Recent developments
and future directions
in mathematical
programming

Recent advances in mathematical programming
methodology have included: development of
interior methods competing with the simplex
method, improved simplex codes, vastly
improved performance for mixed-integer
programming using strong linear programming
formulations, and a renewed interest in
decomposition. In addition, use of vector and
parallel processing has improved performance
and influenced algorithmic developments.
Application areas have been expanding from the
traditional refinery planning and distribution
models to include finance, scheduling,
manufacturing, manpower planning, and many
others. We see the acceleration of better
methods and improved codes moving together
with faster, lower-cost, and more interesting
hardware into a variety of application areas,
thereby opening up new demands for greater
function of optimization codes. These new
functions might include, for example, more
powerful nonlinear codes, decomposition
techniques taking advantage of network and
other problem-dependent structures, and mixed-
integer capability in quadratic and general
nonlinear problems. Stochastic scenario
programming and multitime-period problems are
becoming solvable and open up applications and
algorithmic challenges. The IBM Optimization
Subroutine Library has helped to accelerate
these changes but will have to continue to
change and expand in ways that are touched
upon in this paper.

inear programming grew out of work begun
during the 1930s: in transportation problems
by Kantorovich, game theory by Morgenstern
and Von Neumann, and input-output models by

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

by E. L. Johnson
G. L. Nemhauser

Leontief. In the late 1940s, Dantzig defined the
general model and proposed the simplex method
for its solution. In the 1950s codes were devel-
oped at several places, including the Rand Cor-
poration and the U.S. National Bureau of Stan-
dards. In the 1960s several commercial codes
were developed, mainly for oil companies, and in
some cases were even written by oil companies.
Linear programming was developed and has
grown in parallel with computers. The business of
developing and selling linear programming codes
has been a commercial success for 40 years and
has driven hardware sales, as well. Application
areas have become more diverse and today in-
clude transportation, distribution, manufactur-
ing, scheduling, finance, and many others. Its im-
portance can be seen from the fact that a Nobel
Prize in economics was given to L. V. Kantor-
ovichand T. C. Koopmans for work in linear pro-
gramming.

Mathematical programming refers to that part of
mathematical optimization concerned with opti-
mizing some objective function subject to con-
straints (maximizing profit or minimizing cost, for

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

JOHNSON AND NEMHAUSER 79

example). The word ‘“program” or ‘“‘program-
ming” (as in the term linear program), came from
the use of the word in the 1940s as a synonym for
planning or scheduling and does not refer to com-
puter programming—although mathematical pro-
gramming growth has paralieled growth in the
use of computers. A mathematical programming
problem is a linear program (LP) when the objec-
tive function is linear and the only constraints are
linear equations and inequalities. A standard form
for linear programs is linear equations in nonneg-
ative variables, i.e., Ax = b, x = 0. Quadratic
programming usually means a linearly con-
strained problem with a convex, quadratic objec-
tive, whereas nonlinear programming is used to
cover any problem having linear or nonlinear con-
straints or objective function. Integer programs
are typically linear programs with the additional
constraint that some or all of the variables of the
problem must take on integer values. Mixed-in-
teger programs (MIPs) have some integer varia-
bles and some variables not constrained to be in-
teger, sometimes called continuous variables.
Mixed 0-1 program refers to a mixed-integer pro-
gram in which the integer variables are addition-
ally constrained to only take on values of either
zero or one. “Pure” in place of “mixed” denotes
problems in which there are only integer varia-
bles. The most important class of integer pro-
gramming problems is the mixed 0-1 problem, and
the 0-1 variables typically represent choice vari-
ables; i.e., some activity is either done or not
done.

The easiest of these problems to solve are linear
programs, and the simplex method is the classical
method. Recently, interior point algorithms have
begun to compete with the simplex method. In
practice, problems with tens of thousands of
equations in hundreds of thousands of variables
can be solved in reasonable times, say one or two
hours on a mainframe or powerful workstation.
Quadratic programs, of the convex type for min-
imization, are also fairly easy to solve. Mixed-
integer programs can take much longer, and run-
ning times are much more variable depending on
problem type, formulations, and efficiency of
codes. In practice, branch-and-bound is the
method employed.

The nonlinear area is also difficult in general, and
one where specialized codes have been devel-
oped for certain classes of problems. Commercial
codes have tended to avoid nonlinear program-

80 JOHNSON AND NEMHAUSER

ming because of the lack of robust, general-pur-
pose methodology. In practice, linear approxima-
tions are frequently employed, sometimes in a
sequential manner in order to at least obtain a
local optimum.

In the next section, we summarize several appli-
cation areas that have motivated the development
of mathematical programming methodology and
computer codes. In turn, recent advances in
methodology and improvements in codes have
opened up new possibilities for solving some of
these problems. We discuss the types of mathe-
matical programs involved in each application
area.

In succeeding sections we first present a very
brief summary of recent advances in linear pro-
gramming. We then present the methodology be-
hind the strong linear programming formulations
of mixed-integer programs. These recent ad-
vances in MIP methodology have yielded very im-
pressive computational results. Finally, we dis-
cuss recent developments in decomposition and
column generation that are important for solving
large-scale LPs and MIPs.

We have chosen to emphasize mixed-integer pro-
gramming and column generation for three rea-
sons. The first is that in this issue, linear pro-
gramming is covered in great detail by Forrest
and Tomlin, ' and quadratic programming is pre-
sented by Jensen and King.* The second is that
MIP and column generation are our areas of spe-
cialization and current interest. Finally, we be-
lieve that some of the most significant current and
future applications lie in this area.

Application areas

The oldest extensively used large-scale applica-
tion is found in the petroleum industry for blend-
ing crude oils in refinery operations to produce a
desired mix of final products. This application is
widespread and important enough that virtually
every oil company has some linear programming
model in use. The problems typically have some
nonlinear component, and some type of linear ap-
proximations are used. One of the techniques em-
ployed is sequentially solving linear programs,
and another is piecewise linear functions. Also,
distribution problems are sometimes incorpo-
rated into the model or are solved separately.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

In general, distribution problems are widespread.
In some examples, production planning is incorpo-
rated into the model. The production-distribution
model at General Motors* includes a mixed-integer
model for planning changeovers in production to-
gether with an aggregated distribution model for

The finance area is one where
there are great advantages to
using optimization software.

shipping the cars produced. The 0-1 variables in the
mixed-integer model are choice variables having to
do with changeovers. The problem, generally
speaking, is that demand patterns change across the
country, and production must change to meet de-
mand. The optimization problem determines how
to meet demand given current production capacity,
costs of changeovers, and shipping costs.

