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Recent  advances in mathematical  programming 
methodology  have  included:  development  of 
interior  methods  competing with the  simplex 
method,  improved  simplex  codes,  vastly 
improved  performance  for  mixed-integer 
programming  using strong linear  programming 
formulations, and a renewed interest in 
decomposition. In addition,  use of  vector  and 
parallel  processing has  improved  performance 
and  influenced  algorithmic  developments. 
Application areas  have  been  expanding  from  the 
traditional  refinery  planning and distribution 
models to include  finance,  scheduling, 
manufacturing,  manpower  planning,  and  many 
others. We  see the  acceleration  of  better 
methods  and  improved  codes  moving  together 
with faster,  lower-cost,  and  more  interesting 
hardware into a  variety  of  application  areas, 
thereby  opening  up new  demands for greater 
function of optimization codes.  These  new 
functions might  include,  for  example,  more 
powerful  nonlinear  codes,  decomposition 
techniques  taking  advantage  of  network  and 
other  problem-dependent  structures,  and  mixed- 
integer  capability in quadratic and  general 
nonlinear  problems.  Stochastic  scenario 
programming  and  multitime-period  problems  are 
becoming  solvable  and  open up applications and 
algorithmic challenges.  The  ISM  Optimization 
Subroutine  Library has  helped to accelerate 
these  changes  but will have to continue to 
change  and  expand in ways  that  are  touched 
upon in this paper. 

L inear programming grew out of work begun 
during the 1930s: in transportation  problems 

by Kantorovich, game theory by Morgenstern 
and Von Neumann,  and  input-output models by 
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Leontief. In the  late 1940s, Dantzig defined the 
general model and  proposed the simplex method 
for  its  solution.  In  the 1950s codes  were  devel- 
oped  at  several  places, including the  Rand  Cor- 
poration  and  the U.S. National  Bureau of Stan- 
dards. In the 1960s several  commercial  codes 
were  developed, mainly for oil companies,  and in 
some cases  were  even  written by oil companies. 
Linear programming was  developed  and  has 
grown in parallel with computers.  The  business of 
developing and selling linear programming codes 
has been a commercial success  for 40 years  and 
has  driven  hardware  sales, a5 well. Application 
areas  have  become  more  diverse  and  today in- 
clude  transportation,  distribution,  manufactur- 
ing, scheduling, finance,  and many others.  Its im- 
portance  can be seen  from  the  fact  that  a  Nobel 
Prize in economics  was given to L. V. Kantor- 
ovich and T. C. Koopmans  for  work  in  linear  pro- 
gramming. 

Mathematical  programming refers to  that  part of 
mathematical optimization  concerned with opti- 
mizing some  objective  function  subject  to  con- 
straints (maximizing profit or minimizing cost,  for 
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example). The word  “program”  or  “program- 
ming” (as in the  term  linear  program),  came from 
the use of the  word in the 1940s as a synonym  for 
planning or scheduling and  does not refer to com- 
puter programming-although mathematical pro- 
gramming growth  has paralleled growth in the 
use of computers. A mathematical programming 
problem is a Zinear program (LP) when the objec- 
tive  function is linear  and the only constraints  are 
linear  equations  and  inequalities. A standard form 
for  linear  programs is linear  equations in nonneg- 
ative  variables,  i.e., A x  = b ,  x 2 0. Quadratic 
programming usually means a linearly con- 
strained  problem with a convex,  quadratic  objec- 
tive,  whereas nonlinear  programming is used to 
cover  any  problem having linear  or nonlinear con- 
straints  or objective  function. Integer  programs 
are typically linear  programs with the additional 
constraint  that  some or all  of the  variables of the 
problem must  take  on  integer  values. Mixed-in- 
teger  programs (MIPS) have  some integer varia- 
bles and  some  variables not constrained  to be in- 
teger,  sometimes called continuous  variables. 
Mixed 0-1 program refers  to  a mixed-integer pro- 
gram in which the integer variables  are addition- 
ally constrained  to only take on values of either 
zero  or  one.  “Pure” in place of “mixed”  denotes 
problems in which there  are only integer varia- 
bles.  The  most  important  class of integer pro- 
gramming problems is the mixed 0- 1 problem,  and 
the 0-1 variables typically represent  choice vari- 
ables;  i.e.,  some  activity is either  done  or not 
done. 

The easiest of these  problems to solve are linear 
programs,  and  the simplex method is the classical 
method.  Recently,  interior point algorithms have 
begun to compete with the simplex method.  In 
practice,  problems with tens of thousands of 
equations in hundreds of thousands of variables 
can  be  solved in reasonable  times,  say  one or two 
hours  on  a mainframe or powerful workstation. 
Quadratic  programs, of the  convex  type  for min- 
imization, are also fairly easy  to  solve. Mixed- 
integer  programs  can  take  much  longer,  and run- 
ning times are much more variable depending  on 
problem type,  formulations,  and efficiency of 
codes.  In  practice,  branch-and-bound is the 
method  employed. 

The nonlinear  area is also difficult in general,  and 
one  where specialized codes  have  been devel- 
oped  for  certain  classes of problems. Commercial 
codes  have  tended  to avoid nonlinear program- 

80 JOHNSON AND NEMHAUSER 

ming because of the lack of robust,  general-pur- 
pose methodology. In  practice,  linear  approxima- 
tions are  frequently  employed,  sometimes in a 
sequential  manner in order  to  at  least obtain  a 
local optimum. 

In  the  next  section,  we  summarize  several appli- 
cation  areas  that  have  motivated the development 
of mathematical programming methodology and 
computer  codes.  In  turn,  recent  advances in 
methodology and  improvements in codes  have 
opened  up new possibilities for solving some of 
these  problems. We discuss  the  types of mathe- 
matical programs involved in each  application 
area. 

In succeeding sections  we first present a very 
brief summary of recent  advances in linear  pro- 
gramming. We then  present  the methodology be- 
hind the  strong  linear programming formulations 
of mixed-integer programs.  These  recent  ad- 
vances in MIP methodology have yielded very im- 
pressive  computational  results.  Finally,  we dis- 
cuss  recent  developments in decomposition  and 
column generation  that are important  for solving 
large-scale LPS and MIPS. 

We have  chosen  to emphasize mixed-integer pro- 
gramming and column generation  for  three  rea- 
sons.  The first is that in this  issue,  linear  pro- 
gramming is covered in great  detail by Forrest 
and  Tomlin, and quadratic programming is pre- 
sented by Jensen  and  King.3  The  second is that 
MIP and column generation are  our  areas of spe- 
cialization and  current  interest.  Finally,  we be- 
lieve that  some of the  most significant current  and 
future  applications lie  in this  area. 

Application areas 

The  oldest  extensively used large-scale applica- 
tion is found in the  petroleum  industry  for blend- 
ing crude oils in refinery operations to produce a 
desired mix  of  final products.  This  application is 
widespread  and  important  enough  that virtually 
every oil company  has  some  linear programming 
model in use.  The  problems typically have  some 
nonlinear component,  and  some  type of linear  ap- 
proximations are  used.  One of the techniques  em- 
ployed is sequentially solving linear  programs, 
and another is piecewise linear  functions. Also, 
distribution  problems are sometimes  incorpo- 
rated  into  the model or  are solved  separately. 
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In general, distribution problems are widespread. 
In some examples, production planning is incorpo- 
rated into  the model. The production-distribution 
model at General Motors4 includes a mixed-integer 
model for planning changeovers in production to- 
gether with an aggregated distribution model for 

The finance area  is one where 
there  are  great advantages to 
using optimization software. 

shipping the  cars produced. The 0-1 variables in the 
mixed-integer model are choice variables having to 
do with changeovers. The problem, generally 
speaking, is that demand patterns change across the 
country,  and production must change to meet de- 
mand. The optimization problem determines how 
to meet demand given current production capacity, 
costs of changeovers, and shipping costs. 

