
RODM: A control
information base

by A. J. Finkel
S. B. Calo

Operational management of computers and
computer networks was formerly performed
exclusively by an operator or a team of operators
equipped only with consoles for the display of
status messages. Each system component
independently determined its own set of such
messages, identifying conditions needing
attention. To meet future challenges, however, a
structured approach to systems and network
management and associated automation will be
necessary. The amount and complexity of the
status information needed for control and
coordination will make it unlikely that operators
will be able to keep up with such needs unaided.
This control information must be made available
to a family of systems and network management
applications (including operator display
programs). The Netvie@ Resource Object Data
Manager (RODM) is designed to facilitate the
storage and retrieval of control information. It
provides services for defining a structured data
model of a computer system. The control
information is not kept simply in the form of
messages, but instead the data are organized
into units called objects. This allows the model
to effectively capture interrelationships and
dependencies as well as status information.

A s computer systems and computer networks
increase in size and complexity, their care-

ful management becomes even more crucial to
their user organizations. In the past, the operators
of large computer systems and computer net-
works had to rely on a nearly manual approach to
the management and control of their systems.
Network and system configuration were often
available only in hard-copy format, and the cor-
relation of system problems with such configura-
tion information was a labor-intensive task. This
task might involve reading system messages from

252 FINKEL AND CALO

an operator console, listening to user complaints,
and examining the system configuration to pin-
point the location of a problem.

Automation of the management and operation of
information systems and computer networks is a
natural goal. However, the present organization of
these systems tends to make writing such automa-
tion applications difficult and cumbersome. The
need for a unified approach to systems management
has led IBM to develop an enterprise-wide structure
for the integration of management functions. This
structure is known as SystemVkw*.

Systemview is meant to provide a consistent
environment for the development of systems and
network management applications. The scope
and complexity of the tasks involved in managing
information processing systems are so great that
numerous tools are needed to accomplish the tasks
effectively. Different applications are typically
used for: displaying information to operators or ad-
ministrators, managing communications networks
(e.g., alarm correlation, fault diagnosis), coordinat-
ing the use of host resources (e.g., job scheduling,
storage assignment), maintaining system integrity
(e.g., user registration, backup procedures), etc.
This variety often leads to situations where multiple
user interfaces need to be learned, the same data
have to be entered multiple times and in different

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

formats, and multiple application environments
have to be invoked manually and in certain se-
quences.

In order to ameliorate such difficulties, System-
View provides interfaces and common services
that can be used to eliminate the differences in
end-user support, standardize the format of data
used by management applications, and normalize
the specification of interactions and flows. These
objectives are addressed by three structural ele-
ments called dimensions in Systemview: an end-
use dimension, which provides presentation fa-
cilities and services; an application dimension,
which defines guidelines for the implementation
and integration of systems management applica-
tions; and a data dimension, which provides serv-
ices and facilities for the standardization of data
definitions and data access. Systemview also de-
fines levels for structuring systems management
tasks in terms of the major divisions of function
that need to be addressed. The administration
level includes functions that handle overall ad-
ministration, planning, and policy setting for the
enterprise. The coordination level deals with the
control of the system resources-carrying out the
set plans and policies, monitoring the activities of
resources, and reporting relevant information to
administration functions in support of longer-
term considerations. The execution level deals
with the specifics of running and monitoring the
actual resources that provide the information
services. Only execution-level applications
should have to have knowledge of the detailed
structure and idiosyncrasies of particular de-
vices, thus allowing coordination-level applica-
tions to be more generic and more widely useful.

In this paper we are primarily concerned with the
Systemview data dimension and the facilities that
it provides. Two types of information support are
defined in Systemview, and they are provided by
two major data dimension components, the en-
terprise information base (EIB) and the control
information base (CIB). The EIB is conceptually a
single, logical database with an enterprise-wide
scope, and it contains the data needed for plan-
ning and administration. In any given enterprise,
there may be multiple CIBS, each associated with
a particular management domain. A CIB contains
operational data about information proce.ssing re-
sources and whatever subset of the planning and
definition information from the EIB is needed to
support the management interactions between

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

the applications in its domain and the resources
that they are managing. The Systemview struc-
ture only specifies the characteristics of a CIB and
an EIB. The actual architecture of these data di-
mension components is determined by the prod-
ucts that implement them.

All of the coordination and control applications
need access to management information. This in-
formation may take the form of computer mes-
sages or the alarms and alerts that may be gen-
erated by a computer network. It may also take
the form of data generated by a performance mon-
itor such as the IBM Resource Measurement Fa-
cility (RMF). A characteristic of these data is that
they are vital to the real-time management of the
system and that they change rapidly in time.

Without the supporting information facilities,
manipulating this control information is a very
cumbersome task for an automation application.
The desired information must be obtained by sub-
mitting queries and commands to the computer
system or network or by monitoring message
queues. The messages, alarms, and alerts of in-
terest must then be processed. This processing
includes the parsing of messages and the storing
of messages in program variables. The applica-
tion must also be concerned with such issues as
the timeliness of the information that it is storing.
Indeed, experience has shown that upwards of
two-thirds of the effort involved in writing a sys-
tems or network management application has to
do with the manipulation and management of con-
trol information.

The design and coding of systems and network
management applications can be greatly simpli-
fied by providing a data manager to handle the
repetitive data management tasks previously han-
dled by each application on an ad hoc basis. This
role is one of several that can be served by a
control information base. Resource Object Data
Manager (RODM) is a feature of Netview* Ver-
sion 2 Release 3. RODM is a data manager that can
provide the services of a control information base
and can also be used to store execution-level in-
formation. RODM is the Systemview control in-
formation base for the Multiple Virtual Storage/
Extended Architecture (MVS/XA*) and Multiple
Virtual Storage/Enterprise Systems Architecture
(MVS/ESA*) operating system platforms. In par-
ticular, RODM provides facilities so that:

 INKE EL AND CALO 253

The architecture of a data model of a computer
system or computer network may be designed
and the model defined.
The control and status information contained in
computer messages, alarms, and alerts may be
processed, and the appropriate parts of the
model correspondingly updated.
Applications may subscribe to be notified about
changes to specific information, being informed
of those changes to system status (and only
those changes) in which they are interested.

The basic unit of data in RODM is an object. An
object is an instance of a class. By means of an
application programming interface (MI), classes
can be defined, objects can be created or de-
stroyed, and information regarding objects can be
queried or manipulated.

