Customized systems for
engineering applications

An APL2™-based high-productivity software-
development environment is shown to enable
small teams of two or three persons to build
complex engineering software systems. The
productivity and flexibility of such small teams,
equipped with this environment, enables them to
build customized engineering application
systems economically. These customized
systems are far more useful for the particular
applications they address than are the generic
systems that are commonly produced by large
software-development groups. A customized
engineering application system is described,
illustrating the productivity of the two APL2-
based computer-aided software engineering
(CASE) tools used for its implementation and
long-term software maintenance. The system is
presented in some detail, to demonstrate its
sophistication and thus provide a measure of the
productivity of the software-development
environment. The two CASE tools that comprise
this software-development environment are used
to build interactive graphical application systems,
and to build systems for applications that require
or can benefit from distributed cooperative proc-
essing. A list of some customized application
systems built using the described environment
is provided, along with estimates of the
implementation efforts. The features of APL2 that
play a key role in the effectiveness of these tools
are also discussed.

ngineering software has traditionally been

developed by large groups and its develop-
ment has often been costly, slow, and inflexible.
To distribute the cost, marketing strategy has
called for developing large generic systems in-
tended for broad markets over long product life
spans. This paper presents two APL2*-based
computer-aided software engineering (CASE)
tools that enable a small software-development
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team of two or three persons to build customized
application systems at low cost, in a timely man-
ner, while remaining flexible to changes in re-
quirements. This changes the marketing strategy
so that narrowly-focused engineering application
markets and short-lived problem domains can
now be addressed effectively.

The complex engineering application described in
this paper demonstrates the capabilities of the
customized approach, and the power of the soft-
ware-development tools employed in the imple-
mentation process. The application involves
“seamless” processing from design to manufac-
turing, geometric modeling, and automatic proc-
ess generation for 5-axis milling (three positional
and two orientational degrees of freedom).”” A
qualitative comparison of this recent project and
the estimated cost of development of comparable
commercial systems suggests a reduction of one
order of magnitude in the software-development
costs.

One of the two CASE tools discussed is the Expert
System Generator (ESG).*’ A customized engi-
neering application system is an interactive envi-
ronment that uses captured expert knowledge to
help an engineer solve problems. The ESG sepa-
rates the two main forms of complexity involved
in creating a customized application system. One
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form of complexity is the bottom-up development
of each algorithmic component. The other is the
top-down interconnection of these components
and the associated interactive interfaces, into a
useful integrated application system. The inter-
active interfaces enable the engineer to partici-
pate in the solution process where algorithmic so-
lutions are not suitable or desirable, or have not
yet emerged. The ESG enables the software-de-
velopment team to use graphical programming to
specify the top-down interconnectivity, flow, and
interfaces, and relies upon APL2 as an efficient
tool for expressing the algorithmic functionality
of each component. APL2 also allows access to
necessary algorithmic functionality implemented
in other languages, by its interface to associated
processors.® Together, ESG and APL2 provide an
environment in which the design and implemen-
tation of a complicated customized application
system requires roughly one person-year of ef-
fort.

The second CASE tool discussed is the Server Net-
work Generator (SNG).*>"® The SNG addresses ap-
plications that require or can benefit from distrib-
uted cooperative processing. The computer-
controlled operation of a flexible manufacturing
system is one such application. However, distrib-
uted cooperative processing (abbreviated DCP in
this paper) is readily applicable to many other
applications that exhibit either concurrency or
parallelism. The SNG automatically converts a
graphical specification of the application into an
operational DCP network skeleton.

Application systems may be built directly using
the combined SNG, ESG, and APL2 environment,
or existing ESG application systems can be ex-
tended to benefit from distributed cooperative
processing by using the SNG. Once the applica-
tion’s inherent concurrency is identified, a server
network is designed graphically, distributing the
application system’s algorithmic components
across a set of interconnected servers. Individual
algorithms exhibiting concurrency can be decom-
posed and distributed across a set of servers, to
be processed concurrently.

During the past several years, the various gener-
ations of the ESG environment have been used to
create many customized engineering application
systems (see Table 1). Some of these projects pro-
duced instructional systems for undergraduate
and graduate classroom applications. Others
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were developed as part of industrial research con-
tracts.

This paper begins with a description of a custom-
ized engineering application system, built using
the combined SNG, ESG, and APL2 environment.
Two of the system’s algorithms and a related data
structure have been chosen to illustrate the power
of APL2 as the implementation language for bot-
tom-up software development. The planar-chop-
ping algorithm described is a direct translation of
a mathematical concept into a simple APL2
expression. The SURROUND algorithm is more
complex, with several components that present
opportunities for DCP. APL2 enables the software
developer to capture the SURROUND algorithm’s
inherent concurrency naturally, through the use
of nested arrays, whether or not DCP is involved.
When DCPis applied, its implementation is greatly
simplified by this simple preparation. Next, the
ESG and SNG are described briefly, along with a
discussion of APL2 features that either were in-
strumental in their development, or are particu-
larly advantageous in their use. Finally, produc-
tivity considerations are discussed.