Another widely used model is multiproduct plan-
ning with single-sourcing restrictions at ware-
houses or distribution centers for shipments to
customers. In this model, 0-1 decision variables
are used to decide which warehouse will supply a
given customer. The example of using this model
at Frito-Lay® was an early indication of the com-
putational advantage to be obtained by reformu-
lation to give a stronger linear programming re-
laxation.

Distribution problems without multiproduct sin-
gle-sourcing and without any additional con-
straints result in linear programs that are network
flow problems. A network flow problem is a linear
program in which every variable is a shipping
variable from the node of origin to a destination
node. The important fact about network flow
problems is that they can be solved by specialized
simplex codes much faster than by using a general
linear programming code. In network flow prob-
lems with additional constraints, decomposition
methods can take advantage of the network flow
structure by solving subproblems more quickly as
network flow problems.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

The finance area is one where there are great ad-
vantages to using optimization software, and as
faster, easier-to-use software becomes available,
the usage could increase dramatically. The clas-
sical work in this area is the Markowitz model
for portfolio selection. Markowitz® developed a
model for balancing risk and return in selecting
investments. The model leads to a convex qua-
dratic problem in which the quadratic part is the
matrix of covariances of the returns from the var-
ious investments. If risk is ignored, it is best to put
all of the available money in the investment with
highest expected return, provided that the only
constraint is a budget constraint. What the Mar-
kowitz model tries to do as an alternative is to
keep expected return high, but diversify invest-
ments by looking for the ones that move counter
to each other or at least independently of each
other. The resulting diversified portfolio is less
likely to have major deviations from the expected
return. Recently, there has been activity to ex-
tend the model to multitime periods and multi-
scenarios’ in order to take into account dynamic
aspects of the problem and make the solutions
more robust in responding to various possible
market movements.

Another finance model uses liability matching for
investing money in fixed-income securities such
as high-quality bonds to generate a revenue
stream over time that meets scheduled liabilities.
This model can be used to invest money gener-
ated from a bond issue in order to meet scheduled
construction costs, while generating as much rev-
enue as is safely possible from the extra money
until it is needed. This model leads to a linear,
rather than quadratic, program since the safety
factors are generally included as constraints.

Optimization models have been in use in energy
planning for many years; examples include mod-
els involving crude oil allocation, power genera-
tion planning, and coal allocation. Most of the
problems are linear programs with integer restric-
tions in some models. Large problems may be
needed, and solving them can benefit from vastly
reduced running times using new software and
hardware.

Recent work in the airline industry has received
much attention. Crew planning®® is an active
area. Until recently, all codes used a suboptimi-
zation approach, and only recently and only in
some codes was any linear or integer program-

JOHNSON AND NEMHAUSER §1

ming utilized, and then only for subproblems. The
power to be gained from a global approach has
only been possible to realize as a result of better
linear programming codes to solve the difficult
set-partitioning linear programs.

Another airline application of mathematical pro-
gramming is fleet assignment. ' The word “fleet”
denotes a type of plane, such as a Boeing 747, and
the fleet assignment problem is to assign the fleets
to flight legs in such a way that profit is maximized
and the planes can be efficiently scheduled and
maintained. This problem must be solved before
crew planning but after scheduling flight legs or
routes. Once the fleets have been assigned, the
individual planes must be routed and mainte-
nance scheduled. Then the crew pairings can be
formed as part of the crew-pairing optimization.

This brief summary of major application areas il-
lustrates the diversity and importance of mathe-
matical programming models. We now turn to
computational advances making such models
more tractable.

Linear programming

Until recently, the algorithms used in commercial
mathematical programming systems had hardly
changed from the original systems developed in
the late 1950s and in the 1960s. The two basic
algorithms—the simplex method for linear pro-
grams and branch-and-bound for mixed-integer
and piecewise linear programs, solved by the sim-
plex method and partial enumeration—remained
the mainstays. Although we still rely on the sim-
plex method and branch-and-bound, in the last
five years major advances have taken place in the
computational aspects of the simplex method,
and substantial progress has been made in avoid-
ing branching rather than just coping with it effi-
ciently. In addition, interior point methods now
offer serious competition to simplex methods.

Simplex methods. A paper by Forrest and Tomlin
in this issue! presents recent computational ad-
vances, and one by Goldfarb and Todd! found
elsewhere provides an in-depth survey. We will
only discuss theoretical results on the running
time of the simplex method. In the worst case, it
can perform quite poorly. Klee and Minty'
present a family of problems whose feasible re-
gion is a distorted hypercube and for which
choosing the variable with greatest reduced profit

82 JOHNSON AND NEMHAUSER

to enter the basis causes the simplex algorithm to
visit all of the vertices of the transformed hyper-
cube. These negative results have been extended
to other variants of the simplex algorithm and to
some special cases of linear programs, including
network flow problems. However, it is not known
whether there exists some variant of the simplex
algorithm that runs in polynomial time for general
linear programs, but such polynomial-time vari-
ants for network flow problems have been ob-
tained.

On the positive side, the expected behavior of the
simplex algorithm is quite good. Under various
probabilistic assumptions, it has been shown that
the average number of iterations is bounded by a
low-degree polynomial in m and n."

Ellipsoid algorithms. Khachian' showed that an
algorithm developed for nonlinear programming
could be adapted to linear programming with a
polynomial time bound on its running time. This
result was remarkable since the existence of a
polynomial time algorithm for linear program-
ming was then considered to be one of the most
important unsolved problems in computational
complexity. Its announcement stimulated a tidal
wave of research and papers, which ended dis-
appointingly with the conclusion that the ellipsoid
method was a total failure in practice (see Bland
et al.' for a survey). The poor performance re-
sulted because the number of iterations is
bounded by a polynomial that involves the loga-
rithm of numerical coefficients, and the actual
number of iterations frequently is close to the
bound. Nevertheless, the ellipsoid algorithm has
proved to be a very important tool for proving
theorems about polynomiality in combinatorial
optimization, ” since it is capable of dealing with
an exponential number of structured constraints.

The essential idea of the ellipsoid algorithm is
very simple and most easy to describe geometri-
cally for a problem of determining whether a set
of linear inequalities Ax < b has a feasible solu-
tion, i.e., given P = {x € R": Ax = b}, deter-
mine whether P is nonempty. We assume for sim-
plicity that if P is nonempty, then

1. P is bounded and therefore is contained in a
hypersphere S ; of radius R centered at x°, and
R and x° are given.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

2. P is full-dimensional and therefore contains a
hypersphere S, of radius r centered at x°, and
r is given.

Now let E® = S. To find a point in P or to show
that none exists, the algorithm produces a se-
quence of ellipsoids {E*} of shrinking volume
such that each ellipsoid contains P. Atiteration &,
we see if x*, the center of E*, is contained in P.
This can be done simply by checking all of the
inequalities by substitution. Now if all of the in-
equalities are satisfied, the problem is solved
since x* € P. If not, a violated inequality a’x =<
b, is identified. Then P is contained in the half-
ellipsoid obtained by intersecting E with the in-
equality a*x = a’* x*. The ellipsoid E**!, which
can be approximated with sufficient accuracy in
polynomial time, contains the half-ellipsoid and
thus also contains P. The important result of this
construction is that

1
vol (E¥*Y/vol (E*) < e 3m+D

This shrinkage rate is sufficiently big to guarantee
that after a number of iterations proportional to #
and log (vol (Sg)), the volume of the resulting
ellipsoid is less than the volume of §,, in which
case the problem must be infeasible.

