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Paging activity can  be  a  major  factor in 
determining  whether  a  software  workload  will run 
on a given computer  system. A program’s  paging 
behavior  is  difficult to predict  because it depends 
not  only on the workload  processed  by the 
program,  but  also  on the level  of  storage 
contention of the processor. A program’s  fault 
rate  function  relates  storage  allocation to the 
page  fault  rate  experienced  while  processing  a 
given workload.  Thus,  with the workload  defined, 
the fault  rate  function  can  be  used to see  how 
the  program’s  storage allocation is  affected  by 
varying  levels of storage  contention,  represented 
by  varying  fault  rates.  This  paper  presents  a 
technique to represent  program  workloads  and 
estimate the fault  rate  function,  and  describes 
how  these  results  can be used in analyzing 
program  performance. 

P rograms usually do  not reference  their  stor- 
age uniformly; they  exhibit locality by con- 

centrating  storage  references on subsets of their 
storage. A program’s degree of locality  deter- 
mines how much  processor  storage it needs  to  run 
efficiently. The storage  reference  behavior of pro- 
grams,  sometimes simply referred to asprogram 
behavior, has  been  studied  for  nearly  three  dec- 
ades. Much of the  early  attention was in the de- 
velopment of storage management algorithms for 
operating  systems,”3 while other  early  efforts 
yielded  restructuring  techniques  that  improve 
program 10cality.~’~ More  recent  work  has  rec- 
ommended design techniques to  enhance locali- 
ty. Reference  strings (the  string of memory ref- 
erences  that  the  program  generates during its 
execution)  have  frequently  been  used in these 
studies, as have  component  connectivity  graphs. 
These  representations  focus on references to pro- 
gram modules  and  their  data  areas. With the in- 

creasing  size of processor  memories  and  the  cor- 
responding  growth in application program size 
over  the  last  decade,  the  storage  required  for  pro- 
gram modules and their local data  areas  can  be  a 
smaller  contributor to a program’s total  storage 
requirement  than large data  areas, which vary in 
size  with  environment  parameters  such as  net- 
work configuration. For this  reason,  this  study 
treats  the  storage  for large data  areas  (referred  to 
as data pages) separately from the storage  for 
program modules  and their local data  areas  (re- 
ferred  to as basepages). 

Many  programs  process multiple workloads or 
transaction  types.  The  storage  reference  behavior 
of a  program  depends  on  the  particular  workloads 
it is processing  and  the  rate of arrivals for each 
workload. To characterize  a program’s demand 
on  the system’s storage  and paging subsystems, 
one  must  know  the  arrival  rates  for  each  workload 
and  the  amount of storage  contention  on  the  pro- 
cessor.  The fault  rate  function, which maps the 
page fault rate  experienced by  the program to  the 
program’s storage allocation, is a  succinct  repre- 
sentation of the program’s demand on  the  sys- 
tem’s  storage  and paging subsystems for a given 
workload mix. The fault rate  function is closely 
related to  the lifetime  function, which plots  stor- 
age allocation versus the  average time between 
faults.  These two functions  were used during the 
development of virtual  storage  systems  to  com- 
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pare  the efficiency of different memory manage- 
ment policies. Algorithms for generating  the 
fault rate  function from a program’s reference 
string  are well documented. The technique  pre- 
sented in this  study  is unique in that it allows the 
fault rate  function of a program to  be approxi- 
mated using information available during the pro- 
gram’s design, rather  than deriving the  function 
from  a  measured  reference  string  obtained  after 
the program has been implemented. Instead of 
using the fault rate  function to  compare operating 
system  memory management policies, it is used 
here  to  assess  the efficiency of program design 
alternatives and to project  the  amount of resident 
storage  required by  the program to run efficiently 
in different system  environments. 

The first section  contains  a brief description of 
related  work in this  area,  and  provides definitions 
for important  concepts in program behavior.  Fol- 
lowing that  is  a  description of the modeling ap- 
proach, including the  important simplifying as- 
sumptions,  and  then  separate  sections  describe 
base page and  data page analysis, the algorithm 
for  constructing  the  fault  rate  function,  and  ex- 
amples to illustrate how this  technique  has  been 
applied in analyzing program performance at 
IBM’S Raleigh, North Carolina, Networking  Lab- 
oratory. 

