
Customized systems for 
engineering  applications 

An  A  PL2TM-based high-productivity soft ware- 
development  environment is shown to enable 
small teams  of two or three  persons to build 
complex  engineering  software  systems. The 
productivity and flexibility of  such  small teams, 
equipped with this environment,  enables them to 
build customized  engineering application 
systems  economically. These customized 
systems  are  far  more useful for the  particular 
applications they  address  than  are  the  generic 
systems that are  commonly  produced  by  large 
software-development  groups.  A  customized 
engineering application system is described, 
illustrating the productivity of  the two APLB 
based  computer-aided soft ware engineering 
(CASE) tools used  for its implementation  and 
long-term  software  maintenance. The  system is 
presented in some  detail, to demonstrate its 
sophistication and thus provide a measure  of the 
productivity of the software-development 
environment- The two CASE tools that comprise 
this software-development  environment  are  used 
to build interactive  graphical application systems, 
and to build systems for applications  that  require 
or can  benefit from distributed cooperative  proc- 
essing.  A list of  some  customized application 
systems built using the described  environment 
is provided,  along with estimates  of  the 
implementation  efforts. The  features  of APLP that 
play  a key role in the effectiveness  of  these tools 
are also discussed. 

E ngineering software  has traditionally been 
developed by large groups  and  its develop- 

ment has often  been  costly, slow, and inflexible. 
To distribute  the  cost, marketing strategy has 
called for developing large generic systems in- 
tended  for  broad  markets  over long product life 
spans.  This  paper  presents  two APL2*-based 
computer-aided  software engineering (CASE) 
tools that  enable  a small software-development 
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team of two or three  persons to build customized 
application systems  at low cost, in a timely man- 
ner, while remaining flexible to changes in re- 
quirements.  This  changes  the marketing strategy 
so that narrowly-focused engineering application 
markets and short-lived problem domains  can 
now be  addressed effectively. 

The complex engineering application described in 
this paper  demonstrates  the capabilities of the 
customized approach,  and  the  power of the soft- 
ware-development tools employed in the imple- 
mentation process.  The application involves 
“seamless” processing from design to manufac- 
turing, geometric modeling, and  automatic  proc- 
ess generation for 5-axis milling (three positional 
and  two  orientational  degrees of freedom).  A 
qualitative comparison of this recent  project  and 
the  estimated  cost of development of comparable 
commercial systems suggests a  reduction of one 
order of magnitude in the  software-development 
costs. 

One of the  two CASE tools discussed is the  Expert 
System  Generator (ESG).6’7 A  customized engi- 
neering application system  is an interactive envi- 
ronment  that  uses  captured  expert knowledge to 
help an engineer solve problems.  The ESG sepa- 
rates  the  two main forms of complexity involved 
in creating  a customized application system. One 
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form of complexity is  the  bottom-up development 
of each algorithmic component.  The  other is the 
top-down interconnection of these  components 
and  the  associated  interactive  interfaces, into a 
useful integrated application system.  The inter- 
active  interfaces  enable  the engineer to partici- 
pate in the solution process  where algorithmic so- 
lutions  are not suitable or desirable, or have not 
yet emerged. The ESG enables  the software-de- 
velopment team to  use graphical programming to 
specify the top-down interconnectivity, flow, and 
interfaces, and relies upon APL2 as  an efficient 
tool for  expressing  the algorithmic functionality 
of each  component. APL2 also allows access  to 
necessary algorithmic functionality implemented 
in other languages, by its  interface  to associated 
processors.8  Together, ESG and APL2 provide an 
environment in which the design and implemen- 
tation of a complicated customized application 
system  requires roughly one  person-year of ef- 
fort. 

The second CASE tool discussed is the  Server Net- 
work Generator (SNG).” The SNG addresses ap- 
plications that  require or can benefit from distrib- 
uted  cooperative  processing.  The computer- 
controlled operation of a flexible manufacturing 
system is one  such application. However, distrib- 
uted cooperative processing (abbreviated DCP in 
this paper) is readily applicable to many other 
applications that exhibit either  concurrency or 
parallelism. The SNG automatically converts  a 
graphical specification of the application into an 
operational DCP network skeleton. 

Application systems may be built directly using 
the combined SNG, ESG, and APL2 environment, 
or existing ESG application systems  can be ex- 
tended to benefit from distributed  cooperative 
processing by using the SNG. Once the applica- 
tion’s inherent  concurrency is identified, a  server 
network is designed graphically, distributing the 
application system’s algorithmic components 
across  a  set of interconnected  servers. Individual 
algorithms exhibiting concurrency  can be decom- 
posed  and  distributed  across  a  set of servers,  to 
be  processed  concurrently. 

During the  past  several  years,  the various gener- 
ations of the ESG environment  have been used to 
create many customized engineering application 
systems  (see  Table 1). Some of these  projects pro- 
duced  instructional  systems  for  undergraduate 
and  graduate  classroom applications. Others 
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were developed as part of industrial research  con- 
tracts. 

This paper begins with a  description of a  custom- 
ized engineering application system, built using 
the combined SNG, ESG, and APL2 environment. 
Two of the system’s algorithms and  a  related  data 
structure  have been chosen to illustrate  the  power 
of APL2 as the implementation language for  bot- 
tom-up software  development.  The planar-chop- 
ping algorithm described is a  direct  translation of 
a mathematical concept  into  a simple APL2 
expression.  The SURROUND algorithm is more 
complex, with several  components  that  present 
opportunities  for DCP.  APL2 enables  the  software 
developer to  capture  the SURROUND algorithm’s 
inherent  concurrency  naturally, through the  use 
of nested arrays,  whether or not DCP is involved. 
When DCP is applied,  its implementation is greatly 
simplified  by this simple preparation. Next, the 
ESG and SNG are  described briefly, along with a 
discussion of APL2 features  that  either  were in- 
strumental in their development, or  are particu- 
larly advantageous in their  use. Finally, produc- 
tivity considerations  are  discussed. 

