and scientific. 
Currency.  In  the  past,  currencies  were  often 
very localized, sometimes individual banks 
each  issued  its  own.  Commerce  was much fa- 
cilitated by national currencies.  Now  the  needs 
of international  business are pushing toward in- 
ternational  primacy for particular  currencies, 
extending far beyond the political influence of 
the  countries officially using them.  Examples 
today are the U.S. dollar and the increasingly 
popular ECU (European  currency unit). 

These  “primacy”  experiences are pertinent to 
computer  network naming for  the following rea- 
sons. First,  the  evolutionary  process is  the same, 
starting  with small isolated  localities  and  then in- 
terconnecting them into bigger and bigger groups 
until finally there is just  one global grouping. Sec- 
ond,  the  user  group is the same: the  population of 
the planet.  Market  success  depends  upon  reduc- 
ing the  need  for  computer  specialists to intercede 
between  the  true  end  user  and the network,  ex- 
actly  as  telephone  networks had to minimize the 
need for human  operators.  Third,  the  size of nam- 
ing spaces  are in the  same range, i.e., lo8 through 
10l2. Experience with name  spaces in the range of 
lo2 through lo4 (which is more typical for local 
operating  systems)  does  not  scale  up  by  factors of 
lo4. Individual and group  idiosyncrasies, readily 
tolerated in small, labor-intensive  environments, 
do not scale  up  to huge, highly automated envi- 
ronments. 

The conclusion is that  the  basic principle of a 
global naming solution  must be: The  computer- 
using public must  perceive  one  and  only  one 
name  space.  Anything  that  detracts from that  per- 
ception  is  either  not  done or at  least  not  exposed. 
Anything old, and  already  routinely used by  the 
public, must be gracefully folded into the primary 
name  space for  the sake of uniformity and con- 
sistency. 
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The  single-DN,  multiobject  solution. The X.500 di- 
rectory is designed specifically to associate  a di- 
rectory  entry,  containing  attributes,  to  an  object 

From  the user’s viewpoint, the 
object is the union of all the 

protocol  objects. 

identified by a given DN, and  other  standards  and 
applications  are  expected  to exploit this ability, 
by adding new  attributes of any  nature  to  the di- 
rectory  entry  for  that  object.  But  the  fact  that  this 
is  possible  does  not  necessarily  mean  that all the 
objects named by DNS must  correspond  to  direc- 
tory  entries,  contained in the  directory informa- 
tion base.  In  many  cases,  actually,  objects  have 
a highly dynamic  and  location-dependent  nature, 
which makes  them  not  suitable  for being repre- 
sented  by  a  directory  entry,  typically  fairly  static 
and  location-independent.  Such  objects may still 
take  advantage of the DN naming scheme,  without 
requiring an  associated  entry to  be  stored in the 
directory. 

Additional naming problems  arise with objects of 
manifold nature,  that  are  amenable  to  use  by dif- 
ferent  services with different protocols,  each  act- 
ing upon some of their different aspects  and dif- 
ferent  semantics. In the  strict  protocol  sense, 
there would be  actually different computer  ob- 
jects,  each reflecting a  particular  aspect of an  ob- 
ject from the real world. We will use the term user 
object for  these  “real”  objects as perceived by  the 
human user, and the  termprotocol  object for the 
various  abstractions of this  object within a  spe- 
cific standard  or using application. If a  user  object 
is  to  be serviced by multiple standards,  there will 
be multiple protocol  objects defined for  a single 
user  object.  From  the human user’s point of view, 
the  user  object is the union of all the specialized 
protocol  objects defined for it, and  possesses all 
of their attributes. 



