Estimating the
fault rate function

Paging activity can be a major factor in
determining whether a software workload will run
on a given computer system. A program’s paging
behavior is difficult to predict because it depends
not only on the workload processed by the
program, but also on the level of storage
contention of the processor. A program’s fault
rate function relates storage allocation to the
page fault rate experienced while processing a
given workload. Thus, with the workload defined,
the fault rate function can be used to see how
the program’s storage allocation is affected by
varying levels of storage contention, represented
by varying fault rates. This paper presents a
technique to represent program workloads and
estimate the fault rate function, and describes
how these results can be used in analyzing
program performance.

Programs usually do not reference their stor-
age uniformly; they exhibit locality by con-
centrating storage references on subsets of their
storage. A program’s degree of locality deter-
mines how much processor storage it needs to run
efficiently. The storage reference behavior of pro-
grams, sometimes simply referred to as program
behavior, has been studied for nearly three dec-
ades. Much of the early attention was in the de-
velopment of storage management algorithms for
operating systems,!” while other early efforts
yielded restructuring techniques that improve
program locality.*® More recent work has rec-
ommended design techniques to enhance locali-
ty.® Reference strings (the string of memory ref-
erences that the program generates during its
execution) have frequently been used in these
studies, as have component connectivity graphs.
These representations focus on references to pro-
gram modules and their data areas. With the in-

300 .enniNGgs

by T. Jennings

creasing size of processor memories and the cor-
responding growth in application program size
over the last decade, the storage required for pro-
gram modules and their local data areas can be a
smaller contributor to a program’s total storage
requirement than large data areas, which vary in
size with environment parameters such as net-
work configuration. For this reason, this study
treats the storage for large data areas (referred to
as data pages) separately from the storage for
program modules and their local data areas (re-
ferred to as base pages).

Many programs process multiple workloads or
transaction types. The storage reference behavior
of a program depends on the particular workloads
it is processing and the rate of arrivals for each
workload. To characterize a program’s demand
on the system’s storage and paging subsystems,
one must know the arrival rates for each workload
and the amount of storage contention on the pro-
cessor. The fault rate function, which maps the
page fault rate experienced by the program to the
program’s storage allocation, is a succinct repre-
sentation of the program’s demand on the sys-
tem’s storage and paging subsystems for a given
workload mix. The fault rate function is closely
related to the lifetime function, which plots stor-
age allocation versus the average time between
faults. These two functions were used during the
development of virtual storage systems to com-
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pare the efficiency of different memory manage-
ment policies.'™’ Algorithms for generating the
fault rate function from a program’s reference
string are well documented. '’ The technique pre-
sented in this study is unique in that it allows the
fault rate function of a program to be approxi-
mated using information available during the pro-
gram’s design, rather than deriving the function
from a measured reference string obtained after
the program has been implemented. Instead of
using the fault rate function to compare operating
system memory management policies, it is used
here to assess the efficiency of program design
alternatives and to project the amount of resident
storage required by the program to run efficiently
in different system environments.

The first section contains a brief description of
related work in this area, and provides definitions
for important concepts in program behavior. Fol-
lowing that is a description of the modeling ap-
proach, including the important simplifying as-
sumptions, and then separate sections describe
base page and data page analysis, the algorithm
for constructing the fault rate function, and ex-
amples to illustrate how this technique has been
applied in analyzing program performance at
1BM’s Raleigh, North Carolina, Networking Lab-
oratory.