A seamless  design-to-manufacture  system 

This customized application system is an alter- 
native to  the traditional computer-aided design/ 
computer-aided manufacturing (CADICAM) ap- 
proach to manufacturing. It  overcomes  the major 
disadvantage of CAD/CAM systems,  the many 
“seams”  between  separate  interactive compo- 
nents, which are  opportunities  for  introduction of 
human errors and are  obstacles  to flexible rapid 
prototyping. In this seamless design-to-manufac- 
ture (SDTM) system,  changes made to the  part  de- 
sign can automatically result in a new prototype 
rapidly, without the time-consuming involvement 
of several disjoint interactive CAD/CAM steps.  Part 
and process design changes  are performed inter- 
actively at  the  conceptual level. The resulting 
geometric repercussions  have been completely 
automated, so that applying varying levels of 
computing hardware  power  can yield correspond- 
ing levels of rapid-prototyping speed. This pre- 
sents an opportunity  for  the  introduction of dis- 
tributed cooperative  processing, as will be 
shown. 

This SDTM system has been  demonstrated  and is 
undergoing further  development. It represents  an 
estimated effort of 1.5 person-years,  and will have 
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Table 1 A llst of implemented  customized  application  systems 

Expert System Person-Years  Date 

Hybrid LSI Circuit Design System 2 1986 
(in collaboration with A. Mavretic and I. Tham) 

Conceptual Aircraft Design System-An instructional system 1 1986 
(in collaboration with G. Succi and J.  OBrien) 

The  Expert System Generator 2 1986 
(in collaboration with A.  C.  Williams) 

Propeller-Blade Design and Manufacture 0.5 1987 
(in collaboration with G. Succi and W. Ruiz) 

Control Systems Design-An instructional system 2 1987 
(in collaboration with H. D'Angelo and W. Curtin) 

Design and Manufacture of Jet-Engine Combustion-Chamber Lining 1 1988 
(in collaboration with T. Shojaie and W. Ruiz) 

The BUMES System-A design system for NC turning machines 1 1988 
(in collaboration with T. Shojaie and S. Sadri) 

The  Server Network Generator 1 1989 
(in collaboration with S. Bernstein, Z. Nour) 

Automatic Process  Generator for 3-Axis  Milling 0.5 1989 

SEPTOR Project-Control of Manufacturing Transfer Lines 0.5 1990 
(in collaboration with E. Ebner, S. Rastogi, and A. Tuczapec) 

Geometric Modeler for 5-Axis  Milling 1 1990 

required roughly twice as much effort when com- 
pleted.  The  application is the design-to-manufac- 
ture of sets of customized golf club heads (see 
Figure 1). The  complexity of this engineering ap- 
plication is  due  to its  sophisticated geometric def- 
inition,  its family of parts in excess of one hun- 
dred  members,  the  mechanical  and  aerodynamic 
considerations,  and  the overriding necessity of 
manufacturability  and  ease of rapid prototyping. 

The  concepts  and  system  components,  discussed 
here in this context, apply to a wide range of prod- 
ucts requiring the sophistication of 5-axis milling 
(three  positional  and  two  orientational  degrees of 
freedom),  and  can  be generalized to apply to 
other manufacturing processes.  The  geometric 
modeler  for 5-axis milling, and  the  automatic 
process  generator  for 3-axis (or three positional 
degrees of freedom) milling2,4 (see  also  Table l),  
are components of this SDTM system. 

An appropriately  constructed  geometric model of 
the  part,  stock material,  and  fixtures, combined 

with a complete set of process  rules  and  data, 
provides all the information necessary  for  the im- 
plementation of automatic  process  generation.  In 
the  absence of some of the  necessary  rules  or 
data, an SDTM system  must  provide  for  direct in- 
teractive  input  from a human  expert in guiding the 
process at  the conceptual  level.  Examples of such 
missing information, supplied by the human  ex- 
pert,  are  the  choice of major process  orientation 
and  determination of the fixture  required to hold 
the  workpiece. 

The  overall  structure of the  customized SDTM sys- 
tem uses  the  geometric model generated in the 
part-design stage,  and the specifications of the 
machining center  and tooling, to  produce numer- 
ous auxiliary geometries  automatically, in the 
process of converting the designed part  into a 
manufactured  product.  Figure 2 illustrates the 
flow  of the design process  generating  the golf club 
head illustrated in Figure 1. The diagram depicts 
the  various design stages  and the evolving geo- 
metric model. Figure 2 serves  to illustrate the 
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structural  complexity of customized application 
systems  that  can  be  developed with the ESG envi- 
ronment. 

Geometry  generators. The SDTM system’s geo- 
metric  modeler is able to guarantee  the geometric 
integrity1-3,5 of the part model due  to  the geometry 
generation  process. The geometric modeler is 
able  to  represent  objects  that can be described in 
terms of the intersection, union and  subtraction of 
convex  objects. It provides a simple solution to 
the problem of geometric integrity for large and 
diverse families of convex  and  concave geometric 
designs. 

The geometric  modeler  represents  convex  ob- 
jects internally as a  set of planar polygonal fac- 
ets. 1,3,5 Each of the  part’s  constituent  convex ob- 
jects  corresponds  to a part  feature. Within the 
SDTM system,  each  feature  and its connection 
with the  rest of the  part are described  paramet- 
rically. Each  type of feature is associated with a 
geometry  generator that  uses  these  parameters to 
generate the feature’s  faceted model automati- 
cally. The ESG enables  the  software  developer to 
implement the feature-based  parametric specifi- 
cation  interfaces using graphical programming, 
and  provides a structural  framework within which 
the  automatic  geometry-generation  software fits. 

The geometric  modeler  combines  the  advantages 
of a broad  range of acceptable mathematical sur- 
face  representations  (and hybrids) at  the concep- 
tual  and  parametric part-design level, with the 
computational  advantages of planar  faceted rep- 
resentation at  the process-geometry level. The 
Boolean-geometry processor used to  construct 
the  object  from  its  convex  components using in- 
tersection,  union,  and  subtraction,  operates  on 
the faceted model. At the process-generation stage, 
most systems are forced to convert whatever math- 
ematical surface representation they employ to 
linear and circular elements, to conform to the 
primitive motions available using  numerically- 
controlled machining equipment. The geometric 
modeler merely converts immediately to simplify 
its own internal computation, while  providing para- 
metric control of the surface smoothness. 

