A split model for 0S/2
SCSI device drivers

The concept of splitting one logical device driver
into two or more physical units is presented. The
specific case of an Operating System/2° (0S/2°)
SCSI (Small Computer System Interface) device
driver is used as an example. The primary reason
for splitting the device driver is to reduce the
development effort required to produce new SCSI
device drivers. Common code is isolated in a
separate driver in order to prevent its reinvention
as each new SCSI device becomes available.
Additional benefits are that the overall device
driver size is reduced, and the performance of
the SCSI subsystem is enhanced. The complete
separation of the upper- and lower-level drivers
provides the ability to replace one of the device
drivers without affecting any of the other
components of the system. This is particularly
important because it enables backward
compatibility for older device drivers, while
allowing for the support of emerging technology.

he function of a device driver is to provide a

bridge between an operating system and a
peripheral device. As aresult, a new device driver
must be written for each new device and for each
operating system to which the device can be at-
tached. A substantial development effort is re-
quired if several devices must be supported by
several different operating systems. Code layer-
ing can be used to provide a partial solution to this
problem for scsI (Small Computer System Inter-
face) devices in the Operating System/2* (0S/2¥)
environment. Figure 1 illustrates three possible
approaches that could be taken to the layering of
code in SCSI device drivers. In Figure 1A, a new
device driver must be written to interface with the
ScCslI interface, supported by the controller micro-
code.

114 rFeriOZI

by D. T. Feriozi

Since it connects an operating system to a pe-
ripheral device, a device driver contains informa-
tion that is both operating-system-specific and
hardware-specific. The device driver must accept
requests from the operating system, and translate
those requests into operations that are performed
by the device adapter and by the device. These
two levels of control—operating system and de-
vice—tend to polarize a device driver into two
corresponding sections. Some parts of the device
driver are more concerned with interfacing with
the operating system, while other parts of the de-
vice driver primarily act to control the operation
of the device.

In the extreme case, the logical functional split of
a device driver can be extended to a physical sep-
aration into two distinct, cooperating entities.
The manner and method of separation depends on
both the operating system involved and the type
of device that is targeted. The 0S/2 operating sys-
tem is well-suited to a split device driver model
for two reasons. First, 0S/2 contains a built-in
method to allow two different device drivers to
communicate. Second, since 0S/2 is a multitask-
ing operating system, it relies heavily on over-
lapped input/output (¥0) for many different de-
vices. The SCSI device protocol also lends itself to
a split device driver model because it contains a
standard command set that is implemented by all
SCSI devices.

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




Splitting a device driver into two parts is a logical
extension of the personal computer concept of the
Basic Input/Output System (B10S)' that is used in
the single-threaded DOS operating system. The
BIOS code that is a part of the personal computer
firmware can actually be thought of as the hard-
ware-dependent part of a device driver. The BIOS
code presents a standard device interface to the
device driver. If a device driver invokes device
services indirectly through the BIOS interface
rather than by manipulating the adapter or the
device directly, it is effectively isolated from
changes in the underlying hardware. If the hard-
ware is modified or even replaced entirely, only
the BIOS needs to be updated—the device driver
is unaffected.

In a multitasking operating system such as 0872, the
Advanced Basic Input/Output System (ABIOS)'
provides the BIOS service in a way that is compat-
ible with the more complex environment. In par-
ticular, the ABIOS code must be reentrant so that it
may service more than one request at a time. This
enables the overlapping of I/0 operations. While the
operating system is waiting for a relatively slow de-
vice to complete its task, other operations and other
/O can be initiated. As is the case with BIOS, the
ABIOS provides the lowest layer of software insu-
lation. It hides the specific hardware implementa-
tion behind a standard interface that can be ac-
cessed by higher levels of software. If the hardware
is changed, only the ABIOS layer must be modified.
The upper layers of software are not affected. In
Figure 1B a device driver written to the ABIOS in-
terface requires less code than that in Figure 1A,
written to the SCSI interface.