Background

On most operating systems (including IBM’s Mul-
tiple Virtual Storage [MVS], virtual machine [VM],
and Virtual Storage Extended [VSE]), processor
storage is divided into fixed-size pieces called
frames. The operating systems allow multiple
programs (i.e., jobs, virtual machines, or parti-
tions) to run concurrently. Each program has vir-
tual storage that contains its modules and data
areas, and the operating system divides each pro-
gram’s virtual storage into fixed-size pieces called
pages. Virtual storage pages and processor stor-
age frames are the same size. In order to run, each
program must have some of its virtual storage
pages allocated to processor storage frames. The
set of a program’s pages assigned to processor
frames at a given time is referred to as its resident
set. Frequently, the total virtual storage for all
currently running programs exceeds the amount
of processor storage available, so the operating sys-
tem uses a memory management scheme to manage
the assignment of pages to frames. The operating
system relies on the characteristic of programs to
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exhibit locality of reference, which Madison and
Batson describe as “the experimentally observed
phenomenon that, for relatively extended periods
of time, a program references only some subset of
its . . . virtual address space.”®

If, as a program is running, it tries to access a page
that is not assigned to a frame, a page fault occurs
and a page-in is necessary to bring in the neces-
sary page. The operating system uses a page re-
placement policy to select a page from all of the
currently resident pages for replacement. MVS,
VM, and VSE systems use a least recently used
policy; ' they select a page that has not been
referenced for a long period of time for replace-
ment, since it is highly probable that the page will
not be referenced again soon. If the page that is
selected for replacement has been modified since
it became resident, a page-out is necessary to
write the contents of the page to auxiliary storage.
Page-ins usually require separate input/output op-
erations, but page-outs are less frequent and the
operating system can combine multiple page-outs
per input/output operation.’ Page-ins, therefore,
are a more important consideration in evaluating
program performance. Note that the program’s
page-in rate is equivalent to its page fault rate.

Many techniques have been identified to enhance
a program’s locality of reference by restructuring
its virtual storage layout. (Ferrari offers a good
overview of these techniques.’) These methods
require analyzing the program’s reference string.
References in the string are associated with
blocks of storage, and the blocks are depicted in a
restructuring graph, where the blocks form the
graph nodes and the edges between nodes have a
number indicating the value of placing the two
blocks on the same page. The edge values are com-
puted by a restructuring algorithm, and a revised
assignment of blocks to pages is generated by a
clustering algorithm. Smith® identifies simple heu-
ristic clustering techniques that use component
size, frequency, and connectivity information,
rather than a reference string. Ferrari indicates that
“most of the programs for which restructuring is
convenient are not very data-dependent, and for
them the effectiveness of restructuring algorithms
should not be expected to be data-dependent ei-
ther.”® By treating large data areas (data pages)
separately from program modules and their local
data areas (base pages), this paper presents a
method of studying programs whose reference be-
havior is data-dependent.
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While there is no related work on data page anal-
ysis explicitly, data pages can be viewed as a da-
tabase residing in the program’s virtual storage.
Database reference behavior has been the subject
of several studies. Rodriguez-Rosell shows that
the database references generated by a pool of

The assumption is that pages
referenced will not be paged out,
allowing us to consider only the

unique page references.

interactive database users exhibits “weak” local-
ity in referencing blocks of a database." Kearns
and DeFazio, however, show that the reference
behavior of individual batch database application
programs differs from the behavior for “inter-
leaved” requests of multiple interactive users,
and that locality of reference is exhibited.'? Eas-
ton describes a stochastic model for database ref-
erences, which uses page reference and residence
probabilities to compute the average number of
pages in the first level of a storage hierarchy (the
buffers) and the miss ratio given a working set
window size."

Modeling approach

Because the number of virtual storage pages re-
quired by a program may depend on external pa-
rameters (e.g., system configuration, network
configuration, etc.), this modeling approach sep-
arates the set of virtual storage pages into two
groups: a set of base pages, whose number is in-
dependent of the environment, and a set of data
pages, whose number is dependent on the envi-
ronment. To estimate the fault rate function, it is
first necessary to calculate the reference rate (in
references per second) for each page of virtual
storage. This is accomplished by dividing the base
pages and data pages into subsets, such that the
pages within each subset have the same reference
rate (or reference probability). The reference
rates are calculated from workload arrival rates
and data page reference information. The subsets
are then ordered by reference rate, and the subset
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sizes and reference rates are used to generate de-
mand points that form a “piecewise linear
graph”! approximating the fault rate function.