The ellipsoid algorithm described above can be
extended to handle optimization by adding objec-
tive function cuts. In particular, once a feasible
solution x° has been found, we add the constraint
cx > cx” and continue. Now the procedure will
terminate with an indication of infeasibility after
an optimal solution has been found. But this im-
plies that the worst-case running time is almost
always achieved, which explains the poor perfor-
mance in practice.

Finally, it is important to realize that the ellipsoid
algorithm only uses the constraints to test the fea-
sibility of the centers of some ellipsoids. There-
fore, if the problem of determining whether the
point is feasible can be decided by some oracle,
an explicit representation of the constraints may
not be necessary. This is very important in com-
binatorial optimization where we consider linear
programs with an exponential number of con-
straints and make use of the theorem (which is a
consequence of the ellipsoid algorithm) that says:
for a family of polyhedra, the separation problem
of testing the feasibility of a point and finding a

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

violated inequality if the point is not feasible can
be solved in polynomial time if and only if for any
objective function the linear programming opti-
mization can be solved in polynomial time.

Interior point methods. The computational disap-
pointment with ellipsoid algorithms was not to be
repeated with the next fundamental development
in linear programming—the emergence of interior
point methods.® In contrast to the ellipsoid al-
gorithm, interior point methods have already
demonstrated their computational power as an al-
ternative to the simplex method in solving large
linear programs. It is an extremely active area of
research, including algorithm development and
implementation. The developments from 1984 to
1989 and their antecedents are carefully traced in
the Goldfarb and Todd survey.'' Marsten et al. "
provide a status report on computational devel-
opments and results. Lustig et al.?® give compu-
tational results for the code OB1, which at this
time is generally considered to be the best imple-
mentation of an interior point method, and com-
pare OBl to a widely used simplex code. Forrest
and Tomlin? present a survey that emphasizes
primal-dual interior point methods and their IBM
Optimization Subroutine Library (OSL) imple-
mentation.

As suggested by the name, the basic interior point
method begins with and maintains feasible solu-
tions throughout in which all constraints are sat-
isfied with strict inequality. It requires a special
end game strategy to find an optimal vertex if such
a solution is required. The idea of moving in a
good direction through the interior of the feasible
set is old. The problem with such an approach is
what to do when a boundary is encountered.

Given a feasible point x in the interior of P, the
basic idea of Karmarkar’s algorithm is a projec-
tive transformation that maps the feasible region
into itself and x into the center of the transformed
region. The advantage of the transformation is
that x is now far from the boundaries of all of the
constraints, and therefore a nontrivial step in a
good direction is possible. Hence, rather than try-
ing to determine the active constraints in an op-
timal solution as in a simplex method, an interior
method avoids altogether the problem of deter-
mining the active constraints. As a simpler alter-
native to projective transformations, Barnes?!
proposed affine transformations which gave rise
to the primal and dual affine algorithms.

JOHNSON AND NEMHAUSER 83

To prove polynomiality, Karmarkar introduced a
potential function to measure progress toward the
solution. This function, which imposes a logarith-
mic penalty on violating the nonnegativity con-
straints, closely resembles the logarithmic barrier
function for turning a nonlinear program with lin-
ear inequality constraints into a sequence of un-
constrained optimization problems. Gill et al.?
studied the relationship between classic barrier
algorithms, such as the SUMT algorithm of Fiacco
and McCormick,? and Karmarkar’s algorithm.
In particular they show that Karmarkar’s algo-
rithm takes a step in the same direction as a bar-
rier method, with steps in a projected Newton
direction for some value of the barrier parameter.
This connection led to the path-following algo-
rithms over a parameterized family of logarithmic
barrier functions® and to what are now called the
primal-dual interior point methods, which have
produced the best computational results. %%

At this writing, there is no definitive conclusion
regarding the superiority of interior or simplex
methods, and it may very well be the case that the
methods are incomparable. On one hand, a real
virtue of the interior methods is the constant num-
ber, or very slow growth, of iterations as prob-
lems grow larger. Therefore, these methods
should be better for very large problems. On the
other hand, they appear to have an even greater
need for sparsity than the simplex method and do
not naturally produce basic optimal solutions.
However, the biggest current disadvantage of
interior point methods is not being able to take
advantage of good starting solutions, which is es-
pecially disappointing for mixed-integer program-
ming where one solves a sequence of linear pro-
grams with slightly modified constraint sets.

Mixed-integer programming

We consider the linear mixed-integer program (MIP)

max {ex + hy: Ax + Gy < b,

x = 0 and integer, y = 0}

Here some or all of the variables are required to
be integer. In many models, the integer variables
are used to represent logical relationships and
therefore are constrained to equal zero or one.
The MIP model is very robust in the sense that an
unusually wide variety of practical problems, in-

84 JOHNSON AND NEMHAUSER

cluding those with nonlinearities and nonconvex-
ities, can be represented by MIPs. But until re-
cently, one could not count on solving MIPs with
a few hundred integer variables to optimality.
That situation is rapidly changing, and the capa-
bility of solving MIPs with thousands of variables
has arrived. We present the basic ideas of these
advances. For more information see Hoffman and
Padberg?® and Nemhauser and Wolsey. %

The linear programming relaxation of MiIp, de-
noted by LPR, is the linear program obtained from
MIP by omitting all of the integrality requirements.
The following elementary connections between
LPR and MIP are used in the algorithms given be-
low for solving MIP.

1. If LPRis feasible, its optimal value z (LPR) = 2
(MIP), the optimal value of MIP.

2. If LPR is infeasible, so is MIP.

3. If an optimal solution to LPR is also a feasible
solution to MIP (satisfies the integrality con-
straints), that solution is also an optimal solu-
tion to MIP.

Branch-and-bound. Branch-and-bound with lin-
ear programming relaxations is the classical ap-
proach to solving MIP and forms the basis for all
of the general-purpose codes. See Beale® and
Land and Powell” for a survey of the algorithms
and software from the 1970s, which have begun to
be replaced only recently.