A seamless design-to-manufacture system

This customized application system is an alter-
native to the traditional computer-aided design/
computer-aided manufacturing (CAD/CAM) ap-
proach to manufacturing. It overcomes the major
disadvantage of CAD/CAM systems, the many
“seams” between separate interactive compo-
nents, which are opportunities for introduction of
human errors and are obstacles to flexible rapid
prototyping. In this seamless design-to-manufac-
ture (SDTM) system, changes made to the part de-
sign can automatically result in a new prototype
rapidly, without the time-consuming involvement
of several disjoint interactive CAD/CAM steps. Part
and process design changes are performed inter-
actively at the conceptual level. The resulting
geometric repercussions have been completely
automated, so that applying varying levels of
computing hardware power can yield correspond-
ing levels of rapid-prototyping speed. This pre-
sents an opportunity for the introduction of dis-
tributed cooperative processing, as will be
shown.

This SDTM system has been demonstrated and is
undergoing further development. It represents an
estimated effort of 1.5 person-years, and will have
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Table 1 A list of implemented customized application systems

Expert System

Person-Years

Hybrid LSI Circuit Design System
(in collaboration with A, Mavretic and I. Tham)
(in collaboration with G. Succi and J. O’Brien)

The Expert System Generator
(in collaboration with A. C. Williams)

Propeller-Blade Design and Manufacture
(in collaboration with G. Succi and W. Ruiz)

Control Systems Design—An instructional system

(in collaboration with T. Shojaie and W. Ruiz)

(in collaboration with T. Shojaie and S. Sadri)

The Server Network Generator
(in collaboration with S. Bernstein, Z. Nour)

Automatic Process Generator for 3-Axis Milling

Geometric Modeler for 5-Axis Milling

Conceptual Aircraft Design System—An instructional system

(in collaboration with H. D’ Angelo and W. Curtin)

Design and Manufacture of Jet-Engine Combustion-Chamber Lining

The BUMES System—A design system for NC turning machines

SEPTOR Project—Control of Manufacturing Transfer Lines
(in collaboration with E. Ebner, S. Rastogi, and A. Tuczapec)

2

required roughly twice as much effort when com-
pleted. The application is the design-to-manufac-
ture of sets of customized golf club heads (see
Figure 1). The complexity of this engineering ap-
plication is due to its sophisticated geometric def-
inition, its family of parts in excess of one hun-
dred members, the mechanical and aerodynamic
considerations, and the overriding necessity of
manufacturability and ease of rapid prototyping.

The concepts and system components, discussed
here in this context, apply to a wide range of prod-
ucts requiring the sophistication of 5-axis milling
(three positional and two orientational degrees of
freedom), and can be generalized to apply to
other manufacturing processes. The geometric
modeler for 5-axis milling, and the automatic
process generator for 3-axis (or three positional
degrees of freedom) milling?* (see also Table 1),
are components of this SDTM system.

An appropriately constructed geometric model of
the part, stock material, and fixtures, combined
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with a complete set of process rules and data,
provides all the information necessary for the im-
plementation of automatic process generation. In
the absence of some of the necessary rules or
data, an SDTM system must provide for direct in-
teractive input from a human expert in guiding the
process at the conceptual level. Examples of such
missing information, supplied by the human ex-
pert, are the choice of major process orientation
and determination of the fixture required to hold
the workpiece.

The overall structure of the customized SDTM sys-
tem uses the geometric model generated in the
part-design stage, and the specifications of the
machining center and tooling, to produce numer-
ous auxiliary geometries automatically, in the
process of converting the designed part into a
manufactured product. Figure 2 illustrates the
flow of the design process generating the golf club
head illustrated in Figure 1. The diagram depicts
the various design stages and the evolving geo-
metric model. Figure 2 serves to illustrate the
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structural complexity of customized application
systems that can be developed with the ESG envi-
ronment.

Geometry generators. The SDTM system’s geo-
metric modeler is able to guarantee the geometric
integrity > of the part model due to the geometry
generation process. The geometric modeler is
able to represent objects that can be described in
terms of the intersection, union and subtraction of
convex objects. It provides a simple solution to
the problem of geometric integrity for large and
diverse families of convex and concave geometric
designs.

The geometric modeler represents convex ob-
jects internally as a set of planar polygonal fac-
ets.’** Each of the part’s constituent convex ob-
jects corresponds to a part feature. Within the
SDTM system, each feature and its connection
with the rest of the part are described paramet-
rically. Each type of feature is associated with a
geometry generator that uses these parameters to
generate the feature’s faceted model automati-
cally. The ESG enables the software developer to
implement the feature-based parametric specifi-
cation interfaces using graphical programming,
and provides a structural framework within which
the automatic geometry-generation software fits.

The geometric modeler combines the advantages
of a broad range of acceptable mathematical sur-
face representations (and hybrids) at the concep-
tual and parametric part-design level, with the
computational advantages of planar faceted rep-
resentation at the process-geometry level. The
Boolean-geometry processor used to construct
the object from its convex components using in-
tersection, union, and subtraction, operates on
the faceted model. At the process-generation stage,
most systems are forced to convert whatever math-
ematical surface representation they employ to
linear and circular elements, to conform to the
primitive motions available using numerically-
controlled machining equipment. The geometric
modeler merely converts immediately to simplify
its own internal computation, while providing para-
metric control of the surface smoothness.