The determination of workloads is an important
first step in this modeling approach. A workload
can represent an individual transaction type or a
class of transaction types. The workload selec-
tion should identify the dominant processing of
the program. The following criteria should be
considered when selecting workloads.

* Frequency. The most frequently processed
transaction types should be identified.

* Processing requirements. The transaction types
that contribute most to the program’s resource
usage should be identified.

* Path wvariations. A conditional variation in a
path that adds significant processing and that
references a significant number of additional
modules can be treated as a separate workload.
Distinguishing “secondary” workloads in this
manner is one way to increase the granularity of
the base page analysis.

* Data reference behavior. Transactions that ref-
erence large data groups or that generate a sig-
nificant number of data group references should
be identified.

Since workload selection is a manual process, the
number of workloads should be less than about
20, in order to minimize complexity. (Our models
have included up to ten workloads. ) For programs
with many more transaction types, it would be
desirable to have workloads represent transac-
tion classes instead of individual transaction
types where possible.

This modeling approach is useful for estimating
the phase behavior of a program. According to
Denning, phase behavior is exhibited by a pro-
gram when, “over extended periods, the program
concentrates all references in small, fixed subsets
of pages. Each maximal such period is called a
phase; the associated pages constitute the locality
set of the phase.” Transition behavior is exhibited
when, “in the intervals between phases, the
nicely localized phase patterns are broken; the
reference pattern is discontinuous, unordered.”’
Programs spend a large majority of their time in
phase behavior.® Phase behavior can be associ-
ated with steady state processing, where items of
work arrive at a steady rate.
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As mentioned earlier, virtual storage subset sizes
and reference rates are used to generate an ap-
proximation for the fault rate function. Pages with
low reference rates have a low reference proba-
bility, and are more likely candidates for replace-
ment (page-out) than pages with high reference
rates. In generating the fault rate function, a least
frequently used (LFU) page replacement algo-
rithm is assumed, although most operating sys-
tems use a least recently used (LRU) algorithm. !
For analyzing phase behavior, LFU replacement
should closely approximate LRU replacement.

This paper also assumes that pages referenced by
a workload item will not be paged out before the
processing of the workload item is completed, an
assumption noted by Smith as suitable for short-
duration, transaction-type processing.’ This as-
sumption allows us to consider only the unique
page references in processing a single workload
item; subsequent references will not cause page
faults. Easton makes a similar distinction be-
tween primary and secondary references: “the
first access to a page after a ‘long’ period of in-
activity” is a primary reference; “the references
that follow, within a ‘short’ time, are called sec-
ondary references.” Also similar is Ferrari’s
distinction between critical and noncritical refer-
ences.’

The next section describes how base pages are
divided into subsets, and how the page reference
rates are calculated.

Base page analysis

The important simplifying assumption made in
base page analysis is that the local data used by
a module are highly likely to be allocated on the
same page as the module. With this assumption,
it is only necessary to count module references
for the base pages. (One way to relax this as-
sumption would be to use an instruction trace for
seach of the program’s workloads and distinguish
between local data and module references.)

In processing an item of work from a workload,
the flow of control of the program will pass
through several modules, and will likely reference
several of the base pages. Some modules, such as
service routines, will be used by multiple work-
loads. Viewing the modules of the program as a
set, the subset of modules used by one workload
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is likely to intersect with the subset used by an-
other workload.

The first step in base page analysis is to partition
the modules into subsets based on the workloads
that reference them. This requires only a list of
the modules used in processing each workload.

Once this is done, the mapping of modules to base
pages needs to be represented. This can be ob-
tained from a virtual storage map, consisting of a
list of module names, the starting addresses, and
the module lengths. (Ideally, the virtual storage
map of the program should be taken when no data
pages have been allocated by the program, so that
only base pages show up in the map.) Mapping
modules to pages is trivial: page identifiers for
31-bit addressing systems are five bytes in length,
and are simply the first five bytes of the module
starting addresses for modules within the page.
For 24-bit addressing systems, the page identifier
is three bytes long. Modules will frequently span
page boundaries (this is determined by the length
of the module). For this analysis, it is assumed
that the entire module is referenced in processing
each workload, implying that every page that
module spans is referenced when the module is
referenced. (To relax this assumption, one could
use an instruction trace and record the offsets that
are referenced within each module.)