The family-ofparts  geometry  generator. A fam- 
ily-ofparts shares sufficient similarity that can be 
exploited to lower  the  cost  and  reduce  the time 
required to design and  manufacture  successive 
family members.  The SDTM system was intended 
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Figure 1 A geometric  model of the  head of a golf  club.  The 

system  described in the text. 
model is generated using the geometric  modeling 

specifically to  exploit the similarity in design and 
manufacture of a particular  brand of semicus- 
tomized golf club heads.  This  particular family- 
of-parts is partially defined by a combination of 
three  discrete design parameters, combining to 
describe  over  one  hundred family members: 

1 .  Loft angle-the angle between the ground  and 
the sloped club face  that  hits the golf ball 

2. Lie angle-the angle between  the ground and 
the  club  shaft held by the golfer 

3. Swing weight-the weight of the golf club  head, 
controlled by the  depth of the back  pocket 

Additional geometric  parameters  are  needed  to 
fully characterize  this family-of-parts. The SDTM 
system  enables  the  part  designer to specify all of 
these  parameters.  The  family-of-parts  geometry 
generator  converts  these  parameters to a fully- 
defined planar-faceted  geometric  model, as 
shown in Figure 1. 

Figure 2 shows  the  constituent  geometry  gener- 
ators  that  pertain  to specific features of the  club 
head.  Each of these  generates  convex  objects  that 
are combined by Boolean geometric  operations to 
generate  the  complete  club-head  geometry. Fig- 
ure 2 demonstrates  the  inherent  concurrency in 
this computation.  It  presents an opportunity to 
benefit from the  computational  advantages of dis- 
tributed  cooperative  processing  through  the  use 
of the combined SNG, ESG, and APL2 software- 
development  environment. 

HAZONY AND ZEIDNER 97 



Figure 2 Part  and  process  design flow 
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Figure 3 Automatic  process  generation  for  one of the  layers  shown  in  Figure 6 

Manufacturing  process  geometry  generators. 
The manufacturing process  for machining this 
family-of-parts is implemented in the following 
steps: 

1. The rough-milling process 
2. The semifinish-milling process 
3. The finish-milling process 

For  each  process,  the manufacturing process ge- 
ometry  generators  constitute a set of algorithms 
producing all the details  associated with: 

Defining the  tool  approach 
Creating a continuous  trajectory to remove ma- 
terial  according  to a specific process-governed 
strategy 
Subdividing the  trajectory  into  sections requir- 
ing different feed  rates 
Defining the  tool  retraction 

Figure  3  provides  an  example of such a complex 
trajectory  associated with the 3-axis milling op- 
eration.  Figure 4 illustrates  some of the geometric 
problems  that  must be addressed to produce  such 
a trajectory  automatically. 

The flow diagram shown in Figure 2 represents 
only those  geometry  generators used to  produce 
the  part  geometry. The  part  geometry must be 
combined with stock material geometry  and fix- 
ture  geometry as input to  the  automatic  process 
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generation  software.  Figure 5 represents all of 
these  geometries. 

Three manufacturing process  geometry  genera- 
tors  are  described  next. The first creates auxiliary 
geometry as input to  the next  two. All three gen- 
erators  were implemented in APL2 with the  data- 
structure flexibility provided  by  nested arrays. 

The slice  geometry  generator. The 3-axis rough- 
milling process  employs a rotating cylindrical 
milling tool that is lowered so that its  bottom  end 
is a specific distance (rough depth of cut) below 
the  surface of the  material. The tool is then  moved 
laterally so that  its cylindrical milling surface re- 
moves material in its  path.  The  material  opposes 
the tool’s forward  movement,  thus deflecting the 
tool, causing its  actual  travel  path  to differ from 
the desired  path. The  process  planner  varies  the 
rough depth of cut (RDC) parameter within the 
SDTM system’s  conceptual  process-design facil- 
ity. Based on  the  type of material,  he  varies the 
RDC parameter in conjunction with the feed rate 
at which the tool progresses  laterally,  and  the  tool 
radius, so that  the deflection will be  acceptably 
small. The ESG simplifies the  task of graphically 
designing and implementing the process-design 
facility,  and  provides the  structural  framework 
into which the rules governing acceptable  choices 
and  combinations of process  parameters fit. 

The rough-milling process is thus  performed at a 
sequence of progressively deeper  layers,  each 
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Figure 4 Application of the SURROUND algorithm to a  part design with multiple pockets and islands within pockets 

deeper  into  the  stock  material, by an additional 
distance of RDC, each  exposing  the  next new 
stock  material  surface. A slice geometry  genera- 
tor  is used to determine  the part, stock  material, 
and fixture geometry at  each rough-milling layer. 
This  generator  intersects  the  complete  geometry 
with a set of parallel equidistant slicing planes, 
separated by a  distance of RDC from  one  another. 
The result is a set of slices,  each consisting of 

Figure 5 The combined model  of the geometries  of the 
part, the stock material, the fixtures, and the 
protective zones 

some number of part  loops,  some  number of stock 
loops,  and  some  number of fixture  loops, as 
shown in Figure 6. 

The 3-axis rough-milling  process-geometry  gen- 
erator. The 3-axis milling process is performed 
sequentially slice by slice. The automatic  proc- 
ess-generation  software  works on  each slice in- 
dependently,  thus providing an opportunity  for 

Figure 6 Equidistant slices through the combined 

fixtures, and protective zones 
geometric  model  of the part, stock material, 
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concurrent  processing. The rough-milling proc- 
ess requires  the tool to  be guided along a  path with 
its  axis of rotation  orthogonal  to  the slice plane. 
At  each slice depth, as the  tool follows the  path, 
it removes  the majority of stock  material  that is 
outside of the  part  and fixture geometry  loops. A 
small amount of material  is intentionally left im- 
mediately surrounding  the  part  and fixture geom- 
etry. This  material is removed  later, during the 
semifinish and finish processes. 

The goal of the rough-milling process is to  remove 
material as quickly as possible.  This  process is 
performed with a large-diameter tool moving 
quickly and is designed to tolerate  inaccuracy 
caused as the  tool is deflected by the  enormous 
forces  exerted upon it. Much less material is left 
to  be removed  by  the semifinish and finish proc- 
esses,  thereby  exerting  far  weaker  forces upon 
the tool and deflecting it less.  Each  successive 
process  removes material closer  to  the  part ge- 
ometry  and  must  therefore  be more accurate.  The 
semifinish process  smoothes  out  the remaining 
material left by the rough-milling process. If the 
layer  were  not  smoothed to homogeneous thick- 
ness  the  tool would confront widely varying de- 
flection forces during the finish process  and would 
be unable  to maintain the necessary  accuracy. 