Another widely used model is multiproduct plan- 
ning with single-sourcing restrictions at ware- 
houses or distribution  centers  for  shipments  to 
customers.  In this  model, 0-1 decision variables 
are used  to’decide which warehouse will supply a 
given customer.  The  example of using this model 
at Frito-Lay’  was  an  early indication of the com- 
putational  advantage to  be obtained by reformu- 
lation to give a  stronger  linear programming re- 
laxation. 

Distribution  problems  without  multiproduct sin- 
gle-sourcing and  without  any additional con- 
straints  result in linear  programs  that are network 
flow problems.  A  network flow problem is a linear 
program in which every variable is a shipping 
variable from the node of origin to a  destination 
node. The important  fact  about  network flow 
problems is that  they  can  be solved by specialized 
simplex codes much faster  than by using a  general 
linear programming code. In network flow prob- 
lems with additional  constraints,  decomposition 
methods  can  take  advantage of the  network flow 
structure by solving subproblems  more quickly as 
network flow problems. 
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The finance area is one where  there are great  ad- 
vantages to using optimization  software,  and as 
faster,  easier-to-use  software  becomes  available, 
the usage could increase  dramatically.  The clas- 
sical work in this  area is the  Markowitz model 
for portfolio selection.  Markowitz6  developed a 
model for balancing risk and  return in selecting 
investments. The model leads to a convex  qua- 
dratic problem in which the  quadratic  part  is  the 
matrix of covariances of the  returns  from  the  var- 
ious investments. If risk is  ignored, it is best  to put 
all of the available money in the investment with 
highest expected  return,  provided that  the only 
constraint is a budget constraint.  What  the Mar- 
kowitz model tries  to do  as  an alternative  is to 
keep  expected  return high, but diversify invest- 
ments by looking for  the  ones  that  move  counter 
to  each  other or at  least  independently of each 
other.  The resulting diversified portfolio is less 
likely to have major deviations  from the  expected 
return.  Recently,  there  has  been  activity to ex- 
tend  the model to multitime periods  and multi- 
scenarios’ in order  to  take  into  account  dynamic 
aspects of the problem and  make the solutions 
more robust in responding to various  possible 
market  movements. 

Another finance model uses liability matching  for 
investing money in fixed-income securities  such 
as high-quality bonds to  generate a revenue 
stream  over time that  meets  scheduled liabilities. 
This model can  be used to invest  money  gener- 
ated from a bond issue in order  to meet  scheduled 
construction costs, while generating as much rev- 
enue as is safely possible  from the  extra money 
until it is needed.  This model leads  to a  linear, 
rather  than  quadratic,  program  since  the  safety 
factors  are generally included as constraints. 

Optimization models have  been in use in energy 
planning for many years;  examples  include mod- 
els involving crude oil allocation,  power  genera- 
tion planning, and  coal  allocation.  Most of the 
problems are linear  programs with integer  restric- 
tions in some  models.  Large  problems may be 
needed,  and solving them  can benefit from vastly 
reduced running times using new software  and 
hardware. 

Recent work in the airline industry  has  received 
much attention.  Crew planning*.9 is  an  active 
area. Until recently, all codes  used a suboptimi- 
zation approach,  and only recently  and  only in 
some codes  was  any  linear or integer  program- 
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ming utilized, and  then only for  subproblems.  The 
power to be gained from a global approach has 
only been possible to realize as a  result of better 
linear programming codes  to solve the  diacult 
set-partitioning linear programs. 

Another airline application of mathematical pro- 
gramming is fleet assignment. '' The word "fleet" 
denotes  a  type of plane,  such as a Boeing 747, and 
the fleet assignment problem is to assign the fleets 
to flight legs in such  a way that profit is maximized 
and  the planes can  be efficiently scheduled and 
maintained. This problem must  be solved before 
crew planning but  after scheduling flight  legs or 
routes.  Once  the fleets have been assigned,  the 
individual planes must be  routed and mainte- 
nance  scheduled.  Then  the  crew pairings can  be 
formed as part of the crew-pairing optimization. 

This brief summary of major application areas il- 
lustrates  the diversity and importance of mathe- 
matical programming models. We  now turn to 
computational  advances making such models 
more  tractable. 

Linear  programming 

Until recently,  the algorithms used in commercial 
mathematical programming systems had hardly 
changed from the original systems developed in 
the  late 1950s and in the 1960s. The two basic 
algorithms-the simplex method for linear pro- 
grams and branch-and-bound for mixed-integer 
and piecewise linear programs, solved by the sim- 
plex method and  partial enumeration-remained 
the mainstays. Although we still rely on  the sim- 
plex method and  branch-and-bound, in the  last 
five years major advances  have  taken place in the 
computational  aspects of the simplex method, 
and  substantial  progress  has been made in avoid- 
ing branching rather  than  just coping with it effi- 
ciently.  In  addition,  interior point methods now 
offer serious competition to simplex methods. 

Simplex  methods. A  paper by Forrest  and Tomlin 
in this  issue'  presents  recent computational ad- 
vances,  and  one by Goldfarb and Todd" found 
elsewhere  provides an in-depth survey. We  will 
only discuss  theoretical  results on the running 
time of the simplex method. In the  worst  case, it 
can perform quite poorly. Klee and  Minty'* 
present  a family of problems whose feasible re- 
gion is a  distorted  hypercube  and  for which 
choosing the variable with greatest  reduced profit 
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to  enter  the basis causes  the simplex algorithm to 
visit all of the  vertices of the  transformed  hyper- 
cube.  These negative results  have  been  extended 
to other  variants of the simplex algorithm and to 
some special cases of linear  programs, including 
network flow problems. However, it is not known 
whether  there  exists  some  variant of the simplex 
algorithm that  runs in polynomial time for general 
linear programs,  but  such polynomial-time vari- 
ants  for network flow problems have been ob- 
tained. l 3  

On the positive side,  the  expected  behavior of the 
simplex algorithm is quite  good.  Under various 
probabilistic assumptions, it has  been shown that 
the  average number of iterations is bounded by a 
low-degree polynomial in rn and n.  l4 

Ellipsoid  algorithms. Khachian15 showed that  an 
algorithm developed for nonlinear programming 
could be adapted to linear programming with a 
polynomial time bound on its running time. This 
result was remarkable  since  the  existence of a 
polynomial time algorithm for  linear program- 
ming was then considered to  be  one of the  most 
important unsolved problems in computational 
complexity. Its  announcement stimulated a tidal 
wave of research  and  papers, which ended dis- 
appointingly with the conclusion that  the ellipsoid 
method was a  total failure in practice  (see Bland 
et  al. l6 for  a  survey).  The poor performance  re- 
sulted because  the number of iterations  is 
bounded by a polynomial that involves the loga- 
rithm of numerical coefficients, and  the  actual 
number of iterations  frequently  is  close to  the 
bound. Nevertheless,  the ellipsoid algorithm has 
proved to be a  very  important tool for proving 
theorems  about polynomiality in combinatorial 
optimization, l7 since it is capable of dealing with 
an exponential number of structured  constraints. 

The  essential idea of the ellipsoid algorithm is 
very simple and  most  easy to describe geometri- 
cally for  a problem of determining whether  a  set 
of linear inequalities Ax 5. b has  a feasible solu- 
tion,  i.e., given P = { x  E R ": Ax I b} ,  deter- 
mine whether P is nonempty. We assume  for sim- 
plicity that if P is nonempty,  then 

1. P is bounded and  therefore  is  contained in a 
hypersphere S, of radius R centered  at x O ,  and 
R and x' are given. 
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2. P is full-dimensional and  therefore  contains a 
hypersphere S, of radius r centered  at xo, and 
r is given. 