The family-of-parts geometry generator. A fam-
ily-of-parts shares sufficient similarity that can be
exploited to lower the cost and reduce the time
required to design and manufacture successive
family members. The SDTM system was intended
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Figure 1 A geometric model of the head of a golf club. The
model is generated using the geometric modeling
system described in the text.

specifically to exploit the similarity in design and
manufacture of a particular brand of semicus-
tomized golf club heads. This particular family-
of-parts is partially defined by a combination of
three discrete design parameters, combining to
describe over one hundred family members:

1. Loft angle—the angle between the ground and
the sloped club face that hits the golf ball

2. Lie angle—the angle between the ground and
the club shaft held by the golfer

3. Swing weight—the weight of the golf club head,
controlled by the depth of the back pocket

Additional geometric parameters are needed to
fully characterize this family-of-parts. The SDTM
system enables the part designer to specify all of
these parameters. The family-of-parts geometry
generator converts these parameters to a fully-
defined planar-faceted geometric model, as
shown in Figure 1.

Figure 2 shows the constituent geometry gener-
ators that pertain to specific features of the club
head. Each of these generates convex objects that
are combined by Boolean geometric operations to
generate the complete club-head geometry. Fig-
ure 2 demonstrates the inherent concurrency in
this computation. It presents an opportunity to
benefit from the computational advantages of dis-
tributed cooperative processing through the use
of the combined SNG, ESG, and APL2 software-
development environment.
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Figure 2 Part and process design flow

[ STARTING BLOCK I

— |

CLUB HEAD :

|
‘ STAGE 1 P———O{ INTERMEDIATE SHAPE }

|
|
|
!
| | SOCKET ' { TRANSITION J
!
|
|

| |
I STAGE 2 }—i—————"iUNION: HOSEL l

‘ BACK POCKET }_——0| UNION: HEAD AND HOSEL J

I SUBTRACTION: FINAL SHAPE J

i
|
|
i
|
|
|
|
|
|
|
|
|
|
!

MACHINE
SPECIFICATIONS -

DERIVED GEOMETRIES

~STOCK MATERIAL BOUNDARIES
- FIXTURES
- PROTECTIVE ZONES

DERIVED PROCESSES

-ROUGHING CYCLE
~-8SEMIFINISH CYCLE
~FINISH CYCLE

98 HAZONY AND ZEIDNER IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




Figure 3 Automatic process generation for one of the layers shown in Figure 6

Manufacturing process geometry generators.
The manufacturing process for machining this
family-of-parts is implemented in the following
steps:

1. The rough-milling process
2. The semifinish-milling process
3. The finish-milling process

For each process, the manufacturing process ge-
ometry generators constitute a set of algorithms
producing all the details associated with:

* Defining the tool approach

¢ Creating a continuous trajectory to remove ma-
terial according to a specific process-governed
strategy

* Subdividing the trajectory into sections requir-
ing different feed rates

* Defining the tool retraction

Figure 3 provides an example of such a complex
trajectory associated with the 3-axis milling op-
eration. Figure 4 illustrates some of the geometric
problems that must be addressed to produce such
a trajectory automatically.

The flow diagram shown in Figure 2 represents
only those geometry generators used to produce
the part geometry. The part geometry must be
combined with stock material geometry and fix-
ture geometry as input to the automatic process
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generation software. Figure 5 represents all of
these geometries.

Three manufacturing process geometry genera-
tors are described next. The first creates auxiliary
geometry as input to the next two. All three gen-
erators were implemented in APL2 with the data-
structure flexibility provided by nested arrays.

The slice geometry generator. The 3-axis rough-
milling process employs a rotating cylindrical
milling tool that is lowered so that its bottom end
is a specific distance (rough depth of cut) below
the surface of the material. The tool is then moved
laterally so that its cylindrical milling surface re-
moves material in its path. The material opposes
the tool’s forward movement, thus deflecting the
tool, causing its actual travel path to differ from
the desired path. The process planner varies the
rough depth of cut (RDC) parameter within the
SDTM system’s conceptual process-design facil-
ity. Based on the type of material, he varies the
RDC parameter in conjunction with the feed rate
at which the tool progresses laterally, and the tool
radius, so that the deflection will be acceptably
small. The ESG simplifies the task of graphically
designing and implementing the process-design
facility, and provides the structural framework
into which the rules governing acceptable choices
and combinations of process parameters fit.

The rough-milling process is thus performed at a
sequence of progressively deeper layers, each
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Figure 4 Application of the SURROUND algorithm to a part design with multiple pockets and islands within pockets

deeper into the stock material, by an additional
distance of RDC, each exposing the next new
stock material surface. A slice geometry genera-
tor is used to determine the part, stock material,
and fixture geometry at each rough-milling layer.
This generator intersects the complete geometry
with a set of parallel equidistant slicing planes,
separated by a distance of RDC from one another.
The result is a set of slices, each consisting of

some number of part loops, some number of stock
loops, and some number of fixture loops, as
shown in Figure 6.

The 3-axis rough-milling process-geometry gen-
erator. The 3-axis milling process is performed
sequentially slice by slice. The automatic proc-
ess-generation software works on each slice in-
dependently, thus providing an opportunity for

Figure 5 The combined mode!l of the geometries of the
part, the stock material, the fixtures, and the
protective zones

Figure 6 Equidistant slices through the combined
geometric model of the part, stock material,
fixtures, and protective zones
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concurrent processing. The rough-milling proc-
ess requires the tool to be guided along a path with
its axis of rotation orthogonal to the slice plane.
At each slice depth, as the tool follows the path,
it removes the majority of stock material that is
outside of the part and fixture geometry loops. A
small amount of material is intentionally left im-
mediately surrounding the part and fixture geom-
etry. This material is removed later, during the
semifinish and finish processes.