The basic idea is very simple. We first solve LPR.
If it is infeasible or has an optimal integral solu-
tion, we have also solved MIP. Otherwise, some
variable in the optimal solution to LPR is frac-
tional. We pick such a variable and branch by
creating two MIP subproblems: In one subprob-
lem the variable is constrained to be equal to or
less than its round down (equal to zero in the case
of a binary variable); in the second problem the
variable is constrained to be equal to or greater
than its round up (equal to one in the case of a
binary variable). Now the optimal solution to MIP
is obtained by solving the two subproblems and
taking the better of the two solutions. This proc-
ess is executed recursively so that there is a dan-
ger of having to solve a number of MIP subprob-
lems that grows exponentially with the number of
integer variables. But the degree of enumeration
is controlled by two factors:

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

1. IfLPR (for a subproblem) is infeasible or has an
optimal integer solution, MIP is solved for the
subproblem, and no branching is necessary.

2. If LPR (for a subproblem) has an optimal inte-
ger solution, that solution is feasible to the
original MIP, and therefore gives a lower bound
on the optimal value of MIP. We keep the best
lower bound z on the optimal value and update
it whenever an improved feasible solution is
found. Then if for some subproblem z (LPR) =
Z, that subproblem cannot have a better solu-
tion to MIP than what is already known, and no
branching is necessary. This is known as prun-
ing by bounds and is responsible for keeping
the number of subproblems manageable where
possible.

The basic branch-and-bound algorithm needs to
be elaborated by specifying details such as which
subproblem should be processed next and which
fractional variable should be the one on which to
make the decision to branch. One way to view the
subproblem list is as a tree in which each sub-
problem corresponds to a node and in which the
immediate descendants of a node (its children)
correspond to the subproblems derived from it. In
this setting, a natural way to select subproblems
is by depth first search plus backtracking. This
means that if a node has children, the next node
selected is one of them. Otherwise we backtrack
by following the unique path from the current
node back to the root node (original problem) un-
til we find a node (if any) with an unprocessed
child.

The advantages of depth first search are:

1. Solving LPR for a child, given the optimal so-
lution for a parent, just involves changing a
single bound, and therefore, reoptimization by
the dual simplex method should be very fast.

2. It helps in finding feasible solutions since
nodes deep in the tree have more variables
constrained to be integral.

The second advantage disappears once a good
feasible solution has been obtained. Then other
strategies such as choosing the node with the best
bound become more attractive.

Variable selection is based on user priorities re-
flecting the importance of the integer variables
and logical relations among them, on the likeli-
hood of getting an integer solution, and on esti-

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

mates of the decrease in the optimal value by forc-
ing the variable to round up or round down its
current value.

Finally, we note that branching on simple con-
straints such as the clique or SOS constraint

Exj=1

jEQ

can be advantageous in producing a more equi-
table division of the solution space. This is done
by picking a subset Q of the variables in the clique
constraint and then requiring Z,c, x; = 0 along
one branch and X ¢, x; = 0 along the other. Note
that if the subset is of size 1, this branching rule
is exactly the rule given above for branching on
0-1 variables.

The success of branch-and-bound in solving ei-
ther large or difficult problems or both types de-
pends heavily on how closely LPR approximates
MIP and on finding a good feasible solution
quickly. If the linear program approximation is
poor, a very large number of subproblems will
have to be solved regardless of the strategies that
are used for node and variable selection. How-
ever, if the approximation is perfect in the sense
of giving an optimal solution in which all of the
integrality constraints are satisfied, it will suffice
to solve only one linear program.

The developments in the 1980s have focused
largely on improving linear programming approx-
imations with some work done on the feasibility
problem, see, e.g., Balas and Martin.*® These ap-
proaches are discussed below under modeling,
preprocessing, cut generation, and column gen-
eration. Modeling refers to the initial formulation;
preprocessing refers to actions taken before solv-
ing an LP; cut and column generation refers to
improving the LP relaxation by adding additional
rows or columns. However, this classification is
somewhat arbitrary since some improvements
left out of the initial model may be picked up in
preprocessing and some improvement of the LP
not done in preprocessing may be done in the
cutting phase of the algorithm.

Modeling principles: Good formulations. Many
correct formulations generally exist for a MIP
problem. In general, we are concerned much less

JOHNSON AND NEMHAUSER 85

with the size of the formulation than with the
quality of its LP approximation.

For example, there is a classical lot-sizing model
which has a formulation with variables that give
the amount produced in each period, and another
in which there are variables that give the produc-
tion in period ¢ designated for sale in period
t + k. The number of variables in the second for-
mulation is the square of the number in the first.
But the second formulation yields a network flow
problem, which implies that its LP relaxation has
an optimal integral solution, and for this reason is
the better formulation.

For the traveling salesman problem, there is a
formulation with a number of constraints propor-
tional to the number of edges and a second one
with a number of constraints that grows expo-
nentially with the number of edges. The second
one, however, is far superior because its linear
programming relaxation is provably better. Of
course, we cannot directly solve a linear program
whose number of constraints is exponential in the
size of the problem. Instead, as we discuss under
cut generation, the constraints are generated se-
quentially as we need them to achieve feasibility.

Similarly, for a partitioning problem, there is a
formulation with a 0-1 variable for each element-
subset pair that specifies whether the element be-
longs to the subset. But this formulation is inferior
with respect to its linear programming relaxation
to another one in which there is an exponential
number of 0-1 variables, one for each feasible
subset of elements.

Recently some general concepts have evolved for
obtaining good formulations.

Disaggregation is the idea of separating one con-
straint into many without changing the meaning of
the MIP model but improving the LP relaxation.
Suppose we have m 0-1 variables x;, j = 1---,
m, each of which must be zero unless another 0-1
variable x, = 1. This relationship can be modeled
with only one constraint, namely

X+t x, =mx,
Alternatively, we can use m constraints

x;=xoforj=1:--,m

86 JOHNSON AND NEMHAUSER

For 0-1 variables both sets of constraints say the
same thing. But when x, is fractional, the second
set of constraints imposes much more on the x;s
and therefore gives the better formulation. Note
that although disaggregation creates additional
constraints, it is not likely to make the LP much
harder to solve since the number of nonzeros in
the constraint matrix only increases slightly.

Now suppose our model contains the variable up-
per-bound constraint

y=Mx

where x is a 0-1 variable that appears only in this
constraint and in the objective function with a
negative coefficient —f, and y is a continuous
variable with an upper bound of M. The con-
straint says x = 0 implies y = 0, and if y > 0, we
incur the fixed cost f. Now in the LP relaxation,
if0 <y < M, then0 < x < 1. Therefore, a good
modeling principle is to make the upper bound M
as small as possible.