Now  let E o  = S , .  To find a point in P or to  show 
that none  exists,  the algorithm produces a se- 
quence of ellipsoids { E k }  of shrinking volume 
such  that  each ellipsoid contains P .  At  iteration k ,  
we  see if x k ,  the  center of E k  , is contained in P .  
This  can  be  done simply by checking all of the 
inequalities  by  substitution.  Now if all of the in- 
equalities are satisfied, the problem is solved 
since x k  E P .  If not, a violated inequality aikx I 
b ,  is identified. Then P is contained in the half- 
ellipsoid obtained by intersecting E with the in- 
equality a’% I ai, x k .  The ellipsoid E k + ’ ,  which 
can  be  approximated with sufficient accuracy in 
polynomial time,  contains  the half-ellipsoid and 
thus  also  contains P. The important  result of this 
construction is that 

vol ( E ~ + ~ ) / v o ~  ( E ~ )  I e -ZO 

This  shrinkage  rate  is sufficiently big to guarantee 
that  after a number of iterations  proportional  to n 
and log (vol (SJ), the volume of the resulting 
ellipsoid is  less  than  the volume of S,, in which 
case  the problem must be infeasible. 

The ellipsoid algorithm described  above can be 
extended  to handle  optimization by adding objec- 
tive  function  cuts. In particular,  once a feasible 
solution xo has  been  found,  we  add  the  constraint 
cx > cxo  and  continue.  Now  the  procedure will 
terminate with an indication of infeasibility after 
an optimal solution has  been  found.  But  this im- 
plies that  the  worst-case running time is almost 
always  achieved, which explains  the  poor perfor- 
mance in practice. 

Finally, it is  important to realize  that  the ellipsoid 
algorithm only  uses  the  constraints to  test the  fea- 
sibility of the  centers of some ellipsoids. There- 
fore, if the problem of determining whether  the 
point is feasible  can  be  decided by some  oracle, 
an explicit representation of the  constraints may 
not  be  necessary.  This  is  very  important in com- 
binatorial  optimization  where we consider linear 
programs with an exponential  number of con- 
straints  and  make  use of the  theorem (which is a 
consequence of the ellipsoid algorithm) that  says: 
for a family of polyhedra,  the separation problem 
of testing the feasibility of a point  and finding a 

1 
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violated inequality if the  point is not  feasible  can 
be solved in polynomial time if and  only if for  any 
objective  function  the  linear programming opti- 
mization can  be solved in polynomial time. 

Interior  point  methods. The computational  disap- 
pointment with ellipsoid algorithms  was  not to  be 
repeated with the next  fundamental  development 
in linear programming-the emergence of interior 
point methods. l8 In  contrast  to  the ellipsoid al- 
gorithm,  interior  point  methods  have  already 
demonstrated  their  computational  power as  an al- 
ternative  to  the simplex method in solving large 
linear  programs. It  is  an  extremely  active  area of 
research, including algorithm development  and 
implementation. The developments  from 1984 to 
1989 and  their  antecedents  are carefully traced in 
the  Goldfarb  and  Todd  survey. l 1  Marsten et al. l9 

provide a status  report  on  computational  devel- 
opments  and  results.  Lustig et a1.” give compu- 
tational  results  for the  code OBI, which at this 
time is generally considered to  be  the  best imple- 
mentation of an interior point method,  and  com- 
pare OBI to a widely used simplex code.  Forrest 
and Tomlin’ present  a  survey  that  emphasizes 
primal-dual interior point methods  and  their IBM 
Optimization Subroutine  Library (OSL) imple- 
mentation. 

As suggested by the name,  the  basic  interior  point 
method begins with and  maintains  feasible  solu- 
tions throughout in which all constraints  are  sat- 
isfied with strict  inequality. It requires a special 
end game strategy  to find an optimal  vertex if such 
a solution is required. The idea of moving in a 
good direction  through the interior of the feasible 
set is old. The problem with such  an  approach is 
what to  do when a boundary is encountered. 

Given a  feasible point x in the  interior of P ,  the 
basic  idea of Karmarkar’s algorithm is a projec- 
tive  transformation that  maps the feasible region 
into itself and x into  the  center of the transformed 
region. The advantage of the  transformation is 
that x is now far from  the  boundaries of  all  of the 
constraints,  and  therefore a nontrivial step in a 
good direction is possible. Hence,  rather  than  try- 
ing to  determine  the  active  constraints in an  op- 
timal solution as in a simplex method,  an  interior 
method  avoids  altogether  the  problem of deter- 
mining the active  constraints. As a simpler  alter- 
native to projective  transformations,  Barnesz1 
proposed affine transformations which gave  rise 
to  the primal and  dual affine algorithms. 
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To prove polynomiality, Karmarkar introduced a 
potentialfunction to measure  progress toward the 
solution. This  function, which imposes a logarith- 
mic penalty on violating the nonnegativity con- 
straints, closely resembles the logarithmic barrier 
function  for turning a nonlinear program with lin- 
ear inequality constraints  into  a  sequence of un- 
constrained optimization problems. Gill et al. 22 

studied the relationship between  classic barrier 
algorithms, such as the SUMT algorithm of Fiacco 
and McCormick, 23 and  Karmarkar’s algorithm. 
In  particular  they show that  Karmarkar’s algo- 
rithm takes  a  step in the  same direction as a  bar- 
rier  method, with steps in a projected Newton 
direction for some value of the  barrier  parameter. 
This  connection led to  the path-following algo- 
rithms over  a  parameterized family  of logarithmic 
barrier  functions 24 and to  what  are now called the 
primal-dual interior point methods, which have 
produced  the  best  computational  results. 2,20 

At this writing, there is no definitive conclusion 
regarding the superiority of interior or simplex 
methods,  and it may very well be  the  case  that  the 
methods are incomparable. On one  hand,  a real 
virtue of the  interior  methods is the  constant num- 
ber,  or  very slow growth, of iterations as prob- 
lems grow larger.  Therefore,  these methods 
should be  better  for  very large problems. On the 
other  hand,  they  appear to have an even  greater 
need for  sparsity  than  the simplex method and do 
not naturally produce  basic optimal solutions. 
However,  the biggest current disadvantage of 
interior point methods is not being able to take 
advantage of good starting solutions, which is es- 
pecially disappointing for mixed-integer program- 
ming where  one solves a  sequence of linear pro- 
grams with slightly modified constraint  sets. 

Mixed-integer  programming 

We consider the linear mixed-integer  program (MIP) 

max {cx + hy : Ax + Gy I b,  

x r 0 and integer, y r 0} 

Here some or all of the variables are required to 
be  integer. In many models,  the integer variables 
are used to represent logical relationships and 
therefore are constrained to equal zero or  one. 
The MIP model is very robust in the  sense  that  an 
unusually wide variety of practical  problems, in- 
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cluding those with nonlinearities and  nonconvex- 
ities, can  be  represented by MIPS. But until re- 
cently,  one could not count  on solving MIPS with 
a few hundred integer variables to optimality. 
That situation is rapidly changing, and  the  capa- 
bility of solving MIPS with thousands of variables 
has arrived. We present  the  basic  ideas of these 
advances.  For more information see Hoffman and 
Padberg25  and  Nemhauser  and  Wolsey.26,27 

The linear programming relaxation of MIP, de- 
noted by LPR, is  the linear program obtained from 
MIP by omitting all of the integrality requirements. 
The following elementary  connections  between 
LPR and MIP are used in the algorithms given be- 
low for solving MIP. 

1. If LPR is feasible,  its optimal value z (LPR) 2 z 

2. If LPR is infeasible, so is MIP. 
3.  If an optimal solution to LPR is also  a feasible 

solution to MIP (satisfies the integrality con- 
straints),  that solution is also  an optimal solu- 
tion to MIP. 