Background 

On most operating  systems (including IBM’s Mul- 
tiple Virtual Storage [MVS], virtual machine [VM], 
and Virtual Storage  Extended [VSE]), processor 
storage is divided into fixed-size pieces called 
frames.  The operating  systems allow multiple 
programs (i.e., jobs,  virtual  machines, or parti- 
tions)  to  run  concurrently. Each program has  vir- 
tual storage  that  contains  its  modules  and  data 
areas, and the  operating  system divides each pro- 
gram’s virtual  storage  into fixed-size pieces called 
pages. Virtual storage  pages and processor  stor- 
age frames are  the  same  size. In order  to run,  each 
program must  have  some of its  virtual  storage 
pages  allocated  to  processor  storage  frames.  The 
set of a program’s pages assigned to  processor 
frames  at  a given time is referred to as  its  resident 
set. Frequently,  the  total  virtual  storage  for all 
currently running programs  exceeds  the  amount 
of processor storage available, so the operating sys- 
tem uses a memory management scheme to manage 
the assignment of pages to frames. The operating 
system relies on the characteristic of programs to 
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exhibit locality of reference, which Madison and 
Batson describe as  “the experimentally observed 
phenomenon that, for relatively extended periods 
of time, a program references only some subset of 
its . . . virtual address ~ p a c e . ” ~  

If, as a program is running, it tries to  access a page 
that is not assigned to a  frame, apage fault  occurs 
and apage-in is  necessary  to bring in the  neces- 
sary page. The  operating  system  uses  a page re- 
placement policy to select  a page from all  of the 
currently  resident  pages  for  replacement. MVS, 
VM, and vSE systems  use  a  least  recently  used 
policy;’*’o they  select  a page that  has  not  been 
referenced  for  a long period of time for  replace- 
ment,  since it is highly probable  that  the page will 
not  be  referenced again soon. If the page that is 
selected  for  replacement  has  been modified since 
it became  resident,  a page-out is necessary  to 
write  the  contents of the page to auxiliary storage. 
Page-ins usually require  separate  input/output  op- 
erations,  but  page-outs are  less  frequent and the 
operating  system  can  combine multiple page-outs 
per  input/output operation.’ Page-ins, therefore, 
are a  more  important  consideration in evaluating 
program performance. Note  that  the program’s 
page-in rate  is  equivalent to its page fault rate. 

Many techniques  have  been identified to  enhance 
a program’s locality of reference by restructuring 
its virtual  storage layout. (Ferrari offers a good 
overview of these techniques.’) These  methods 
require analyzing the program’s reference string. 
References in the  string  are  associated  with 
blocks of storage, and the blocks are depicted in a 
restructuring graph, where the blocks form the 
graph nodes and the edges between nodes have  a 
number indicating the value of placing the  two 
blocks on  the same page. The edge values  are com- 
puted by a restructuring algorithm, and a revised 
assignment of blocks to pages is generated by a 
clustering algorithm. Smith6 identifies simple heu- 
ristic clustering techniques that use component 
size, frequency, and connectivity information, 
rather than a reference string. Ferrari indicates that 
“most of the programs for which restructuring is 
convenient are not very data-dependent, and for 
them the effectiveness of restructuring algorithms 
should not be expected to be data-dependent ei- 
ther.”’ By treating large data areas  (data pages) 
separately from program modules and their local 
data areas (base pages), this paper presents a 
method of studying programs whose reference be- 
havior is data-dependent. 
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While there  is  no  related  work  on  data page anal- 
ysis explicitly, data  pages  can  be  viewed as a  da- 
tabase residing in the program’s virtual  storage. 
Database  reference  behavior  has  been the subject 
of several  studies. Rodriguez-Rose11 shows  that 
the  database  references  generated  by  a pool of 

The assumption is that pages 
referenced will not be  paged out, 
allowing us to consider only the 

unique  page  references. 

interactive  database  users  exhibits  “weak” local- 
ity in referencing blocks of a  database. ” Kearns 
and  DeFazio,  however,  show  that  the  reference 
behavior of individual batch  database application 
programs differs from the  behavior  for  “inter- 
leaved”  requests of multiple interactive  users, 
and  that locality of reference is exhibited. ’’ Eas- 
ton  describes  a  stochastic model for  database ref- 
erences,  which  uses page reference  and  residence 
probabilities to  compute  the average  number of 
pages in the first level of a  storage  hierarchy  (the 
buffers) and  the miss ratio given a working set 
window size. l3 

Modeling approach 

Because  the  number of virtual  storage  pages  re- 
quired by a program may  depend on external  pa- 
rameters (e.g., system configuration, network 
configuration, etc.),  this modeling approach  sep- 
arates  the  set of virtual  storage pages into  two 
groups: a set of base pages, whose  number is in- 
dependent of the  environment,  and  a set of data 
pages, whose  number is dependent  on  the envi- 
ronment. To estimate the fault rate  function, it is 
first necessary  to calculate  the  reference  rate (in 
references  per  second)  for  each page of virtual 
storage.  This is accomplished by dividing the  base 
pages  and  data  pages  into  subsets,  such  that  the 
pages within each  subset  have  the  same  reference 
rate  (or  reference  probability).  The  reference 
rates  are  calculated from workload  arrival  rates 
and  data page reference information. The  subsets 
are then  ordered  by  reference  rate,  and  the  subset 
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sizes  and  reference  rates  are  used  to  generate de- 
mand points that  form  a  “piecewise linear 
graph”’  approximating  the  fault  rate  function. 