During the rough-milling process,  the tool must 
often  remove a quantity of material  that is wider 
than its diameter.  It  therefore  proceeds  to  take 
several  passes,  each digging laterally further  into 
the material, taking advantage of the accessibility 
provided by the previous  pass  and providing fur- 
ther  accessibility  for the next  pass.  The width of 
each  pass is a process  parameter  that  depends 
upon  the  material,  the  power of the milling ma- 
chine,  and  the RDC, but which cannot  exceed  the 
tool’s diameter. 

Each pass is thus  intended  to  expose  a specific 
geometric  surface  that will become  the  stock ma- 
terial  geometry  that it leaves  behind.  The  auto- 
matic process-generation  software  works back- 
ward from the  part  geometry  and fixture loops to 
compute  the  successive  passes  required  for  each 
slice.  Each  pass  consists of a  path along which the 
center of the  tool  bottom must move. Computing 
this  set of tool  paths  based  upon  the slice loops 
involves an analytic  geometry problem referred 
to  as  the SURROUND problem. 294 Figure 3 shows a 
part  geometry  and  the  concentric  loops  generated 
by the SURROUND algorithm. 
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These  loops,  when  traversed at  appropriate feed 
rates, in accordance with manufacturing process 
strategy,  constitute a tool path  for  one slice. The 
manufacturing strategy  is  intended to balance  the 
goals of minimizing the  total machining time  and 
milling as accurately as possible.  This  strategy is 
implemented in a TRAVERSAL algorithm, which 
converts  a  set of concentric SURROUND loops  into 
a tool path  consisting of geometry  and  feed 
rates. 294 The  feed  rates  ensure  that the tool  moves 
slowly when there is greater  force opposing its 
travel,  and  thus  greater  deflection,  faster when 
there  is  less opposing force  and deflection, and 
fastest  when it is not in contact with any  stock 
material. The  feed  rates are computed during the 
TRAVERSAL algorithm,  based  upon the choices it 
makes in traversing  the SURROUND loops.  The 
feed rates  change  continuously along the  tool 
paths  based upon these  traversal  choices.  The 
SURROUND and TRAVERSAL algorithms each 
present  opportunities  for employing distributed 
cooperative  processing, using the  combined SNG, 
ESG, and APL2 environment, due  to their  inherent 
concurrency,  as is explained next. 

As the milling tool follows a tool path  to  expose 
a desired surface,  its  circular  cutting edge is un- 
able to reach  into  concave inside corners in the 
surface.  This  creates a disparity  between the  de- 
sired surface  and  the resulting stock  material  sur- 
face.  The SURROUND algorithm is used  to com- 
pute  the resulting stock  surface, by SURROUNDing 
the tool path  geometry  at  a  distance of one tool 
radius.  This  provides the stock  geometry  prior  to 
the semifinish and finish-milling processes. 

The 5-axis  finish-milling  process-geometry  gen- 
erator. The 5-axis finish-milling process is per- 
formed by rotating  the  part  about  its X-axis (using 
a  rotational  control  axis defined as A ) ,  while po- 
sitioning the tool so that  its  end is touching  the 
desired  part-geometry  surface,  and orienting it so 
that  the tool’s rotational  axis is orthogonal  to  the 
local surface of the  part. A slice geometry gen- 
erator is used to generate  a set of equidistant 
slices parallel to  the Y-Z plane. Each slice con- 
sists of one  part-geometry  loop. 

Figure 7 shows  the Y-Z motion of the tip of the 
tool as it traverses along one part-geometry  loop 
on  a slice. The  X  coordinate is constant  for  a  slice, 
and  two  orientational axes, A  and B, are contin- 
uously changing. (Only axis  A is shown in the 
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Figure 7 The Y-2 trajectory of the  tip of the  milling  tool, 
corresponding to the  finish  cut  of  one  slice 

Figure 7 example.)  The complexity of the Y-Z 
trajectory is due to the geometric coupling be- 
tween  the A, Y, and Z axes, which is character- 
istic of the geometry of the  particular milling  ma- 
chine. The  actual  contour being generated by the 
motion described in Figure 7 is represented by a 
relatively simple convex polygon, which is an or- 
dinary cross  section through the  part geometry. 

A data  structure  for  geometric  modeling. To 
achieve  the goals of SDTM, the geometric modeler 
must describe  the full geometry of the problem, 
including part,  stock,  and fixture geometry. 
These combined data  are  necessary  for  generat- 
ing the  process geometries employed in the  au- 
tomatic  generation of numerical control  software, 
which drives  the numerical control machines for 
part  manufacture. 

Figure 8A depicts  a  depth-5  nested  vector used to 
describe  the full geometry of the p r ~ b l e m . ~  The 
vector  consists of three depth-4 elements,  de- 
scribing stock, fixture, and  part geometry. Each 
geometric element is defined by a  data  structure 
(Figure 8B), consisting of a plane table (PT), a 
node table  (NT),  a link table  (LT), and a nested 
facet  vector (FV). Each row of FT, NT, and LT 
corresponds to a  plane,  a  node, and a link, re- 
spectively.  Each item of FV corresponds to a 
facet, and consists of a link-number table,  a plane 
number,  and  other  attributes. 

An arbitrary geometric shape may be described in 
terms of a simple start-up geometry and  a collec- 
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tion of geometric features  attached to  it.  The im- 
plementation of a fully automated SDTM system 
requires a full parametrization of the  start-up 
geometry, all of the  attached  features, and their 
geometric interrelations. While a wide range of 
geometric features  are amenable to direct math- 
ematical parametrization, many shapes  are  de- 
signed  in an ad hoc fashion, with no obvious ap- 
proach to design parametrization.  The  start-up 
geometry generator  provides  a means to con- 
struct an object, or a feature, in terms of an  ar- 
bitrary but complete  set of facets.  In  the  absence 
of any known geometric interrelations  between 
the various planes,  the initial parametric defini- 
tion of the  start-up geometry consists of the para- 
metric definition of the generating planes. 

The  completeness of the  set of facets is ensured 
by applying a planar chopping operation  to  suc- 
cessively “chop off’ parts of an initial valid over- 
sized shape.  The  set is complete if none of the 
initial object’s facet  planes remain. Each  chop- 
ping operation may eliminate some  facets  and 
modify some of the  facets comprising the previ- 
ously-defined valid geometry. Since  a  facet is de- 
fined  by a polygon in a given plane,  the modifi- 
cation of a  facet may consist of deletion of some 
links in the polygon, shortening of some  links, and 
the  creation of new links. The collection of all 
new links created in one planar chopping opera- 
tion define one or more new facets lying  in the 
chopping plane. 