(MIP), the optimal value of MIP. 

Branch-and-bound. Branch-and-bound with lin- 
ear programming relaxations is the classical ap- 
proach  to solving MIP and  forms  the basis for all 
of the general-purpose codes.  See  BealeZ8  and 
Land and for  a  survey of the algorithms 
and software from the 1970s, which have begun to 
be replaced only recently. 

The  basic idea is very simple. We first solve LPR. 
If  it is infeasible or has an optimal integral solu- 
tion, we have  also solved MIP. Otherwise,  some 
variable in the optimal solution to LPR is frac- 
tional. We pick such  a variable and  branch by 
creating two MIP subproblems: In  one  subprob- 
lem the variable is constrained to be  equal to  or 
less than  its  round down (equal to zero in the  case 
of a binary variable); in the  second problem the 
variable is constrained to be  equal to  or greater 
than its round up (equal to one in the  case of a 
binary variable). Now the optimal solution to MIP 
is obtained by solving the  two  subproblems  and 
taking the  better of the  two  solutions. This proc- 
ess is executed recursively so that  there is a  dan- 
ger of having to solve  a number of MIP subprob- 
lems that grows exponentially with the number of 
integer variables. But the  degree of enumeration 
is controlled by two  factors: 
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, 1.  If LPR (for a subproblem) is infeasible or has an 
optimal integer  solution, MIP is solved for  the 
subproblem,  and  no  branching is necessary. 

2 .  If LPR (for a subproblem)  has an optimal inte- 
ger  solution,  that  solution is feasible to  the 
original MIP, and  therefore gives a lower bound 
on  the optimal value of MIP. We keep the best 
lower  bound z on the  optimal  value  and  update 
it whenever an improved  feasible solution is 
found.  Then if for  some  subproblem z (LPR) 5 

tion to MIP than  what is already  known,  and  no 
branching is necessary.  This is known asprun- 

the number of subproblems manageable where 
possible. 

B - z ,  that  subproblem  cannot  have a better solu- 

1 ing by bounds  and is responsible  for keeping 

The basic  branch-and-bound algorithm needs to 
be  elaborated  by specifying details  such as which 

fractional  variable should be the  one  on which to 
make  the  decision  to  branch. One way to view the 
subproblem  list is as a tree in which each sub- 
problem corresponds  to a  node  and in which the 
immediate  descendants of a node (its children) 
correspond to  the subproblems  derived  from  it. In 
this  setting, a natural way to  select  subproblems 
is by  depth first  search plus backtracking.  This 
means  that if a node  has  children,  the  next  node 
selected is one of them.  Otherwise  we  backtrack 
by following the unique path from the  current 
node  back to  the root  node (original problem) un- 
til we find a node (if any) with an unprocessed 
child. 

D subproblem should be  processed  next  and which 

D 

The advantages of depth first search  are: 

D 
1 .  Solving LPR for a child, given the optimal so- 

lution  for a parent,  just involves changing a 
single bound,  and  therefore, reoptimization by 
the dual simplex method should be very  fast. 

2 .  It helps in finding feasible  solutions  since 
nodes  deep in the  tree  have  more variables 
constrained to be integral. 

The second  advantage  disappears  once  a good 
feasible  solution  has  been  obtained.  Then  other 
strategies  such as choosing  the  node with the  best 
bound  become  more  attractive. B 

Variable selection is based  on  user priorities re- 
flecting the  importance of the  integer variables 
and logical relations among them,  on  the likeli- 
hood of getting an integer  solution,  and on esti- 
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mates of the  decrease in the optimal value by forc- 
ing the variable to round  up or round  down  its 
current value. 

Finally,  we  note  that  branching on simple con- 
straints  such as  the clique or sos constraint 

c x j = l  
js Q 

can  be  advantageous in producing  a  more equi- 
table division of the  solution  space.  This  is  done 
by picking a subset Q of the variables in the clique 
constraint  and  then requiring EjsQ xj = 0 along 
one  branch  and Zjen x j  = 0 along the  other.  Note 
that if the  subset is of size 1, this  branching rule 
is exactly  the  rule given above  for  branching  on 
0-1 variables. 

The  success of branch-and-bound in solving ei- 
ther large or difficult problems or  both  types de- 
pends heavily on how closely LPR approximates 
MIP and  on finding a good feasible  solution 
quickly. If the  linear  program  approximation is 
poor,  a  very large number of subproblems will 
have to  be solved  regardless of the strategies that 
are used for  node  and  variable  selection. How- 
ever, if the approximation is perfect in the  sense 
of  giving an optimal solution in which all of the 
integrality constraints are satisfied, it  will  suffice 
to solve only one  linear  program. 

The  developments in the 1980s have  focused 
largely on improving linear programming approx- 
imations with some  work  done  on the feasibility 
problem, see,  e.g.,  Balas  and  Martin. 30 These  ap- 
proaches are discussed below under modeling, 
preprocessing,  cut  generation,  and  column gen- 
eration. Modeling refers to  the initial formulation; 
preprocessing  refers to  actions  taken before solv- 
ing an LP; cut  and column generation  refers to 
improving the LP relaxation by adding additional 
rows or columns.  However,  this classification is 
somewhat  arbitrary  since  some  improvements 
left out of the initial model may be picked up in 
preprocessing  and  some  improvement of the LP 
not done in preprocessing may be  done  in  the 
cutting  phase of the algorithm. 

Modeling  principles:  Good  formulations. Many 
correct  formulations generally exist  for a MIP 
problem.  In  general,  we are  concerned much  less 
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with the  size of the formulation than with the 
quality of its LP approximation. 

For example,  there is a classical lot-sizing model 
which has  a formulation with variables that give 
the  amount  produced in each  period, and another 
in which there are variables that give the  produc- 
tion in period t designated for  sale in period 
t + k .  The  number of variables in the  second  for- 
mulation is the  square of the number in the first. 
But the  second formulation yields a network flow 
problem, which implies that  its LP relaxation has 
an optimal integral solution,  and  for this reason  is 
the  better formulation. 

For  the traveling salesman problem,  there is a 
formulation with a number of constraints  propor- 
tional to  the number of edges and  a second one 
with a number of constraints  that grows expo- 
nentially with the number of edges. The second 
one,  however, is far  superior  because  its linear 
programming relaxation is provably better. Of 
course, we cannot directly solve a linear program 
whose number of constraints is exponential in the 
size of the  problem.  Instead, as we discuss  under 
cut  generation,  the  constraints  are  generated  se- 
quentially as we need them to achieve feasibility. 

Similarly, for  a partitioning problem, there is a 
formulation with a 0-1 variable for  each element- 
subset pair that specifies whether  the element be- 
longs to  the  subset. But this formulation is inferior 
with respect to its  linear programming relaxation 
to  another  one in which there is an exponential 
number of 0-1 variables,  one  for  each feasible 
subset of elements. 

Recently some general concepts  have evolved for 
obtaining good formulations. 

Disaggregation is the idea of separating  one con- 
straint  into many without changing the meaning of 
the MIP model but improving the LP relaxation. 
Suppose we have rn 0-1 variables xi, j = 1 - * , 
r n ,  each of which must be  zero unless another 0-1 
variable x, = 1. This relationship can be modeled 
with only one  constraint, namely 

xl + +x, 5 m x ,  

Alternatively, we can  use rn constraints 

x j 5 x O f o r j =  l . - . , m  
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For 0-1 variables both  sets of constraints say the 
same thing. But when x, is  fractional,  the  second 
set of constraints  imposes much more  on  the xjs  
and therefore gives the  better  formulation.  Note 
that although disaggregation creates additional 
constraints, it is not likely to make the LP much 
harder to solve since  the number of nonzeros in 
the  constraint matrix only increases slightly. 