The next step is to determine which workloads
reference each base page. The first step identified
which workloads reference each module, and the
second step identified which modules are on each
base page. For a given base page, it is referenced
by each workload that references a module con-
tained on that page.

The final step in the base page analysis is to de-
termine the reference rates for each of the base
pages. Recalling the assumption that only unique
references need to be counted, each base page is
counted once per workload item that references
it. Given mean arrival rates for each of the pro-
gram’s workloads, the reference rate for a base
page is simply the sum of the arrival rates for the
workloads referencing that base page.

This analysis technique is a subsetting process,
where the base pages in each subset are refer-
enced by the same combination of workloads. If
there are n workloads for the program, the sub-
setting process yields 2" subsets of the base
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Figure 1 Base page subsets

WORKLOAD C

.8 BINARY PAGE
si g NUMBER REFERENCE
IDENTIFIER RATE

pages, some of which will probably be empty.
The subsets can be enumerated using a binary
numbering scheme, as shown in Figure 1. This
figure is an example with three workloads and
eight base page subsets. The three-digit identifier
indicates which of the three workloads references
the subset. The following workload arrival rates
are used to calculate the page reference rates for
the subsets:

* Workload A = 1.0 items per second
* Workload B = 5.0 items per second
* Workload C = 0.5 items per second

Given a storage map, a list of modules used by
each workload, and workload arrival rates, this
technique lends itself quite easily to automation.

To illustrate the base page references generated
by a given workload, consider the subset sizes
shown in Figure 2. When an item of work from
workload A is processed, each page within base
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page subsets 100, 101, 110, and 111 are refer-
enced, resulting in 74 unique page references.

This section described a method of subsetting
base pages which yields subsets containing pages
with the same reference rates. As will be shown
in the next section, data pages are treated differ-
ently from base pages. The goal, however, is still
to divide the pages of virtual storage into subsets
containing pages with the same reference rates.

Data page analysis

Data pages contain major control blocks or data
areas, and vary in number depending on external
parameters (system configuration, network con-
figuration, etc.). The number of data pages may
be quite large, and may even dwarf the number of
base pages for some programs. The set of data
pages for the program may contain several types
of control blocks. A data group is made up of a
set of control block types that are allocated on the
same data pages. For example, if two control
block types are the same length, then the pro-
gram’s storage management scheme might allo-
cate those control blocks from the same data
pages. The two control block types would then
comprise a data group.

To determine the number of data pages that a
program will have, it is necessary to know how
many of the major control blocks will be needed
based on external parameters. For each data
group, the number of data pages can be computed
based on the storage requirements for each of the
control block types within the group for the given
environment.

In addition to estimating the size of the data
groups, it is also necessary to estimate the num-
ber of unique references to the groups by items
from each workload. As with base pages, only
unique references will be considered. The num-
ber of references to a data group for a workload
item could be quite large. For example, if in pro-
cessing a workload item the program performed a
sequential search of a linked list, the number of
unique references to the data group containing the
linked list would be equal to the average number
of list elements searched.

To extend the base page analysis example from

the previous section, Table 1 shows two data
groups for the example, giving their size in the
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number of pages in each data group and the num-
ber of unique references to control blocks for
each workload.

When the program references a data group, one
control block within the data group is referenced,
implying that one data page of the data group is
referenced. Some control blocks within the data
group may be referenced more frequently than
others. If this is the case, a discrete distribution
can be specified to represent the reference be-
havior to a data group. This discrete distribution
defines the relative size and reference probabili-
ties for data subgroups. References to a subgroup
are assumed to be distributed uniformly among
the pages in the subgroup. The discrete distribu-
tion can be made more granular by increasing the
number of subgroups.