A global naming solution should ensure  that  the 
need  for multiple protocol  object definitions for 
the same  user  object  does  not result in the re- 

Although a user  object may 
belong to multiple object 

classes, it must have 
only  one DN. 

quirement  for the  customer to assign to it different 
DNs. Although a  user  object  may belong to mul- 
tiple object  classes, it must  have  only  one DN. The 
goal is to maintain  a single naming scheme  while 
allowing for  separate  object definitions. This 
property  can  be achieved by introducing an ad- 
ministrative  procedure to  be followed when in- 
stantiating  and registering new  objects,  whereby 
the  attributes  common  to all protocol  objects  are 
forced  to  have  the  same  values. As a minimal 
requirement,  the distinguished (naming) attribute 
must be the  same for all protocol  objects, includ- 
ing the  numeric form of the 01 registered for it. 
The  procedure  makes  sure  those  attributes,  and in 
particular those composing the name, are uniquely 
assigned. 

For example, OSI management, like the X.500 di- 
rectory, is object  oriented,  and like the X.500 di- 
rectory  uses DNS to identify its  own  objects.  But 
object  classes  and  attributes  are defined in the 
context of a  somewhat different model. If an en- 
terprise  name designer pursued  these two models 
independently, the result would be not  only two 
object definitions for one resource,  but  two DNs. 
The total  number of objects to  be named  can be 
estimated to  be between 100 and 1000 per  end 
user, so that  a typical enterprise  may  have  to 
manage many millions of names;  any  solution  that 
doubles  the  number of those  names  is  not  only 
inelegant, but  also  extremely  undesirable. Simi- 
larly, as  other  standards  develop  object definition 
techniques,  the danger grows  that  they will en- 
courage  special flavors of DNs for their  objects, 
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and the  administration  and  correlation  problems 
will become unmanageable. The  procedure 
sketched  above  avoids  the problem of multiple 
names by providing a uniform way  to instantiate 
new objects  and assign names to them. 

Figure 4 shows  an  example of one  user  object,  a 
printer,  with  four different corresponding  proto- 
col  objects,  each  used by a different service  acting 
upon the  printer. The user  refers to  the printer 
consistently using one DN. In  this  illustration, the 
user  has  four different reasons  to refer to  the 
printer,  and  each  reason  requires one of four dif- 
ferent  services  (and  corresponding protocols): 

1. A security  service, which the user  may  query 
to find out  whether  the  printer  is  suitable  for 
some classified output 

2. A print service  application,  which  actually 
sends a  document to  the printer  for printing 

3. A directory  service  to find the  address  at 
which the  printer  resides on  the network (log- 
ically this would be  the first service  to  be used) 

4. A management service to determine  the  cur- 
rent level of toner 

Each of these  services  treats  the  printer differ- 
ently,  and  deals  with different kinds of operations 
related to it. Each of them  has  its  own definition 
of its  view of the  printer, including the DN for  that 
object.  In  other  words,  each  protocol  considers 
that it “owns”  a protocol-specific name for a  pro- 
tocol-specific object.  From  a definitional stand- 
point the managed-object name  and  the  directory- 
object name refer to different objects  with 
different sets of attributes. If this specialization 
were allowed to proceed to its  natural  conclusion, 
the managed-object DN, the  directory-object DN, 
and all the others, would not only be distinct in 
definition, but  possibly  even in the  actual  values. 
(The illustration shows  only  four  protocols,  but 
there  are  several  more  that  behave  the  same 
way.) However,  users  certainly  do  not  want to 
have to know four or  more names  for one (from 
their perspective)  object. The naming procedure 
ensures  that  name  designers  are  not  forced  to  as- 
sign multiple DNs to  one object,  no  matter how 
many  protocols might need to identify it. The  suc- 
cess in reconciling the different protocol defini- 
tions  depends basically upon the  care  the admin- 
istrator exerts in avoiding any specific DN features 
(like mUltipk-AVA RDNS) that are not  supported 
by all protocols. 
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Figure 4 Many  protocol  objects  with  one  Distinguished Name 
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Unification of different  naming  spaces. In addition 
to applying this naming methodology to new ob- 
jects, it is also important to  be able to  insert  ex- 
isting names, not  necessarily  standards-based, in 
the global DN tree. The DN scheme, in fact,  is 
sufficiently open and flexible to gracefully encom- 
pass existing naming schemes, in a process of 
gradual migration. Whether existing naming 
spaces  are flat or structured,  they  can  be  encom- 
passed by  the DN scheme  by using either of the 
two techniques: encapsulation and grafting. 