Now suppose  our model contains  the variable up- 
per-bound constraint 

y s M x  

where x is a 0-1 variable that  appears only in this 
constraint and in the objective function with a 
negative coefficient -f, and y is  a  continuous 
variable with an  upper bound of M .  The  con- 
straint  says x = 0 implies y = 0, and if y > 0, we 
incur the fixed cost f. Now in the LP relaxation, 
if 0 < y < M ,  then 0 < x < 1. Therefore,  a good 
modeling principle is to make  the  upper  bound M 
as small as  possible. 

Preprocessing. (See  Crowder et al. 31 and Hoffman 
and Padberg.32) Given a model, we wish to im- 
prove it by tightening the LP relaxation, fixing 
variables, or, more generally, doing whatever we 
can  do quickly to make the problem easier  to 
solve. The line between good modeling and  pre- 
processing is fuzzy. A sophisticated  preprocessor 
should be able to recognize constraints  that need 
to be disaggregated and to tighten variable upper 
bounds. But we cannot  expect  the  software to 
produce  a formulation that is radically different 
from the  one it is given. However,  there  are  cer- 
tain operations  for which the  computer is better 
suited. 

Consider a single inequality of the form 

n 

a jx j  s b 
j =  1 

in which all  of the variables are binary. Without 
loss of generality, for this constraint in isolation, 
we can  assume  that ajs  are  positive  since if a j  < 
0, we complement the  corresponding variable by 
replacing x j  by 1 - x j .  Inequalities of this type 
are Called knapsack constraints,  and  a good deal 
of information can  be  extracted  from  them  rather 
painlessly. 
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The linear  programming  relaxation of a knapsack 
inequality can be  tightened by coeficient reduc- 
tion. Observe that 

n 

(a ,  - A ) x ,  + ujx j  5 b - A 
j = 2  

gets progressively  tighter as A increases from 0. 
Therefore, we  would  like to make A as large as 
possible  without  eliminating  any 0-1 solutions. 
Determining the largest  such A is a hard  problem, 
but  it is easy to find a feasible  value of A, e.g., 

The knapsack constraints yield  logical  relations 
among the variables. Suppose 

then 

Note that after reversing the complementation, 
we can obtain four types of constraints, namely 

The constraints (2) define a node-packing  prob- 
lem on a graph in  which there is a node  for each 
variable  and its complement,  edges  joining  com- 
plementary  nodes  and  pairs of nodes for which (1) 
is  satisfied. A node  packing is a subset of nodes 
such that no  pair in the set is joined by  an  edge. 
Now  let C be a subset of nodes of size  at  least 
three such that each pair in the set is joined by  an 
edge. C is  called a clique. The  edge constraints 
imply that no  more than one node  can  be  selected 
from a clique.  After  decomplementing the varia- 
bles we obtain the generalized clique constraint 

xj - xi 2 IC-1 - 1 
j € C -  j E C  

where C - = { j  E C : xi complemented}  and 
c+ = ctc-. 
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It is important to realize that the edges of the 
graph can come  from  different  knapsack con- 
straints of the original MIP. Thus, in  building 
clique constraints from the edges of the graph, we 
capture logical relations that depend on the in- 
teractions among the original constraints. For ex- 
ample,  one constraint may  yield x ,  + x 2  5 1 , 
another x 2  + x 3  5 1 ,  and a third x ,  + x 3  5 1 .  
Then together they  yield x I  + x 2  + x3 5 1 .  
Clique constraints can be  added to the original 
formulation or used as cutting  planes as explained 
below. 

Cut generation. We  now suppose that our original 
formulation of MIP contains too many constraints 
to include  all of them in the LP relaxation and that 
in  solving LPR some constraints have  been ig- 
nored. The constraints can be of two types. Type 
I constraints are needed for the formulation to be 
correct. If a type I constraint is violated, LPR can 
give  an  integral  optimal  solution that is infeasible. 
An example of type I constraints is the class of 
subtour  elimination  constraints (SEC) for the trav- 
eling  salesman  problem (TSP) of finding a mini- 
mum cost cycle that contains all the nodes of a 
graph.  They state the feasibility requirement that 
for every proper subset S of the nodes, there must 
be at least  two  edges  with  one  end in S and the 
other not  in S. However, since the number of 
these constraints is exponential in the size of the 
graph, it  is  not  possible to include  all of them 
when  solving  an LP relaxation. 

Type I1 constraints are used  only for the purpose 
of tightening the LP relaxation. An example of 
these are the cover constraints that are derived 
from  knapsack  inequalities. These constraints 
generalize the edge  inequalities  given above. Sup- 
pose C is a minimal set such that 

x a j > b  
j € C  

then C is  called a minimal cover and we have the 
cover inequality 

x j  5 IC1 - 1 
j €  C 

which  must  be  satisfied  by  all  feasible solutions. 

Now  we address the question:  Given a solution x’  
to LPR, does it  satisfy  all of the ignored con- 
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straints?  This  question is called the separation 
problem. We assume  that  there  are  too many con- 
straints  to  check by substitution.  Note  that if all 
of the ignored constraints  are  type I1 and  the LP 
solution satisfies the integrality requirements,  the 
answer  is  obviously  yes. 

To illustrate how separation  problems  can  be 
solved,  we will consider the SECs for  the TSP and 
the  cover inequalities for  knapsack  constraints. 
Given a solution x’ to  the LPR of TSP with some or 
all of the  subtour  constraints 

x , r 2  
iES, j @ S  

ignored, x satisfies all of them if and only if the 
minimum value of 

xij 
iES, j @ S  

is 2 2. But  this is the problem of finding a mini- 
mum cut  or maximum flow in a  graph with edge 
weights x i j  and  can  be  solved efficiently. If the 
minimum cut  has weight = 2 ,  all SECs are satis- 
fied; otherwise the  set S associated with the min- 
imum cut yields a most violated SEC. 

The situation with knapsack inequalities is not 
quite so nice since  the  separation problem is 
much  harder. Note  that  we  can  rewrite a cover 
inequality as 

(1 -xj)’ 1 
j € C  

Then given a  solution x to  the MIP, it satisfies all 
of the  cover inequalities if and only if 

is r 1. Since  this problem may be  too hard to 
solve  exactly,  we  can  use  a  heuristic  procedure  to 
attempt to find a feasible solution with cost  less 
than  one.  Such a solution yields a violated cover 
inequality. However, by not optimizing exactly, 
we may fail to find a violated cover inequality 
even if one exists.  This  situation is not a catas- 
trophe  for  type I1 constraints  since  they  are only 
needed  for improving the LP relaxation.  In  other 

words,  separation  for  type I1 constraints  involves 
a  delicate  balance  between the work  needed to 
find them  versus  the  help  they  provide.  More- 
over,  to  be useful they  must  be  “strong”  con- 
straints in the  sense of being facets of the  convex 
hull or  faces of  high dimension.  In  general,  cover 
inequalities are not  strong  enough  and  must  be 
lifted to inequalities of the  form 

x j +  a j x j s  IC1 - 1 
j € C  i Z C  

to be useful. We  will not  discuss lifting here other 
than  to  say  that it too  must  be  done  quickly,  and 
heuristic  procedures  are  frequently  used so long 
as they  guarantee  that the resulting inequality is 
valid. 

The difference between the SECS and  cover ine- 
qualities illustrates  another  point.  Cover inequal- 
ities can  be used whenever a problem has  one or 
more knapsack  inequalities.  Therefore,  they are 
useful for  general 0-1 problems. So it is reason- 
able  for  a  general-purpose code  to have a sepa- 
ration routine  for  cover  inequalities. In  contrast, 
SECs are  rather specific for TSPs and  related  prob- 
lems, so it is very unlikely that a general-purpose 
code would include a  separation  routine  for SECS. 
This  makes it imperative  for  optimization rou- 
tines to provide  user  interfaces  for  separation  rou- 
tines  and  other customizing capabilities. 