Active objects

Objects in RODM are said to be active in that they
can maintain their own state. Data in conven-
tional databases are usually quite passive, requir-
ing an external application to specifically alter a
data record in order for the value of that record to
change. In RODM, in contrast, facilities are pro-
vided so that programs allowing an object to au-
tomatically maintain itself can be included in the
object definition.

Many of the specific technical characteristics of
RODM arise from the environment in which it was
designed to operate and from the primary role
that it was designed to fulfill. RODM was intended
to provide a common representation service for
the management of complex information process-
ing networks and systems, thus establishing a fo-
cus of integration for automation applications.
Conceptually, RODM maintains an active, object-
oriented model of the system to be managed, and
the automation applications deal exclusively with
this model to effect management processes. Any
real-world object within the system that needed to
be managed would thus be represented as an ob-
ject in RODM. The required behaviors of these
objects would be captured in their associated
methods, and relationships and configurations of
objects would be maintained by object linkages.

The objects contained in RODM are therefore typ-
ically abstractions of real-world objects, such as
tape drives, DASDs, modems, terminals, and con-

254 FINKEL AND CALO

trol units. The goal is to allow applications to ma-
nipulate the RODM object as if it were the real
object. For example, to query the status of a mo-
dem, an automation application might query the
status field of the RODM object that corresponded
to the modem. Programs stored with the object,
called methods, ensure that the status field con-
tains correct information. The application need
have no contact with the actual modem. The
methods associated with the object maintain con-
tact with the real modem and ensure the validity
of the data maintained in the RODM object.

In a similar way, an application may change the
status of the modem from on line to off line by
issuing a request to change the value of the status
field of the modem object to off line. Once again,
a method associated with the RODM modem will
interact with the physical modem to carry out the
desired function.

A query method associated with a status field of
a RODM object might perform the following pro-
cessing when a query request is received:

1. Check the value of the field and determine if
the data stored in that field are still valid. Some
data are short-lived and may only be valid for
a few minutes or seconds. If the data are still
valid, the query method may terminate, and
RODM will return the value of the field to the
caller.

2. Interrogate the actual object to learn its status
if the data are no longer valid. The query
method can then set the field with its new
value, and this value will then be returned to
the caller.

3. Occasionally, the interrogation of an object
may involve issuing a command that will re-
turn data asynchronously. In this case, the
query method can install a notification that will
inform the caller when valid data are returned.
The query method may mark the field as pend-
ing and return an indication to the caller of
what has happened.

The information needed for maintaining an accu-
rate model of the real resources is typically con-
tained in computer messages, alarms, and alerts.
When commands are issued to physical devices,
they usually respond with messages. Special ap-
plications called status senders must then be pro-
vided to recognize these messages, parse them,

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 1 Data flow for an active object

I COMPUTER MESSAGES,
ALARMS AND ALERTS NETWORK COMMANDS t SYSTEM AND

STATUS SENDER CONVERTS
MESSAGES TO RODM UPDATES

RODM OBJECTS

APPLICATION RODM API CALLS AND RESPONSES
PROGRAM

APPLICATION
PROGRAM

APPLICATION
PROGRAM

determine their relevancy, and use the RODM API
to update the appropriate objects. (Alternatively,
for classes of resources that do not formulate
messages, but store status information privately,
similar applications need to be provided to locate,
interpret, and report such information in terms of
RODM updates.)

The design of status sender applications and the
construction of methods are the responsibility of
the designer of the RODM object class. Automa-
tion applications need not be concerned with such
details. The applications merely reference the
RODM object in order to obtain the needed infor-
mation. The situation is described in Figure 1.

The picture presented to the developer of an au-
tomation application is therefore simplified. In-
stead of being concerned with messages, com-
mands, and the validity of data, the developer
uses the RODM API to access data objects con-
tained in a structured data model. To the devel-
oper, the data contained inside RODM is self-main-
taining.

RODM functional design

RODM objects. RODM is an object-oriented data
manager. Data are organized into units called ob-
jects. Encapsulated within an object is all of the
information necessary for maintaining its defined
behavior. This information takes the form of data
or executable programs called methods.

Each object must have a unique name. An object
is made up of fields. Each field within an object
must also have a unique name. Fields may have
certain subfields associated with them. One sub-
field that must always be present is the value sub-
field, which holds the data associated with the
field. These data must be of a type supported by
RODM. Some data types supported are: CharVar,
Floating, Integer, and METHODSPEC. The data
type METHODSPEC allows the value subfield to be
set to specify a small program called a named
method. API requests against this field can cause
the identified method to be executed. Figure 2
shows the structure of a sample object using a
PWI-like syntax. The syntax used is only for
illustrative purposes. No subfields are shown.

FINKEL AND CALO 255 IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 2 Structure of a RODM object

Declare

1 Printer3835
2 MyPrimaryParentID
2 MyPrimaryParentName
2 MyID
2 MyName
2 WhatIAm

2 Model
2 PaperType
2 AlterPaperType
2 Location
2 Status

ClassID , / * Required Field * /
ShortName , / * Required Field * /
ObjectID , / * Required Field * /
ObjectName,/* Required Field * /
Integer , / * Required Field * /

/*Optional Fields * /
/*follow * /

CharVar, / * Model of Printer*/
CharVar, / * Type of Paper * /
CharVar, / * Alternate Paper * /
CharVar,
CharVar;

Table 1 RODM subfield organization

Subfield Required System- Holds

Values
Name Administered Methods or

VALUE
CHANGE

Yes no values

QUERY
no no methods

NOTIFY
no no methods
no no methods and

recipient
information

TIMESTAMP no Yes
PREV-VAL no

values
Yes values

(Also note that the structure of an object is com-
pletely determined by the definition of the class to
which it belongs.)

Several optional subfields may be associated with
a field. The query subfield is used to specify a
query method and has data type METHODSPEC.
When the query subfield is present, the query
method is invoked just before the contents of the
value subfield are read and returned to the caller.
The query method may examine the value sub-
field and alter its contents, or it may examine and
set other fields in the object. This allows values to
be calculated or updated appropriately before be-
ing returned to the caller.

A change subfield, if present, is used to specify a
change method. The change method is invoked
whenever an update to the value subfield is to be

256 FINKEL AND CALO

performed. This procedure allows calculations,
normalizations, change tracking, and change prop-
agation to be accommodated.

The notify subfield, if present, holds the identifi-
ers of a list of methods called notification meth-
ods. These methods are intended to notify RODM
users or other objects that certain changes have
taken place to the field on which they are in-
stalled. Each method in the subfield is executed
whenever the associated field is changed. These
methods may perform certain tests (e.g., check
threshold settings) before deciding to notify the
indicated users or other objects.

