
A global approach 
to crew-pairing 
optimization 

The problem  addressed in this paper is crew- 
pairing optimization in airline flight planning: 
finding tours of duty (pairings) that  are  legal and 
cover  every flight leg at the  least cost- The  legal 
rules and cost of  a pairing are  determined  by 
complex  Federal Aviation Agency  and  contractual 
requirements. In addition, the problem is made 
more difficult by  the  hub-and-spoke  system  used 
by airlines that multiplies the possible ways a 
pairing  can link flight legs.  The  state-of-the-art 
crew-pairing TRIP system  of  American Airlines 
uses  subproblem  optimization and,  as is true  for 
other  crew-scheduling  systems, may not be  able 
to improve  a solution even though  a  better  one 
exists. We report on the  methodology  developed 
during a joint study by IBM and  American 
Airlines Decision  Technologies to use  the IBM 
Optimization  Subroutine  Library in conjunction 
with TRIP to improve on crew-pairing solutions 
by  taking  a global approach.  The resulting 
improvements have  been a reduction of 5 to 7 7 
percent in excess  crew  cost.  Estimated total 
savings  are five million dollars per  year. 

A merican Airlines (AA) employs more than 
25 000 pilots  and flight attendants  to fly its 

fleet of over 600 aircraft.  Crew  cost is over 1.3 
billion dollars  per  year  and is second only to fuel 
cost.  In  its effort to  better utilize crew  resources, 
AA spent  about 6000 hours of CPU time on an IBM 
3090" system during 1989-90, running its crew- 
pairing code,  the Trip  Reevaluation  and  Improve- 
ment Program (TRIP). Estimated savings gener- 
ated by the  improvements in the TRIP code during 
the  past five years are in excess of  20 million dol- 
lars  per  year. ' 
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A  crew pairing is a  sequence of flights that  starts 
and  ends  at a  crew  base  and typically lasts  two  or 
three  days.  A  crew  member  works  four or five 
pairings per  month.  The  most  important  part of 
efficient crew utilization is making up pairings 
that  cover all  flight legs and minimize excess  cost. 
This problem is called crew-pairing  optimization. 
Figure 1 illustrates  a pairing that begins and  ends 
at  the Dallas-Fort Worth (DFW) Airport,  an AA 
crew  base. 

One of the difficulties in constructing pairings is 
observing the many union and  Federal Aviation 
Agency (FAA) rules governing the legality and 
penalties of a pairing. Some of these  rules  have to 
do with the  duration  and flying time of a  duty 
period,  i.e.,  the time that  a  crew is flying or is 
between flights, but  not  resting  overnight. During 
the planning stages, a duty  period  is usually re- 
stricted to eight hours of  flying and 12 hours of 
total  duty  time, including briefing and debriefing. 
Between  duty  periods,  there are overnight rests 
or layovers  that  must  exceed  some minimum du- 
ration. The  most difficult legal rule to  check con- 
cerns  the longer layover time required if there 
have been more  than eight hours of flying  in any 
24-hour period preceding  the  layover. 
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In  addition  to legal rules  for pairings, the  cost 
structure is also  very  complex.  The main com- 
ponents of excess  cost  are pay and  credit: guar- 
anteed  hours of pay minus actual  hours flown. 
The  three main causes of pay and  credit are pair- 
ings that  include (1) long or  frequent sits within a 
duty  period, (2) long overnight  rests  between  duty 
periods,  and (3) “deadheading”  (transporting 
crews  as  passengers).  Pay  and  credit  are calcu- 
lated as a maximum of several pay guarantees. 

There  are  three considerations other than legality 
and excess  costs  that  a crew-pairing optimizer must 
take  into  account.  First, crew assignments must 
consider the number of crews available at the var- 
ious crew bases. This constraint is called crew bal- 
ance  and is usually expressed as a minimum and 
maximum number of  flying hours per month avail- 
able at each crew base.  The second consideration is 
preference for keeping crews  on  the same plane 
during a duty period as much as possible. In TRIP, 
a penalty is added to the  cost of a pairing for each 
time the crew changes planes during a duty period. 
The third consideration is preference for shorter 
pairings. Usually, AA restricts the maximum 
lengths of domestic pairings to three days, i.e., 
three duty periods. The restriction is imposed be- 
cause longer pairings would cause greater difficulty 
in rescheduling if weather or other factors cause a 
pairing to  be disrupted. In addition, computational 
experience has shown that longer pairings do not 
generally lead to significantly lower costs. 