Decomposition  and  column  generation 

Large  linear  programs are almost  always  sparse, 
not only in terms of individual coefficients but 
also in that  an  overall  structure is present  that is 
also  sparse.  For example, multitime-period prob- 
lems have  linear  programs  for  each  time  period, 
together with a small number of linking variables 
representing  storage or shipping of goods  from an 
earlier time period to a  later time period. Multi- 
commodity flow problems, as  another  example, 
have many single commodity  network flow prob- 
lems linked by joint  capacity  constraints  on  some 
of the  arcs. Multiscenario  stochastic  programs 
have linking variables  representing  current  stage 
decision variables. These  variables enter into all 
subsequent  linear  programs for all outcomes of 
random  events in the model. 

Linear programming decomposition  work  goes 
back to  the Dantzig-Wolfe decomposition  meth- 
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od. 33 There  are by  now several  structures for de- 
composition methods.26  A description of avail- 
able  options in OSL release 2 is given by Forrest 

A major reason for using column 
generation  is  that  easier  integer 

programs  can be solved. 

and Tomlin. ' We focus  on Dantzig-Wolfe decom- 
position because it is closely related to column 
generation  methods  frequently used in combina- 
torial optimization. 

An example of a column generation method in 
combinatorial optimization is given  by the method 
for crew-pairing  optimization  in  Anbil et al. There, 
many columns are generated, and the linear pro- 
gram over them is solved. A  true column generation 
procedure does not generate large sets of columns 
but only a few that price out to  enter the linear 
programming basis. These columns are found  by 
solving another, smaller linear program  in the usual 
Dantzig-Wolfe decomposition. In other cases, they 
might be found by  solving shortest path problems, 
as in  multicommodity  flows, 34 or by  solving an in- 
teger programming problem, as in the cutting stock 
problem35 where the columns are solutions to easy 
integer programs, namely knapsack problems. A 
recent example of the latter approach for solving 
clustering problems is given  by Johnson et al. 36 OSL 
is  used to solve both the small integer programming 
problems and the master linear program over them. 

A major reason for using column generation, as 
done  for  cutting  stock problems and clustering 
problems,  is  that  easier integer programs (knap- 
sack problems in the  case of the cutting stock 
problem) can  be  solved,  and in addition,  the re- 
sulting master problem is a  better linear program- 
ming formulation. A discussion of this point as 
well as the cutting stock  and clustering examples 
is given in Johnson.37 To summarize the major 
point,  the linear program with many columns is 
actually an integer program: the solution needs to 
be integer. In some cases,  such  as  the cutting 
stock  problem,  the  linear program turns  out  to  be 
close to integer, and a rounding procedure seems 
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to work well enough.  In  other  cases,  such as 
large-scale crew pairing, getting integer solutions 
seems to  be difficult. A major difficulty is  that 
usual branch-and-bound does  not work well in a 
column generation framework,  and  some  branch- 
ing rule must be found that  can  be employed in the 
column generation procedure. 

Future  needs  in  mathematical  programming 

Mathematical programming is in a healthy state. 
The combination of remarkable advances in al- 
gorithms and computers  has  made it possible to 
solve linear and integer programs of sizes  and 
with speeds  that we did not  even  dream possible 
ten  years ago. Moreover, most of our computa- 
tional work can  be  done  on more accessible  and 
less expensive  workstations.  Codes  are being 
written that  take  advantage of vector  processors, 
parallel architectures,  cache,  and large extended 
memory. These  advances  have brought about  a 
much greater  use of mathematical programming 
in distribution, the airline and finance industries, 
and certain  areas of manufacturing such as very 
large-scale integrated (VLSI) design and  printed 
circuit board  production. 

To summarize,  the main algorithmic advances of 
the  past five years  have been: 

Interior point algorithms for  linear program- 
ming 
Improvements in  efficiency  of simplex meth- 
ods, which were stimulated by the competition 
with interior point algorithms 
Important  computational  advances in numeri- 
cal linear algebra helping both of the  above  de- 
velopments, but especially interior point meth- 
ods 
Better  formulations,  preprocessing, and strong 
cutting plane algorithms for 0-1 integer pro- 
gramming 

At the  same  time, implementation possibilities for 
these  advances  became much more accessible 
through the callable library philosophy of the 
modern mathematical programming codes. 

In linear and integer programming, three main fu- 
ture requirements are: 

1. To start  interior point algorithms from good 

2. To use decomposition and column generation 
solutions 

JOHNSON AND NEMHAUSER 89 



for massive problems and to take advantage of 
structure  such  as  network flow subproblems 

3. To adapt  algorithms, particularly the simplex 
algorithm, to take  advantage of massively par- 
allel computers 

For integer programs, improvements in linear 
programming, especially the first requirement 
above,  can help provide faster algorithms. De- 
composition and column generation have  even 
more  importance  for  integer programming in that, 
in addition to  the  issue of solving linear programs 
more  quickly, column generation  can lead to bet- 
ter  linear programming relaxations, making prob- 
lems vastly more tractable.  Use of parallel com- 
puters should be  easier  and offers greater  returns 
in integer programming where large branch-and- 
bound  trees need to be explored and can  be proc- 
essed in parallel. In addition to the  above  three 
requirements, we would also list one more for 
integer programs: extend  the  success in solving 
combinatorial 0-1 problems to mixed-integer pro- 
gramming. This requirement is especially impor- 
tant  for  a wide variety of industrial problems such 
as production scheduling. 

Beyond linear  and integer programming, the main 
new area  for codes  and applications might  well be 
nonlinear programming. With barrier methods 
coming from nonlinear programming to help solve 
linear programs, it makes sense to ask when non- 
linear programs might be solved in large-scale 
commercial applications by other  than linear ap- 
proximations or by sequentially solving linear ap- 
proximations. At least  three large-scale compu- 
tational codes  are available and being used. The 
oldest and best known is probably MI NOS.^^ It 
linearizes the nonlinear parts and uses  a super- 
basic linear programming approach. Computa- 
tional efficiency depends on  the number of super- 
basic variables used, so this approach is generally 
good for problems with mostly linear constraints 
and objective function.  A newer effort is Lance- 
lot, 39 a  code  that  uses  a  trust region approach and 
second  derivative information, without exactly 
solving quadratic  programs, in order  to get a 
search  direction.  It  uses partial separability to ex- 
ploit the nonlinear structure and has good con- 
vergence properties. 40 Recently, optimization 
codes  have  been  incorporated  into  spreadsheets, 
and  Lasdon’s GRG2 code41 is used in this way. It 
is a  reduced gradient code  that handles memory 
requirements efficiently. 
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Although one  hears it said,  “problems  are all non- 
linear with discrete  and  stochastic  elements,” 
finding nonlinear programming applications on 

Beyond linear and integer 
programming,  the main  new  area 
for codes and  applications  might 
well  be  nonlinear  programming. 

the  scale  that  exists  for  linear, or even  integer, 
programming is not easy.  Petroleum  and chemical 
companies have known about  and  understood 
their nonlinearities for  a long time,  but  the  pre- 
dominant methodology still seems to be  sequen- 
tial linear programming. With the  success of lin- 
ear programming barrier  methods, an increasing 
demand for nonlinear programming codes  seems 
inevitable. Because of the  fact  that  there is not 
one single methodology or one single structure  for 
problems,  a library approach  seems  necessary, 
perhaps with either  automatic or interactive prob- 
lem analysis. This need itself presents  a consid- 
erable challenge. 