The  determination of workloads is an  important 
first step in this modeling approach.  A  workload 
can  represent an individual transaction  type or a 
class of transaction  types. The workload  selec- 
tion should identify the dominant processing of 
the program.  The following criteria should be 
considered  when  selecting  workloads. 

Frequency.  The  most  frequently  processed 
transaction  types should be identified. 
Processing  requirements.  The  transaction  types 
that  contribute  most to  the program’s  resource 
usage should be identified. 
Path  variations.  A  conditional  variation in a 
path  that  adds significant processing and that 
references  a significant number of additional 
modules  can  be  treated as a  separate  workload. 
Distinguishing “secondary”  workloads in this 
manner is one  way  to increase  the  granularity of 
the  base page analysis. 
Data  reference  behavior.  Transactions  that ref- 
erence large data  groups  or  that  generate  a sig- 
nificant number of data  group  references  should 
be identified. 

Since  workload  selection is a manual process,  the 
number of workloads should be  less  than  about 
20, in order  to minimize complexity.  (Our models 
have included up to ten  workloads.) For programs 
with many  more  transaction  types, it would be 
desirable to have  workloads  represent  transac- 
tion classes  instead of individual transaction 
types  where possible. 

This modeling approach  is useful for  estimating 
the phase behavior of a program. According  to 
Denning, phase  behavior is exhibited  by  a  pro- 
gram when,  “over  extended  periods,  the program 
concentrates all references in small, fixed subsets 
of pages. Each maximal such period is called a 
phase; the  associated  pages  constitute  the locality 
set of the  phase.”  Transition  behavior is exhibited 
when,  “in  the  intervals  between  phases,  the 
nicely localized phase  patterns  are  broken;  the 
reference  pattern  is  discontinuous,  unordered.”’ 
Programs  spend  a large majority of their time in 
phase  behavior.8  Phase  behavior  can  be  associ- 
ated  with  steady  state  processing,  where  items of 
work  arrive  at  a steady rate. 
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As  mentioned  earlier,  virtual  storage  subset  sizes 
and  reference  rates are used to  generate an ap- 
proximation for  the fault rate function. Pages with 
low reference  rates  have  a low reference  proba- 
bility, and are more likely candidates  for  replace- 
ment (page-out) than  pages with high reference 
rates.  In  generating  the fault rate  function,  a least 
frequently used (LFU) page replacement algo- 
rithm is assumed, although most operating  sys- 
tems use a  least  recently used (LRU) algorithm. 9~10 

For analyzing phase  behavior, LFU replacement 
should closely  approximate LRU replacement. 

This  paper  also  assumes  that  pages  referenced by 
a  workload item will not  be paged out  before  the 
processing of the  workload item is  completed,  an 
assumption  noted  by  Smith as suitable for short- 
duration,  transaction-type processing. This  as- 
sumption allows us to consider  only  the unique 
page references in processing  a single workload 
item; subsequent  references will not  cause page 
faults. Easton makes  a similar distinction  be- 
tween  primary and secondary  references: “the 
first access  to a page after  a ‘long’ period of in- 
activity” is a  primary  reference; “the references 
that follow, within a ‘short’ time, are called sec- 
ondary  references.” l3 Also similar is Ferrari’s 
distinction  between  critical  and  noncritical  refer- 
ences. 

The next  section  describes how base pages are 
divided into  subsets,  and how the page reference 
rates  are  calculated. 

Base page analysis 

The important simplifying assumption made in 
base page analysis is that  the local data used by 
a module are highly likely to  be  allocated  on  the 
same page as  the module. With this  assumption, 
it is  only  necessary  to  count module references 
for  the  base pages. (One  way  to  relax  this  as- 
sumption would be  to  use  an  instruction  trace for 

reach of the program’s workloads and distinguish 
between local data  and module references.) 

In  processing  an item of work  from  a  workload, 
the flow of control of the program will pass 
through several modules, and will likely reference 
several of the  base pages. Some modules, such as 
service  routines, will be used by multiple work- 
loads. Viewing the  modules of the program as a 
set,  the  subset of modules used by  one  workload 
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is likely to intersect  with  the  subset used by an- 
other  workload. 

The first step in base page analysis is to partition 
the  modules  into subsets based  on the workloads 
that  reference them. This  requires  only  a list of 
the  modules used in processing  each  workload. 