The goal of the rough-milling process is to remove
material as quickly as possible. This process is
performed with a large-diameter tool moving
quickly and is designed to tolerate inaccuracy
caused as the tool is deflected by the enormous
forces exerted upon it. Much less material is left
to be removed by the semifinish and finish proc-
esses, thereby exerting far weaker forces upon
the tool and deflecting it less. Each successive
process removes material closer to the part ge-
ometry and must therefore be more accurate. The
semifinish process smoothes out the remaining
material left by the rough-milling process. If the
layer were not smoothed to homogeneous thick-
ness the tool would confront widely varying de-
flection forces during the finish process and would
be unable to maintain the necessary accuracy.

During the rough-milling process, the tool must
often remove a quantity of material that is wider
than its diameter. It therefore proceeds to take
several passes, each digging laterally further into
the material, taking advantage of the accessibility
provided by the previous pass and providing fur-
ther accessibility for the next pass. The width of
each pass is a process parameter that depends
upon the material, the power of the milling ma-
chine, and the RDC, but which cannot exceed the
tool’s diameter.

Each pass is thus intended to expose a specific
geometric surface that will become the stock ma-
terial geometry that it leaves behind. The auto-
matic process-generation software works back-
ward from the part geometry and fixture loops to
compute the successive passes required for each
slice. Each pass consists of a path along which the
center of the tool bottom must move. Computing
this set of tool paths based upon the slice loops
involves an analytic geometry problem referred
to as the SURROUND problem. ** Figure 3 shows a
part geometry and the concentric loops generated
by the SURROUND algorithm.
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These loops, when traversed at appropriate feed
rates, in accordance with manufacturing process
strategy, constitute a tool path for one slice. The
manufacturing strategy is intended to balance the
goals of minimizing the total machining time and
milling as accurately as possible. This strategy is
implemented in a TRAVERSAL algorithm, which
converts a set of concentric SURROUND loops into
a tool path consisting of geometry and feed
rates. >* The feed rates ensure that the tool moves
slowly when there is greater force opposing its
travel, and thus greater deflection, faster when
there is less opposing force and deflection, and
fastest when it is not in contact with any stock
material. The feed rates are computed during the
TRAVERSAL algorithm, based upon the choices it
makes in traversing the SURROUND loops. The
feed rates change continuously along the tool
paths based upon these traversal choices. The
SURROUND and TRAVERSAL algorithms each
present opportunities for employing distributed
cooperative processing, using the combined SNG,
ESG, and APL2 environment, due to their inherent
concurrency, as is explained next.

As the milling tool follows a tool path to expose
a desired surface, its circular cutting edge is un-
able to reach into concave inside corners in the
surface. This creates a disparity between the de-
sired surface and the resulting stock material sur-
face. The SURROUND algorithm is used to com-
pute the resulting stock surface, by SURROUNDing
the tool path geometry at a distance of one tool
radius. This provides the stock geometry prior to
the semifinish and finish-milling processes.

The 5-axis finish-milling process-geometry gen-
erator. The 5-axis finish-milling process is per-
formed by rotating the part about its X-axis (using
a rotational control axis defined as A), while po-
sitioning the tool so that its end is touching the
desired part-geometry surface, and orienting it so
that the tool’s rotational axis is orthogonal to the
local surface of the part. A slice geometry gen-
erator is used to generate a set of equidistant
slices parallel to the Y-Z plane. Each slice con-
sists of one part-geometry loop.

Figure 7 shows the Y-Z motion of the tip of the
tool as it traverses along one part-geometry loop
onaslice. The X coordinate is constant for a slice,
and two orientational axes, A and B, are contin-
uously changing. (Only axis A is shown in the
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Figure 7 The Y-Z trajectory of the tip of the milling tool,
corresponding to the finish cut of one slice

Figure 7 example.) The complexity of the Y-Z
trajectory is due to the geometric coupling be-
tween the A, Y, and Z axes, which is character-
istic of the geometry of the particular milling ma-
chine. The actual contour being generated by the
motion described in Figure 7 is represented by a
relatively simple convex polygon, which is an or-
dinary cross section through the part geometry.

A data structure for geometric modeling. To
achieve the goals of SDTM, the geometric modeler
must describe the full geometry of the problem,
including part, stock, and fixture geometry.
These combined data are necessary for generat-
ing the process geometries employed in the au-
tomatic generation of numerical control software,
which drives the numerical control machines for
part manufacture.

Figure 8A depicts a depth-5 nested vector used to
describe the full geometry of the problem.? The
vector consists of three depth-4 elements, de-
scribing stock, fixture, and part geometry. Each
geometric element is defined by a data structure
(Figure 8B), consisting of a plane table (PT), a
node table (NT), a link table (LT), and a nested
facet vector (Fv). Each row of PT, NT, and LT
corresponds to a plane, a node, and a link, re-
spectively. Each item of Fv corresponds to a
facet, and consists of a link-number table, a plane
number, and other attributes.

An arbitrary geometric shape may be described in
terms of a simple start-up geometry and a collec-
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tion of geometric features attached to it. The im-
plementation of a fully automated SDTM system
requires a full parametrization of the start-up
geometry, all of the attached features, and their
geometric interrelations. While a wide range of
geometric features are amenable to direct math-
ematical parametrization, many shapes are de-
signed in an ad hoc fashion, with no obvious ap-
proach to design parametrization. The start-up
geometry generator provides a means to con-
struct an object, or a feature, in terms of an ar-
bitrary but complete set of facets. In the absence
of any known geometric interrelations between
the various planes, the initial parametric defini-
tion of the start-up geometry consists of the para-
metric definition of the generating planes.