A clockwise polygonal definition is used to indi- 
cate which of the  two three-dimensional spaces 
bounded by the  facet plane is solid material. Since 
each link is  shared by two  adjacent  facets,  clock- 
wise traversal of the  two polygonal facets  tra- 
verses  the link in opposite  directions.  The  rows of 
the link number table  correspond to the links of 
the  facet polygon, the first column containing 
pointers to links in LT and the  second column 
indicating the  direction in which each link is tra- 
versed while proceeding clockwise around  the 
polygon. 

To maintain geometric integrity,  no  redundant 
nodes,  links, or planes are permitted in FT, NT, or 
LT. 1,395 The first two columns of LT contain point- 
ers  to  the node table NT for  each link’s origin and 
destination  nodes.  The third and  fourth columns 
contain pointers to rows of the plane table PT, 
denoting pairs of planes, which define pairs of 
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Figure 8 Data  representation of the  combined  geometry 
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facets  that  share  each link. Attributes may be 
added  as  additional  columns in PT, NT, and LT. 

The significance of using a simple mechanism to 
maintain an attribute  structure is illustrated  dur- 
ing the manufacturing process  generation.  The 
plane  attributes included in the  third and fourth 
columns of LT are used in the  generation of 5-axis 
interpolated  tool  trajectories  for  the finish proc- 
ess,  as described  next. 

This  data  structure is one  example illustrating the 
power of nested  arrays  as implemented in APL2. 
The  ease with which such  a  data  structure can be 
devised  and implemented is one of the simplify- 

ing, time-saving tools  that  facilitates  the imple- 
mentation of application systems. 

An implementation of the  planar  chopping  algo- 
rithm. The planar chopping algorithm is funda- 
mental to the implementation of planar-faceted 
object  geometry. It takes  an  object  geometry  and 
a chopping plane,  and  keeps the portion of the 
object  geometry  that lies on  one  side of the  plane. 
A convex  object is constructed by beginning with 
an initial oversized valid solid geometry,  and  suc- 
cessively applying the  chopping  algorithm, plane- 
by-plane.  Each chopping operation  separates  the 
object’s  nodes  into  two  groups,  each lying on  op- 
posite  sides of the chopping plane,  and  removes 
one of the  groups of nodes. 
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Figure 9 The  concentric SURROUND loops  generated  from a pari boundary 

Planes are defined in PT in terms of their normal 
representation.  The first three  columns  contain 
the  three-dimensional  direction  cosines (a ,  p, y) 
of the normal to  the plane.  The  fourth column 
contains  the  distance (6) of the plane from the 
origin, and  the fifth column contains  the side pa- 
rameter, a l or -1 denoting which side of the 
plane  contains the solid object. Additional col- 
umns are used  for  various  attributes. 

The following algebraic  equation  represents  the 
distance D of a point (x, y ,  z )  frbm  a plane: 

D = X  COS a + y COS p + z COS - d 

where  the  plane  is defined by the  three direction 
cosines  and  the  distance  parameter d ,  described 
above.  This  formula  is applied to all of the nodes 
in the  object to determine which side of the plane 
they are  on.  The classification is performed by the 
following APL2 expression: 

O > S X D  

in which S is the side  parameter defined above. 
This  expression  produces a Boolean vector  that is 
used to compress  the  node  table  and eliminate all 
nodes on  one side of the  chopping plane. Given 
the  node-coordinate matrix NT C : I 3 1 , and  the 
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five-element vector P, which defines the chopping 
plane in the  same  format as each  row of the plane 
table PT, the APL2 expressions: 

(NT'C; 131 ,-l) +.x PC141 
( 0  > PC51 x D)/[lINT 
removes all points  on  one  side of the  chopping 
plane. 

These APL2 expressions  combine  the  algebraic 
equation with the Boolean operation to produce 
the  desired data.  The SDTM system  includes nu- 
merous  instances of algorithmic solutions. Many 
of these  are  as  direct a translation of the  corre- 
sponding mathematics as this  example.  This  pro- 
ductivity of direct  translation  from  mathematics 
to APL2 software  implementation  encourages the 
software  developer to use powerful mathematical 
formulations  whenever  possible. 

An implementation of the SURROUND algorithm. 
Figure 9 illustrates  several  instances of applica- 
tion of the SURROUND algorithm. The solid blue 
geometry  loops  were SURROUNDed, resulting in 
the  red  loops.  The remaining yellow concentric 
sets of loops  were  obtained by iteratively SUR- 
ROUNDing first the  red  loops,  then the resulting 
yellow loops,  and so on, sequentially. Alter- 
nately,  the yellow concentric sets of loops  could 
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have  each  been  computed  independently by SUR- 
ROUNDing the solid blue  loops,  at  various dis- 
tances.  This  independent  approach  presents  an 
opportunity  for  distributed  cooperative  process- 
ing by  computing all or some of the yellow sets of 
loops  concurrently. 

SURROUNDing an individual convex  loop,  on  the 
outside,  at a  distance of d ,  is relatively straight- 
forward.  For  each line segment in the  loop, it 
consists of generating a line parallel to it at  a dis- 
tance d .  For  each  arc in the  loop  another  con- 
centric arc must be generated  at  a radius greater 
by d .  The  sequence of the new loop’s elements is 
identical to  those of the original loop. 

SURROUNDing a set of loops,  each consisting of 
convex  and  concave  geometry, is more complex. 
Concavity  and  the  existence of multiple loops can 
introduce regions where  the tool cannot fit. The 
resulting SURROUND loops may not  correspond 
directly with the original loops.  Some  elements of 
the original loops may have no corresponding el- 
ements in the SURROUND loops, while other ele- 
ments of the original loops may correspond to 
several  separate  elements in the SURROUND 
loops. 

SURROUNDing a  set of loops  can be formulated 
either as a  sequential or  concurrent algorithm. 
The  concurrent SURROUND algorithm consists of 
five steps,  four of which exhibit  concurrency.  The 
five steps  are:  candidate  generation, finding  in- 
tersections, finding midpoints, classification, and 
threading. 