The ABIOS is designed to operate in any multi-
tasking, interrupt-driven environment. ABIOS is
operating-system-independent. There is a price
for this generality of implementation. The inter-
face to ABIOS is complex and procedurally ori-
ented. This is necessary in order to hide the de-
tails of the operating system from the ABIOS as
well as to hide the details of the hardware imple-
mentation from the operating system. One of the
goals of the split model for device drivers is to
insulate the upper-level device drivers from the
complexities involved with interfacing to the
ABIOS. In order to accomplish this, an extra layer
of software is inserted between the ABIOS and the
operating system. This layer takes the form of an
extra device driver that simplifies the interface to
ABIOS and reduces the overall code size for SCSI

iBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

Figure 1 Code layering to reduce device driver development
effort

- 08/2
DEVICE
08/2 DRIVER
DEVICE
0872 DRIVER
DEVICE
DRIVER
sosl
DRIVER
SCSi
Bi
scsi ABIOS
ABIOS
SCst
scsi cor«:qmox.x.ea
MIC
scsi CONTROLLER OCODE
MICR DE
CONTROLLER CROCO
MICROCODE @

device drivers. Figure 1C illustrates that less soft-
ware is required for the 0S/2 device driver when
the scsI driver software is inserted between the
ABIOS interface and the 0S/2 driver interface.

SCSI architecture

The scsl architecture? provides a standard device
interface that greatly simplifies the operating sys-
tem software that is required to drive the device.
SCSI devices have the capability to respond to
commands that are imbedded in data structures
called control blocks. This means that the SCSI
device driver’s primary task is simply to translate
an operating system request block into a control
block that the device can understand. All that re-
mains is to deliver the control block to the device,
and then to transfer the data to or from system
memory.

FERIOZ 115




For scsI devices, the ABIOS and the SCSI control-
ler are essentially reduced to a delivery system.
The SCSI ABIOS relays the control block to the SCSI
controller which in turn passes it on to the device.
This is a simplified view of the actual procedure
in order to make the point that the standardized
Scsl interface makes the job of controlling the de-
vice much easier. The SCSI controller does not
need to know how the device works, it just needs
to know how to send a control block to the device.
It follows that the SCSI controller does not need to
know the type of SCSI device it is controlling. It is
enough to know that it is a SCSI device that con-
forms to the standard Scsi architecture. This
forms the basis for the most attractive feature of
scsi, which is the ability to connect several dif-
ferent types of SCSI devices to the same bus and
the same controller.

A bus master SCSI controller® requires slightly
more information than just the SCSI control block.
Since it takes full responsibility for moving any
data to or from the device, the bus master con-
troller needs to know the memory storage address
of the data and the requested direction of data
flow, as well as the amount of data to be moved.
All of this information is placed in a super control
block that contains the SCSI control block infor-
mation in combination with the extra control in-
formation needed by the SCSI controller. From the
software perspective, device control is still
through a data structure, just a slightly larger one.

The split model

At this point it should be apparent that the SCSI
environment is significantly different from other
device protocols. Many different types of devices
from different vendors can be controlled by one
type of SCS1 controller. Device control is achieved
through a standard data structure interface. Any
SCSI device is able to respond to the same stan-
dard scs1 command set. This means that it is pos-
sible for a single device driver to control different
types of devices, as well as similar devices pro-
duced by different manufacturers.

The 082 environment provides additional features
that can facilitate the full exploitation of the SCSI
architecture. 0S/2 initializes the ABIOS and provides
system services to simplify device driver access to
the services provided by ABIOS. 0S/2 provides an
interdevice driver communication facility (IDC)*
that allows device drivers to communicate at run

116 Frerioz

time. The IDC allows a single logical device driver
to be split into two or more physical units.

The approach taken here is to split the SCSI device
driver into two parts. The upper-level driver pro-
vides the direct connection to the operating sys-
tem while the lower-level driver provides access
to the SCSI devices through the SCSI ABIOS serv-
ices. SCSI ABIOS is that portion of the ABIOS that
is concerned with controlling the SCSI devices in
the system. In Figure 1A-1C, respectively, the
shaded portion represents the code that must be
written for a new device. In Figure 1A, which
shows no ABIOS, a significant amount of code
must be written. With the introduction of ABIOS
(Figure 1B), the lower interface is the ABIOS ar-
chitecture, reducing the code. By splitting the de-
vice driver into a relatively fixed part (the SCSI
driver) and the 0S/2 device driver, as shown in
Figure 1C, only the 082 device driver has to be
rewritten. Refer to Figure 2 for a diagrammatic
representation of the split device driver model.