Preprocessing. (See Crowder et al.*! and Hoffman
and Padberg.®) Given a model, we wish to im-
prove it by tightening the LP relaxation, fixing
variables, or, more generally, doing whatever we
can do quickly to make the problem easier to
solve. The line between good modeling and pre-
processing is fuzzy. A sophisticated preprocessor
should be able to recognize constraints that need
to be disaggregated and to tighten variable upper
bounds. But we cannot expect the software to
produce a formulation that is radically different
from the one it is given. However, there are cer-
tain operations for which the computer is better
suited.

Consider a single inequality of the form

n
2 ax=b
=1

in which all of the variables are binary. Without
loss of generality, for this constraint in isolation,
we can assume that a;s are positive since if a; <
0, we complement the corresponding variable by
replacing x; by 1 — x;. Inequalities of this type
are called knapsack constraints, and a good deal
of information can be extracted from them rather
painlessly.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

The linear programming relaxation of a knapsack
inequality can be tightened by coefficient reduc-
tion. Observe that

(al—/\)x,+2ajxjsb—A

Jj=2

gets progressively tighter as A increases from 0.
Therefore, we would like to make A as large as
possible without eliminating any 0-1 solutions.
Determining the largest such A is a hard problem,
but it is easy to find a feasible value of A, e.g.,

n

A = max O,b—Zaj

j=2

The knapsack constraints yield logical relations
among the variables. Suppose

a;+ a,>b M
then
xtx=1 2)

Note that after reversing the cbmplementation,
we can obtain four types of constraints, namely

x;+x=lLx<x,x=x,andx; + x, = 1

The constraints (2) define a node-packing prob-
lem on a graph in which there is a node for each
variable and its complement, edges joining com-
plementary nodes and pairs of nodes for which (1)
is satisfied. A node packing is a subset of nodes
such that no pair in the set is joined by an edge.
Now let C be a subset of nodes of size at least
three such that each pair in the set is joined by an
edge. C is called a clique. The edge constraints
imply that no more than one node can be selected
from a clique. After decomplementing the varia-
bles we obtain the generalized clique constraint

ij—Zx,ZIC‘I—l

Jjec- JjEcH
where C~ = {j € C: x; complemented} and
Cc* =C/IC™.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

It is important to realize that the edges of the
graph can come from different knapsack con-
straints of the original MIp. Thus, in building
clique constraints from the edges of the graph, we
capture logical relations that depend on the in-
teractions among the original constraints. For ex-
ample, one constraint may yield x;, + x, = 1,
another x, + x; < 1, and a third x; + x; = 1.
Then together they yield x; + x, + x; = 1.
Clique constraints can be added to the original
formulation or used as cutting planes as explained
below.

Cut generation. We now suppose that our original
formulation of MIP contains too many constraints
to include all of them in the LP relaxation and that
in solving LPR some constraints have been ig-
nored. The constraints can be of two types. Type
I constraints are needed for the formulation to be
correct. If a type I constraint is violated, LPR can
give an integral optimal solution that is infeasible.
An example of type I constraints is the class of
subtour elimination constraints (SEC) for the trav-
eling salesman problem (TSP) of finding a mini-
mum cost cycle that contains all the nodes of a
graph. They state the feasibility requirement that
for every proper subset S of the nodes, there must
be at least two edges with one end in § and the
other not in §. However, since the number of
these constraints is exponential in the size of the
graph, it is not possible to include all of them
when solving an LP relaxation.

Type 11 constraints are used only for the purpose
of tightening the LP relaxation. An example of
these are the cover constraints that are derived
from knapsack inequalities. These constraints
generalize the edge inequalities given above. Sup-
pose C is a minimal set such that

Eaj>b

Jjec

then C is called a minimal cover and we have the
cover inequality

EijICI—l

JEC
which must be satisfied Hy all feasible solutions.

Now we address the question: Given a solution x’
to LPR, does it satisfy all of the ignored con-

JOHNSON AND NEMHAUSER 87

straints? This question is called the separation
problem. We assume that there are too many con-
straints to check by substitution. Note that if all
of the ignored constraints are type II and the LP
solution satisfies the integrality requirements, the
answer is obviously yes.

To illustrate how separation problems can be
solved, we will consider the SECs for the TSP and
the cover inequalities for knapsack constraints.
Given a solution x’ to the LPR of TSP with some or
all of the subtour constraints

xX;=
> 2

i€S, jJES

ignored, x satisfies all of them if and only if the
minimum value of

inj

€S, j&S

is = 2. But this is the problem of finding a mini-
mum cut or maximum flow in a graph with edge
weights x; and can be solved efficiently. If the
minimum cut has weight = 2, all SECs are satis-
fied; otherwise the set S associated with the min-
imum cut yields a most violated SEC.

The situation with knapsack inequalities is not
quite so nice since the separation problem is
much harder. Note that we can rewrite a cover
inequality as

> -x)=1

jec

Then given a solution x to the MIP, it satisfies all
of the cover inequalities if and only if

min {2 (1 —xj)zjzz a;z;=zb+1,2z,=0, 1}

JeN JEN

is = 1. Since this problem may be too hard to
solve exactly, we can use a heuristic procedure to
attempt to find a feasible solution with cost less
than one. Such a solution yields a violated cover
inequality. However, by not optimizing exactly,
we may fail to find a violated cover inequality
even if one exists. This situation is not a catas-
trophe for type II constraints since they are only
needed for improving the LP relaxation. In other

88 JOHNSON AND NEMHAUSER

words, separation for type II constraints involves
a delicate balance between the work needed to
find them versus the help they provide. More-
over, to be useful they must be “strong” con-
straints in the sense of being facets of the convex
hull or faces of high dimension. In general, cover
inequalities are not strong enough and must be
lifted to inequalities of the form

Do+ ax=|C-1

Jjec Jjgc

to be useful. We will not discuss lifting here other
than to say that it too must be done quickly, and
heuristic procedures are frequently used so long
as they guarantee that the resulting inequality is
valid.

The difference between the SECs and cover ine-
qualities illustrates another point. Cover inequal-
ities can be used whenever a problem has one or
more knapsack inequalities. Therefore, they are
useful for general 0-1 problems. So it is reason-
able for a general-purpose code to have a sepa-
ration routine for cover inequalities. In contrast,
SECs are rather specific for TSPs and related prob-
lems, so it is very unlikely that a general-purpose
code would include a separation routine for SECs.
This makes it imperative for optimization rou-
tines to provide user interfaces for separation rou-
tines and other customizing capabilities.