Candidate  generation. Candidates  are all of the 
line segments  and  arcs  that are needed to  create 
the SURROUND loops, although each  candidate 
may or may not  be used in whole or in part.  Each 
candidate  can  be  generated  independently of all 
others.  This  presents  an  opportunity  for distrib- 
uted  cooperative  processing (DCP) with a high de- 
gree of flexibility because  the  number of candi- 
dates  to  be generated  concurrently  can vary 
based  upon the number of available concurrent 
processors. 

Intersections. All intersections  between candi- 
date segments  must  be identified. This is an  arc 
and line segment intersection  problem, involving 
linear  and angular range calculations. It  too  can 
be computed  concurrently.  Each  concurrent  task 
is to determine all intersections  between  two  sub- 
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sets of the  set of candidates.  The  two  subsets may 
or may not  have  elements in common.  This step 
presents a high degree of flexibility for DCP be- 
cause  the  choices of subset  sizes  and  the  number 
of subsets  can  vary  based  upon  the  number of 
available concurrent  processors. 

Midpoints  and  classification. Next, midpoints are 
identified along the  candidate  elements,  between 
consecutive  intersection  points. All  of the  inter- 
section  points  and  midpoints  must  be  tested to 
determine  their  closest  distance to  the original set 
of loops.  Since  they lie on  candidates,  they  are  at 
most distance d from the original loops.  How- 
ever,  due  to concavity  and to  the  existence of 
multiple loops,  they may actually  be  on or inside 
of another  loop.  Each  point is classified as being 
either (1) inside or  on  the original set of loops, (2) 
closer  than  distance d outside the original set of 
loops, or (3) at precisely distance d or  farther from 
any point on  the original set of loops. Each  can- 
didate is then  subdivided,  based  upon  the  inter- 
section  points  and  midpoints. Only those seg- 
ments of the  candidate  elements  between  two 
points of the third classification, above,  are  kept. 

Midpoint computations  can  be  computed  inde- 
pendently for  each  candidate.  This  provides  the 
same  sort of DCP flexibility as  candidate  genera- 
tion. Classification can  be  performed  concur- 
rently by comparing sets of points with sets of 
original elements, with the  same DCP flexibility as 
finding intersections. 

Threading. The  candidate  segments  that  remain 
after classification constitute the complete geom- 
etry of the SURROUND loops.  However,  they  must 
be resequenced  and subdivided into  separate 
loops.  Threading is performed by matching end- 
points  and is the  least  computationally  intensive 
step.  The matching could be  performed  concur- 
rently,  but  there is little incentive. 

By analyzing detailed timing results, using APL2’s 
supplied workspace, it was  possible  to identify 
portions of the SURROUND algorithm that con- 
sumed the  most time. A few of the lowest-level 
routines  were identified and  recoded  in FORTRAN, 
and  then linked into  the SURROUND algorithm by 
using APL2’s associated  processor  interface.  This 
selective recoding effort improved the overall al- 
gorithmic speed significantly, while involving 
only a very small portion of the SURROUND soft- 
ware. 



The Expert System  Generator 

Engineering application  systems, built using the 
ESG, consist of algorithmic engineering software 
components  bound  together by a  control  struc- 
ture.  The software-development  team specifies 
the top-down control  structure using the ESG. 
Through  automatic  code  generation,  the ESG cre- 
ates  an operational  system  skeleton in which all 
control  functions  can  be  exercised,  even  before 
the bottom-up  implementation of the engineering 
algorithms. The ESG generates  empty APL2 func- 
tions as placeholders  into which the specific al- 
gorithm will be implemented in a  bottom-up  proc- 
ess.  The application  system is designed as a set of 
facilities, or  separate environments,  each of 
which focuses  the available computational  and 
interactive  resources on a specific portion of the 
overall engineering problem.  The ESG accommo- 
dates  any  structural  network of facility intercon- 
nection  that is deemed  appropriate by the  devel- 
opment  team. 

Engineering rules are critical to  the implementa- 
tion of customized  application  systems.  The ESG 
provides well-defined mechanisms with which to 
implement these  rules, which are applied to  data 
entered  either  textually  or graphically, and are 
used to regulate the  transfer of control  between 
facilities. 

Throughout the development  process,  a working 
prototype  system is readily available for  testing. 
The control  structure  can  be  changed graphically 
at  any point in the  development  process, resulting 
in automatic code maintenance,  and  thus an ap- 
propriately modified system.  Typically, the soft- 
ware-development  team begins with a simple con- 
trol  structure  and  adds algorithmic functionality 
until enhancement of the control  structure is nec- 
essary.  The  development  process  alternates be- 
tween augmenting the  control  structure graphi- 
cally, augmenting the engineering algorithmic 
components,  and  testing  the  prototype.  The pro- 
totype is the  application  system. 

The development of customized engineering ap- 
plication systems  involves learning all of the  var- 
ious  types of application  rules  and  understanding 
the relationships  between  the many sources  and 
uses of data. Although engineering application 
experts  exist,  their  areas of expertise may be 
more localized than  the  desired  application  sys- 
tem, their  understanding of this information may 
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not be organized in an  appropriate  form  for  au- 
tomation,  and  they may not  be  expert at articu- 
lating this information to a software  developer. 
Learning  the engineering application  is  an  incre- 
mental process  that  is  accelerated by the  discus- 
sions  and  realizations  that  arise  during  frequent 
review of system  prototypes. Flexibility is crucial 
during this  process,  and  an  important  measure of 
flexibility is the  software  developer’s willingness 
to abandon an approach  and  adopt  a new one.  The 
productivity of the ESG reduces the  cost of rapid 
prototyping to a level that  encourages flexibility. 
While most software-development  systems are 
judged  on  their ability to easily represent  the final 
software  implementation,  the ESG environment 
also  excels  at providing structure  and flexibility 
during this  necessary  learning  process, so that it 
is accelerated.  Graphical programming, auto- 
matic code  generation,  and  maintenance in the 
ESG, and easily modifiable nested  arrays in APL2 
provide  this  power. 

Figure 10 illustrates  the  relationship  between  the 
use of the ESG and  the resulting application  sys- 
tem.  The  top of this figure shows  the graphical 
and  parametric programming that  takes  place 
within the ESG to  capture  the  control  structure 
and  interactive  interface of the  application  sys- 
tem. This information is automatically code-gen- 
erated, modifying the  system  skeleton.  The  bot- 
tom of the figure represents  the resulting 
application system, which consists of four  com- 
ponents  discussed in the following paragraphs. 