Two other optional subfields may be present. The
timestamp subfield is used to identify the time at
which the value subfield last changed. It is set by
RODM to the local system time whenever a change
transaction is issued against the field. The prev-Val
subfield is used to hold the previous value of the
value subfield and is also set by RODM whenever
a change transaction is issued against the field.

Subfields can either hold values or method iden-
tifiers. A subfield is either automatically admin-
istered by the system or controlled through
RODM API calls. The situation is summarized in
Table 1.

Classes and inheritance. Each RODM object is a
member of one and only one class. Classes may
have many members, but each one is identical in
structure. They have the same fields and field

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 3 RODM primary hierarchy

names. In this sense, the objects in a class are like
a set of similar data records or rows of a relational
database table.

The class to which an object belongs (or which an
object is said to instantiate) is called its parent
class. An object is said to inherit its structure
from its parent class. In fact, the RODM API does
not permit fields to be defined directly on objects.
Fields are defined with respect to classes, and
these definitions are inherited by objects from
their parent classes.

Each class itself has one and only one parent
(with but one exception, as noted below). This
parent is another class. However, a class may
have many children. In this way, the collection of
RODM classes forms a tree-structured hierarchy
called theprimaly hierarchy. At the root of this
inheritance tree is a special class called the Uni-

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

versa1 Class, which has no parent. Figure 3 shows
a part of a primary hierarchy.

Each class has a unique name and is described in
terms of its fields. The fields of a class may be
either private or public. Only the public fields are
inherited by the children of the class. The private
fields are not inherited and are typically used to
hold aggregate information for the class. When a
field is inherited, all of the subfields defined for
that field are also inherited, and the object or class
that inherits the field may not add additional sub-
fields.

In the same way that an object inherits public
fields from its parent, a class also inherits public
fields from its parent class. The inheritance of
these fields therefore percolates down the pri-
mary hierarchy. A class may have many children,
but in the version of RODM supplied with NetView

FINKEL AND CALO 257

Table 2 Structure Inheritance

Class or Locally Deflned lnherlted Flelds
Object Flelds
Name

DASD State
Control-Unit
Peers-in-String
OwnerID

3380 Seeks-in-Last-Hour State
Percent-of-Capacity Control-Unit
Date-of-Last-Service Peers-in-String

OwnerID

3390 Date-of-Installation State
Number-of-Failures Control-Unit

Peers-in-String
OwnerID

VOL3380F State
Control-Unit
Peers-in-String
OwnerID
Seeks-in-Last-Hour
Percent-of-Capacity
Date-of-Last-Service

2.3, these must be either all classes, or all objects,
i.e., no class may be the parent of both objects
and other classes.

The inheritance of field structure is mainly in-
tended as a reusability mechanism. Objects of
similar structure need be defined only once, at the
class level. Classes may be further refined so that
structure can be shared. For example, in Figure
3, class 3800-SERIES inherits all of the public fields

fine its own fields. Similarly, class 3827 inherits all
of the public fields of class 3800-SERIES and may
also define its own fields. Table 2 explicitly dem-
onstrates how structure inheritance works for an-
other part of the primary hierarchy in Figure 3.

In that example, the class DASD defines four
fields. The structure of these four fields is inher-
ited by the classes 3380 and 3390. Each of these
classes defines some of its own fields. Finally, the
object VOL3380F inherits its field structure entirely
from its parent class 3380.

Just as structure may be inherited by classes and
objects, so may the values of subfields. Value in-
heritance is dynamic and allows for an even
greater level of information sharing. If an object

Of Class PRINTER. Class 3800-SERIES may also de-

258 FINKEL AND CALO

or class inherits a field from its parent, the default
behavior is for it to inherit the data value of the
value subfield as well, along with the contents of
the change and/or query subfields, if either or
both of them are present. However, inheritance
may be overridden by explicitly assigning a new
value to the appropriate subfield. Value inheri-
tance will remain overridden until a request is
made to RODM to restore default inheritance.

Value inheritance is intended to allow default val-
ues to be shared among objects and classes. For
example, a change method that captures the be-
havior of an object when a particular field is up-
dated would typically be the same for all objects
of a given class and would rarely change. It can
be specified once at the class level and inherited
by all objects that need to use the method. In
special cases, inheritance may be overridden, and
a special change method may be assigned to a
particular object that is meant to have a unique
personality.

Value inheritance is maintained dynamically. If
an object or class inherits the value of a subfield
from its parent, and a change is made to the value
of that subfield at the parent, the change is im-
mediately propagated down to the child. This fea-
ture allows the definitions of methods to be
changed once at the class level and the change in
behavior to become immediately associated with
all objects. Such default value propagation could
have significant performance costs if used exces-
sively. It is assumed, however, that the class hi-
erarchy is predominantly definitional in nature
and thus does not often change. It defines the
structure of the objects and the default values to
be used for their inherited characteristics.

Whereas changes to the values of subfields at the
class level are assumed to be relatively infre-
quent, changes to the values of subfields at the
object level are expected to be quite frequent.
Performance expectations for these changes are
consequently much higher. A general rule of
thumb is that any change or query of a subfield
should take less time the lower in the primary
hierarchy it occurs.

Value inheritance for the notify subfield is slightly
more complicated than for other subfields. An ob-
ject inherits the value of the notify subfield of its

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

parent and may also add its own local notification
methods to this list. Thus, when notification meth-
ods are triggered, all of the methods locally defined
on the subfield are triggered first; then all of the
methods associated with the corresponding notify
subfield at the parent class are also triggered. This
sequence occurs because of the semantics of the
notification operation. Different users may be in-
terested in activities at different levels of the hier-
archy. A storage assignment application may sub-
scribe to notifications against fields of the object
VOL338OF, whereas a storage capacity planning ap-
plication may be interested in tracking its parent
class 3380. The local notifications cannot be inter-
preted as overrides to the more global ones.

Each RODM object or class must have certain re-
quired fields. Figure 2 shows some of the required
fields for an object. They include MyPrimary-
ParentID, MyPrimaryParentName, MyID, My-
Name, and WhatIAm. These fields may be thought
of as having been defined at the Universal Class
level of the hierarchy. They are read-only, and
value inheritance is always overridden. In addition,
classes are required to have both a MyClassChil-
dren field and a MyObjectChildren field for which
values are also not inherited. Even structural in-
heritance works slightly differently for these fields
than as described above, in that their existence is
not inherited by objects.