Encapsulation. The existing name is wholly in- 
serted  into  one single RDN, with an appropriately 
selected  attribute type. For example, as shown in 
Figure 1, a UNIX file name such as “/etc/bin/ser- 
vice”, could be  inserted  under the DN of the 
file server managing it as: C=CA/NatOrg= 
Bell/APPL=FileServer/FILE=(/etc/bin/service). 
(The parentheses  are used to mean that  the whole 
file name becomes a single attribute value.) The 
advantage of this solution is that  the existing 
structure is perfectly preserved and the impact on 
existing programs  can  be minimized. The com- 
ponents of the  encapsulated name are not bur- 
dened with  any  extra meanings their original de- 
signers had not foreseen.  The disadvantage is that 
the hierarchical structure of the old name ends up 
being totally hidden within the RDN, and is  there- 
fore unavailable to  standard  services for purposes 
such as name navigation. 

Grafting. The  structure of the existing name is 
exploded into  its  components,  each of which 
becomes an RDN with  appropriately  selected 
attribute  types.  For example, the UNIX file sys- 
tem name “/etc/bin/service”,  inserted  under  the 
DN of the managing file server,  becomes: 
C = CA/NatOrg = BelVAPPL = FileServerDIR = 
etcDIR=bin/FILE=service. Even  names  per- 
ceived to be untyped can  be  inserted in this 
scheme  by imposing an appropriately registered 
attribute  type  on  each of their name components. 
The main advantage of this solution is the elegant 
uniformity of name spaces it generates: all serv- 
ices using these names are able to exploit all com- 
ponents  without need for any special decoding. 
The disadvantage is that  each RDN-kVel name 
component must conform to the requirement of 
all pertinent  standards.  In  particular,  the resulting 
name must be open-ended:  Shorter DNS can 
be obtained  by dropping components  such as: 
C = CA/NatOrg = Bell/APPL = FileServerDIR = 
etciDIR = bin, or: C = CA/NatOrg = BelVAPPL = 
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FileServer/DIR=etc. Longer DNS can be built to 
further qualify objects within the scope of other 
objects, such as records within a file,  e.g., 
. . ./APPL=FileServer/DIR=etc/DIR=bin/FILE= 
sewice/Record=1122. The objects thus named 
have certain obligations  in each one of the protocols 
supporting them. These obligations are not partic- 
ularly heavy, but they represent a change from the 
closed-ended, semipositional  naming models that 
permeate many operating systems and the hearts 
and minds of users familiar with them. Despite the 
migration  difficulties it entails, the DN solution has 
a greater potential and will be increasingly used 
over time. 

The  techniques of encapsulation or grafting can 
both  be used for tree merging, depending on the 
circumstances.  In  both  cases, though, the  funda- 
mental step is that a point in the global DN tree  be 
selected, or  created,  to  be  the  root of the  subtree 
of the existing name space. 

The  subtree root, with  its  directory  entry,  repre- 
sents an object manager responsible for all the 
objects  contained in the  subtree.  In  many  cases, 
an object manager will be aware of the  existence 
of other  peer managers, and explicitly query  the 
directory  to  locate them, using their  own DNS, 
Le., the  upper portion of the object’s DN. In  some 
cases,  the manager will not know  this and will 
query  the  directory with the  complete name. Al- 
though this  query fails, the failure report  does 
describe how much of the DN was  matched, and 
may even, as a desirable optimization, return  the 
address of the right manager. Otherwise, more 
generally, a follow-up query  with  the  truncated 
DN will locate  the  peer manager. 