Incorporation of integer variables into nonlinear 
programs is an  even  larger challenge. One area 
fairly easy  to  address is convex  quadratic  pro- 
grams with integer variables. Branch-and-bound 
only needs  a  solver  for  the  continuous  relaxation, 
and convex  quadratic problems can  be easily 
solved at  each node of a branch-and-bound tree. 
The  same remark applies to  convex nonlinear 
programs,  where  the objective is to minimize a 
convex function over  a  convex region, except 
that optimizing at  each  node may be inordinately 
time-consuming. For general nonlinear pro- 
grams,  an integrality restriction  introduces  an- 
other nonconvexity that greatly complicates  an 
already difficult problem. 

When we try to introduce  the  stochastic  element, 
the most promising approach  seems to be multi- 
scenario  stochastic programming. In  order  to 
make effective use of this modeling approach, it 
needs to be  better  understood in practice  and 
needs to be solvable either by decomposition, by 
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B 
column generation, or directly by a linear pro- 
gramming solver. Since the resulting  linear pro- 
grams are very large, introducing integer varia- 
bles can quickly  lead to an intractable problem. 
The advantage to be  gained is the ability to make 
real-time decisions that will be  more robust in 
adapting to  a variety of possible future outcomes 
without  knowing  what  might happen in the future. 

B 
Finally, we  will  say a few  words about directions 
that an optimization library, such as OSL, might 
need to develop in order to remain  in the forefront 
of the rapid  movement  we see in  optimization 
software. There are essentially three important 
areas: (1) performance, (2) function, and (3) us- 
ability. 

Performance is  relatively straightforward, at least 
in  principal.  What  is needed is  simple: speed, ro- 
bustness, numerical stability, effective  use of 
hardware, and timely incorporation of algorith- 
mic developments. Function is  more  difficult to 
forecast, but our predictions are: decomposition, 
stochastic, and nonlinear functionality. As func- 
tion increases, some type of problem analyzer to 
detect structure and take effective action will be- 
come important. 

B 

1 Interactive problem analysis brings  us to the third 
point: usability. However, usability  is  much  more 
than interactive problem analysis. Everyone 
wants something better, easier, more friendly, 
etc., but  it  is  not so easy to know exactly what the 
right tools are. Mathematical  Programming Sys- 
tem Extended4* Version 2 (MPSX.V~) has an  in- 
teractive front end that includes  among other 
things a picture and view capability that seems to 
be very popular. However, MPSX.V2 is  based on 
menu-driven and graphic software not  available 
on workstations or personal computers, ma- 
chines that are ideally suited to the modeling of 
problems. We list  some features that seem desir- 
able for increased usability: 

b 

1. Links to the sources of problem data, princi- 

2. Links to existing  matrix generators and poten- 
tial matrix generators based on database and 
spreadsheet software 

3. Links to other applications, simulations, fore- 
casts,  etc. 

4. Graphical tools for viewing the matrix  and data 

1 pally relational databases and spreadsheets 

5 .  Windows to view various aspects of the mod- 
el:  matrix generators, data, matrices, solutions 

6. Example  models that can  be  built  on or put 
together to form larger models 

7. Assistance in tracking down solution anoma- 
lies 

8. Views of the model at aggregate as well as 
detailed levels 

There may  well  be others of equal importance. 
What seems clear is that many users would  like 
some  higher-level assistance. The subroutine 
structure of OSL opens up  flexible use, but there 
is  always the need for tools for modeling and 
problem analysis even among sophisticated us- 
ers. Less sophisticated users may  be content with 
tools to set up database connections to existing 
models.  Embedding optimization softwai-e  in 
spreadsheets may  be the quickest way to provide 
access for new users with  small problems. 

In conclusion, we  can say that mathematical pro- 
gramming is making  good use of hardware to pro- 
vide solutions rapidly. However, it needs to move 
into the mainstream of problem-solving comput- 
ing,  and that means  making  it easier to use and 
making solutions more  meaningful. 

Cited  references 

1. J. J. H. Forrest and J. A. Tomlin, “Implementing the 
Simplex Method for  the Optimization Subroutine Li- 
brary,” ZBM Systems Journal 31, No. 1 ,  11-25  (1992, this 
issue). 

2. J.  J. H. Forrest and J .  A. Tomlin, “Implementing Interior 
Point Linear Programming Methods in the Optimization 
Subroutine Library,” ZBM Systems Journal 31, NO. 1, 
26-38  (1992, this issue). 

3. D. L. Jensen and A. J .  King, “A Decomposition Method 
for Quadratic Programming,” IBM Systems Journal 31, 
No. I ,  3948 (1992, this issue). 

4. E. L. Johnson, M. M. Kostreva, and U. H. Suhl, “Solving 
0-1 Integer Programming Problems Arising from Large 
Scale Planning Models,” Operations  Research 33, 803- 
819  (1985). 

5. T. G. Mairs, G. W. Wakefield, E. L. Johnson, and K. 
Spielberg, “On a Production Allocation and Distribution 
Problem,” Management Science 24, 1622-1630  (1978). 

6. H. Markowitz, Portfolio Selection, Journal of Finance 
VI1  (1952). 

7. D. L. Jensen and A. J. King, “Frontier: A Graphical In- 
terface for Portfolio Optimization in a Piecewise Linear- 
Quadratic Risk Framework,” IBM Systems Journal 31, 
No. 1, 62-70  (1992, this issue). 

8. R. Anbil, R. Tanga, and E. L. Johnson, “A Global Ap- 
proach to Crew-Pairing Optimization,” IBM Systems 
Journal 31, No. 1 ,  71-78  (1992, this issue). 

9.  R. Anbil, E. Gelman, B. Patty, and R. Tanga, “Recent 

IBM  SYSTEMS  JOURNAL, VOL 31, NO 1, 1992 JOHNSON AND  NEMHAUSER 91 



Advances in Crew-Pairing Optimization at American Air- 
lines,” Interfaces 21, No. 1 ,  62-74 (1991). 

10. J. Abara, “Applying Integer Linear Programming to the 
Fleet Assignment Problem,” Interfaces 19,20-28 (1989). 

11 .  D. Goldfarb and M. J. Todd,  “Linear Programming,’’ in 
Handbooks in Operations Research and Management Sci- 
ence, Vol. 1 ,  Optimization, G. L. Nemhauser et  al., Ed- 
itors, North-Holland, Amsterdam (1989), pp. 73-170. 

12. V. Klee and G.  J. Minty, “How Good Is  the Simplex 
Algorithm?,” in Inequalities III ,  0. Shisha, Editor, Ac- 
ademic Press, New York (1972), pp. 159-175. 

13. E. Tardos, “A Strongly Polynomial Minimum Cost Cir- 
culation Algorithm,” Combinatorica 5 ,  247-255 (1985). 

14. K. H. Borgwardt, The Simplex  Method:  A  Probabilistic 
Analysis, Springer-Verlag, New  York (1987). 

15. L. G. Khachian, “A Polynomial Algorithm in Linear Pro- 
gramming,” Soviet  Mathematics  Doklady 20, 191-194 
(1979). 

16. R. G. Bland, D. Goldfarb, and M. J. Todd, “The Ellipsoid 
Method: A  Survey,” Operations  Research 29, 1039-1091 
(1983). 

17. M. Grotschel, L. Lovasz, and A. Schrijver, Geometric 
Algorithms  and  Combinatorial  Optimization, Springer- 
Verlag, New York (1988). 

18. N. Karmarkar, “A New  Polynomial  Time  Algorithm for 
Linear Programming,’’ Combinatorica 4, 373-395 (1984). 

19. R. Marsten, R. Subramanian, M. Saltzman, I. Lustig, and 
D. Shanno, “Interior Point Methods for Linear Program- 
ming: Just Call Newton, Lagrange, and Fiacco and Mc- 
Cormick!” Interfaces 20, 105-1  16 (1990). 