The extra interface provided by this model allows
changes to be made to the upper-level device
driver without affecting the lower-level device
driver. In the extreme case, a completely new
upper-level driver can be substituted for the cur-
rent one. Taking this one step further, the lower-
level driver can be designed to support more than
one upper-level driver at the same time. This re-
sults in reduced development effort for new SCSI
device drivers, once the lower-level driver has
been written. Resident code size is significantly
reduced since common code is isolated in the low-
er-level driver instead of being repeated in each
upper-level driver.

The SCSI driver

The lower-level device driver is referred to as the
scsI driver because it is device-independent. It
can be used to drive any SCSI device with the help
of an upper-level driver. The SCsI driver is de-
signed to include all of the functionality that
would be commeon to any SCSI device driver. The
duties of the SCSI driver can be summarized as
follows:

¢ Queue all SCSI requests by device

¢ Provide the interface to SCSI ABIOS

* Field ali scsI interrupts

e Detect and handle time-out conditions

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




Figure 2 Split device driver model for 0S/2

0872 KERNEL

OPTICAL~CLASS DRIVER |

SCSI DRIVER

SCS! ABIOS

PRINTER-CLASS DRIVER

CD-ROM-CLASS DRIVER

SCS! ADAPTER

OPTICAL SCS! DEVICE

PRINTER SCSI DEVICE

CD-ROM SCS! DEVICE

The queueing of pending device requests is man-
aged by the scsI driver for several reasons. Since
all device drivers are required to queue requests,
this is a common function that can be isolated in
the SCSI driver instead of being repeated in each
of the upper-level drivers. The relatively simple
queueing services provided by the 0S/2 kernel for
use by device drivers are not used. Instead, the
queueing algorithm has been optimized to work
synergistically with the SCSI driver’s interrupt
handler in order to improve the overall through-
put of requests. Maintenance of the relatively
complex queueing code is simplified by the fact
that there is only one copy of it.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

The primary function of the SCSI driver is to pro-
vide the SCSI ABIOS services to the upper-level
drivers through a simplified, declarative inter-
face. All of the procedural details of calling ABIOS
are hidden by the SCSI driver. Even the ABIOS
request block data structure is hidden. The upper-
level driver needs only to provide a few simple
parameters to the SCSI driver in order to have a
device request processed. The SCSI driver acts as
a subroutine to the upper-level driver. When con-
trol is returned from the SCSI driver, the SCSI de-
vice request has been completed. Refer to Figure
3 for an overview of the functionality of the SCSI
driver.

Feriozi 117




Figure 3 Control flow of the SCSI driver

| scsi CONTROL BLOCK

© | OTHER PARAMETERS

ABIOS TIMEOUT ROUTINE

- ABIOS INTERRUPT ROUTINE

| RETURN TO THE
DEVICE-CLASS DRIVER

Communication between the upper-level drivers
and the scsI driver is through the 0S/2 architected
interdevice driver communication (IDC) facility,
as alluded to earlier. At initialization time, the
SCSI driver registers its IDC entry point with the
0S2 kernel. Later, when an upper-level driver ini-
tializes, it obtains the SCSI driver’s IDC entry point
from the kernel. During task time, the SCSI driver
services are invoked much like a simple subrou-
tine call from the upper-level driver. However, at
initialization time the IDC entry point cannot be
used because it is located at protection level 0,
whereas the initialization code takes place at pro-
tection level 3. The only method of invoking the
ScsIdriver at initialization time is to make an 0872
dynamic link function call. The DosDevloctl call
serves as the entry into the SCSI driver during the
upper-level driver’s initialization. This works out
well since the DosDevloctl call uses the 0S/2 ge-
neric ioctl (/0 control) interface, which is general
and flexible.