The completeness of the set of facets is ensured
by applying a planar chopping operation to suc-
cessively ““chop off”” parts of an initial valid over-
sized shape. The set is complete if none of the
initial object’s facet planes remain. Each chop-
ping operation may eliminate some facets and
modify some of the facets comprising the previ-
ously-defined valid geometry. Since a facet is de-
fined by a polygon in a given plane, the modifi-
cation of a facet may consist of deletion of some
links in the polygon, shortening of some links, and
the creation of new links. The collection of all
new links created in one planar chopping opera-
tion define one or more new facets lying in the
chopping plane.

A clockwise polygonal definition is used to indi-
cate which of the two three-dimensional spaces
bounded by the facet plane is solid material. Since
each link is shared by two adjacent facets, clock-
wise traversal of the two polygonal facets tra-
verses the link in opposite directions. The rows of
the link number table correspond to the links of
the facet polygon, the first column containing
pointers to links in LT and the second column
indicating the direction in which each link is tra-
versed while proceeding clockwise around the

polygon.

To maintain geometric integrity, no redundant
nodes, links, or planes are permitted in PT, NT, or
LT.'** The first two columns of LT contain point-
ers to the node table NT for each link’s origin and
destination nodes. The third and fourth columns
contain pointers to rows of the plane table pT,
denoting pairs of planes, which define pairs of
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Figure 8 Data representation of the combined geometry
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facets that share each link. Attributes may be
added as additional columns in PT, NT, and LT.

The significance of using a simple mechanism to
maintain an attribute structure is illustrated dur-
ing the manufacturing process generation. The
plane attributes included in the third and fourth
columns of LT are used in the generation of 5-axis
interpolated tool trajectories for the finish proc-
ess, as described next.

This data structure is one example illustrating the
power of nested arrays as implemented in APL2.
The ease with which such a data structure can be
devised and implemented is one of the simplify-
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ing, time-saving tools that facilitates the imple-
mentation of application systems.

An implementation of the planar chopping algo-
rithm. The planar chopping algorithm is funda-
mental to the implementation of planar-faceted
object geometry. It takes an object geometry and
a chopping plane, and keeps the portion of the
object geometry that lies on one side of the plane.
A convex object is constructed by beginning with
an initial oversized valid solid geometry, and suc-
cessively applying the chopping algorithm, plane-
by-plane. Each chopping operation separates the
object’s nodes into two groups, each lying on op-
posite sides of the chopping plane, and removes
one of the groups of nodes.
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Figure 9 The concentric SURROUND loops generated from a part boundary

Planes are defined in PT in terms of their normal
representation. The first three columns contain
the three-dimensional direction cosines (a, 8, )
of the normal to the plane. The fourth column
contains the distance (d) of the plane from the
origin, and the fifth column contains the side pa-
rameter, a 1 or —1 denoting which side of the
plane contains the solid object. Additional col-
umns are used for various attributes.

The following algebraic equation represents the
distance D of a point (x, y, z) from a plane:

D=xcosa+ycosB+zcosy—d

where the plane is defined by the three direction
cosines and the distance parameter d, described
above. This formula is applied to all of the nodes
in the object to determine which side of the plane
they are on. The classification is performed by the
following APL2 expression:

0>8 %xD

in which S is the side parameter defined above.
This expression produces a Boolean vector that is
used to compress the node table and eliminate all
nodes on one side of the chopping plane. Given
the node-coordinate matrix NT[; 131, and the
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five-element vector P, which defines the chopping
plane in the same format as each row of the plane
table PT, the APL2 expressions:

(NT[;137, 1) +.x P[14]
(0 > P[5]1 x D)/LAINT

removes all points on one side of the chopping
plane.?

These APL2 expressions combine the algebraic
equation with the Boolean operation to produce
the desired data. The SDTM system includes nu-
merous instances of algorithmic solutions. Many
of these are as direct a translation of the corre-
sponding mathematics as this example. This pro-
ductivity of direct translation from mathematics
to APL2 software implementation encourages the
software developer to use powerful mathematical
formulations whenever possible.

An implementation of the SURROUND algorithm.
Figure 9 illustrates several instances of applica-
tion of the SURROUND algorithm. The solid blue
geometry loops were SURROUNDed, resulting in
the red loops. The remaining yellow concentric
sets of loops were obtained by iteratively SUR-
ROUNDiIng first the red loops, then the resulting
yellow loops, and so on, sequentially. Alter-
nately, the yellow concentric sets of loops could
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have each been computed independently by SUR-
ROUNDing the solid blue loops, at various dis-
tances. This independent approach presents an
opportunity for distributed cooperative process-
ing by computing all or some of the yellow sets of
loops concurrently.

SURROUNDing an individual convex loop, on the
outside, at a distance of d, is relatively straight-
forward. For each line segment in the loop, it
consists of generating a line parallel to it at a dis-
tance d. For each arc in the loop another con-
centric arc must be generated at a radius greater
by d. The sequence of the new loop’s elements is
identical to those of the original loop.

SURROUNDing a set of loops, each consisting of
convex and concave geometry, is more complex.
Concavity and the existence of multiple loops can
introduce regions where the tool cannot fit. The
resulting SURROUND loops may not correspond
directly with the original loops. Some elements of
the original loops may have no corresponding el-
ements in the SURROUND loops, while other ele-
ments of the original loops may correspond to
several separate elements in the SURROUND
loops.