20. I. J. Lustig, R. E. Marsten, and D. F. Shanno, “Compu- 
tational Experience with a Primal-Dual Interior Point 
Method for Linear Programming,” Linear  Algebra  andlts 
Applications 152, 191-322 (1991). 

21. E. R. Barnes, “A Variation of Karmarkar’s Algorithm for 
Solving Linear Programming Problems,” Mathematical 
Programming 36, 176182 (1986). 

22. P. E. Gill, W. Murray, M.  A. Saunders, J. A. Tomlin, and 
M. H. Wright, “On Projected Newton Barrier Methods 
for Linear Programming and an Equivalence to Kar- 
markar’s Projective Method,” Mathematical  Program- 
ming 36, 183-209 (1986). 

23. A. V. Fiacco and G. P. McCormick, Nonlinear  Program- 
ming:  Sequential  Unconstrained  Minimization  Tech- 
niques, Wiley, New York (1968). 

24. N. Megiddo, “Pathways to the Optimal Set in Linear Pro- 
gramming,” in Progress in Mathematical  Programming, 
N. Megiddo, Editor, Springer-Verlag, New  York (1989), 

25. K. Hoffman and M.  W. Padberg, “LP-Based Combina- 
torial Problem Solving,” Annals of Operations  Research 

26. G. L. Nemhauser and L. A. Wolsey, Integer  and Com- 
binatorial  Optimization, Wiley, New  York (1988). 

27. G. L. Nemhauser and L. A. Wolsey, “Integer Program- 
ming,” in Handbooks in Operations Research and Man- 
agement Science, Vol. 1 ,  Optimization, G. L. Nemhauser 
et al.,  Editors, North-Holland, Amsterdam (1989), pp. 

28. E. M. L. Beale, “Branch and  Bound Methods for Math- 
ematical Programming Systems,” Annals of Discrete 
Mathematics 5, 201-219 (1979). 

29. A. H. Land and S. Powell, “Computer Codes for Prob- 
lems of Integer Programming,” Annals of Discrete  Math- 
ematics 5 ,  221-269  (1979). 

30. E. Balas and R. Martin, “Pivot and Complement: A Heu- 

pp. 131-158. 

4, 145-194 (1985). 

447-527. 

ristic for 0-1 Programming,” Management  Science 26, 
86-96 (1980). 

31. H. P. Crowder, E.  L. Johnson, and M.  W. Padberg, 
“Solving Large-Scale 0-1 Linear Programming Prob- 
lems,” Operations  Research 31, 803-834 (1983). 

32. K. Hoffman  and  M.  W. Padberg, “Techniques for Im- 
proving the LP-Representation of 0-1 Linear Program- 
ming Problems,” ORSA Journal on Computing 3,121-134 
(1991). 

33. G. B. Dantzigand P. Wolfe, “Decomposition Principle for 
Linear Programs,” Operations  Research 8, 101-1 1 1  
(1960). 

34. C. Barnhart, E.  L. Johnson,  R. Anbil, and L. Hatay, A 
Column Generation  Technique for  the Long Haul Crew 
Assignment  Problem, COC-91-01, Industrial and Systems 
Engineering, Georgia Institute of Technology, Atlanta, 
GA (1991). 

35. P. C. Gilmore and R. E. Gomory, “A Linear Program- 
ming Approach to the Cutting Stock Problem-Part I,” 
Operations  Research 9, 849-859 (1961). 

36. E.  L. Johnson, A. Mehrotra, and G.  L. Nemhauser, Min- 
Cut  Clustering, COC-91-10, Industrial and Systems En- 
gineering, Georgia Institute of Technology, Atlanta, GA 
(1991). 

37. E.  L. Johnson, “Modeling and Strong Linear Programs 
for Mixed Integer Programming,” in Algorithms  and 
Model  Formulation in Mathematical  Programming, 
S. W. Wallace, Editor, Springer-Verlag, New  York 
(1989), pp. 1-43. 

38. B. A. Murtagh and M.  A. Saunder, MINOS  5.1  User’s 
Guide, Technical Report SOL83-20R, Department of Op- 
erations Research, Stanford University, Stanford, CA 
(1987). 

39. A. R. Conn, N. L. M. Gould, and Ph. L. Toint, “An 
Introduction to the Structure of Large Scale Nonlinear 
Optimization Problems and the Lancelot Project,” in 
Computing  Methods in Applied  Sciences  and  Engineer- 
ing, R. Glowinski and A. Lichnewsky, Editors, SIAM, 
Philadelphia (1990), pp. 42-54. 

40. A. R. Conn, N. L. M. Gould, and Ph. L. Toint, “A Glo- 
bally Convergent Augmented Lagrangian Algorithm for 
Optimization with General Constraints and Simple 
Bounds,” SIAM Journal on Numerical  Analysis 28,545- 
572 (1991). 

41. L. Lasdon and S. Smith, “Solving Large,  Sparse Non- 
Linear Programs Using GRG,” ORSA Journal on com- 
puting, to appear. 

42. Mathematical  Programming  System  Extendedl370,  Gen- 
eral Information  Manual, IBM Corporation; available 
through IBM branch offices. 

Accepted for publication  September 25, 1991. 

Ellis L. Johnson IBM Research  Division,  Thomas J .  Watson 
Research  Center,  P.O.  Box218, Yorktown  Heights,  New York 
10598-0218. Dr. Johnson is an IBM Fellow in mathematical 
programming. He is also the Coca-Cola Professor of Industrial 
and Systems Engineering and Co-director of the Computa- 
tional Optimization Center at Georgia Institute of Technol- 
ogy. Currently working in the area of mathematical program- 
ming,  he established and managed the Optimization Center in 
the Mathematical Sciences Department at IBM Research from 
1986 until 1990, during which time he oversaw the technical 
aspects of the development of the Optimization Subroutine 
Library (OSL). His work  in integer programming has included 



projects with General Motors and American Airlines, and he 
contributed to the codes for MPSX.V2 MIP and OSL MIP. 
The paper describing the methodology developed to solve the 
General Motors problems received the Lanchester Prize from 
ORSA/TIMS  in 1983. In 1985, Dr. Johnson was awarded the 
Dantzig Prize of the Mathematical Programming Society and 
the Society of Industrial and Applied Mathematics for his 
mathematical programming research, and in  1987 he was 
elected to the National Academy of Engineering. 

George L. Nemhauser School of Industrial  and  Systems En- 

30332-0205. Dr. Nemhauser is the Russell Chandler Professor 
gineering,  Georgia  Institute of Technology,  Atlanta,  Georgia 

of Industrial and Systems Engineering and Co-director of the 
Computational Optimization Center at the Georgia Institute of 
Technology. He previously held faculty positions at Cornell 
University and Johns Hopkins University and also served as 
Research Director of the Center for Operations Research and 
Econometrics of the University of Louvain. He received a 
Ph.D. in operations research from Northwestern University in 
1961, an M.S. in chemical engineering from Northwestern in 
1959, and a B.Ch.E. from City College of New  York  in  1958. 
Dr. Nemhauser’s research interests  are in discrete optimiza- 
tion. He has published many papers and three books in this 
field, two of which received the Lanchester Prize of the Op- 
erations Research Society of America. He is currently the 
editor of Operations  Research  Letters and previously served 
as editor of Operations  Research. He has been a member of 
the council and president of  ORSA and has received ORSA’s 
Kimball Prize for distinguished services. He is currently chair- 
man of the Mathematical Programming Society and a member 
of the National Academy of Engineering. 

Reprint Order No. G321-5463. 

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 JOHNSON AND NEMHAUSER 93 