118 FeriOZI

In order to keep things simple, the generic ioctl
interface is also used at task time. This means that
there is only one entry point into the SCSI driver.
The strategy entry point and the IDC entry point
are the same. At task time, the upper-level driver
follows approximately the same procedure that
the kernel follows to invoke the SCSI driver. The
upper-level driver constructs a generic ioctl re-
quest packet, points a hardware register pair to it,
sets up the context for the SCSI driver, and then
calls the SCsI driver’s IDC entry point.

The generic ioctl request packet contains two
routing parameters so that the request can be ef-
ficiently directed to the proper service routine.
The primary parameter is the function category.
The SCSI driver uses the first user-definable cat-
egory, 128, to provide the generic SCSI ABIOS
services. The categories from 129 through 255 are
available for the possible future expansion of SCSI
driver services. The secondary routing parameter

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




is the function code. The generic ioct]l function
code that is used is a linear mapping of the generic
SCS1 ABIOS function number. The zero-based
ABIOS functions are converted to 64-based ge-
neric ioctl function codes in order to follow the
generic ioctl conventions. That is, 64 is added to
each ABIOS function code in order to get the cor-
responding generic ioctl function code that will be
used to invoke the SCSI ABIOS service.

Once the request has been routed, the service rou-
tine uses two other generic ioctl request packet pa-
rameters in order to satisfy the request. The pa-
rameter buffer pointer points to a data structure that
contains the parameters that the SCSi driver will use
to invoke the generic SCSI ABIOS services. The pri-
mary parameter used here is a pointer to the SCSI
control block that was constructed by the upper-
level driver. These parameters vary according to
the generic SCSI ABIOS service being requested.

The generic ioctl request packet also contains a
pointer to a data buffer. This is set to point to the
area that the upper-level driver would like to use
for sense data. The SCSI architecture provides a
well-defined error reporting and recovery proto-
col. The most common SCSI error that the device
driver encounters is called a check condition.
When a check condition is reported, the device
driver is expected to issue a request sense com-
mand to the SCSI device. The device then returns
detailed error information in a sense data struc-
ture. When a check condition is detected, the SCSI
driver automatically generates a request sense
command. The resulting sense data structure is
returned to the upper-level driver in the data
buffer that was provided as part of the generic
ioctl request packet.

The ABIOS architecture provides three entry
points for use by device drivers. They are the
START, INTERRUPT, and TIMEOUT routines. A
somewhat complex set of procedures must be fol-
lowed according to the return code from each of
the three ABIOS routines. The most common sce-
nario is for the device driver to first call the START
entry point in order to initiate a device request.
The START routine usually returns as staged-on-
interrupt. At this point the task time thread of the
device driver suspends its execution by blocking
or returning to the operating system. When the
device completes the operation, it generates an
interrupt that is fielded by the device driver’s in-
terrupt routine. The interrupt routine then calls

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

the ABIOS INTERRUPT entry in order to release the
interrupt at the device level. The device driver
interrupt routine is also responsible for finishing
up the request by running the blocked thread or
by doing the remaining processing itself.

This is a simplified version of the procedural de-
tails of using ABIOS that are hidden by the SCSI
driver. Many other scenarios are possible, and all
must be anticipated. In addition, each request
must be timed to be sure that it completes in a
reasonable period. If not, the ABIOS TIMEOUT rou-
tine must be called. To further complicate mat-
ters, it is possible for the TIMEOUT routine to time
out.

It should be apparent that the common function-
ality provided by the SCSI driver is also the dif-
ficult part of an 0S/2 device driver. All of the du-
ties associated with a multitasking environment
are performed by the SCSI driver. The request
queueing, request timing, and interrupt handling
code must be carefully coordinated with the
ABIOS code in order for a device driver to be ef-
ficient and still be somewhat hardware-indepen-
dent. Sequestering these functions in a separate
driver is a natural and logical enhancement to de-
vice driver development in an 0S/2 SCSI environ-
ment.