A convenient way to specify this discrete distri-
bution and define the data subgroups is with a size
distribution matrix and a reference distribution
matrix (see Table 2). The size distribution table on
the left contains the percentage of the data pages
for a data group that falls within each subgroup.
In the example, subgroup 1-a consists of 50 per-
cent of the data pages that are in data group 1. The
reference distribution table on the right contains
the percentage of the references to the data group
that fall within each subgroup. The table shows
that when data group 2 is referenced, 20 percent
of the time the reference will be to a page within
subgroup 2-b. To simplify automating this anal-
ysis technique, each data group is given the same
number of subgroups. Notice that data subgroup
2-c has zero percent of the data pages from data
group 2, and gets zero percent of the references
to data group 2. In other words, data group 2 has
only two subgroups: 20 percent of the pages are
referenced 80 percent of the time, and 80 percent
of the pages are referenced 20 percent of the time.
Zero entries in the size and reference distribution
matrices indicate that the subgroup is empty and
is not used.

The following input is therefore required to com-
pute the reference rates to the program’s data

pages.

s Workload arrival rates
s Data group definition
—Data group sizes
—Number of unique control block references to
each data group for each workload item
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Figure 2 Base page subset sizes

WORKLOAD C

BINARY NUMBER
NUMBER OF
IDENTIFIER PAGES

Table 1 Data groups

Data Size Unique References
Group Workload
A B c
1 80 4 15 1
2 50 0 2 6

* Data subgroup definition
—Size distribution
—Reference distribution

Given the above input, the calculation of sub-
group sizes and subgroup reference rates is sim-
ple and intuitive. For compactness, the formulas
are expressed below mathematically. Given the
following where:

w the number of workloads
AR, the workload arrival rate
g the number of data groups
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Table 2 Data subgroup size and reference distributions

Size Distribution Reference Distribution
Data Subgroup Data Subgroup
Group a b c Group a b c
1 50% 40% 10% 1 40% 20% 40%
2 20% 80% 0% 2 80% 20% 0%
Table 3 Data subgroup size and reference rate
Size Reference Rate
Data Subgroup Data Subgroup
Group a b c Group a b c
1 40 32 8 1 0.795 0.497 3.975
2 10 40 0 2 1.040 0.065 0.000
GS, the data group size sumption that only unique page references need

UR the unique references by workloads
to data groups

s the number of data subgroups
SGSD,, the subgroup size distribution

SGRD,, the subgroup reference distribution

w,g

we compute:

SGS,,
SGRR,,

the subgroup size (in pages)

the subgroup reference rate (in
references per page per second)
using the following two formulas:

SGS, ;= GS,;- SGSD, ;

and

°, AR, - UR,;" SGRD, )
SGS, ;

k=1 )

SGRR, , =

Table 3 shows the subgroup sizes and reference
rates for the example. This table shows the size in
pages and the reference rate in references per
page per second for each subgroup in the exam-
ple. The data group sizes are shown in Table 1,
and the size and reference distribution data are
shown in Table 2.

There is a complication to consider when com-
puting subgroup reference rates. Recall the as-
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to be counted. If a workload item generates more
page references to a data subgroup than there are
pages in the subgroup, then some pages will be
referenced more than once for a given workload
item. To account for this, the number of refer-
ences to a data page within a subgroup is not al-
lowed to exceed one for a given workload item.
The subgroup reference rate calculation is mod-
ified as follows.

" ~ [(URy,; - SGRD, )
SGRR, ; = EARk' mln( k:S‘GS.- =1

k=1 by

The subgroup size and reference rate matrices
(SGS and SGRR) define a subsetting of the pro-
gram’s data pages into subgroups, such that each
page within a subgroup is referenced at the same
rate (or with the same probability).

Constructing the fault rate function

Using the subset sizes and reference rates from
the previous two sections, an estimate of the fault
rate function can be generated using the following
algorithm.