The  extensive usage of DNS recommended by  this 
paper does not imply that  users  are compelled to 
constantly  see and enter  complete DNS. The no- 
tion of “context,” omitting high-order name com- 
ponents  when  they coincide with default ones, is 
as normal and natural as not dialing one’s area 
code  when making local calls. Modern user in- 
terfaces  can  also  greatly simplify the  task of en- 
tering and interpreting complex  constructs.  Tra- 
ditional nickname facilities can always be used for 
DNS that  are  frequently used, as already  done to- 
day  by  the administrative facility of IBM’S OSIICS 
product,  where DNS are  exposed to the  user  only 
the first time they  are  used, and nicknames are 
used instead from then  on. 23 In  some application 
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areas,  such as x.400 messaging, there  is little vari- 
ation in types, so type-suppressed  displays are 
appropriate  most of the time. 

Language  and  culture  specifics in DNs. In a  world- 
wide  internetwork  spanning national and  cultural 
boundaries,  every  user  should  be allowed to use 
names in the language of the user’s choice.  At 

A global naming solution  has to 
compromise between two 

philosophies. 

least,  the  user  should  not be forced to use  names 
in a language the user finds offensive. In a  perfect, 
unilingual, unicultural enterprise  this could be 
achieved to a  considerable  extent. 

Unilingual, unicultural situations. The limita- 
tions  that  arise  even in this ideal environment  de- 
rive from ambiguities inherent to  the culture, 
combined  with the requirements  for multimedia 
operation  and  interchangeability of human and 
programmed operators.  Humans,  for  example, 
tend to  use lower and upper  cases of letters in- 
terchangeably; so a human user would not  react 
differently seeing the  name  “Zatti”  written 
“ZATTI” or even  (apart from aesthetic  consid- 
erations) “ZAtTi.” It  is  not  the  case  for  comput- 
ers, though, since lower and  upper cases  corre- 
spond  to different character encodings. The 
ambiguities are resolved by associating  with  each 
name  space  particular matching rules  such as 
case-exact or case-ignore, as  done by x.500. 

Although the processing  power of computers  can 
take  care of the ambiguities of human  represen- 
tation of characters,  the multimedia and discon- 
nected  operations  requirements  state  that  com- 
puters will not  always be present.  Names  may 
have  to  be  exchanged on paper, by telephone, 
copied  down from white  boards, or yelled down 
the hallway; how can  humans  cope  with  errors 
and  instinctive  cultural  assumptions? The con- 
clusion  is that special matching  rules  should  only 
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be used in cases  where all humans who may use 
the name  can intuitively and reliably exercise 
them. 

When all the media are considered, unilingual, 
unicultural situations are almost nonexistent.  A 
decision  has to  be taken on a  case-by-case  basis 
when assigning new RDNs. If the list of alternative 
interpretations of a  particular  name  is small, and 
the  context is narrow,  the OSI directory philoso- 
phy of rich matching rules-equating for  example 
Washington and WASH-works well within the 
appropriate linguistic and  cultural  boundaries; if 
the list of possibilities is large and the  context is 
broad,  and  therefore  prone to ambiguity and  con- 
fusion, then the OSI management philosophy of no 
special matching rules  works  better. 

A global naming solution  has to compromise be- 
tween  these  two conflicting philosophies, even in 
situations  that  are  nearly  perfectly unilingual and 
unicultural. Of all the  name  attributes  used in the 
DN tree,  perhaps 30 or 40, such as country,  city, 
or  common  name  can be expected to have hu- 
mans intuitively know  the  appropriate  matching 
rules. These  are in most cases  those defined by 
the  directory. The remaining 100s or 1000s of 
name attributes should be defined with  no  special 
matching rules  and used in RDNS to  the right of the 
limited set of directory  name  attributes. 