Once  this is done,  the mapping of modules to  base 
pages  needs to  be represented.  This  can be  ob- 
tained from a  virtual  storage map, consisting of a 
list of module names,  the  starting  addresses,  and 
the module lengths. (Ideally, the  virtual  storage 
map of the program should  be  taken  when  no  data 
pages  have  been  allocated by  the program, so that 
only  base pages show  up in the map.) Mapping 
modules to pages  is trivial: page identifiers for 
31-bit addressing  systems  are five bytes in length, 
and  are simply the first five bytes of the module 
starting  addresses  for  modules within the page. 
For 24-bit addressing  systems,  the page identifier 
is three  bytes long. Modules will frequently  span 
page boundaries  (this  is  determined by the length 
of the  module). For this analysis, it is  assumed 
that  the  entire module is  referenced in processing 
each  workload, implying that  every page that 
module spans is referenced  when the module is 
referenced. (To relax  this  assumption,  one  could 
use an instruction  trace  and  record  the  offsets  that 
are  referenced within each module.) 

The  next step is to determine which workloads 
reference  each  base page. The first step identified 
which workloads  reference  each module, and  the 
second step identified which modules  are  on  each 
base page. For a given base page, it is referenced 
by  each  workload  that  references  a module con- 
tained on  that page. 

The final step in the  base page analysis  is  to  de- 
termine  the  reference  rates  for  each of the  base 
pages. Recalling the  assumption  that  only unique 
references need to  be  counted,  each  base page is 
counted once per  workload item that  references 
it. Given mean arrival  rates for each of the  pro- 
gram’s workloads,  the  reference  rate for a  base 
page is simply the  sum of the  arrival  rates  for  the 
workloads referencing that  base page. 

This  analysis  technique is a  subsetting  process, 
where  the  base  pages in each  subset  are  refer- 
enced by  the  same  combination of workloads. If 
there  are n workloads  for  the  program,  the  sub- 
setting  process  yields 2” subsets of the  base 
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Figure 1 Base  page  subsets 

WORKLOAD C 

BINARY 
NUMB€R 
IDENTIFIER 

pages,  some of which will probably  be  empty. 
The  subsets can  be  enumerated using a  binary 
numbering scheme,  as  shown in Figure 1. This 
figure is an  example  with  three  workloads  and 
eight base page subsets.  The three-digit identifier 
indicates  which of the  three  workloads  references 
the  subset. The following workload  arrival  rates 
are  used to calculate  the page reference  rates  for 
the  subsets: 

Workload A = 1.0 items  per  second 
Workload B = 5.0 items  per  second 
Workload C = 0.5 items  per  second 

Given a  storage map, a list of modules  used by 
each  workload, and workload  arrival  rates,  this 
technique  lends itself quite  easily to automation. 

To illustrate the  base page references  generated 
by a given workload,  consider  the  subset  sizes 
shown in Figure 2. When an item of work from 
workload A is  processed,  each page within base 
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page subsets 100,  101,  110, and 111 are  refer- 
enced, resulting in 74 unique page references. 

This  section  described  a  method of subsetting 
base  pages which yields  subsets  containing  pages 
with the same  reference  rates. As will be  shown 
in the  next  section,  data pages are  treated differ- 
ently from base pages. The goal, however, is still 
to divide the pages of virtual  storage  into  subsets 
containing pages with  the  same  reference  rates. 

Data page  analysis 

Data  pages  contain major control  blocks or  data 
areas,  and vary in number  depending on external 
parameters  (system configuration, network  con- 
figuration, etc.).  The  number of data  pages  may 
be  quite large, and  may  even dwarf the  number of 
base  pages  for  some  programs. The  set of data 
pages  for  the  program  may  contain  several  types 
of control blocks. A datu group is made  up of a 
set of control  block  types  that  are  allocated on the 
same  data pages. For example, if two  control 
block types  are  the  same length, then  the  pro- 
gram’s storage management scheme might allo- 
cate  those  control  blocks from the  same  data 
pages. The  two  control  block  types would then 
comprise  a  data group. 

To determine  the  number of data  pages  that  a 
program will have, it is necessary  to know how 
many of the major control  blocks will be  needed 
based on external  parameters. For  each  data 
group,  the  number of data  pages  can  be  computed 
based on the  storage  requirements  for  each of the 
control  block  types  within  the  group  for  the given 
environment. 

In addition to estimating  the  size of the  data 
groups, it is also  necessary  to  estimate  the num- 
ber of unique references to  the groups by items 
from each  workload. As with  base pages, only 
unique references will be  considered.  The num- 
ber of references to a  data  group for a  workload 
item could be  quite large. For example, if in pro- 
cessing  a  workload item the program performed a 
sequential  search of a linked list, the number of 
unique references  to  the  data  group  containing  the 
linked list would be  equal  to  the  average  number 
of list elements  searched. 

To extend  the  base page analysis  example from 
the previous  section,  Table 1 shows  two  data 
groups  for  the  example, giving their  size in the 

IBM SYSTEMS  JOURNAL, VOL 31,  NO  2,  1992 



number of pages in each  data  group and the num- 
ber of unique  references  to  control  blocks  for 
each  workload. 