Decomposition and column generation

Large linear programs are almost always sparse,
not only in terms of individual coefficients but
also in that an overall structure is present that is
also sparse. For example, multitime-period prob-
lems have linear programs for each time period,
together with a small number of linking variables
representing storage or shipping of goods from an
earlier time period to a later time period. Multi-
commodity flow problems, as another example,
have many single commodity network flow prob-
lems linked by joint capacity constraints on some
of the arcs. Multiscenario stochastic programs
have linking variables representing current stage
decision variables. These variables enter into all
subsequent linear programs for all outcomes of
random events in the model.

Linear programming decomposition work goes
back to the Dantzig-Wolfe decomposition meth-

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

0d.* There are by now several structures for de-
composition methods.? A description of avail-
able options in OSL release 2 is given by Forrest

A major reason for using column
generation is that easier integer
programs can be solved.

and Tomlin.! We focus on Dantzig-Wolfe decom-
position because it is closely related to column
generation methods frequently used in combina-
torial optimization.

An example of a column generation method in
combinatorial optimization is given by the method
for crew-pairing optimization in Anbil et al.® There,
many columns are generated, and the linear pro-
gram over them is solved. A true column generation
procedure does not generate large sets of columns
but only a few that price out to enter the linear
programming basis. These columns are found by
solving another, smaller linear program in the usual
Dantzig-Wolfe decomposition. In other cases, they
might be found by solving shortest path problems,
as in multicommodity flows,* or by solving an in-
teger programming problem, as in the cutting stock
problem* where the columns are solutions to easy
integer programs, namely knapsack problems. A
recent example of the latter approach for solving
clustering problems is given by Johnson et al.*® oSL
is used to solve both the small integer programming
problems and the master linear program over them.

A major reason for using column generation, as
done for cutting stock problems and clustering
problems, is that easier integer programs (knap-
sack problems in the case of the cutting stock
problem) can be solved, and in addition, the re-
sulting master problem is a better linear program-
ming formulation. A discussion of this point as
well as the cutting stock and clustering examples
is given in Johnson.*” To summarize the major
point, the linear program with many columns is
actually an integer program: the solution needs to
be integer. In some cases, such as the cutting
stock problem, the linear program turns out to be
close to integer, and a rounding procedure seems

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

to work well enough. In other cases, such as
large-scale crew pairing, getting integer solutions
seems to be difficult. A major difficulty is that
usual branch-and-bound does not work well in a
column generation framework, and some branch-
ing rule must be found that can be employed in the
column generation procedure.

Future needs in mathematical programming

Mathematical programming is in a healthy state.
The combination of remarkable advances in al-
gorithms and computers has made it possible to
solve linear and integer programs of sizes and
with speeds that we did not even dream possible
ten years ago. Moreover, most of our computa-
tional work can be done on more accessible and
less expensive workstations. Codes are being
written that take advantage of vector processors,
parallel architectures, cache, and large extended
memory. These advances have brought about a
much greater use of mathematical programming
in distribution, the airline and finance industries,
and certain areas of manufacturing such as very
large-scale integrated (VLSI) design and printed
circuit board production.

To summarize, the main algorithmic advances of
the past five years have been:

» Interior point algorithms for linear program-
ming

» Improvements in efficiency of simplex meth-
ods, which were stimulated by the competition
with interior point algorithms

» Important computational advances in numeri-
cal linear algebra helping both of the above de-
velopments, but especially interior point meth-
ods

» Better formulations, preprocessing, and strong
cutting plane algorithms for 0-1 integer pro-
gramming

At the same time, implementation possibilities for
these advances became much more accessible
through the callable library philosophy of the
modern mathematical programming codes.

In linear and integer programming, three main fu-
ture requirements are:

1. To start interior point algorithms from good
solutions
2. To use decomposition and column generation

JOHNSON AND NEMHAUSER 89

for massive problems and to take advantage of
structure such as network flow subproblems

3. To adapt algorithms, particularly the simplex
algorithm, to take advantage of massively par-
allel computers

For integer programs, improvements in linear
programming, especially the first requirement
above, can help provide faster algorithms. De-
composition and column generation have even
more importance for integer programming in that,
in addition to the issue of solving linear programs
more quickly, column generation can lead to bet-
ter linear programming relaxations, making prob-
lems vastly more tractable. Use of parallel com-
puters should be easier and offers greater returns
in integer programming where large branch-and-
bound trees need to be explored and can be proc-
essed in parallel. In addition to the above three
requirements, we would also list one more for
integer programs: extend the success in solving
combinatorial §-1 problems to mixed-integer pro-
gramming. This requirement is especially impor-
tant for a wide variety of industrial problems such
as production scheduling.

Beyond linear and integer programming, the main
new area for codes and applications might well be
nonlinear programming. With barrier methods
coming from nonlinear programming to help solve
linear programs, it makes sense to ask when non-
linear programs might be solved in large-scale
commercial applications by other than linear ap-
proximations or by sequentially solving linear ap-
proximations. At least three large-scale compu-
tational codes are available and being used. The
oldest and best known is probably MINOS.® It
linearizes the nonlinear parts and uses a super-
basic linear programming approach. Computa-
tional efficiency depends on the number of super-
basic variables used, so this approach is generally
good for problems with mostly linear constraints
and objective function. A newer effort is Lance-
lot,* a code that uses a trust region approach and
second derivative information, without exactly
solving quadratic programs, in order to get a
search direction. It uses partial separability to ex-
ploit the nonlinear structure and has good con-
vergence properties.*® Recently, optimization
codes have been incorporated into spreadsheets,
and Lasdon’s GRG2 code*! is used in this way. It
is a reduced gradient code that handles memory
requirements efficiently.

90 JOHNSON AND NEMHAUSER

Although one hears it said, ‘‘problems are all non-
linear with discrete and stochastic elements,”
finding nonlinear programming applications on

Beyond linear and integer
programming, the main new area
for codes and applications might
well be nonlinear programming.

the scale that exists for linear, or even integer,
programming is not easy. Petroleum and chemical
companies have known about and understood
their nonlinearities for a long time, but the pre-
dominant methodology still seems to be sequen-
tial linear programming. With the success of lin-
ear programming barrier methods, an increasing
demand for nonlinear programming codes seems
inevitable. Because of the fact that there is not
one single methodology or one single structure for
problems, a library approach seems necessary,
perhaps with either automatic or interactive prob-
lem analysis. This need itself presents a consid-
erable challenge.

Incorporation of integer variables into nonlinear
programs is an even larger challenge. One area
fairly easy to address is convex quadratic pro-
grams with integer variables. Branch-and-bound
only needs a solver for the continuous relaxation,
and convex quadratic problems can be easily
solved at each node of a branch-and-bound tree.
The same remark applies to convex nonlinear
programs, where the objective is to minimize a
convex function over a convex region, except
that optimizing at each node may be inordinately
time-consuming. For general nonlinear pro-
grams, an integrality restriction introduces an-
other nonconvexity that greatly complicates an
already difficult problem.