Object naming. Object naming is a difficult issue
in object-oriented systems. RODM takes the fol-
lowing approach. Each object has a unique char-
acter string name that may be 1 to 254 characters
in length. Each class has a unique character string
name that may be 1 to 64 characters in length. An
object or class name must begin with a letter of
the alphabet or a positive integer.

A class is uniquely identified by specifying its
class name. Each class also has a corresponding
ClassID that can be used to uniquely locate the
class. The ClassID is calculated by RODM and is
returned as a result of any API call that manipu-
lates or examines the class. Applications can then
subsequently use the ClassID rather than the
class name in API calls, generally resulting in im-
proved performance.

An object may also be uniquely located by spec-
ifying its ObjectID. As with the ClassID, the

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

ObjectID of an object is calculated by RODM and
is returned after any API call that manipulates or
examines the object. In general, uniquely speci-
fying an object in RODM is slightly more compli-
cated than specifying a class. An object is iden-
tified by its ObjectID, or the object name and the
name of the object’s parent class, or the object
name and the ClassID of the object’s parent class.

Besides having a name, each field in an object or
class has a FieldID. The FieldID is obtained
through certain API calls and may be specified in
some API calls. Any two fields that have the same
name have the same FieldID, even if the fields are
in different objects or classes. A field of an object
is referenced by supplying either a FieldID or a
field name along with the object location infor-
mation described above. A field of an object can
generally be located more quickly if a FieldID is
supplied instead of a field name.

Objects in the same class share the same field
names. The FieldIDs of these fields are also the
same. When manipulating fields from several ob-
jects in the same class, the FieldID need only be
obtained once. The FieldID can then be supplied
on subsequent API calls that reference different
objects in that class.

The RODM application programming interface.
RODM provides an application programming in-
terface (API) that allows application programs
written in the C/370 or PL/I programming languages
to request services. Many such applications may
concurrently access RODM. API calls are generally
synchronous, i.e., control is not returned to the
caller until the API request is complete. The API
calls are divided into several basic categories.

Not all RODM A P I services are available to every
user. Access to RODM API services is based on a
set of authority levels. A RODM user may be de-
fined to be a member of one of six authority lev-
els. Higher authority levels give a user increased
capabilities. The IBM Resource Access Control
Facility (RACF) may be used to administer these
authority levels. We discuss a few of the RODM API
categories below.

Create. The create services allow objects and
classes to be created and fields of classes to be
defined. Creation of a class involves schema def-
inition. It requires a higher level of authority than
is needed to create an object.

FINKEL AND CALO 259

As previously noted, fields may not be created for
objects. An object inherits its fields from its par-
ent class. A new field may be added to an already
existing class, in which case all of the children of
the class immediately inherit the new field, along
with the default values assigned to its subfields.

The create service is dynamic in nature. New ob-
jects and classes may be created without reload-
ing the entire information base. Newly created
objects and classes are available to all appropri-
ately authorized RODM users immediately after
their creation. A checkpoint is necessary to per-
manently save changes to disk.

Delete. The delete service allows objects and
classes to be deleted. Deleting a class requires
higher authority than deleting an object.

Quey . The contents of a field, or of a particular
subfield of a field, of an object or class may be
queried. When a subfield is queried, no methods
are invoked, and the contents of the field are re-
turned to the caller.

When a field is queried, a query method is in-
voked, if present, before the contents of the value
subfield are returned to the caller. The term query
a field is often used to represent this action.

Change. The contents of a field, or of the value,
query, or change subfields of a field, may be set
to a certain value. When a change request is made
against a field, a change method, if present, is
invoked. It is the responsibility of the change
method to perform the requested change (although
the method is not required to do so). If no change
method is present, RODM changes the value of the
value subfield to the requested new value.

No methods are invoked for change requests
against subfields, even the value subfield. Chang-
ing the value of the query or change subfield has
the effect of specifying a new query method or
change method.

Action. The RODM M I provides a service for trig-
gering a named method. Such methods can be used
to implement actions unique to an object or class,
and are contained in fields of type METHODSPEC.
For example, a named method could be con-
structed and associated with class DASD of Figure
3. This method could contain instructions for for-
matting the direct access storage device (DASD).

260 FINKEL AND CALO

Through inheritance it could be contained in a
field of the object VOL3380F. An action request
against this field on the object VOL3380F would
then trigger a process that caused the actual DASD
to be formatted.

Notify. As discussed earlier, an application may
ask that a notification method be installed on the
notify subfield of a field. When the value of the
field changes, the notification method will be in-
voked and may, depending on its internal logic,
notify the subscriber of the change.

Connect and disconnect. Before making any
other requests to RODM, an application must first
start a session with RODM by making a connect
request. To terminate such a session, a discon-
nect request must be issued.

Link and unlink. Although objects may be thought
of as encapsulating information, it is sometimes
necessary to explicitly capture relationships be-
tween different objects. A link request allows an
association between two different objects to be de-
fined. An unlink terminates such an association.

Link operations may be used to capture such
things as the configuration of a computer network
(by linking connected devices) or the composition
of a complex device (by linking the component
objects).

RODM methods. RODM supports two general
kinds of methods: object-dependent methods and
object-independent methods.

An object-dependent method may access only the
one RODM object or class with which it is asso-
ciated. The method has exclusive access to that
object or class while it is executing. As described
earlier, RODM supports several specific types of
object-dependent methods:

Query methods
Change methods
Notification methods
Named methods

These types of methods have been discussed pre-
viously in the first two subsections of this section.

An object-independent method may gain exclu-
sive access to several RODM objects at once. Such
a method can then query or change fields in any

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

of the objects held. Object-independent methods
are meant to be used only when atomic changes
must be made to several objects at once. An
object-independent method is like a callable sub-
routine that runs inside of RODM. It can be directly
invoked by a call to the RODM API.

Writing methods with the method API. The tasks
of defining classes and the methods that specify
the behavior of objects would generally fall on the
RODM modeler or the RODM administrator. Many
applications that use RODM will also need to pro-
vide their own definitions of classes and methods,
but it is felt that typically the construction of the
methods themselves will be done by a systems
programmer, and not by the writers of automation
applications. However, many applications sup-
plied by IBM, or by vendors such as the System-
View International Alliance Partners, will pro-
vide their own set of methods for RODM. The
NetView Graphic Monitor Facility’ is an example
of such an application. In these cases, there will
be little need for customer personnel to supply
methods. Some customization may be necessary.

Methods can be written in the PUI or C/370 pro-
gramming languages.

Methods gain access to RODM services via an ap-
plication programming interface called the method
API. The method API provides many of the same
services that the RODM API provides. The services
available to object-dependent methods and object-
independent methods vary slightly.