When the program references  a  data  group, one 
control  block within the  data  group is referenced, 
implying that  one  data page of the  data group is 
referenced.  Some  control  blocks within the  data 
group  may  be  referenced  more  frequently  than 
others. If this is the  case,  a  discrete  distribution 
can be specified to  represent  the  reference  be- 
havior to a  data  group.  This  discrete  distribution 
defines the relative size  and  reference probabili- 
ties  for datu subgroups. References to a  subgroup 
are assumed to be distributed uniformly among 
the pages in the  subgroup.  The  discrete  distribu- 
tion can  be  made more granular by increasing the 
number of subgroups. 

A convenient way  to specify  this  discrete  distri- 
bution  and define the  data  subgroups is with a  size 
distribution  matrix  and  a  reference  distribution 
matrix  (see  Table 2). The  size  distribution  table on 
the left contains  the  percentage of the  data pages 
for  a  data  group  that falls within each  subgroup. 
In the  example,  subgroup 1-a consists of 50 per- 
cent of the  data pages that  are in data  group 1. The 
reference  distribution  table on the right contains 
the  percentage of the  references to  the data  group 
that fall within each  subgroup. The table  shows 
that  when  data group 2 is referenced, 20 percent 
of the time the  reference will be  to  a page within 
subgroup 2-b. To simplify automating  this anal- 
ysis  technique,  each  data group is given the  same 
number of subgroups.  Notice  that  data  subgroup 
2-c has zero percent of the  data pages from data 
group 2, and gets  zero  percent of the  references 
to  data group 2 .  In other  words,  data  group  2  has 
only  two  subgroups: 20 percent of the pages are 
referenced 80 percent of the time, and 80 percent 
of the pages are referenced 20 percent of the time. 
Zero  entries in the  size  and  reference  distribution 
matrices  indicate  that  the  subgroup  is  empty  and 
is not used. 

The following input is therefore  required  to  com- 
pute  the  reference  rates  to  the program’s data 
pages. 

Workload arrival rates 
Data  group definition 
-Data group  sizes 
-Number of unique control block references  to 

each  data group for  each  workload item 
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Figure 2 Base page  subset sizes 

WORKLOAD C 

BINARY 
NUMBER  OF 
IDENTIFIER  PAGES 

NUMBER 

Table 1 Data  groups 

Data  Size  Unique  References 
Group  Workload 

A B C 

1 80 4 15 1 
2 50 0 2 6 

Data subgroup definition 
-Size distribution 
-Reference distribution 

Given the  above  input,  the  calculation of sub- 
group  sizes  and  subgroup  reference  rates  is sim- 
ple and intuitive. For compactness,  the  formulas 
are  expressed below mathematically. Given the 
following where: 

W the  number of workloads 
ARW the  workload  arrival  rate 
g the  number of data  groups 
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1 rable 2 Data  subgroup  size  and  reference  distributions 

Size  Distribution  Reference  Distribution 
Data  Subgroup  Data  Subgroup 

Group  a  b C Group  a  b C 

1 50% 40% 10% 1 40%  20% 40% 
2 20% 80% 0% 2 80% 20% 0% 

Table 3 Data  subgroup  size  and  reference rate 

Size  Reference  Rate 
Data Subgroup Data Subgroup 

Group a  b C Group a  b C 

40 32 8 1 0.795 0.497 3.975 
10 40 0 2 1.040 0.065 0.000 

GSg the  data  group  size 
U R , ,  the unique references  by  workloads 

S the number of data  subgroups 
to  data groups 

SGSD,, the subgroup  size  distribution 
SGRLI,, the  subgroup  reference  distribution 

we compute: 

SGS,, the subgroup  size (in pages) 
SGRR,, the  subgroup  reference  rate (in 

references  per page per second) 

using the following two formulas: 

SGS,, = GS,  SGSD,, 

and 

Table 3 shows  the  subgroup  sizes  and  reference 
rates for the example.  This  table  shows  the  size in 
pages and the reference  rate in references per 
page per second  for  each  subgroup in the  exam- 
ple. The  data  group  sizes  are  shown in Table 1, 
and the size  and  reference  distribution  data are 
shown in Table 2. 

There  is  a  complication to consider  when  com- 
puting subgroup  reference  rates. Recall the as- 

sumption  that  only unique page references need 
to be  counted. If a  workload item generates  more 
page references  to  a  data  subgroup  than  there  are 
pages in the  subgroup,  then  some  pages will be 
referenced  more  than once for a given workload 
item. To account  for  this,  the  number of refer- 
ences  to a  data page within  a  subgroup is not al- 
lowed to exceed one for  a given workload item. 
The subgroup  reference  rate  calculation is mod- 
ified as follows. 

The subgroup  size  and  reference  rate  matrices 
(SGS and S G R R )  define a  subsetting of the  pro- 
gram’s data pages into  subgroups,  such  that  each 
page within  a  subgroup is referenced  at  the  same 
rate  (or with the  same  probability). 

Constructing the fault rate function 

Using the  subset  sizes and reference  rates from 
the  previous  two  sections,  an  estimate of the fault 
rate  function  can  be  generated using the following 
algorithm. 