Multilingual, multicultural  situations. Customers 
will require  products  that  support naming in en- 
terprises  whose  users  come from different linguis- 
tic  and  cultural  backgrounds. In such  situations it 
is useful to distinguish between  names derived 
from natural languages and  those  that  are lan- 
guage-neutral. For example, in Canada,  Ontario 
is  a  neutral  name  between  French  and English 
since  its spelling is the  same.  Quebec has an  ac- 
cent in French, so P.Q. (Provence de QuCbec or 
Province of Quebec)  is  used instead. Switzerland 
chose  the  Latin  name  “Confoederatio  Helvetica” 
as its  own official name, to avoid privileging any 
one of its  four languages; India chose  the old Eu- 
ropean  name  “India” to avoid privileging any of 
its 14 official languages. The principle is  that  or- 
ganizations  that  span linguistic groups like to  use 
names  that are  as neutral as possible  across all 
their languages. True  neutrality  across all the 
world’s languages is obviously impossible, but 
fortunately all over  the  world  the  computer-using 
public has  been  tolerant of the  Latin  graphics, 
readily accepting  names  such as US, GB, ATLVM1, 



London, ENG. Local, culture-specific forms of 
names  (such as  the Kanji equivalents in the Orient 
or Cyrillic in Russia) can  always  be  supported by 
means of synonyms (inserting in the  directory  en- 
try alternate naming attributes describing the  ob- 
ject’s  name  with different character  sets),  as  nor- 
mally happens in the  real  world  where  a  Japanese 
person  knows  and  uses  the  name  both in Kanji 
and in Latin.  Note,  however,  that OSI manage- 
ment’s reports  on  object  status  do  not include 
name  synonyms  or aliases, so heavy  use of this 
solution will reduce manageability and  increase 
definition requirements. 

To allow global naming, each  enterprise should 
strive  for  the level of neutrality  appropriate  to the 
mix of languages it spans.  Neutrality is most 
needed  for  those  resources  that are referred to 
across  the  entire  enterprise,  and  least  needed  for 
resources  that  are of local-only interest  (assuming 
that  everyone  at  that locality speaks  the  same lan- 
guage). Since the leftmost RDNs are used in the 
DNS of so many  objects,  they will usually need 
considerable language neutrality, in order  to  be 
successfully displayed and  exchanged  throughout 
the world. As  country  names  are  registered in a 
language-neutral standard (ISO 3166), so compa- 
nies that  want their names  understood  and used 
by many  cultures should select  names as lan- 
guage-neutral as possible. 

Examples of uniform  naming  and  usage 

We now turn to showing how names  can  be ef- 
fectively used within the  enterprise  and how 
name  uniqueness  can  be  turned to advantage by 
several  integrated  services.  We do this by means 
of a  few  examples showing integrated  uses of DNs 
by several  services. No specific reference to IBM 
products is implied. 

Distribution of services  across  the  enterprise. 
Names are exchanged  between  the  various dis- 
tributed  services  that  make  use of them in basi- 
cally four different ways: 

1. Across  interfaces within a  node  where  the 

2. Through  service-providing  programs  that  re- 

3. Within collections of data residing in nodes 
4. In protocol flows between  the  nodes  that make 

nonlocal parts of the  service available and 
maintain the  distributed  data 

services  are invoked 

side  at  a  node 

The last is rigorously defined by  standards,  the 
first not  at all. 

DNs have  the  potential of being used by a large 
number of services,  and  are  stored  and moved in 
a  variety of media. Although the  enterprise  per- 
ceives  only  one DN space,  the different services 
use DNs as if they  each had an independent DN 
space  dedicated to their  particular  service. Al- 
though all service  protocols  share  electronic com- 
munications media, the only  points  where DNS 
can  be exchanged  between  services are within 
nodes.  Such  exchanges  have little or  no repre- 
sentation in the  standards,  but  the  need  remains 
for a local solution to allow this  exchange. 

On the  other hand,  when  the DN is  used  outside 
the  computer, in external media like paper,  chalk 
board, or  voice  waves, if it has  been  constructed 
in the multiprotocol-compliant manner  intro- 
duced in the  previous  section on  the single-DN, 
multiobject solution, it has  no  connotation of be- 
ing associated  with  any  particular  service. The 
notion of a single global DN tree  is  the  natural 
default assumed by humans.  In order  to  preserve 
that  notion, the  external  users of the DNS must be 
shielded from  the  peculiarities of the  various in- 
ternal  services.  This shielding is much facilitated 
by  the  presence of a set of interfaces,  above 
which  the  enterprise-oriented  programs  work 
with enterprise-oriented DNs, and below which 
each  distributed  service  performs  its  speciality, 
interacts  with  the  others,  and  cooperates in de- 
livering a  combined  service to  the enterprise-ori- 
ented  programs and their  end  users. 