In  addition  to the complexity of the  rules and 
checks  for  legality,  another  reason  for  the inher- 
ent difficulty of this problem is the explosion in 
the  number of pairings caused by the hub-and- 
spoke  network of AA’S domestic  schedule. As 
mentioned  before, it is preferable  to  leave the 
crew  on  the  same  plane  as long as  possible.  How- 
ever, a change of planes  for  the  crew  at  a  hub  can 
definitely lead to  better pairings,  and allowing this 
change of planes  explodes  the  number of possible 
pairings. Just as passengers  can  connect in many 
ways, so can  the  crews. 

Crew-pairing optimization is normally a monthly 
planning problem.  This  frequency is caused by 
monthly flight schedule  changes. When there  are 
mid-month adjustments  to  the flight schedule,  the 
crew-pairing problem must  be  readdressed during 
the  month. In addition,  the  transition period from 
the  end of one  month to  the beginning of the  next 
month  poses special scheduling difficulties and 
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Global  approach  and SPRINT code 

Many millions of pairings are first generated.  A 
corresponding  linear program can be constructed 
by  creating a column for  each pairing and  a  row 
for  each  segment.  The  constraints  require  that 
each segment be  covered  exactly  once.  The  cost 
of the  variable  associated with a pairing is the 
total  excess  cost of the pairing, including penal- 
ties.  The  resulting  integer program is called a set- 
partitioning problem and  has  the form: 

x j = O o r l , j = l , . . . , n  

n 

C a i x j = 1 , a 1 l i = 1 , . . . , m  

minimize X i j x j  

where  m is the  number of segments, n is the num- 
ber of pairings, and 

j =  1 

{ 1 if pairing j includes segment i 
0 otherwise 

a , .  = 

cj = total  excess  cost of pairing j 

The linear programming relaxation  relaxes x j  = 0 
or 1 to 0 I xj 5 1 and  thus allows fractional 
values of the variables so that  a given segment 
may be  covered by fractional values of two or 
more pairings. For  that  reason,  the solution is 
unusable in practice.  Moreover,  this  set-parti- 
tioning linear program is widely known to be a 
class of  difficult linear  programs to solve.  The 
benefits derived  from solving the  linear program 
are discussed in the  next  section. The  rest of this 
section will explain the  method used to solve  set- 
partitioning linear  programs having a  very large 
number of columns. 

The IBM-AADTjOint study began by generating 12 
million pairings,  and  these pairings were  con- 
verted to input for  the IBM Optimization Subrou- 
tine  Library (oSL). This problem presented a dou- 
ble challenge in that  even small set-partitioning 
linear programming (LP) problems may be difficult 
to  solve,  and  this problem had 12 million columns. 
Removing duplicate  columns  and keeping the 
ones with lowest  costs among the  duplicates  re- 
duced  the problem to 5.5 million columns 
(5  534503 to be exact). During the summer of 
1989, this LP problem was solved to optimality at 
the IBM Thomas J. Watson  Research  Center on a 

3090 Vector  Facility. Anuj Mehrotra,  a  summer 
student, implemented and  tested  several  iterative 
approaches.  The first attempts  involved solving 
ever-increasingly larger  sets of columns.  The 5.5- 
million-column problem was  never  solved in this 
way. 