The device-class driver

The upper-level device driver is referred to as a
device-class driver because it generally drives de-
vices that belong to a specific SCSI classification.
Printer, CD-ROM, and read/write optical are ex-
amples of SCSI device types that require a dif-
ferent upper-level device driver to work in con-
cert with the lower-level SCS1 driver. The primary
functions of the device-class driver can be sum-
marized as follows:

» Present a logical view of the device to the op-
erating system

» Translate an 0S/2 request block to a SCSI control
block

s Provide multiple vendor support by handling
vendor-unique features of the device

0S/2 device drivers are separated into two classi-
fications. Block device drivers control random-
access mass storage devices such as fixed disk or
diskette. Character device drivers are used for
sequential access devices such as printers. The

Ferioz 119




first job of the device-class driver is to classify the
device as being either character or block. Within
these major groupings, smaller subgroupings are
necessary due to other differences in the nature of
the devices. For instance, CD-ROM and read/write
optical devices are similar in many ways and yet
different enough that they require separate clas-
sification. The medium is optical for both devices,
but CD-ROM is read-only, has a larger block size,
and supports a large number of audio commands
that are not used with a read/write optical device.

Within a SCSI device class, it is possible for one
device driver to support many different devices.
Because of the standard SCSI command set, sim-
ilar devices produced by different manufacturers
can be controlled by the same device-class driver.
The slight behavioral variation from one vendor
to another can easily be handled by the device-
class driver because the SCSI architecture pro-
vides a standard method of identifying the device.

The device-class driver is also capable of handling
variations in media size and configuration. Read/
write optical devices provide a good example of this
ability. These devices come in basically two major
types, those that use 3.5-inch media and those that
use 5.25-inch media. Within media size groupings,
different media densities are available. One optical
device-class driver can provide support easily and
without a great deal of extra code for the different
media sizes, the different media densities, and the
different vendors. Since the primary SCSI command
set supported is approximately equivalent for the
different devices and media types, the device driv-
er’s major task is just to let the operating system
know about the different media configurations that
are being supported.

The actual mechanics of controlling a SCSI device
are almost entirely provided by the layers of code
beneath the device-class driver. The SCSI control-
ler, the generic SCSI ABIOS, and the SCSI driver act
together to reduce the function of the device-class
driver basically to that of a translator. The device-
class driver converts an 0S/2 request block into a
request block that the SCSI controller and the SCSI
device can understand, and then passes it on to
the ScSI driver. Refer to Figure 4 for a simplified
view of the device-class driver.

Since the device-class driver is so simple, new
scsi device driver development can proceed very
quickly. Development is further facilitated by the

120 FerRIOZ)

fact that the device-class drivers are similar in
many ways. Once a prototype is available, new
drivers can be derived from it. In some cases, a
new device can be supported by simply adding it
to an existing device-class driver.

Advantages of the split model

The split device-driver model for 08/2 SCS1 device
drivers provides many advantages over the tra-
ditional model for 0872 device drivers. The pri-
mary motivation in the design of the split model
is to reduce the SCSI device driver development
effort for current and future devices. Results in
this area have been very good. New SCSI device
drivers have been developed in short periods of
time. In one case, a read/write optical device
driver for a 3.5-inch media device was converted
to also support 5.25-inch media devices. Support
was added for four different vendor devices, each
using a different type of medium with a different
capacity. In addition, one of the devices sup-
ported two different media densities. The result-
ing single device-class driver supported five dif-
ferent read/write optical devices. Subsequently,
this device driver was again modified to include
support for two more devices, for a total of seven
devices and eight different types of media.

The development effort for a completely new SCSI
device driver within the split model architecture
is less than half of the effort that would be re-
quired for a traditional device driver. This is be-
cause approximately half of the device driver
code is contained in the common SCSI driver that
is used by all device-class drivers. If a sample
device-class driver is available, the remaining de-
velopment effort will again be reduced by about
half, assuming that the code is modular, and that
it was developed in the C programming lan-
guage.’ If so, at least half of the existing device-
class driver code will probably be reusable.