Structure description. Traditional,  vertically-ori- 
ented  diagrams  based on layering and  the appli- 
cation/service  dichotomy will not suffice to ex- 
press  the  structure  needed  to  support  the 
enterprise DN, when  applications  interact  with 
other  applications exchanging DNS. The  node 
structure  shown in Figure 5 is horizontally  ori- 
ented, reflecting the  fact  that in this  situation  the 
various  distributed  services  interact as peers. The 
node  is  depicted  containing all the  key  distributed 
services involved in naming and  addressing  both 
as service  users  and  providers.  (Not all  of this 
function  is  required  at  every  type of node.) The 
communication  services,  containing  alternative 
stacks  supporting different families of protocols 
(SNA, OSI, TCPDP), are involved in all electronic 
communications  between different nodes. How 
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Figure 5 Internal  structure of a  system 
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different stacks  can  be integrated in the  same 
node is explained in Reference 5. 

Between  the  enterprise-oriented applications and 
the  distributed  services is a set of interfaces. As 
shown in Figure 5 ,  there  is  at  least  one  interface 
for each  service,  but  that need not be  the  way 
interfaces  are implemented. The  more  services 
are  accessed through a common interface,  the 

better  the  coherence and consistency is likely to 
be. Notice  that  the  top of each interface is 
stepped.  The  steps  represent different levels of 
generality. The highest level of each  interface 
(represented  by a heavier line) supports DNs and 
is  expected  to  be as system-independent as pos- 
sible. The lower steps  represent less-generic, 
more-efficient interfaces  that tend to  vary from 
system to system. 
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In  general,  either  enterprise-oriented  applications 
or  service programs  can  use  any level of inter- 
face,  but normally customers  write  most of their 
enterprise-oriented  applications to  the high-level 
DN-Supporting interfaces. For  reasons of effi- 
ciency  the  services will often call each  other using 
the lower-level interfaces. 

Scenarios. The following sections  illustrate how 
various  end-user,  management,  and  operations 
activities are performed within  and  between the 
various  system  components, using DNS to name 
objects  on which  the  operations  are performed. 
Numbered steps  are used in the figures to  depict 
the  sequence of events,  and  correspond  to la- 
belled explanations in the  accompanying  text.  In 
the figures, arrowheads  indicate  the  direction of 
the caller/callee relationship, while merging an 
outgoing and  an incoming arrow  into  one line in- 
dicates  a call and  the  subsequent reply. The icons 
with their various  shadings  indicate the DNs or 
addresses  that  are being passed  and  returned. 

Setting up  an association. This  example,  shown 
in eight steps,  illustrates  the  interactions  between 
communication  services  and  directory  services 
that allow identification of remote  destinations 
via DNS, through  a high-level Common Program- 
ming Interface (CPI). (See Figure 6.) 

1. The DN of the application with which the  as- 
sociation is to  be established is entered  (or  se- 
lected) by the  end  user in a  visually-oriented 
form. The presentation  services  support  that 
converts  this  visually-oriented form into the 
standard  internal  form  is  expected  to be pro- 
vided by  the  system.  The user  does  not see  any 
other  form of name for that  destination. 

2. Customer  application  code  then  issues  a call to 
the high-level Common Programming Inter- 
face  for  the  integrated  communication  serv- 
ices  requesting  that  an  association be made 
with the specified remote application. 

3. Somewhere below the CPI boundary  a  piece of 
control  code builds and  issues  a  directory 
query  requesting  the  address  attribute  for  the 
application named by  the DN. 

4. The DUA passes the request to  the local DSA, 
and in this example, finds the  entry locally and 
returns  the  requested  address  to  the  requester 
(it can  be an SNA address, o s 1  address, or 
whatever  else,  but in a  form  that  the  destina- 
tion system  supports). 