1. Sort  the  subsets  by increasing reference  rate, 
discarding all empty  or unreferenced  subsets. 
The  sum of all subset  sizes would equal the 
virtual  storage  allocation of the program. 
Some of the  storage  may be unreferenced by 
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the  workloads  under  consideration,  however, 
and unreferenced pages are prime candidates 
for “stealing.” The program should encounter 
page faults  only  when  there is enough storage 
contention  on  the  system to remove  unrefer- 
enced pages. For  the  purposes of this analysis, 
unreferenced pages will be ignored. 

2. For  the first demand point (f, s), where f is a 
fault rate  and s is a  storage  allocation,f is zero 
and s is sum of the  sizes of the  subsets  that 
appear in the  sorted list (the  referenced  sub- 
sets).  To  run  without page faults,  the program 
must have all of the  pages  referenced by its 
current  workload mix resident. 

3. To calculate  each  subsequent demand point 
from the  current demand point,  use  the  next 
subset in the  ordered list and: 

Increaseffrom  the  current demand point by 
the  total  reference  rate for the next  subset, 
calculated by multiplying the page reference 
rate  by  the  size of the  subset. 
Decrease s from the  current  demand point 
by  the size of the  next  subset. 

The final demand point in the fault rate  function 
has  a  storage allocation s of zero pages, implying 
that all pages  referenced  must  be paged in. The 
fault rate f will be equal  to  the  sum of the  total 
reference  rates  for  each  subset. Demand points 
with high fault  rates,  where almost all pages  have 
to  be paged in, are likely to  underestimate  the 
fault rate,  since  the  assumption  that pages are 
resident  throughout  processing of a  workload 
item is optimistic in that  case. 

Table 4 shows  the demand points for the example. 

Once  the  demand  points  have  been  calculated, 
they  can  be  plotted  to  approximate  the fault rate 
function.  Figure 3 shows  the  graph for the  exam- 
ple. 

The  curve in Figure 3 consists of a  set of line 
segments  joined end to  end,  with  each  segment 
representing  a  subset of the  virtual  storage pages. 
For each  segment,  the  slope is the negative in- 
verse of the page reference  rate,  and  the segment 
length is  directly  proportional to  the number of 
pages in the  subset.  Since  the  graph  was built 
using a list sorted  by  reference  rate,  and  since  the 
slope of each segment is inversely  proportional  to 
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Figure 3 Fault  rate  function 
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Table 4 Demand  point  calculation 

Subset  Reference  Size  Fault  Storage 
Rate  Rate  Frames 

0.0 282 
2-b  0.065  40  2.6  242 
1-b 0.497  32  18.5  210 
00 1 0.500  70  53.5  140 
1-a 0.795  40  85.3  100 
100 1 .000  34  119.3  66 
2-a  1.040  10  129.7  56 
101  1.500 13 149.2  43 
1 -c 3.975 8 181.0  35 
010  5.000 7 216.0  28 
011  5.500 1 221.5  27 
110  6.000 11 287.5  16 
111 6.500  16  391.5 0 

the  reference  rate,  the  slope  gets  closer  to  zero 
and the  curve  gets flatter as  the  fault  rate in- 
creases. The interesting  part of the  curve lies to 
the left of the  curve’s  “knee,” which in this  case 
appears  at  around 150 faults per second. Beyond 
the  knee,  a  decrease in the program’s storage al- 
location  requires  a  relatively large increase in the 
fault rate. 

Examples 

This  section  describes two examples of how this 
modeling technique  has  been applied in analyzing 
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Figure 4 Varying  hash table size 
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program  performance in IBM’S Raleigh Network- 
ing Laboratory. Both examples  were  taken from 
a  study of a very large network  with high work- 
load arrival  rates.  The  program  under  study mon- 
itors  the  state of sessions in the  network (a ses- 
sion is a  conversation  between  two logical units in 
an IBM Systems  Network  Architecture  environ- 
ment). The program maintains  control  blocks  for 
each logical unit and each  session in the  network, 
and  therefore  has large data  groups  that  are com- 
prised of these  control  blocks.  The program has 
three  workloads  that are reflected in the model: 
one for the  start of new sessions, one for the  end 
of existing sessions,  and  one for individual traffic 
items flowing on  the  sessions. 

Since  the program needs  to  support  very large 
networks, the large pools of control  blocks  are 
accessed using a hashing technique  to minimize 
the  search time for locating a  particular  control 
block. The hash  tables  are  allocated  at program 
initialization, and an initialization parameter is 
used to control  the  size of these  tables. With 
larger tables,  fewer  hash “col l i~ions~~ will occur, 
and  fewer  control  blocks  are  referenced in the 
search  for  a  particular  control block. 