1. Sort the subsets by increasing reference rate,
discarding all empty or unreferenced subsets.
The sum of all subset sizes would equal the
virtual storage allocation of the program.
Some of the storage may be unreferenced by
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the workloads under consideration, however,
and unreferenced pages are prime candidates
for “stealing.” The program should encounter
page faults only when there is enough storage
contention on the system to remove unrefer-
enced pages. For the purposes of this analysis,
unreferenced pages will be ignored.

2. For the first demand point (f, s), where fis a
fault rate and s is a storage allocation, f is zero
and s is sum of the sizes of the subsets that
appear in the sorted list (the referenced sub-
sets). To run without page faults, the program
must have all of the pages referenced by its
current workload mix resident.

3. To calculate each subsequent demand point
from the current demand point, use the next
subset in the ordered list and:

e Increase f from the current demand point by
the total reference rate for the next subset,
calculated by multiplying the page reference
rate by the size of the subset.

* Decrease s from the current demand point
by the size of the next subset.

The final demand point in the fault rate function
has a storage allocation s of zero pages, implying
that all pages referenced must be paged in. The
fault rate f will be equal to the sum of the total
reference rates for each subset. Demand points
with high fault rates, where almost all pages have
to be paged in, are likely to underestimate the
fault rate, since the assumption that pages are
resident throughout processing of a workload
item is optimistic in that case.

Table 4 shows the demand points for the example.

Once the demand points have been calculated,
they can be plotted to approximate the fault rate
function. Figure 3 shows the graph for the exam-
ple.

The curve in Figure 3 consists of a set of line
segments joined end to end, with each segment
representing a subset of the virtual storage pages.
For each segment, the slope is the negative in-
verse of the page reference rate, and the segment
length is directly proportional to the number of
pages in the subset. Since the graph was built
using a list sorted by reference rate, and since the
slope of each segment is inversely proportional to
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Figure 3 Fault rate function
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Table 4 Demand point calculation

Subset Reference Size Fault Storage

Rate Rate Frames
0.0 282
2-b 0.065 40 2.6 242
1-b 0.497 32 18.5 210
001 0.500 70 53.5 140
1-a 0.795 40 85.3 100
100 1.000 34 119.3 66
2-a 1.040 10 129.7 56
101 1.500 13 149.2 43
1-c 3.975 8 181.0 35
010 5.000 7 216.0 28
011 5.500 1 221.5 27
110 6.000 11 287.5 16
111 6.500 16 391.5 0

the reference rate, the slope gets closer to zero
and the curve gets flatter as the fault rate in-
creases. The interesting part of the curve lies to
the left of the curve’s “knee,” which in this case
appears at around 150 faults per second. Beyond
the knee, a decrease in the program’s storage al-
location requires a relatively large increase in the
fault rate.

Examples

This section describes two examples of how this
modeling technique has been applied in analyzing
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Figure 4 Varying hash table size
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program performance in IBM’s Raleigh Network-
ing Laboratory. Both examples were taken from
a study of a very large network with high work-
load arrival rates. The program under study mon-
itors the state of sessions in the network (a ses-
sion is a conversation between two logical units in
an IBM Systems Network Architecture environ-
ment). The program maintains control blocks for
each logical unit and each session in the network,
and therefore has large data groups that are com-
prised of these control blocks. The program has
three workloads that are reflected in the model:
one for the start of new sessions, one for the end
of existing sessions, and one for individual traffic
items flowing on the sessions.