5. The  interface  code  then builds a  protocol-spe- 
cific call (SNA Lu 6.2, os1 ACSE, or whatever  is 
available), which is  routed to  the appropriate 
communication  subsystem in order  to  set up 
an  association  with  the  destination applica- 
tion. Although DNS are  not  required to identify 
the  partners in the  actual  communication  pro- 
tocol, management policies may  require  that 
both  ends  be  aware of each  other’s DNs, so that 
accounting  records  and  any  exception  report- 
ing are properly identified. Therefore,  at  least 
one DN must flow  in the protocol during the 
association  setup. 

6. Communications  services  at  the  target  end  set 
up the  appropriate  control  blocks and pass  a 
handle to the  partner application program 
(step 8). The association  requires  that  at  least 
one, and probably  several, managed object in- 
stances  be  created in the Management Infor- 
mation Base (MIB) at both  ends  to represent it 
for management and  operations  purposes. Ac- 
cordingly, this step introduces  the  required in- 
formation  into  its local MIB and  then  responds 
to  the  requesting  node. 

7. The  requesting  node  inserts  both DNs and han- 
dles  into  its MIB and returns  a handle to  the 
requesting app!ication. 

8. Control is returned to the  requesting applica- 
tion as  the handle is passed to it,  and  the  ap- 
plication can  use  the  association identified by 
that  handle  for  further communication. 

Opening a remote file. The  next  example,  shown 
in nine steps,  illustrates  the  interactions  between 
communications,  directory,  and file services to 
allow transparent file naming and file server lo- 
cation  (Figure 7). Both  the file server  and  the DSA 
containing  its  entry  are  remote in this  case. 

1. A user application program issues  a file system 
call, FOPEN(CO=US/IntOrg=IBM/LOC= 
PA/DIR=a/DIR=b/FILE=c), identifying the 
file with  a DN in internal form (a data  structure 
in a high-level language like C, such as defined 
in the X/Open** interface for directory  access, 
XDS24). 

2. The file server  does  not  have  the file locally, 
nor  is it aware of the  structure of the file space; 
it must  then  locate  another file server  that  has 
the file, using a  directory call. Therefore, it 
issues  a DS-Read(fi1ename) to  its locally avail- 
able DUA. 

3. The DUA accesses  a  remote DSAVia a  directory 
association (via the available communication 
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Figure 6 Setting  up  an  association for a customer  application 
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Figure 7 A file system  example 
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protocol,  whether it be OSI, SNA, or something 
else). 

4. The remote DSA is able to resolve,  through  a 
partial  match of the DN, the file name  into  that 
of the file server managing the file, and  its ad- 
dress,  which it returns  to  the calling DUA. (This 
phase  may  actually  require  a  number of direc- 
tory calls.) 

5. The DUA at  the requesting  node  passes the in- 
formation  back  to file services. 

6. File  services  uses  the  address of the node  con- 
taining the file (N3) to  send via  communications 
services  to N3 an OPENfile request  with 
the unresolved  part of the file’s DN (DIR= 
a/DIR=b/FILE=C). 

7. File  services  at N3 OPENS  the file and  returns 
a handle which  can be used  henceforth  for 
other  operations,  on  the  same file-system con- 
nection. 

8. File  services  at NI returns  the  handle  to  the 
application program. 

9. The application  program, which had been 
waiting for  control  since step 1, now knows 
that  the file is  open  and  has  the  handle  for  sub- 
sequent  operations.  It  neither  knows  nor cares 
that  the file resides at a different node. 

I 

I 

Printing a file  on  the most appropriate printer. 

teractions  between  communications,  directory, 
printing, and file services  to allow printing of a file 
on  a  particular  printer,  selected  on  the  basis of 
printer  service  features  stored  with  the  directory 
(Figure 8). The file server is still remote, while the 
DSA containing  its  entry is local in this  case. 