Object-dependent methods may issue query and
change requests against any field, or subfield of a
field, of the object or class with which they are
associated. These methods may also install noti-
fication subscriptions and trigger named methods
and object-independent methods. In addition, ob-
ject-independent methods may link and unlink
objects and create and delete objects.

RODM architecture on MVS/ESA and
M V S M

RODM runs as a subsystem on both M V S m and
MVS/ESA. An application that uses RODM may run
in its own address space. (This could be the ad-
dress space of the NetView automation platform,
a Time Sharing Option [TSO] address space, or a
batch address space.) To communicate with RODM,

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

an application must first issue a connect request.
After a successful connection, the RODM API
would be used to invoke the desired services. For
local applications and users, communication with
the RODM address space takes place via the PC, or
Program Call, instruction. This instruction is a
System/370* and System/390* hardware instruc-
tion. Program Call and an associated instruction,
Program Return (PR), in effect provide a hard-
ware-based remote procedure call facility. Al-
though the facility is not compatible with most
other remote procedure call implementations, it
has the advantage of being extremely fast.

On MVSESA, RODM objects and classes are stored
in data spaces. These data spaces are accessible
only from the RODM address space. On Mvsm,
RODM objects and classes are stored only in the
RODM address space. The available amount of
storage is therefore more constrained on M v S ~ .
Figure 4 presents an overview of the basic RODM
architecture on MVSESA. Note that both object-
independent and object-dependent methods exe-
cute inside the RODM address space.

RODM is intended to store both operational data
and control information. Fields in objects contain
information about the status of the resources that
the objects represent. Applications query these
fields to obtain information about system status.
This status information is highly dynamic in na-
ture. Therefore, RODM does not attempt to com-
mit all changes to DASD as they are made. The
information may well change soon after it has
been saved (or even while it is being written).

Instead, RODM keeps these changes in memory.
An authorized user can request that a snapshot of
all RODM objects and classes be committed to
DASD. This request is called a checkpoint request,
and it is anticipated that such checkpoints will be
taken as part of normal backup procedures. They
would also normally be taken anytime that a sub-
stantial number of new objects have been created,
such as after a cold start. The cold start process
involves using the RODM API to create and define
the class structure and primary hierarchy and
then to define the object instances that describe
the system. A checkpoint commits these changes
to DASD.

Once the class definitions and object instances
have been committed to DASD via a checkpoint,

FINKEL AND CALO 261

Figure 4 RODM architecture on MVSlESA

USER APPLICATION DATA SPACE WITH
ADDRESS SPACE RODM OBJECTS

ADDRESS SPACE

USER APPLICATION
ADDRESS SPACE

CODE FOR
OBJECT-INDEPENDENT
AND

DATA SPACE WITH
RODM OBJECTS I

OBJECT-DEPENDENT
METHODS

USER APPLICATION DATA SPACE WITH
ADDRESS SPACE RODM OBJECTS

RODM may be warm-started. Warm start is a fairly
quick process and will be the usual method for
starting RODM.

Setting the stage: Preparing to write RODM
applications

The RODM information manager is initially (at
cold start) devoid of any data organization or
data. Classes have not yet been defined and ob-
ject instances have not yet been created. In order
for an application to use RODM effectively, an in-
formation model must be designed and defined to
the system. Typically, the development of such a
model is the responsibility of systems adminis-
trators and systems programmers rather than the
developers of automation applications.

The steps necessary to make RODM an effective
tool for systems management are as follows:

1. Define classes-Definitions for RODM classes
must be either supplied by a vendor or devel-
oped by supporting staff at the installation. If
the classes are defined by a vendor, the instal-
lation would still typically have the option of
modifying these definitions, usually by adding
extra fields. These extra fields would model
items of unique local interest.

For systems and network management, class
definitions for such devices as modems, en-

262 FINKEL AND CALO

cryptors, DASD, printers, and CSUs will most
likely be included in the data model.

2. Develop methods-Change methods, query
methods, named methods, and notification
methods must be written in support of the
model defined in Item 1. If the data model is
supplied by a vendor, one can expect the sup-
porting methods to be supplied as well. In this
case, an installation may choose to customize
the model by replacing or modifying some
methods.

The necessary methods must also be devel-
oped for any installation-defined fields or
classes. RODM will supply a starter set of sim-
ple methods along with the data manager.

3. Write a status sender-A status sender converts
computer messages, alarms, and alerts to RODM
updates. If a vendor-supplied data model is
used, the installation can expect a status sender
application to be supplied. The installation may
have to provide additional customization.

4. Define object instances-The installation must
decide which hardware and software devices
should be represented as RODM objects. These
objects must be given RODM names. The in-
stallation must also describe the network and
system configuration in terms of links between
objects.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

It may be possible to generate some or all of
the RODM objects by using tools that automat-
ically read system configuration files.

5. Generate the RODM data model-A cold start
may be used to create classes, define fields,
instantiate objects, install methods, and assign
initial values to the fields and subfields of ob-
jects and classes. After the cold start, a check-
point should be taken to save the data model.

During a cold start, a special method called an
initialization method is invoked. This method
may read object and class definitions from a
file and use the RODM method API to create the
data model. The initialization method may be
supplied by a vendor or written by the instal-
lation. In fact, IBM supplies a load utility with
RODM. The utility may be invoked from an ini-
tialization method. The load utility generates
class definitions and object instances from a
load file. Entries in the load file follow a sim-
ple, well-defined syntax.

6. Write automation applications-The model and
supporting services can then be used by appli-
cation programmers for automating manage-
ment tasks. The status of system resources of
interest can be queried and changed by means of
the RODM M I .

Historical motivations

The characteristics of RODM and the corresponding
roles that it is meant to play in the management of
complex systems are based upon experience with
automation and the evolution of systems require-
ments. As computer systems and computer net-
works grew in size and complexity, the need for
automated control over information processing re-
sources became more and more apparent.

Since computers and networks were designed to
communicate with operators by means of text
messages, many automation tools were devel-
oped to aid in message processing. The MVS Mes-
sage Processing Facility (MPF), for example, in-
corporates a number of useful functions: message
display at the operator console can be sup-
pressed, different highlighting options can be
used, and selective messages may be marked as
eligible for automation processing. MPF can sig-
nificantly reduce message traffic at a computer
operator’s terminal and allow an operator to more

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 5 Sample operational procedure

I F t h e r e are t o o many jobs queued for
t h e 3800 p r i n t e r

and

the workload of t h e 3835 p r i n t e r is
l i g h t ,

THEN t r a n s f e r some p r i n t e r jobs from
t h e 3800 p r i n t e r t o t h e 3835

effectively monitor and control a computer sys-
tem. However, it only deals with the handling of
messages and does not address the creation of the
automation applications themselves.