Additional benefits of the split model include the
reduction in size and enhanced performance.
Both factors are improved in direct proportion to
the number of different types of SCSI devices that
are attached to a system. Each additional device-
class driver represents a size savings equivalent
to approximately the size of the SCSI driver. Ex-
ecution performance is enhanced by the fact that
there is only one interrupt handler registered for
all of the devices controlled by the SCSI driver.
Since the operating system must chain through

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




Figure 4 Control flow of the device-class driver

 OS/2 REQUEST BLOCK

s SCSI CONTROL BLOCK

/

GENERIC 10CTL
REQUEST BLOCK

7

SCSI CONTROL BLOCK

OTHER PARAMETERS

TO THE SCSI DRIVER

the interrupt handlers that are registered for a par-
ticular interrupt level, the performance benefit is
again directly related to the number of different
types of SCSI devices in the system, and therefore
the potential number of different interrupt han-
dlers. Utilizing only one interrupt handler seems
to follow logically from the standardized nature of
the scsI architecture. The single SCSI controller
type implies that the minimal interrupt service
routine is equivalent for all of the devices that are
connected to the SCSI driver.

The full compatibility of the SCSI driver with other
SCSI ABIOS device drivers is a critical and impor-
tant feature. The ScSI driver does not directly ac-
cess the SCSI controller. The ABIOS is used exclu-
sively for access to the SCSI devices. The SCSI
driver does not claim any devices for use at its
initialization time. Devices are claimed by the de-
vice-class driver during its initialization. Only
those devices that the driver will actually control

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

are claimed. This means that SCSI ABIOS device
drivers that are not part of the split-model archi-
tecture can be loaded either before or after the
split-model drivers without having any conflicts
occur. Figure 5 summarizes the benefits of the
split model for 0S/2 SCSI device drivers.

Summary

The split model exploits the SCSI architecture to
improve upon the basic design of an 0S/2 device
driver. Already existing features of 0s/2 and the
PS/2 are combined in a new way in order to create
an optimized device driver model for SCSI de-
vices. The generic ioctl interface and the inter-
device driver communication facility are com-
bined to allow a device driver to be split into two
parts, without violating the 0S/2 architecture. The
generic SCSI ABIOS provides a relatively hard-
ware-independent layer of code that is used to
access the SCSI controller. Since the controller is

Feriozi 121




N Europe as well as in the United States. He has received sev-
Figure 5 Advantages of the split model eral awards including a Division Award in recognition of ex-
cellence and achievement from the Entry Systems Division of
IBM. Mr. Feriozi received his B.S. degree in chemistry from
Georgetown University in Washington, D.C. He also holds a
master’s degree in computer science from Florida Atlantic
. Reduces new device driver University in Boca Raton, and is currently working toward a
development effort Ph.D. in computer science.

- Reduces code size and
memory requirements Reprint Order No. G321-5465.

« Exploits the features of the
SCSI architecture

« Compatible with other
SCS! ABIOS device drivers

a bus master, it provides extensive data move-
ment and control services that greatly simplify the
requirements of the device driver. The standard-
ized sCSI command set provided by the SCSI ar-
chitecture makes it easier to be able to modify
existing device drivers to add support for new
SCSI devices as they become available.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. IBM Personal System/2 and BIOS Interface Technical Ref-
erence, IBM Corporation (1988); available through IBM
branch offices.

2. Small Computer System Interface (SCSI), X3.131-1986,
American National Standards Institute, New York (1986).

3. IBM Personal System/2 Micro Channel SCSI Adapter
Technical Reference, IBM Corporation (1990); available
through IBM branch offices.

4. IBM Operating Systemi2 Programming Tools and Infor-
mation Version 1.2, Device Drivers Volume 1, IBM Cor-
poration (1989); available through IBM branch offices.

5. Dan Feriozi, “A C Programming Model for OS/2 Device
Drivers,” IBM Systems Journal 30, No. 3, 322-335 (1991).

General reference

A. M. Mizell, “Understanding Device Drivers in Operating
System/2,” IBM Systems Journal 27, No. 2, 170-184 (1988).

Accepted for publication September 26, 1991.

Dan T. Feriozi IBM Entry Systems Division, 1000 N.W. 51st
Street, Boca Raton, Florida 33429. Mr. Feriozi is a program-
mer in the Engineering Software Development Laboratory in
Boca Raton. He is currently responsible for the design and
development of SCSI device drivers for OS/2 as well as for
DOS. Mr. Feriozi is widely recognized within IBM for his
expertise in the field of device driver development. His models
are currently being used on IBM sites in Japan, Canada, and

122 FeriOZI IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