SURROUNDing a set of loops can be formulated
either as a sequential or concurrent algorithm.
The concurrent SURROUND algorithm consists of
five steps, four of which exhibit concurrency. The
five steps are: candidate generation, finding in-
tersections, finding midpoints, classification, and
threading.

Candidate generation. Candidates are all of the
line segments and arcs that are needed to create
the SURROUND loops, although each candidate
may or may not be used in whole or in part. Each
candidate can be generated independently of all
others. This presents an opportunity for distrib-
uted cooperative processing (DCP) with a high de-
gree of flexibility because the number of candi-
dates to be generated concurrently can vary
based upon the number of available concurrent
processors.

Intersections. All intersections between candi-
date segments must be identified. This is an arc
and line segment intersection problem, involving
linear and angular range calculations. It too can
be computed concurrently. Each concurrent task
is to determine all intersections between two sub-
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sets of the set of candidates. The two subsets may
or may not have elements in common. This step
presents a high degree of flexibility for DCP be-
cause the choices of subset sizes and the number
of subsets can vary based upon the number of
available concurrent processors.

Midpoints and classification. Next, midpoints are
identified along the candidate elements, between
consecutive intersection points. All of the inter-
section points and midpoints must be tested to
determine their closest distance to the original set
of loops. Since they lie on candidates, they are at
most distance d from the original loops. How-
ever, due to concavity and to the existence of
multiple loops, they may actually be on or inside
of another loop. Each point is classified as being
either (1) inside or on the original set of loops, (2)
closer than distance d outside the original set of
loops, or (3) at precisely distance d or farther from
any point on the original set of loops. Each can-
didate is then subdivided, based upon the inter-
section points and midpoints. Only those seg-
ments of the candidate elements between two
points of the third classification, above, are kept.

Midpoint computations can be computed inde-
pendently for each candidate. This provides the
same sort of DCP flexibility as candidate genera-
tion. Classification can be performed concur-
rently by comparing sets of points with sets of
original elements, with the same DCP flexibility as
finding intersections.

Threading. The candidate segments that remain
after classification constitute the complete geom-
etry of the SURROUND loops. However, they must
be resequenced and subdivided into separate
loops. Threading is performed by matching end-
points and is the least computationally intensive
step. The matching could be performed concur-
rently, but there is little incentive.

By analyzing detailed timing results, using APL2’s
supplied workspace, it was possible to identify
portions of the SURROUND algorithm that con-
sumed the most time. A few of the lowest-level
routines were identified and recoded in FORTRAN,
and then linked into the SURROUND algorithm by
using APL2’s associated processor interface. This
selective recoding effort improved the overall al-
gorithmic speed significantly, while involving
only a very small portion of the SURROUND soft-
ware.
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The Expert System Generator

Engineering application systems, built using the
ESG, consist of algorithmic engineering software
components bound together by a control struc-
ture. The software-development team specifies
the top-down control structure using the ESG.
Through automatic code generation, the ESG cre-
ates an operational system skeleton in which all
control functions can be exercised, even before
the bottom-up implementation of the engineering
algorithms. The ESG generates empty APL2 func-
tions as placeholders into which the specific al-
gorithm will be implemented in a bottom-up proc-
ess. The application system is designed as a set of
facilities, or separate environments, each of
which focuses the available computational and
interactive resources on a specific portion of the
overall engineering problem. The ESG accommo-
dates any structural network of facility intercon-
nection that is deemed appropriate by the devel-
opment team.

Engineering rules are critical to the implementa-
tion of customized application systems. The ESG
provides well-defined mechanisms with which to
implement these rules, which are applied to data
entered either textually or graphically, and are
used to regulate the transfer of control between
facilities.

Throughout the development process, a working
prototype system is readily available for testing.
The control structure can be changed graphically
at any point in the development process, resulting
in automatic code maintenance, and thus an ap-
propriately modified system. Typically, the soft-
ware-development team begins with a simple con-
trol structure and adds algorithmic functionality
until enhancement of the control structure is nec-
essary. The development process alternates be-
tween augmenting the control structure graphi-
cally, augmenting the engineering algorithmic
components, and testing the prototype. The pro-
totype is the application system.

The development of customized engineering ap-
plication systems involves learning all of the var-
ious types of application rules and understanding
the relationships between the many sources and
uses of data. Although engineering application
experts exist, their areas of expertise may be
more localized than the desired application sys-
tem, their understanding of this information may
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not be organized in an appropriate form for au-
tomation, and they may not be expert at articu-
lating this information to a software developer.
Learning the engineering application is an incre-
mental process that is accelerated by the discus-
sions and realizations that arise during frequent
review of system prototypes. Flexibility is crucial
during this process, and an important measure of
flexibility is the software developer’s willingness
to abandon an approach and adopt a new one. The
productivity of the ESG reduces the cost of rapid
prototyping to a level that encourages flexibility.
While most software-development systems are
judged on their ability to easily represent the final
software implementation, the ESG environment
also excels at providing structure and flexibility
during this necessary learning process, so that it
is accelerated. Graphical programming, auto-
matic code generation, and maintenance in the
ESG, and easily modifiable nested arrays in APL2
provide this power.