Application-independent software. Although dif- 
ferent  customized  application  systems  consist of 
different control  structures  and  interactive  inter- 
faces,  these  structures  and  interfaces  can all be 
implemented in terms of a small finite set of soft- 
ware.  This  software  is  analogous to a microcoded 
processor.  The  functionality of this  generic soft- 
ware  is  customized,  for  each  application  system, 
by the  drive  data  (described  next). 

Drive data. The  drive data  are automatically  code- 
generated by the ESG. Constituting all of the ap- 
plication-dependent  control  structure  and  inter- 
active  interface information gleaned from  the 
graphical programming done in the ESG, the  drive 
data,  as  an  entity,  are analogous to microcode 
which,  together with a microcoded  processor, 
provide customized  functionality. 
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Figure 10 Use of the Expert System Generator causes automatic code generation of two of the four software components of 
the resulting application system 
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Automatically  generated  programs. These pro- 
grams are a mechanism that  permits  the software- 
developer to provide  capabilities  that  exceed 
those offered by the  current  version of ESG. They 
ensure  that  the  extended functionality does  not 
interfere with the normal operation of the appli- 
cation-independent  software. 

Response  functions. Response  functions are  the 
engineering algorithmic components of the appli- 
cation  system.  They  are  executed by the appli- 
cation-independent  software,  as  directed by the 
drive  data, in response  to interactive  actions by 
the engineer. Typical  response  functions include 
those invoked as a  result of pressing program 
function  keys,  and  those invoked as a result of 
typing data  into  the fields of a full-screen panel. 

The ESG uses  the capability of APL2 to  treat  data 
as  executable  software.  Figure 11 illustrates a 
drive-data  array  containing a selection of program 
function  keys,  a list of expressions  or  response 
functions to  be executed  when  the  corresponding 
key is pressed,  and a list of explanatory key def- 
initions. When the  application  system  is  used, the 
key names  and  their definitions are automatically 
written to  the workstation’s  textual  screen,  pro- 
viding the engineer with a  description of available 
options. When the  function  key is pressed,  the 
application system  selects  the  corresponding re- 
sponse  function  from  the  drive data  array,  and 
executes it. This is the  entire controlling mecha- 
nism: the  drive  data  array  actually  “drives” the 
application. The  contents of the  drive  data  array 
are used by the  application-independent  software 
for: 
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Figure 11 The use of data to "drive" the  expert  system 
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Figure 12 The  implementation of the  distributed  interuser  shared-variable  interface 

The  Server  Network  Generator 

The  seamless design-to-manufacture (SDTM) ap- 
plication system  provides many examples of op- 
portunities to benefit from  distributed  coopera- 
tive  processing (DCP) due  to concurrency  inherent 
in various  parts of the problem and  the algo- 
rithms.  Recent  advances in computer  and com- 
munication hardware technology have made net- 
works of powerful computer  resources affordable 
and  commonplace.  However,  the effort required 
to develop an application  that  uses tight coupling 
of many networked  processors  has been high 
enough to restrict DCP primarily to research ef- 
forts  and high-budget projects. 

There  are many obstacles  to DCP that must be 
addressed,  aside from the computing and com- 
munication hardware, if an application is to be 
recast  as  concurrent.  Interprocess communica- 
tion utilities exist  but  they  vary in ease-of-use  and 
performance.  One must be  chosen  and integrated 
into  the  existing  software. At the  conceptual 
level,  the  application  must be examined  to iden- 
tify the  opportunities  for  concurrency,  and  to 
weigh the potential  computational savings against 
the required  software-development effort and  the 
increased  system  complexity.  The  development 
of distributed  software is fundamentally different 
from  that of single-threaded software. It is frought 
with different logistical problems  that  stem 
from  the  processors’  independence.  The single- 
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threaded  software  developer’s main debugging 
strategy is to identify a situation that  causes  an 
error,  reprogram,  and  then  retry.  This  strategy is 
not available in DCP software  development  be- 
cause of the many sources of timing variability in 
the  separate  processors  and  the  intercommunica- 
tion mechanisms.  Even if the  identical DCP pro- 
grams are run  again,  they will not  necessarily fail 
again at all, or in the  same  way, or  at  the same 
time. Other  obstacles involve well-known prob- 
lems regarding distributed  access to  data by soft- 
ware, version control,  etc. 

The combined SNG, ESG, and APL2 software-de- 
velopment environment  overcomes many of the 
obstacles  to DCP, so that it is relatively  easy  to 
create  a tightly coupled DCP server  network 
quickly. Furthermore,  the flexibility of this  envi- 
ronment makes it easy to adjust  server  networks 
to adapt to changing system  requirements.  A  pro- 
totype of this  combined  environment is opera- 
tional,  and  has been demonstrated  and  described 
in some detail.”3 

The  conceptual  interprocess  communication ve- 
hicle used in the combined SNG, ESG, and APL2 
environment is the APL2 interuser  shared vari- 
able. 1 4 9 1 5  However,  the  current  restriction of the 
APL2 shared variable implementation to a single 
host has been eliminated recently by the devel- 
opment of an auxiliary processor (AP).9 Figure 12 
illustrates  this  implementation. The AP is written 
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Figure 13 The  relationship  between  the  distributed  hardware  platform  and  the  distributed  server  network  software  platform 

in assembly language and  uses IBM's APL2 proc- 
essor  interfacet6  to  communicate with the APL2 
workspace.  The IBM Virtual Machine/System 
Product  component,  Inter-User Communication 
Vehicle (IUCV) communicates with the  partner 
workspace in another  host using the Virtual 
Machine/370 VM/Pass-Through Facility (PVM). l7 
Various APL2 cover  functions in the  user's work- 
space  establish  communication with the AP, and 
substitute  for the systemOSV functions, with the 
same  protocols  and  behavior. 