1 This  example  illustrates, in twelve  steps,  the in- 

1. The  user  issues  a  command  to print a  par- 
ticular file C=US/IntOrg=IBM/. . ./DIR= 
a/DIR=b/FILE=c  on  the best of a named 
group of printers  where “best”  corresponds 
to a  computable  function  according to  some 
metric. 

2. Print services first calls file services,  opening 
the remote file via  an FOPEN(fi1ename) as in 
example 2. 

3-6. Same  as  example 2. 
7. File  services  at NI passes  the  handle  to print 

I services  just  the  way it would have  passed it 
to an application program. 

8. Now that print services has  the handle, and 
knows where  the file resides, it has  to locate the 
best printer. It calls directory services with 
a DS-Read(CO=US/. . ./devName=Printers), 
looking for service attributes of the printers of 
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a particular site. Here  the name refers to a 
whole group of printers, all the printers in a 
particular location. In other cases, the group 
name might  define  all printers in a domain that 
possess  a particular service attribute (e.g., their 
ability to print in colors). 

9. Directory  services  returns  a list of all the 
printers in the  group,  with  several  attributes 
for each,  one of which is the printer’s ad- 
dress.  In  this  case,  directory  services found 
the  data locally. 

10. Print  services  determines  that  the  “best” 
printer  is  controlled by the  other  print  serv- 
ices  at  node N3 and  sends  the print request 
there, specifying the handle and  address of 
the file. 

11. Print services  at N3 accepts  responsibility for 
the print request  and  returns  an acknowledg- 
ment to N1. 

12. When the  printer  becomes available, print 
services  at N3 uses  the handle and  address 
received in step 11 to  set up  a  session with N2 
and begin the  process of retrieving  the file 
from N2 and printing it at N3. 

Conclusion 

Today’s trends  toward  interconnection of net- 
works  expose limitations and deficiencies of the 
traditional identification schemes.  Mechanisms 
that  are  scalable  to  worldwide  domains and can 
still be  understood,  used,  and managed by hu- 
mans are required to identify the communicating 
principals, authorize  the  use of shared  or network 
resources,  and  secure  the information being ex- 
changed. This  connectivity and identification re- 
quirement  has  been recognized by  the  standards 
community  and building blocks  such as Distin- 
guished Name,  Object Identifier, and OSI address- 
ing are being developed. 

The challenge for  standards  bodies,  govern- 
ments,  consortia,  vendors,  and large enterprises 
is  to quickly  put in place a single global name tree 
with the underlying registration and  addressing 
mechanisms  that will simplify the  administration 
and  management of this huge and  complex  net- 
work  that  continues  to grow as  economics  dictate 
and  the underlying technology  evolves. 

The solution  described in this  paper is based  on 
the  use of the OSI Distinguished Name and its 
supporting registration and  addressing  mecha- 
nisms. One of the most significant advantages of 
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Figure 8 A file system and printer  example 

r COMMUNI 

I CATIONS 
SERVICES 

L 

1 

I I 
FILE 
SERVICES 

I 

PRINT 
SERVICES 

~ 

NODE  CONTAINING  THE  FILE 
~~ 

I 

I 

NODE  CONTROLLING  THE  PRINTER I 

- I 
1 

L 
I 

DISTINGUISHED  NAME  (DN) 
IN INTERNAL  CALL  FORMAT 

LEFT  PART  OF  DN 

RIGHT  PART  OF  DN 

'I 

STRING  OF  ATTRIBUTE  VALUE  BER  ENCODED  DN IN 
ASSERTIONS  (AVAs)  COMMUNICATIONS  CALL / RETURN 

ADDRESSORHANDLE 
IN INTERNAL  CALL  FORMAT 

BER  ENCODED  ADDRESS OR HANDLE 
IN COMMUNICATIONS  CALL I RETURN 

378 ZAlTl ET  AL. IBM  SYSTEMS  JOURNAL,  VOL 31, NO 2, 1992 



the OSI Distinguished Name and the  supporting 
x.500 directory is that it will allow easy and non- 
disruptive migration and  coexistence  with exist- 
ing naming, registration, and  addressing mecha- 
nisms including SNA. 
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