When we try to introduce the stochastic element,
the most promising approach seems to be multi-
scenario stochastic programming. In order to
make effective use of this modeling approach, it
needs to be better understood in practice and
needs to be solvable either by decomposition, by

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

column generation, or directly by a linear pro-
gramming solver. Since the resulting linear pro-
grams are very large, introducing integer varia-
bles can quickly lead to an intractable problem.
The advantage to be gained is the ability to make
real-time decisions that will be more robust in
adapting to a variety of possible future outcomes
without knowing what might happen in the future.

Finally, we will say a few words about directions
that an optimization library, such as OSL, might
need to develop in order to remain in the forefront
of the rapid movement we see in optimization
software. There are essentially three important
areas: (1) performance, (2) function, and (3) us-
ability.

Performance is relatively straightforward, at least
in principal. What is needed is simple: speed, ro-
bustness, numerical stability, effective use of
hardware, and timely incorporation of algorith-
mic developments. Function is more difficult to
forecast, but our predictions are: decomposition,
stochastic, and nonlinear functionality. As func-
tion increases, some type of problem analyzer to
detect structure and take effective action will be-
come important.

Interactive problem analysis brings us to the third
point: usability. However, usability is much more
than interactive problem analysis. Everyone
wants something better, easier, more friendly,
etc., but it is not so easy to know exactly what the
right tools are. Mathematical Programming Sys-
tem Extended* Version 2 (MPSX.V2) has an in-
teractive front end that includes among other
things a picture and view capability that seems to
be very popular. However, MPSX.V2 is based on
menu-driven and graphic software not available
on workstations or personal computers, ma-
chines that are ideally suited to the modeling of
problems. We list some features that seem desir-
able for increased usability:

1. Links to the sources of problem data, princi-
pally relational databases and spreadsheets

2. Links to existing matrix generators and poten-
tial matrix generators based on database and
spreadsheet software

3. Links to other applications, simulations, fore-
casts, etc.

4. Graphical tools for viewing the matrix and data

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

5. Windows to view various aspects of the mod-
el: matrix generators, data, matrices, solutions

6. Example models that can be built on or put
together to form larger models

7. Assistance in tracking down solution anoma-
lies

8. Views of the model at aggregate as well as
detailed levels

There may well be others of equal importance.
What seems clear is that many users would like
some higher-level assistance. The subroutine
structure of OSL opens up flexible use, but there
is always the need for tools for modeling and
problem analysis even among sophisticated us-
ers. Less sophisticated users may be content with
tools to set up database connections to existing
models. Embedding optimization software in
spreadsheets may be the quickest way to provide
access for new users with small problems.

In conclusion, we can say that mathematical pro-
gramming is making good use of hardware to pro-
vide solutions rapidly. However, it needs to move
into the mainstream of problem-solving comput-
ing, and that means making it easier to use and
making solutions more meaningful.

Cited references

1. J. J. H. Forrest and J. A. Tomlin, “Implementing the
Simplex Method for the Optimization Subroutine Li-
brary,” IBM Systems Journal 31, No. 1, 11-25 (1992, this
issue).

2. J.J. H. Forrestand J. A. Tomlin, ‘“‘Implementing Interior
Point Linear Programming Methods in the Optimization
Subroutine Library,” IBM Systems Journal 31, No. 1,
26-38 (1992, this issue).

3. D. L. Jensen and A. J. King, *‘A Decomposition Method
for Quadratic Programming,” IBM Systems Journal 31,
No. 1, 39-48 (1992, this issue).

4. E.L.Johnson, M. M. Kostreva, and U. H. Suhl, “Solving
0-1 Integer Programming Problems Arising from Large
Scale Planning Models,” Operations Research 33, 803~
819 (1985).

5. T. G. Mairs, G. W. Wakefield, E. L. Johnson, and K.
Spielberg, “On a Production Allocation and Distribution
Problem,” Management Science 24, 1622-1630 (1978).

6. H. Markowitz, Portfolio Selection, Journal of Finance
VII (1952).

7. D. L. Jensen and A. J. King, “Frontier: A Graphical In-
terface for Portfolio Optimization in a Piecewise Linear-
Quadratic Risk Framework,” IBM Systems Journal 31,
No. 1, 62-70 (1992, this issue).

8. R. Anbil, R. Tanga, and E. L. Johnson, “A Global Ap-
proach to Crew-Pairing Optimization,” IBM Systems
Journal 31, No. 1, 71-78 (1992, this issue).

9. R. Anbil, E. Gelman, B. Patty, and R. Tanga, “Recent

JOHNSON AND NEMHAUSER 91

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Advances in Crew-Pairing Optimization at American Air-
lines,” Interfaces 21, No. 1, 62-74 (1991).

J. Abara, “Applying Integer Linear Programming to the
Fleet Assignment Problem,” Interfaces 19, 20-28 (1989).
D. Goldfarb and M. J. Todd, “Linear Programming,” in
Handbooks in Operations Research and Management Sci-
ence, Vol. 1, Optimization, G. L. Nemhauser et al., Ed-
itors, North-Holland, Amsterdam (1989), pp. 73-170.
V. Klee and G. J. Minty, “How Good Is the Simplex
Algorithm?,” in Inequalities III, O. Shisha, Editor, Ac-
ademic Press, New York (1972), pp. 159-175.

E. Tardos, *“A Strongly Polynomial Minimum Cost Cir-
culation Algorithm,” Combinatorica 5, 247-255 (1985).
K. H. Borgwardt, The Simplex Method: A Probabilistic
Analysis, Springer-Verlag, New York (1987).

L. G. Khachian, ‘A Polynomial Algorithm in Linear Pro-
gramming,” Soviet Mathematics Doklady 20, 191-194
(1979).

R. G. Bland, D. Goldfarb, and M. J. Todd, ‘“The Ellipsoid
Method: A Survey,” Operations Research 29, 1039-1091
(1983).

M. Grotschel, L. Lovasz, and A. Schrijver, Geometric
Algorithms and Combinatorial Optimization, Springer-
Verlag, New York (1988).

N. Karmarkar, “A New Polynomial Time Algorithm for
Linear Programming,” Combinatorica 4, 373-395 (1984).
R. Marsten, R. Subramanian, M. Saltzman, I. Lustig, and
D. Shanno, “Interior Point Methods for Linear Program-
ming: Just Call Newton, Lagrange, and Fiacco and Mc-
Cormick!” Interfaces 20, 105-116 (1990).

1. J. Lustig, R. E. Marsten, and D. F. Shanno, ‘“Compu-
tational Experience with a Primal-Dual Interior Point
Method for Linear Programming,” Linear Algebra and Its
Applications 152, 191-322 (1991).