The Network Communications and Control Facil-
ity (NCCF) goes somewhat farther and allows users
to write CLISTS, Le., command lists (see Reference
3 for information on CLISTs in Netview), in re-
sponse to computer messages. A systems program-
mer can specify that a particular CLIST program be
executed whenever a particular type of message is
encountered. The program can then parse the mes-
sage and automatically enter appropriate system
commands in response to the indicated situation.
This procedure allows simple responses to well-
defined, immediate conditions to be easily pro-
grammed. However, the automation capabilities re-
main quite limited. Each CLIST program executes in
its own self-contained environment, and it is diffi-
cult to share information between CLIST programs
executing in response to different messages. Fur-
thermore, the mechanism for invoking CLISTS has
no memory. Therefore, dependencies between
messages in space and time cannot be taken into
account.

Computer operators monitoring the status of a
complex system make decisions that are fairly
contextual. Interviews with computer operators
found that they tended to think in terms of situ-
ation response rules instead of just computer mes-
sages (Figure 5).

In an attempt to exploit the seemingly rule-based
nature of operational policy, an experimental
expert system tool, Y E S I M V S , ~ was developed
at IBM Research. YES/MVS used rule-based lan-
guages (OPS~’ and IBM KnowledgeTool** and its

FINKEL AND CALO 263

prototype, YES/Ll,9 to encode operational policy.
A YESMVS rule could be thought of as an IF-THEN
statement, much like the example in Figure 5. The
left side of the rule contained conditions which, if
satisfied, made the right side of the rule eligible
for execution. The right side of the rule could then
issue system commands to execute the indicated
policy. Whereas CLIST programs were triggered
only by the appearance of particular messages,
expert system rules allowed more complicated
situations to be detected.

As one would expect, the left sides of rules made
extensive references to computer system status.
Services thus had to be built to query the com-
puter system to obtain status information, trans-
late system messages and present the information
in terms of program variables accessible to the
expert system, and check the validity of data be-
ing maintained in the program variables. It be-
came apparent that a separate facility should be
developed to provide these services, and that fa-
cility was called a model manager. In such an
environment, rules could be encoded that made
direct reference to system status without regard
to how or when the information was obtained.
The model manager would ensure the validity of
the status information in the left side of the rule.

Another aspect of importance in support of au-
tomation applications is data sharing. Early ver-
sions of YESIMVS provided little data sharing
between problem areas, thus leading to much du-
plication of information and effort. Later versions
attempted to correct this fault by providing for a
data model that could be shared among all prob-
lem areas. However, this data model was acces-
sible only to computer programs coded in the ex-
pert system shell KnowledgeTool and could not
support concurrent users. It lacked permanence
and thus had to be rebuilt each time the expert
system was initialized, and it was not dynamic, so
that it could not be changed without bringing
down the expert system.

In summary, then, experience has shown that a
common representation service was needed that
provided:

Dynamic data modeling capabilities
Active data management
Concurrent data sharing
Permanence

264 FINKEL AND CALO

These considerations have been of key impor-
tance in establishing the desired characteristics of
RODM.

Finally, we note that NetView now provides sub-
stantial automation facilities. It incorporates a
message table that can be used to trigger REXX,
PL/I, or C/37O1' programs. KnowledgeTool pro-
grams can also be written (see Reference 11, for
example). Services are provided for parsing mes-
sages, sharing data among REXX programs, and
routing messages among already active pro-
grams. The RODM data model in effect provides a
set of global shared variables for these programs
and should enhance the power of these languages
as automation tools.

RODM design issues

As just discussed in the previous section, a model
management facility is needed in order to effec-
tively support automation applications. Accord-
ingly, RODM attempts to fill that need by providing:

1. Data modeling capabilities-RODM allows a
data administrator or systems programmer to
design and develop the structure of a data
model describing the objects of interest to the
application programmers. The structure of
these objects is captured in terms of a defined
class schema.

2. Data management services-The incorpora-
tion of methods into the information model al-
lows objects in RODM to manage their own
state and maintain consistency with the state
of the real system objects that they represent.

3. Data sharing-The RODM data model can be
shared among many users and applications.
RODM services are accessible to programs
written in high-level languages such as PL/I and
c/370. Many simultaneous sessions with other
address spaces can be supported. To the pro-
grammer, RODM objects can be viewed as
shared program variables that are permanent
in the sense that they do not lose their values
when the application program terminates.

4. Permanence-The data model can be perma-
nently stored on DASD and need not be rebuilt
each time RODM is started. This permanence is
accomplished by means of a checkpoint and
warm-start capability.

5. Dynamic schema evolution-The object schema
will change over time, so RODM permits new
class definitions, the addition of fields to classes

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

Figure 6 An MVS/JESS systems response to the ‘81 S’ query

IAT5638 F=000,W=000,A=000,U=OOO,V=OOO,E=OOO,B=OOO,R=OOO,AL=A,SCUR=OOO
IAT5638 MVSA ONLINE IPLD SMAX=255 SCUR=000 DA=334,000 TA=019,013
IAT5638 MVSC ONLINE IPLD SMAX=255 SCUR=000 DA=334,000 TA=019,010

with automatic propagation of the new fields to
existing children, and the creation and deletion
of objects. All such changes can occur dynam-
ically, without bringing down the data manager.

6. Support for concurrent users-Numerous auto-
mation activities may take place at the same
time. Each activity may naturally be viewed as
a different task. NetView automation allows dif-
ferent operator tasks, and RODM supports con-
current users with relatively high performance.

Transactions against RODM will mostly take the
form of change or query requests against fields in
objects. Although RODM allows for fine grain data
sharing, access to a single object may be serial-
ized. Since concurrent requests to access fields in
objects should be somewhat randomized, this
scheme should support a high degree of concur-
rency.

Enabling automation applications

A data model. RODM provides interfaces to the
application programmer that permit automation
applications to be written more efficiently. A well-
designed data model plays a crucial role. To the
programmer, the data model can be viewed as a set
of shared program variables accessible through an
API. The sharing of these variables is managed by
RODM. Such a data model should also be extensible
and self-maintaining.