Since the program needs to support very large
networks, the large pools of control blocks are
accessed using a hashing technique to minimize
the search time for locating a particular control
block. The hash tables are allocated at program
initialization, and an initialization parameter is
used to control the size of these tables. With
larger tables, fewer hash “collisions” will occur,
and fewer control blocks are referenced in the
search for a particular control block.
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Figure 4 shows an estimate of the program’s fault
rate function for a given network size and work-
load arrival rates. Four different values of the ini-
tialization parameter are shown. Each large line
segment in the plots represents one of the large
pools of control blocks. As the hash table sizes
increase, the number of unique references made
to the data groups by individual workload items
decreases, since fewer control blocks are
searched. As a result, the reference rates for
those data groups decrease. In the fault rate func-
tion, this behavior is shown by the slope of the
line segments. With increasing hash table size,
the line segments associated with the affected
data groups have a steeper slope; in other words,
fault rate activity is not affected as greatly by
those data groups.

The following points should be considered in in-
terpreting graphs of a program’s fault rate func-
tion.

* The fault rate function is useful in estimating the
program’s resident storage requirement. In this
example, if a fault rate of 300 pages per second
(which could correspond to page movement be-
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Figure 5 Design alternative A

50

40

STORAGE ALLOCATION (MB)

30 4

20 4

ALTERNATIVE A

FAULT RATE (PAGES / SECOND)

tween central and expanded storage) was ac-
ceptable for this system, the fault rate functions
in Figure 4 indicate that the minimum central
storage requirement would be about 27 mega-
bytes. The hash table size parameter has little
effect at this fault rate, since the first large data
group is not affected by the parameter.

* The fault rate function is also useful in estimat-
ing the fault rate experienced by the program if
its storage allocation is constrained. In Figure 4,
if the program is restricted to using 10 mega-
bytes of storage, its fault rate is estimated at
around 1500 pages per second with size 1 of the
hash table size parameter. If the parameter is
increased by a factor of four (size 4), the pro-
gram’s fault rate is estimated at around 800
pages per second, for a 47 percent reduction in
the fault rate. The fault rate function should be
helpful in performance management exercises
to guide storage isolation decisions. For Mvs
systems with expanded storage, the fault rate
can be interpreted as the rate of moving the
program’s pages from expanded storage to cen-
tral storage. For storage allocations beyond the
capacity of processor storage (central plus ex-
panded), the fault rate can be interpreted as the
program’s page-in rate from auxiliary storage.

s An improvement in the fault rate function
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brings it closer in to thex andy axes. The worst
case for a fault rate function is when the pro-
gram does not exhibit any locality of reference,
but instead references its pages randomly. For
the worst case, the fault rate function would
consist of a single line segment that extends
from the y axis intercept to the x axis intercept.

* The number of referenced data pages in this
model dwarfs the number of referenced base
pages. Only 1 megabyte of storage was required
to keep the referenced base pages resident in
Figure 4. In our studies, referenced base pages
were usually beyond the knee of the curve. For
programs with a large amount of data in virtual
storage, this might often prove to be the case.
This underscores the value of separating data
page analysis from base page analysis. Data
pages can be analyzed during the initial design
stages, whereas base page analysis is usually
done once implementation is underway (since a
virtual storage map is needed).

The first example showed the effect of a param-
eter change, illustrating that this type of model is
useful both during program development (to as-
sess the performance of a design) and after the
program is installed (for performance manage-
ment and capacity planning use).

JENNINGS 309




Figure 6 Design alternative B
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The next example uses the same model and the
same workload arrival rates. In this example, two
design alternatives are compared to see their ef-
fect on the program’s fault rate function. Alter-
native A improves the locality of data group z by
moving the referenced control block to the top of
its hash table collision chain. This would have the
effect of shortening the average collision chain
search depth, and would reduce the number of
unique references made by the three workloads to
data group z. Figure 5 shows how this design
change affects the program’s fault rate function.
Data groups x and y are not affected by this
change. Data group z has moved in its relative
location on the fault rate curve, because after the
design change, the reference rate per page for
data group z lies between the reference rates for
data groups x and y.

Design alternative B (see Figure 6) is similar to
alternative A, except that it improves the locality
of data groupy (with the same mechanism of plac-
ing the referenced control block at the top of its
collision chain). With alternative B, the reference
rate per page for data group y is less than that for
data group x, so its relative position in the fault
rate curve changes. Note that the vertical com-
ponent of line segment y does not change with
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design alternative B, because the size of data
group y has not changed. Only the horizontal
component changes, because the page reference
rate for data group y has been reduced.