Figure 4 shows  an  estimate of the program’s fault 
rate  function for a given network  size and work- 
load arrival  rates.  Four different values of the ini- 
tialization parameter  are  shown.  Each large line 
segment in the  plots  represents one of the large 
pools of control  blocks.  As  the hash table  sizes 
increase,  the  number of unique references  made 
to the  data  groups  by individual workload  items 
decreases,  since  fewer  control  blocks  are 
searched.  As  a  result,  the  reference  rates for 
those  data  groups  decrease. In the fault rate  func- 
tion, this  behavior is shown  by  the  slope of the 
line segments. With increasing hash  table  size, 
the line segments  associated with the affected 
data  groups  have  a  steeper  slope; in other  words, 
fault rate  activity  is not affected as greatly by 
those  data  groups. 

The following points should be considered in in- 
terpreting  graphs of a program’s fault  rate  func- 
tion. 

The fault rate  function is useful in estimating the 
program’s resident  storage  requirement. In this 
example, if a fault rate of 300 pages per second 
(which could correspond  to page movement  be- 
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Figure 5 Design alternative A 
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tween  central and expanded  storage)  was  ac- 
ceptable  for  this  system, the fault  rate  functions 
in Figure 4 indicate  that  the minimum central 
storage  requirement would be  about 27 mega- 
bytes. The hash  table  size  parameter  has little 
effect at  this fault rate,  since  the first large data 
group is not affected by  the  parameter. 
The fault rate  function is also useful in estimat- 
ing the fault rate  experienced by the program if 
its  storage allocation is constrained. In Figure 4, 
if the  program is restricted  to using 10 mega- 
bytes of storage,  its fault rate is estimated  at 
around 1500 pages  per  second with size 1 of the 
hash table  size  parameter. If the  parameter  is 
increased  by  a  factor of four  (size 4), the  pro- 
gram’s fault rate is estimated at around 800 
pages per  second,  for  a 47 percent  reduction in 
the fault rate.  The fault rate  function should be 
helpful in performance management exercises 
to guide storage isolation decisions. For MVS 
systems with expanded  storage,  the fault rate 
can  be  interpreted as the  rate of moving the 
program’s pages from expanded  storage to  cen- 
tral storage. For storage  allocations  beyond  the 
capacity of processor  storage  (central plus ex- 
panded),  the fault rate  can  be  interpreted  as  the 
program’s page-in rate from auxiliary storage. 
An improvement in the fault rate  function 
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brings it closer in to  thex  andy axes. The  worst 
case for  a  fault rate function  is  when the  pro- 
gram does not exhibit  any  locality of reference, 
but  instead  references  its  pages randomly. For 
the  worst  case,  the fault rate function would 
consist of a single line segment that  extends 
from they axis intercept to  thex axis intercept. 
The number of referenced  data  pages in this 
model dwarfs  the  number of referenced  base 
pages. Only 1 megabyte of storage was required 
to  keep  the referenced  base  pages  resident in 
Figure 4. In our  studies,  referenced  base pages 
were usually beyond  the  knee of the  curve. For 
programs  with  a large amount of data in virtual 
storage,  this might often  prove to  be  the case. 
This  underscores  the  value of separating  data 
page analysis  from  base page analysis. Data 
pages can be analyzed during the initial design 
stages,  whereas  base page analysis is usually 
done  once implementation is  underway  (since  a 
virtual  storage  map is needed). 

The first example  showed the effect of a  param- 
eter  change, illustrating that  this  type of model is 
useful both during program development  (to  as- 
sess  the  performance of a design) and after the 
program is installed (for performance manage- 
ment and  capacity planning use). 



Figure 6 Design  alternative 6 
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The next  example  uses the  same model and the 
same  workload  arrival  rates.  In  this  example, two 
design alternatives  are  compared to  see their ef- 
fect  on  the program’s fault  rate  function.  Alter- 
nativeA improves  the  locality of data  group z by 
moving the  referenced  control  block to the  top of 
its  hash  table collision chain.  This would have  the 
effect of shortening the average collision chain 
search  depth,  and would reduce the number  of 
unique  references  made by  the  three  workloads  to 
data  group z. Figure 5 shows  how  this design 
change affects the program’s fault rate function. 
Data  groups x and y are  not affected by this 
change.  Data  group z has  moved in its  relative 
location  on the fault  rate  curve,  because  after  the 
design change,  the  reference  rate  per page for 
data  group z lies between the reference  rates  for 
data  groups x and y . 
Design alternative B (see Figure 6) is similar to 
alternativeA , except  that it improves the locality 
of data  groupy (with the  same  mechanism of plac- 
ing the  referenced  control block at  the  top of its 
collision chain). With alternative B ,  the reference 
rate  per page for  data  groupy  is less  than  that  for 
data  group x, so its  relative  position in the  fault 
rate  curve  changes.  Note  that  the  vertical  com- 
ponent of line segment y does  not  change with 
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design alternative B ,  because  the  size of data 
group y has  not  changed. Only the  horizontal 
component  changes,  because  the page reference 
rate  for  data groupy has been reduced. 