Applications that use RODM will be written by
IBM, other vendors, and customers. RODM was
designed with the intention of allowing these ap-
plication providers to extend and customize the
data model. In particular, application providers
may have to extend RODM class definitions and
provide additional class definitions. Importantly,
this can be done dynamically, without bringing
RODM down for a cold start.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

A vendor that supplies a modem, for example,
might provide the class definition and methods
necessary to support that modem. An application
provider might need to define additional fields and
methods for those fields. The class definition can
be extended without interfering with other appli-
cations that access the class or its children. At the
same time, the new fields can be shared by any
additional applications that have knowledge of
them.

For example, Gottschalk* describes how NetView
Version 2 Release 3 provides a data model to exploit
the capabilities of RODM in managing complex sys-
tems and networks. Customers who use the
NetView Version 2 Release 3 data model as a basis
for automation are also able to graphically display
the configuration and status of resources modeled
in RODM by means of the NetView Graphic Monitor
Facility.

Breaching the message-command interface. Histor-
ically computer operators and automation appli-
cations have interacted with a computer system
through a message-command interface. Figure 6
gives an example of such an interface. An operator
sitting at a console is able to submit commands and
queries to the computer system or computer net-
work. Responses are received in the form of mes-
sages. In addition, many unsolicited messages are
also received. More recently, interfaces for auto-
mation applications to submit commands and re-
ceive messages in the form of byte strings have been
provided.

A look at Figure 6 shows some of the difficulties
automation programs have in dealing directly
with message-command interfaces. To be usable
by an automation program, messages must first be
parsed. Even if they are identified by message
number, the format of the text may vary. Also, as
indicated by the strings MVSA and MVSC in Figure

FINKEL AND CALO 265

Figure 7 Using objects instead of messages

Declare

1 JES-SETUP-SUMMARY

2 Fetch-Queue
2 WaitVol-Queue
2 Allocate-Queue
2 Unavailable-Queue
2 Verify-Queue
2 Error-Queue
2 Deallocated
2 Restart-Queue
2 Allocate-Mode

2 Setup-Total

Integer
Integer
Integer
Integer
Integer
Integer
Integer

CharVar
Integer

Integer

/*Fields indicate * /

, / * MDS Fetch Queue * /
/*number of jobs in:*/

, / * WAITVOL Queue * /
, / * Allocate Queue * /

I

, /*A f o r automatic * /
/*allocation mode * /
/*M for manual mode * /
/*Total number of * /
/*jobs in JES setup * /

6, processing of computer system messages re-
quires knowledge of system configuration.

In addition, the application must possess a de-
tailed knowledge of the system command struc-
ture so that the correct command can be used to
elicit the desired information. Temporal issues
are also important. Messages sent in response to
a query or command are generally received asyn-
chronously and may not be time-concurrent or in
any particular order. The application must take
such considerations into account.

Finally, the application must make judgments
about data validity, i.e., it must judge when to
submit queries for new information. The lifetime
of data contained in a computer system message
is limited.

Automation applications that use RODM interact
only with the system data model through the
RODM API, rather than directly with the computer
system itself through a message-command inter-
face. Thus, much of the data maintenance func-
tionality can be supplied in common.

Figure 7 illustrates a declaration of an object,
JES-SETUP-SUMMARY, that models the informa-
tion contained in the IAT5638 message in Fig-
ure 6 (note that required fields are not shown in

266 FINKEL AND CALO

Figure 7 for simplicity). Change and query meth-
ods can be used to keep the information in the
fields of JES-SETUP-SUMMARY UP to date. The
writer of an automation application can treat
JES-SETUP-SUMMARY as a self-maintaining data
structure.

Building a status sender. A status sender applica-
tion provides the bridge between the message-
command interface and RODM. Such applications
would normally be provided by the architects of
the data model. A status sender has the respon-
sibility of sending updates about the changes in
status of relevant resources to the RODM objects
that represent those resources.

Figure 8 shows how a status sender could be de-
signed to interact with MVSIESA and some of its
subsystems. (VTAM*, the Virtual Telecommuni-
cations Access Method, is an MVS subsystem that
manages telecommunications, and JES, the Job
Entry Subsystem, is an MVS subsystem that man-
ages batch jobs. Two versions of JES are available
with MVS: JES2 and JES3.) The status sender runs
as a task in the NetView address space. It uses
NetView services to receive messages from
MVSIESA and some of its subsystems. The appli-
cation parses and interprets these messages and
uses the RODM API change requests to update the
RODM data model.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

~

Figure 8 A status sender for messages from MVS/ESA and some subsystems

NETVIEW

MESSAGES VIA

STATUS SENDER

RODM

MVSiESA

JES

MESSAGES FROM THE SUBSYSTEM INTERFACE
t VTAM

Conclusion

Although the relational proved highly
successful for modeling the passive characteris-
tics of data objects, the nature of computer and
network management applications required new
information management techniques.

RODM provides facilities for the management of
active objects, which can be used to model at a
more abstract level the real-world objects that
comprise a system. Through the RODM M I , sys-
tems and network management applications may
define, reference, and share a structured data
model of the objects typically found in computer
systems and communications networks. By means
of defined methods, RODM objects can be made self-
maintaining.

It is important to note that, although most of the
discussion and many of the examples given illus-
trate how RODM can be used to monitor and con-
trol local devices, the same kinds of techniques
can be applied more globally to effectively model
many of the logical constructs needed for the
management of complex systems. Concepts like

job, subsystem, queue, or software package can
be conveniently described in terms of attributes
(fields) and associated operations (methods).
RODM can thus provide representation services
and active model management for very compli-
cated, real-time, automation processes. Addi-
tionally, although it is implemented on MVS, it is
not limited to dealing solely with MVS systems. As
long as the appropriate status sender applications
exist to forward relevant information to RODM, it
can deal with objects describing any particular
system, or even a collection of heterogeneous
systems.

Other databases have used objects as their basic
conceptual units, including: Orion, l3 Iris, l4 Gem-
Stone," and oz+."j Such databases were typi-
cally constructed to provide general program-
ming support, however, and were not designed to
actively model the rapidly changing real-world
objects found in computer systems and computer
networks.

In contrast, the nature of systems automation ap-
plications and the real-world objects that they

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992 FINKEL AND CALO 267

need to reference has greatly influenced the char-
acteristics of RODM. RODM applications will not
typically lock and manipulate a large portion of a
database as private data, but will submit a large
number of transactions at the granularity of the
modeled objects. These objects are meant to be
shared among applications and to be updated in
real time to reflect system status. RODM thus pro-
vides for a high degree of data sharing and can
support a relatively large number of concurrent
transactions.

In short, the NetView Resource Object Data Man-
ager is a general facility that supports the mainte-
nance of control information and, as such, provides
a set of essential services for management applica-
tions.