Figure 10 illustrates the relationship between the
use of the ESG and the resulting application sys-
tem. The top of this figure shows the graphical
and parametric programming that takes place
within the ESG to capture the control structure
and interactive interface of the application sys-
tem. This information is automatically code-gen-
erated, modifying the system skeleton. The bot-
tom of the figure represents the resulting
application system, which consists of four com-
ponents discussed in the following paragraphs.

Application-independent software. Although dif-
ferent customized application systems consist of
different control structures and interactive inter-
faces, these structures and interfaces can all be
implemented in terms of a small finite set of soft-
ware. This software is analogous to a microcoded
processor. The functionality of this generic soft-
ware is customized, for each application system,
by the drive data (described next).

Drive data. The drive data are automatically code-
generated by the ESG. Constituting all of the ap-
plication-dependent control structure and inter-
active interface information gleaned from the
graphical programming done in the ESG, the drive
data, as an entity, are analogous to microcode
which, together with a microcoded processor,
provide customized functionality.
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Figure 10 Use of the Expert System Generator causes automatic code generation of two of the four software components of

the resulting application system
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Automatically generated programs. These pro-
grams are a mechanism that permits the software-
developer to provide capabilities that exceed
those offered by the current version of ESG. They
ensure that the extended functionality does not
interfere with the normal operation of the appli-
cation-independent software.

Response functions. Response functions are the
engineering algorithmic components of the appli-
cation system. They are executed by the appli-
cation-independent software, as directed by the
drive data, in response to interactive actions by
the engineer. Typical response functions include
those invoked as a result of pressing program
function keys, and those invoked as a result of
typing data into the fields of a full-screen panel.
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The ESG uses the capability of APL2 to treat data
as executable software. Figure 11 illustrates a
drive-data array containing a selection of program
function keys, a list of expressions or response
functions to be executed when the corresponding
key is pressed, and a list of explanatory key def-
initions. When the application system is used, the
key names and their definitions are automatically
written to the workstation’s textual screen, pro-
viding the engineer with a description of available
options. When the function key is pressed, the
application system selects the corresponding re-
sponse function from the drive data array, and
executes it. This is the entire controlling mecha-
nism: the drive data array actually **drives” the
application. The contents of the drive data array
are used by the application-independent software
for:
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Figure 11 The use of data to “drive” the expert system
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Figure 12 The implementation of the distributed interuser shared-variable interface

The Server Network Generator

The seamless design-to-manufacture (SDTM) ap-
plication system provides many examples of op-
portunities to benefit from distributed coopera-
tive processing (DCP) due to concurrency inherent
in various parts of the problem and the algo-
rithms. Recent advances in computer and com-
munication hardware technology have made net-
works of powerful computer resources affordable
and commonplace. However, the effort required
to develop an application that uses tight coupling
of many networked processors has been high
enough to restrict DCP primarily to research ef-
forts and high-budget projects.

There are many obstacles to DCP that must be
addressed, aside from the computing and com-
munication hardware, if an application is to be
recast as concurrent. Interprocess communica-
tion utilities exist but they vary in ease-of-use and
performance. One must be chosen and integrated
into the existing software. At the conceptual
level, the application must be examined to iden-
tify the opportunities for concurrency, and to
weigh the potential computational savings against
the required software-development effort and the
increased system complexity. The development
of distributed software is fundamentally different
from that of single-threaded software. It is frought
with different logistical problems that stem
from the processors’ independence. The single-
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threaded software developer’s main debugging
strategy is to identify a situation that causes an
error, reprogram, and then retry. This strategy is
not available in DCP software development be-
cause of the many sources of timing variability in
the separate processors and the intercommunica-
tion mechanisms. Even if the identical DCP pro-
grams are run again, they will not necessarily fail
again at all, or in the same way, or at the same
time. Other obstacles involve well-known prob-
lems regarding distributed access to data by soft-
ware, version control, etc.

The combined SNG, ESG, and APL2 software-de-
velopment environment overcomes many of the
obstacles to DCP, so that it is relatively easy to
create a tightly coupled DCP server network
quickly. Furthermore, the flexibility of this envi-
ronment makes it easy to adjust server networks
to adapt to changing system requirements. A pro-
totype of this combined environment is opera-
tional, and has been demonstrated and described
in some detail.*"

The conceptual interprocess communication ve-
hicle used in the combined SNG, ESG, and APL2
environment is the APL2 interuser shared vari-
able.* However, the current restriction of the
APL2 shared variable implementation to a single
host has been eliminated recently by the devel-
opment of an auxiliary processor (AP).° Figure 12
illustrates this implementation. The AP is written
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Figure 13 The relationship between the distributed hardware platform and the distributed server network software platform

in assembly language and uses IBM’s APL2 proc-
essor interface'® to communicate with the APL2
workspace. The IBM Virtual Machine/System
Product component, Inter-User Communication
Vehicle (1IUCV) communicates with the partner
workspace in another host using the Virtual
Machine/370 VM/Pass-Through Facility (Pvm). "
Various APL2 cover functions in the user’s work-
space establish communication with the AP, and
substitute for the system[1SV functions, with the
same protocols and behavior.