Figure 13 illustrates  the  relationship  between  the 
distributed  hardware platform and  the  distributed 
server  network  software platform. This  research 
effort was  developed  on a network of IBM 7437 
Virtual MachineBystern Product Technical Work- 
stations,18 each consisting of an IBM Systed370" 
processor attached to  the microchannel of an IBM 
PS/2*. Each of these IBM 7437s  is to be replaced 
by one  or more IBM 37ES research-prototype 
Systed370 processors, creating a configuration  of 
token-ring networked clusters of microchannel- 
connected IBM 37ESs. Related research has dem- 
onstrated the ability to use IBM Clustered FORTRAN 
to distribute an application across  two IBM Enter- 
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prise Systed3090" multiprocessors, each with six 
Vector Facility features. l9 

Distributed  interuser  shared  variables  overcome 
one  obstacle to DCP by providing high-level hooks 
to the  application;  however,  many  other  obsta- 
cles remain. Using the SNG, the software devel- 
oper graphically decomposes the application to 
express  its  inherent  concurrency,  and the  data 
flow between  the  concurrent  processes.  This 
graphical programming automatically  results in 
the top-down implementation of the DCP system 
skeleton. The software  developer  writes the re- 
sponse  functions within each  server  that  are  au- 
tomatically invoked by the system  skeleton. As 
with the ESG environment,  a  prototype applica- 
tion system  exists at all times during the devel- 
opment of server  networks,  and  provides  the  cat- 
alyst to determine  changes in requirements  early 
in the  development  process. 

Figure 14 shows a block diagram representing  the 
automatic  process  generation SURROUND algo- 
rithm previously described, which lends itself to 
cooperative  processing in many ways  that  can 
provide  dramatic  computational  speedup  when 

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 



Figure 14 A block diagram  decomposition of the SURROUND algorithm 
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performed on a DCP platform.  Each slice can be 
processed  independently.  Each  concentric SUR- 
ROUND calculation can be performed concur- 
rently,  based upon the original innermost con- 
tour, using appropriate  distance  values. Within 
each SURROUND calculation,  candidate  genera- 
tion can  be  partitioned  into  any  number of con- 
current  computations, as can  intersections, 
midpoints,  and classification. Threading is se- 
quential,  but is not computationally intensive. 
Figure 14 represents  a simplified diagram of an 
approach to decomposing  this  application.  It 
shows  duplicated  servers  represented by dashed- 
line boxes,  but  does  not  show  the resulting com- 
plexity of interconnection.  This complexity can 
be managed automatically by SNG. This applica- 
tion-decomposition approach is simple because 
the  data  are  sent  out  to "specialist servers"  for 
computation  and  then  return,  to  be  gathered  and 
sent  out  to  other  specialist  servers  for  other com- 

putation.  More  sophisticated  approaches allow 
the  data  to flow through a network of specialist 
servers, being distributed  and  subsequently gath- 
ered  back  together along the  way.  This  could 
eliminate the  potential  bottleneck of the  central 
servers  shown in Figure 14. Another  approach is 
to duplicate the central  server sufficiently, to bal- 
ance  the  system. 

Software-development  cost  considerations 

The  development  costs of large engineering soft- 
ware  systems  depend  directly on  the size of the 
development  team  and  the  duration of the imple- 
mentation process.  Obviously, if technology en- 
ables a team of software  developers to perform a 
task  faster,  or if the technology enables  a  smaller 
team to perform the  same task,  the development 
cost is reduced.  In  addition,  there are develop- 
ment costs  that  are  incurred  as a result of the 
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management requirements of the development 
team. Team size  has  a  dramatic effect on man- 
agement requirements.  Large development teams 
require  an  elaborate management infrastructure 
to ensure  project  convergence. Some CASE tools 
address  both  the  software development issues 
and the problems of managing development teams. 
The two CASE tools presented in this paper reduce 
the development task for significant  applications so 
that fewer than three software developers and  very 
little  management structure are required. 

Conclusion 

The brevity of APL2 as a vehicle for mathematical 
expression  enables  the engineering software  de- 
veloper to concentrate  on  the mathematical so- 
lution to  a  problem. This brevity and  the resulting 
productivity enable  the engineer to justify brief 
periods of software  development,  thus eliminat- 
ing the need for programmer intermediaries. 

The integration of powerful data management ca- 
pabilities, such as generalized nested arrays, and 
an  extensive range of mathematical tools in APL2, 
facilitated the implementation of the seamless de- 
sign-to-manufacture system  described.  The  capa- 
bility of APL2 to  treat  data  as  executable software 
is central to  the ESG approach of using automat- 
ically generated  drive  data to actually “drive”  the 
expert  system. 

The ESG environment provides the developer 
with the brevity of graphical expression, to de- 
compose  an  expert  system in the  context of the 
engineering application. Here  too,  the brevity and 
resulting productivity enable  the engineer to un- 
dertake  the implementation of a customized ap- 
plication system.  The engineer avoids the effort 
and pitfalls of attempting to characterize identi- 
fied needs, to formulate  a  system specification, 
and to depend  on  a programmer intermediary who 
is not  expert in the application domain. 

The effectiveness of the ESG system  approach to 
the implementation of customized engineering ap- 
plication systems is due to the following factors: 

1.  The high level of automation achieved in the 
top-down specification, implementation, and 
maintenance mode 

2. The high level of productivity achieved in the 
bottom-up mode due  to  the  direct translation 
of mathematical solutions to APL2 expressions 

3. The flexibility to switch back and  forth be- 
tween  the top-down and  bottom-up implemen- 
tation modes 

4. The availability, throughout the  development 
process, of a working system  prototype  ready 
to  be  tested according to  the  current level of 
specification 

The combined SNG, ESG, and APLZ environment 
extends  the  same  advantages of brevity and 
graphical expression to developers of systems in- 
volving applications that  can benefit from the in- 
creased  computational  speed of distributed  coop- 
erative processing. The need for  computerization 
of the manufacturing floor, combined with the 
emergence of various powerful computer-hard- 
ware and communication platforms that  are suit- 
able for this task, make this  an ideal application 
for  the software-development environment. 
However,  the applicability of the new hardware 
and communication platforms is not limited to 
manufacturing applications. 

Both the geometric modeler and  the  automatic 
process  generator  described in this  paper  are 
structured to benefit from distributed  cooperative 
processing. This is also  true of many other engi- 
neering problem solutions. Conceptually, this ap- 
proach applies to any engineering problem that 
may be decomposed in the  form of a block dia- 
gram. Consequently,  the combined SNG, ESG, and 
APLZ environment should be viewed as a generic 
software-development environment, which can 
be applied to significantly reduce  the application- 
development and  maintenance  cost of engineer- 
ing applications. 
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