Acknowledgments

Many people besides the authors contributed to
the design and implementation of RODM. Keith
Milliken and Jack Hackenson made noteworthy
contributions. Charlotte DiLeonardo provided
essential help. Phil Kalinowsky developed an
early prototype. The efforts of Eugene Conroy,
John Farrell, David Feiner, Peter Ruppert, Ling
Tai, Norman Waite, Jen Wang, Tammy Wu, Jef-
frey Yeh, and Heather Albright are also acknowl-
edged.
*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. An Introduction to SysternView, SC23-0576, IBM Corpo-
ration; available through IBM branch offices.

2. K. D. Gottschalk, “NetView Version 2 Release 3 Graphic
Monitor Facility: Network Management Graphics Sup-
port for the 1990s,” IBMSystems Journal 31, No. 2,223-
251 (1992, this issue).

3. NetView Customization: Writing Command Lists, SC31-
6015, IBM Corporation; available through IBM branch
offices.

4. R. Ennis, J. Griesmer, S. Hong, M. Karnaugh, J. Kastner,
D. Klein, K. Milliken, M. Schor, and H. Van Woerkom,
“A Continuous Real-Time Expert System for Computer
Operations,” IBMJournal of Research and Development
30, No. 1, 14-28 (1986).

5. J. Griesmer, S. Hong, M. Karnaugh, J. Kastner, M.
Schor, R. Ennis, D. Klein, K. Milliken, and H. Van
Woerkom, “YESIMVS: A Continuous Real Time Expert
System,”Proceedings o f M I 1984 (1984), pp. 130-175.

6. K. R. Milliken, A. V. Cruise, R. L. Ennis, A. J. Finkel,
J. L. Hellerstein, D. J. Loeb, D. A. Klein, M. J. Masullo,
H. M. Van Woerkom, and N. B. Waite, “YESIMVS and
the Automation of Operations for Large Computer Com-
plexes,” IBMSystems Journal 25, No. 2,159-180 (1986).

268 FINKEL AND CALO

7. C. Forgy, OPS5 User’s Manual, CMU-CS-81-135, De-
partment of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh, PA (1981).

8. KnowledgeTool General Information, GH20-925987, IBM
Corporation; available through IBM branch offices.

9. A. Cruise, R. Ennis, A. Finkel, J. Hellerstein, D. Klein,
D. Loeb, M. Masullo, K. Milliken, H. Van Woerkom, and
N. Waite, “YESIL1: Integrating Rule-Based, Procedural,
and Real-Time Programming for Industrial Applications,”
Proceedings of Third Conference on Artificial Intelli-
gence Applications (1987), pp. 134-139:

10. NetView Customization: Using PLII and C , SC31-6037,
IBM Corporation; available through IBM branch offices.

11. Expert System Prototype for Automated Console Oper-
ations Using NetView R3 and KnowledgeTool E ’ , GG24-
3450, IBM Corporation; available through IBM branch
offices.

12. E. Codd, “A Relational Model for Large Shared Data
Banks,” Communications of the ACM 13, No. 6,377-387
(June 1970).

13. E. Kim, N. Ballou, H. T. Chou, J. Garza, and D. Woelk,
“Features of the Orion Object-Oriented Database Sys-
tem,” Object-Oriented Concepts, Databases and Appli-
cations, W. Kim and F. Lochovsky, Editors, ACM Press,
Addison-Wesley Publishing Company, Reading, MA
(1989), pp. 251-282.

14. D. Fishman, J. Annevelink, D. Beech, E. Chow, T. Con-
nors, J. W. Davis, W. Hasan, C. G. Hoch, W. Kent,
S. Leichner, P. Lyngback, B. Mahbod, M. A. Neimat,
T. Risch, M. C. Shan, and W. K. Wilkinson, “Overview
of the Iris DBMS,” Object-Oriented Concepts, Data-
bases and Applications, W. Kim and F. Lochovsky, Ed-
itors, ACM Press, Addison-Wesley Publishing Company,
Reading, MA (1989), pp. 219-250.

15. R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt,
J. Stein, E. H. Williams, and M. Williams, “The Gemstone
Data Management System,” Object-Oriented Concepts,
Databases and Applications, W. Kim and F. Lochovsky,
Editors, ACM Press, Addison-Wesley Publishing Com-
pany, Reading, MA (1989), pp. 283-308.

16. S. Weiser and F. Lochovsky, “OZ+: An Object-Oriented
Database System,” Object-Oriented Concepts, Data-
bases and Applications, W. Kim and F. Lochovsky, Ed-
itors, ACM Press, Addison-Wesley Publishing Company,
Reading, MA (1989), pp. 309-337.

Accepted for publication December 13, 1991.

Allan J. Finkel IBM Research Division, Thomas J. Watson
Research Center, P. 0. Box 704, Yorktown Heights, New York
10598. Dr. Finkel is a research staff member and project leader
of the Systems Management project. He received a bachelor’s
degree from the State University of New York at Binghamton
in 1977 and a Ph.D. in mathematics in 1982 from New York
University where he studied at the Courant Institute of Math-
ematical Sciences. During 1982-1983 he was a member of the
Institute for Advanced Study in Princeton, New Jersey.
Dr. Finkel joined the Mathematical Science Department of
IBM Research in the fall of 1983 as a postdoctoral fellow and
moved to the Computer Science Department in 1985. His re-
search interests include expert systems, systems manage-
ment, and object-oriented databases.

Seraphin B. Calo IBMResearch Division, Thomas J. Watson
Research Center, P. 0. Box 704, Yorktown Heights, New York

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992

10598. Dr. Calo received a Ph.D. degree in electrical engi-
neering from Princeton University in 1976. Since 1977 he has
been a research staff member in the Computer Science De-
partment and has worked and published in the areas of queu-
ing theory, data communication networks, multiaccess pro-
tocols, expert systems, and complex systems management.
He has managed research projects in the communications and
systems performance areas and has served on the staff of the
IBM Research Vice-president, Systems. He joined the Sys-
tems Analysis Department in 1987 and is currently manager of
the Systems Management research group. Dr. Calo was di-
rectly involved in the architecture work that led to the defi-
nition of the IBM Systemview structure and continues to be
involved in its technical evolution. He also participated in the
related design work that led to the development of the Re-
source Object Data Manager (RODM). He holds two United
States patents and has received two Research Division
awards.

Reprint Order No. G321-5472.

IBM SYSTEMS JOURNAL, VOL 31, NO 2, 1992 FINKEL AND CALO 269