The  method  that did work  was the “SPRINT” ap- 
proach of John  Forrest. This  method  requires 
solving a  subproblem  consisting of a small subset 
of the  columns  and using the optimum  dual  var- 
iables from  the  subproblems to price  out all 5.5 
million columns.  A new subproblem  is  formed  by 
retaining only the  columns in the optimum  basis 
of the old subproblem  and collecting some small 
set of good columns  based  on the new reduced 
costs. A good number of columns  for  the  sub- 
problems proved to  be 5000. The  idea of choosing 
more  than  one column that  prices  out to  enter  the 
basis is an old idea. What is different here is that 
5000 such  columns  were  collected. The main re- 
sult,  however, is an empirical one:  this  method 
works well for  set-partitioning  linear  programs 
with a huge number of columns. The critical fac- 
tor  was to price out  over all  of the 5.5 million 
columns  every time a new subproblem was cre- 
ated.  The initial CPU time on a 3090E Vector Fa- 
cility was about 12 hours. Forrest then  worked on 
the SPRINT code  and  reduced  the running time to 
56.9 minutes. He tuned the subproblem  size  and 
selection  process. The idea in column  selection  is 
to collect columns  into  “buckets”  based  on  re- 
duced  costs  and  to fill up  the required  subproblem 
columns based  on  the  best  buckets  first, until the 
required  number of columns would be  exceeded 
by a  bucket. At this  point,  columns are  chosen 
randomly from the  last  bucket.  Also, to improve 
performance,  Forrest  perturbed significantly the 
right side of the problem in order  to  decrease de- 
generacy. Using Forrest’s SPRINT code, many 
problems of 2 to 12 million columns  were  solved 
on  the 3090 Vector Facility at IBM’S National  En- 
gineerindscientific  Support  Center in Dallas, 
Texas,  and solution times were  consistently  less 
than  one  hour. When a good starting  basis  was 
available, running times to  reach optimality were 
typically 20 minutes.  Currently the RISC Sys- 
tem/6000* Model 540 is being used with good 
success  at AADT to solve 2- to 3- million-column 
problems. The SPRINT approach is illustrated in 
Figure 2. 

The good performance of the SPRINT code is due 
in part to  the remarkably small number of sub- 
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Figure 2 SPRINT approach to solving  the  5.5-million-column  problem 
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problems  that need to be solved to globally opti- 
mize the large problems.  In  the  case of the 5.5- 
million-column problem, only 25 subproblems 
were  solved.  One way to look  at the solution proc- 
ess is to note  that  at  most 125 000 (= 25 X 5000) 
columns out of 5.5 million ever got into  any of the 
small LP problems. 

Another  reason  for  the small solution time is that 
the 5000-column problems could be solved rela- 
tively quickly.  Even  these  problems  are difficult 
linear  programs, being of the set-partitioning type 
for which degeneracy is known to lead to  poor 
performance,  particularly  for primal simplex 
codes. We do use primal simplex,  and  degeneracy 
is a problem,  but  the SPRINT OSL code  has enough 
tools available to provide good performance. Pri- 
mal,  rather  than  dual, simplex was used because 
for  each  subproblem the optimum basis for  the 
previous problem is available  and is feasible from 
a primal,  but  not  dual,  standpoint. 

One  surprise that we  found from the solution of 
the 5.5-million-column problem was  that it was 
not  as massively degenerate as is usually the  case 
for  set-partitioning  problems.  Degeneracy  can be 
measured by the  percent of basic variables at or 
near  zero in the  basic  solution. For typical smaller 
set-partitioning  problems, 80 percent  degeneracy 
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is common. For  the 5.5-million-column problem it 
was only about 25 percent  degenerate.  That  is, 
out of 837 basis  variables,  over 600 were  positive 
in the linear programming optimum basic solu- 
tion.  The  linear programming problems are still 
difficult; in fact  we found the  degenerate  problems 
in the 25 percent  category  to  be  more difficult than 
the  ones in the 80 percent  category.  The less- 
degenerate problem was typically associated with 
a  better  linear programming objective value and 
usually with a  larger difference between  the  linear 
programming objective value and  the  objective 
value of the initial integer solution. 

In fact,  the degree of degeneracy usually corre- 
sponds to  the degree of integrality of the  linear 
programming solution.  Folklore  has it that  linear 
programming solutions to set-partitioning  prob- 
lems are usually integer or close to integer. Our 
experience  for small crew-scheduling  set-parti- 
tioning problems  bears  out  that  contention.  How- 
ever,  the problems  that  involve millions of col- 
umns have  linear programming solutions  that are 
consistently  far from integer. The original 5.5-mil- 
lion-column problems had one  column in the lin- 
ear programming solution  at a value of one.  The 
values of the  rest of the  variables  that  were  pos- 
itive in the  linear programming optimum  solution 
were spread out between zero and  one. 