E. R. Barnes, ‘A Variation of Karmarkar’s Algorithm for
Solving Linear Programming Problems,” Mathematical
Programming 36, 174-182 (1986).

P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and
M. H. Wright, “On Projected Newton Barrier Methods
for Linear Programming and an Equivalence to Kar-
markar’s Projective Method,” Mathematical Program-
ming 36, 183-209 (1986).

A. V. Fiacco and G. P. McCormick, Nonlinear Program-
ming: Sequential Unconstrained Minimization Tech-
niques, Wiley, New York (1968).

N. Megiddo, “Pathways to the Optimal Set in Linear Pro-
gramming,” in Progress in Mathematical Programming,
N. Megiddo, Editor, Springer-Verlag, New York (1989),
pp. 131-158.

K. Hoffman and M. W. Padberg, “LP-Based Combina-
torial Problem Solving,” Annals of Operations Research
4, 145-194 (1985).

G. L. Nemhauser and L. A. Wolsey, Integer and Com-
binatorial Optimization, Wiley, New York (1988).

G. L. Nemhauser and L. A. Wolsey, “Integer Program-
ming,” in Handbooks in Operations Research and Man-
agement Science, Vol. 1, Optimization, G. L. Nemhauser
et al., Editors, North-Holland, Amsterdam (1989), pp.
447-527.

E. M. L. Beale, “Branch and Bound Methods for Math-
ematical Programming Systems,” Annals of Discrete
Mathematics 5, 201-219 (1979).

A. H. Land and S. Powell, ‘“Computer Codes for Prob-
lems of Integer Programming,”” Annals of Discrete Math-
ematics 5, 221-269 (1979).

E. Balas and R. Martin, “Pivot and Complement: A Heu-

92 JOHNSON AND NEMHAUSER

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

ristic for 0-1 Programming,”” Management Science 26,
86-96 (1980).

H. P. Crowder, E. L. Johnson, and M. W. Padberg,
“Solving Large-Scale 0-1 Linear Programming Prob-
lems,” Operations Research 31, 803-834 (1983).

K. Hoffman and M. W. Padberg, “Techniques for Im-
proving the LP-Representation of 0-1 Linear Program-
ming Problems,”” ORSA Journal on Computing 3, 121-134
(1991).

G. B. Dantzig and P. Wolfe, ‘““Decomposition Principle for
Linear Programs,” Operations Research 8, 101-111
(1960).

C. Barnhart, E. L. Johnson, R. Anbil, and L. Hatay, A
Column Generation Technique for the Long Haul Crew
Assignment Problem, COC-91-01, Industrial and Systems
Engineering, Georgia Institute of Technology, Atlanta,
GA (1991).

P. C. Gilmore and R. E. Gomory, *“A Linear Program-
ming Approach to the Cutting Stock Problem—Part 1,”
Operations Research 9, 849-859 (1961).

E. L. Johnson, A. Mehrotra, and G. L. Nemhauser, Min-
Cut Clustering, COC-91-10, Industrial and Systems En-
gineering, Georgia Institute of Technology, Atlanta, GA
(1991).

E. L. Johnson, ‘“Modeling and Strong Linear Programs
for Mixed Integer Programming,” in Algorithms and
Model Formulation in Mathematical Programming,
S. W. Wallace, Editor, Springer-Verlag, New York
(1989), pp. 1-43.

B. A. Murtagh and M. A. Saunder, MINOS 5.1 User’s
Guide, Technical Report SOL83-20R, Department of Op-
erations Research, Stanford University, Stanford, CA
(1987).

A. R. Conn, N. L. M. Gould, and Ph. L. Toint, “An
Introduction to the Structure of Large Scale Nonlinear
Optimization Problems and the Lancelot Project,” in
Computing Methods in Applied Sciences and Engineer-
ing, R. Glowinski and A. Lichnewsky, Editors, SIAM,
Philadelphia (1990), pp. 42-54.

A. R. Conn, N. L. M. Gould, and Ph. L. Toint, “A Glo-
bally Convergent Augmented Lagrangian Algorithm for
Optimization with General Constraints and Simple
Bounds,” SIAM Journal on Numerical Analysis 28, 545—
572 (1991).

L. Lasdon and S. Smith, “Solving Large, Sparse Non-
Linear Programs Using GRG,” ORSA Journal on Com-
puting, to appear.

Mathematical Programming System Extended/370, Gen-
eral Information Manual, IBM Corporation; available
through IBM branch offices.

Accepted for publication September 25, 1991.

Ellis L. Johnson IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598-0218. Dr. Johnson is an IBM Fellow in mathematical
programming. He is also the Coca-Cola Professor of Industrial
and Systems Engineering and Co-director of the Computa-
tional Optimization Center at Georgia Institute of Technol-
ogy. Currently working in the area of mathematical program-
ming, he established and managed the Optimization Center in
the Mathematical Sciences Department at IBM Research from
1986 until 1990, during which time he oversaw the technical
aspects of the development of the Optimization Subroutine
Library (OSL). His work in integer programming has included

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

projects with General Motors and American Airlines, and he
contributed to the codes for MPSX.V2 MIP and OSL MIP.
The paper describing the methodology developed to solve the
General Motors problems received the Lanchester Prize from
ORSA/TIMS in 1983. In 1985, Dr. Johnson was awarded the
Dantzig Prize of the Mathematical Programming Society and
the Society of Industrial and Applied Mathematics for his
mathematical programming research, and in 1987 he was
elected to the National Academy of Engineering.

George L. Nemhauser School of Industrial and Systems En-
gineering, Georgia Institute of Technology, Atlanta, Georgia
30332-0205. Dr. Nemhauser is the Russell Chandler Professor
of Industrial and Systems Engineering and Co-director of the
Computational Optimization Center at the Georgia Institute of
Technology. He previously held faculty positions at Cornell
University and Johns Hopkins University and also served as
Research Director of the Center for Operations Research and
Econometrics of the University of Louvain. He received a
Ph.D. in operations research from Northwestern University in
1961, an M.S. in chemical engineering from Northwestern in
1959, and a B.Ch.E. from City College of New York in 1958.
Dr. Nemhauser’s research interests are in discrete optimiza-
tion. He has published many papers and three books in this
field, two of which received the Lanchester Prize of the Op-
erations Research Society of America. He is currently the
editor of Operations Research Letters and previously served
as editor of Operations Research. He has been a member of
the council and president of ORSA and has received ORSA’s
Kimball Prize for distinguished services. He is currently chair-
man of the Mathematical Programming Society and a member
of the National Academy of Engineering.

Reprint Order No. G321-5463.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

JOHNSON AND NEMHAUSER 93