Figure 13 illustrates the relationship between the
distributed hardware platform and the distributed
server network software platform. This research
effort was developed on a network of IBM 7437
Virtual Machine/System Product Technical Work-
stations,'® each consisting of an IBM System/370*
processor attached to the microchannel of an IBM
ps2*. Each of these IBM 7437s is to be replaced
by one or more IBM 37ES research-prototype
System/370 processors, creating a configuration of
token-ring networked clusters of microchannel-
connected IBM 37ESs. Related research has dem-
onstrated the ability to use 1BM Clustered FORTRAN
to distribute an application across two IBM Enter-
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GATEWAY

prise System/3090* multiprocessors, each with six
Vector Facility features. ®

Distributed interuser shared variables overcome
one obstacle to DCP by providing high-level hooks
to the application; however, many other obsta-
cles remain. Using the SNG, the software devel-
oper graphically decomposes the application to
express its inherent concurrency, and the data
flow between the concurrent processes. This
graphical programming automatically results in
the top-down implementation of the DCP system
skeleton. The software developer writes the re-
sponse functions within each server that are au-
tomatically invoked by the system skeleton. As
with the ESG environment, a prototype applica-
tion system exists at all times during the devel-
opment of server networks, and provides the cat-
alyst to determine changes in requirements early
in the development process.

Figure 14 shows a block diagram representing the
automatic process generation SURROUND algo-
rithm previously described, which lends itself to
cooperative processing in many ways that can
provide dramatic computational speedup when
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Figure 14 A block diagram decomposition of the SURROUND algorithm

PROCESS
SLICES

v

v

v

v

L 4

- i
THREADING

performed on a DCP platform.'® Each slice can be
processed independently. Each concentric SUR-
ROUND calculation can be performed concur-
rently, based upon the original innermost con-
tour, using appropriate distance values. Within
each SURROUND calculation, candidate genera-
tion can be partitioned into any number of con-
current computations, as can intersections,
midpoints, and classification. Threading is se-
quential, but is not computationally intensive.
Figure 14 represents a simplified diagram of an
approach to decomposing this application. It
shows duplicated servers represented by dashed-
line boxes, but does not show the resulting com-
plexity of interconnection. This complexity can
be managed automatically by SNG. This applica-
tion-decomposition approach is simple because
the data are sent out to ‘““specialist servers” for
computation and then return, to be gathered and
sent out to other specialist servers for other com-

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

putation. More sophisticated approaches allow
the data to flow through a network of specialist
servers, being distributed and subsequently gath-
ered back together along the way. This could
eliminate the potential bottleneck of the central
servers shown in Figure 14. Another approach is
to duplicate the central server sufficiently, to bal-
ance the system.

Software-development cost considerations

The development costs of large engineering soft-
ware systems depend directly on the size of the
development team and the duration of the imple-
mentation process. Obviously, if technology en-
ables a team of software developers to perform a
task faster; or if the technology enables a smaller
team to perform the same task, the development
cost is reduced. In addition, there are develop-
ment costs that are incurred as a result of the
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management requirements of the development
team. Team size has a dramatic effect on man-
agement requirements. Large development teams
require an elaborate management infrastructure
to ensure project convergence. Some CASE tools
address both the software development issues
and the problems of managing development teams.
The two CASE tools presented in this paper reduce
the development task for significant applications so
that fewer than three software developers and very
little management structure are required.

Conclusion

The brevity of APL2 as a vehicle for mathematical
expression enables the engineering software de-
veloper to concentrate on the mathematical so-
lution to a problem. This brevity and the resulting
productivity enable the engineer to justify brief
periods of software development, thus eliminat-
ing the need for programmer intermediaries.

The integration of powerful data management ca-
pabilities, such as generalized nested arrays, and
an extensive range of mathematical tools in APL2,
facilitated the implementation of the seamless de-
sign-to-manufacture system described. The capa-
bility of APL2 to treat data as executable software
is central to the ESG approach of using automat-
ically generated drive data to actually “drive” the
expert system.

The ESG environment provides the developer
with the brevity of graphical expression, to de-
compose an expert system in the context of the
engineering application. Here too, the brevity and
resulting productivity enable the engineer to un-
dertake the implementation of a customized ap-
plication system. The engineer avoids the effort
and pitfalls of attempting to characterize identi-
fied needs, to formulate a system specification,
and to depend on a programmer intermediary who
is not expert in the application domain.

The effectiveness of the ESG system approach to
the implementation of customized engineering ap-
plication systems is due to the following factors:

1. The high level of automation achieved in the
top-down specification, implementation, and
maintenance mode

2. The high level of productivity achieved in the
bottom-up mode due to the direct translation
of mathematical solutions to APL2 expressions
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3. The flexibility to switch back and forth be-
tween the top-down and bottom-up implemen-
tation modes

4. The availability, throughout the development
process, of a working system prototype ready
to be tested according to the current level of
specification

The combined SNG, ESG, and APL2 environment
extends the same advantages of brevity and
graphical expression to developers of systems in-
volving applications that can benefit from the in-
creased computational speed of distributed coop-
erative processing. The need for computerization
of the manufacturing floor, combined with the
emergence of various powerful computer-hard-
ware and communication platforms that are suit-
able for this task, make this an ideal application
for the software-development environment.
However, the applicability of the new hardware
and communication platforms is not limited to
manufacturing applications.

Both the geometric modeler and the automatic
process generator described in this paper are
structured to benefit from distributed cooperative
processing. This is also true of many other engi-
neering problem solutions. Conceptually, this ap-
proach applies to any engineering problem that
may be decomposed in the form of a block dia-
gram. Consequently, the combined SNG, ESG, and
APL2 environment should be viewed as a generic
software-development environment, which can
be applied to significantly reduce the application-
development and maintenance cost of engineer-
ing applications.
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