Figure 7 shows the effect of implementing both
design alternatives. The change in length and
slope of the line segments for data groups y and
z remains the same when both alternatives are
implemented. In Figure 6, with alternative B im-
plemented, data group x was below data groupy;
this relative position does not change if alterna-
tive A is implemented. Likewise, in Figure 5, data
group z was below data group x with alterna-
tive A implemented, and it remains below x in
Figure 7.

With every locality improvement, note that the
fault rate function gets closer to the x andy axes.

Concluding remarks

This paper has presented a method of estimating
the fault rate function of a program given the ar-
rival rates for each of the program’s workloads
and a representation of the page references made
by each workload. The projected fault rate func-
tion can be used in estimating the program’s stor-
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Figure 7 Design alternatives A and B together
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age behavior for varying workload mixes and in
assessing program design alternatives. The pro-
cess of grouping program pages into subsets re-
duces the complexity of treating each page sep-
arately. Easton made a similar observation in
“grouping pages with similar behavior into class-
es.” To develop a modeling approach that
would handle programs with large virtual storage
requirements, the simplification offered by this
subsetting process was instrumental, as was the
separation between base page and data page anal-
ysis.

Methods for relaxing some of the assumptions in
the base page analysis are identified in the paper.
In our studies, however, the data page analysis
has been the more important and enlightening,
since data pages comprise most of our program’s
virtual storage in large network environments.
Also, data page analysis can be done during the
design phase, when the data structure and access
techniques are first defined. As the development
cycle progresses and more detailed data are avail-
able, the granularity of the data page analysis can
be increased. Base page analysis is usually done
during implementation, since a virtual storage
map is needed. Optimizations resulting from the
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base page analysis would normally require
changes to the low-level design or changes to the
clustering of modules to pages.

The base and data page analyses and construction
of the fault rate function are straightforward and
can be automated easily. Inputs to the base page
analysis (the virtual storage map and the list of
modules used by each workload) can be gener-
ated using standard mapping and trace programs.
Inputs to the data page analysis (the data group
sizes, the number of unique references to each
data group for each workload, and the optional
subgroup definition) are determined manually.

An extension to this modeling approach is worthy
of mention. If two or more programs are being
studied together, it is possible to combine their
fault rate functions into a single “aggregate™ fault
rate function. To do this combination, the base
page and data page analysis would be done sep-
arately for each program to subset the programs’
virtual storage by reference rate. The subsets for
all of the programs would then be combined and
sorted, and the aggregate fault rate function con-
structed using the same algorithm as for a single
program.
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Validating a program’s projected fault rate func-
tion with measurement data is difficult because it
requires measuring carefully regulated workload
arrival rates on a system with controlled storage
contention. (This difficulty is similarly noted for
program lifetime data.'*) One model validation
exercise has been conducted on an IBM 3090* pro-
cessor running the VM/XA* operating system with
5000 simulated conversational monitor system
(cMs) users exercising a program development
workload. A program with four steady workloads
of its own was added to the system, and the sys-
tem performance was monitored for 30 minutes.
A demand point consisting of the program’s mea-
sured page-in rate and resident set size was then
compared to the program’s projected fault rate
function. The measured demand point was within
13 percent of the equivalent demand point on the
projected fault rate curve. The accuracy of the
projected results using this modeling technique
will obviously depend on the accuracy and gran-
ularity of the program’s representation.

The fault rate functions generated by this mod-
eling approach have been useful in predicting the
effect of program design and tuning changes.
They have been especially useful in predicting
when paging problems are likely to occur (i.e., the
knee of the fault rate curve). Unless a program’s
projected fault rate function is validated with
careful measurement data, however, one should
avoid attributing a high degree of accuracy to its
demand points, especially for high fault rates.

*Trademark or registered trademark of International Business
Machines Corporation.
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