Figure 7 shows  the effect of implementing both 
design alternatives. The change in length and 
slope of the line segments  for  data groupsy and 
z remains  the  same  when  both  alternatives are 
implemented. In  Figure 6, with alternative B im- 
plemented,  data groupx  was below data  groupy; 
this  relative position does  not  change if alterna- 
tiveA is implemented. Likewise, in Figure 5 ,  data 
group z was below data  group x with alterna- 
tive A implemented,  and it remains below x in 
Figure 7. 

With every locality improvement,  note  that  the 
fault rate  function  gets  closer to  thex  andy axes. 

Concluding remarks 

This  paper  has  presented  a  method of estimating 
the fault rate  function of a program given the  ar- 
rival rates  for  each of the program’s workloads 
and  a  representation of the page references  made 
by  each  workload. The projected  fault  rate  func- 
tion can  be used in estimating  the program’s stor- 
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Figure 7 Design  alternatives A and B together 
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age  behavior  for  varying  workload mixes and in 
assessing  program design alternatives.  The  pro- 
cess of grouping program pages  into  subsets  re- 
duces  the  complexity of treating  each page sep- 
arately.  Easton made a similar observation in 
“grouping pages with similar behavior  into  class- 
e ~ . ” ’ ~  To develop  a modeling approach  that 
would handle  programs  with large virtual  storage 
requirements,  the simplification offered by this 
subsetting  process was instrumental, as  was  the 
separation  between  base page and  data page anal- 
ysis. 

Methods for relaxing some of the  assumptions in 
the  base page analysis  are identified in the  paper. 
In our  studies,  however,  the  data page analysis 
has  been the more  important and enlightening, 
since  data  pages  comprise  most of our program’s 
virtual  storage in large network  environments. 
Also, data page analysis  can  be  done during the 
design phase,  when  the  data  structure  and  access 
techniques are first defined. As the  development 
cycle  progresses and more  detailed  data  are avail- 
able,  the  granularity of the  data page analysis  can 
be  increased.  Base page analysis  is usually done 
during implementation, since  a  virtual  storage 
map  is  needed.  Optimizations resulting from the 

base page analysis would normally  require 
changes to the low-level design or changes  to  the 
clustering of modules to pages. 

The  base  and  data page analyses  and  construction 
of the  fault  rate  function  are  straightforward and 
can  be  automated easily. Inputs  to  the  base page 
analysis  (the  virtual  storage  map  and  the list of 
modules used by  each  workload)  can be gener- 
ated using standard mapping and  trace programs. 
Inputs  to  the  data page analysis  (the  data  group 
sizes,  the  number of unique references to each 
data  group  for  each  workload,  and the optional 
subgroup definition) are  determined manually. 

An extension to this modeling approach  is  worthy 
of mention. If two  or  more programs  are being 
studied  together, it is possible to combine  their 
fault rate  functions  into  a single “aggregate”  fault 
rate  function. To  do this combination, the  base 
page and  data page analysis would be  done  sep- 
arately  for  each program to  subset  the programs’ 
virtual  storage by reference  rate. The  subsets  for 
all  of the  programs would then be combined and 
sorted,  and  the aggregate fault rate  function  con- 
structed using the  same algorithm as for  a single 
program. 
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Validating a program’s projected fault rate  func- 
tion with  measurement  data is difficult because it 
requires  measuring carefully regulated workload 
arrival  rates  on  a  system  with  controlled  storage 
contention. (This difficulty is similarly noted for 
program lifetime data.14) One model validation 
exercise  has  been  conducted  on  an IBM 3090* pro- 
cessor running the vM/XA* operating  system with 
5000 simulated  conversational  monitor  system 
(CMS) users exercising  a  program  development 
workload. A program with  four  steady  workloads 
of its  own was added  to  the  system,  and the sys- 
tem  performance was monitored  for 30 minutes. 
A demand point consisting of the program’s mea- 
sured page-in rate  and  resident  set  size  was  then 
compared to the program’s projected fault rate 
function. The measured  demand point was within 
13 percent of the  equivalent  demand point on  the 
projected  fault  rate  curve. The  accuracy of the 
projected  results using this modeling technique 
will obviously  depend on  the  accuracy and  gran- 
ularity of the program’s representation. 

The fault rate functions  generated by this  mod- 
eling approach  have  been useful in predicting  the 
effect of program design and tuning changes. 
They have  been  especially useful in predicting 
when paging problems are likely to occur (Le., the 
knee of the fault  rate  curve).  Unless  a program’s 
projected  fault  rate  function  is  validated with 
careful  measurement  data,  however, one should 
avoid attributing  a high degree of accuracy  to its 
demand  points,  especially  for high fault  rates. 
*Trademark or registered trademark of International Business 
Machines Corporation. 
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