The real interest  raised by the  linear programming 
solution was not  its  countering of folklore but its 
objective  function value. The original best solu- 
tion from TRIP was  about $57,000 per day, and  the 
LP solution was about $48,000. That value was 
later lowered to  almost $46,000 using some more 
columns. The fact  that  the  linear programming 
objective value could be improved from $48,000 
to $46,000 by generating  more  columns in addi- 
tion to  the original 12-million columns,  points  out 
that  there are really billions of columns  and  no 
one knows how small the  optimum  linear pro- 
gramming objective  function value might be. 
However, from a  practical point of view it was 
already good enough:  about $1 1,000 per  day.  The 
more  pressing  question  was how much of that 
could be realized by an  integer  solution.  The  next 
section  describes methodology for finding an in- 
teger  solution.  That problem turned  out  to be 
much more difficult than  anticipated. 

Integer  solutions 

The problem of finding integer solutions was 
much more difficult than originally envisioned. 
For smaller crew-scheduling  problems, simply 
rounding up  variables  closest to  one  and resolving 
the  linear programming worked well. However, 
that  approach failed on  the large problem because 
the resulting smaller  problems  eventually  became 
infeasible. The usual  branch-and-bound  codes did 
not work well either,  even  on small subproblems. 
As a  result, a special-purpose  code was written 
that  exploits  the  connectivity of the flight sched- 
ule to ‘‘lock’’ connecting  segments. When every 
segment has  been linked to a unique connecting 
segment,  we  have  found  a  feasible integer solu- 
tion,  and  we  terminate. 

The  branching  scheme  that  worked  best  was  one 
suggested by Ryan.3  The idea is to look at  each 
segment and at every pairing with positive solu- 
tion values in the optimum linear programming. 
In  general,  any given segment will have some 
number of segments following it  in the various 
pairings. Although the pairings may have  frac- 
tional linear programming values, it may be that 
every pairing involving the given segment has  the 
same follow-on segment.  In  this  case,  we fix that 
follow-on; otherwise, the follow-on  is  fixed to be 
the segment that has the largest LP value  among  all 
of the follow-ons for all  of the segments. In essence, 
we are letting the LP solution decide on a most fa- 
vorable connecting segment to some segment. 
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Then, that connection is fixed from there  on. Ryan 
suggested branching on follow-ons, and since we 
only explore one of the  “branches,”  our implemen- 
tation is not done by branching. For that  reason,  we 
chose the  one that we expect to  be correct. 

The  overall  scheme is to first get  a good linear 
programming solution as described in the  previ- 
ous section.  Then,  a small number of columns, 
between 10000 and 15 000, with best  reduced 
costs  are  chosen  for  the initial integer  phase. 
Branching is done  as  described in the previous 
paragraph by locking follow-ons to segments. 
New columns are generated  whenever  the num- 
ber of columns  becomes  too small or if the  linear 
programming objective  changes  too  much.  In  this 
way,  we  continue until at some point every seg- 
ment has a unique follow-on. When this  happens, 
we have found a  feasible  integer  solution. For 
problems with a large number of segments,  the 
linear program may become infeasible before  ev- 
ery segment has  been  connected to a follow-on. 
We then  generate  more  columns to resolve the 
infeasibility. Needless  to  say,  the  integer  meth- 
odology is empirically derived.  Other  variants 
may work as well, but  on  the  problems in our  test 
set this procedure  seemed  to  work  best. 

Maintaining integer feasibility in set-partitioning 
problems of this  nature is quite difficult. In  es- 
sence,  our  procedure  can be said to convert it into 
a set-packing problem (with “less  than  or  equal 
to” rather  than  “equal to”  constraints). Covering 
may seem  to be more  natural in that it can  be 
interpreted in this problem as deadheading (flying 
the  crew  as  passengers).  However,  for  the  do- 
mestic daily problem, AA does  not normally per- 
mit deadheads. In the  later  phases of planning, 
deadheads may be  incorporated.  Nevertheless, 
even if deadheads are allowed,  they  cannot  be 
modeled exactly by simply changing the  “equals 
to”  to “greater  than or  equal  to”  because  the pair- 
ing costs  and legality are affected by a segment 
being flown as a deadhead. An exact  formulation 
would keep  the  set-partitioning  structure  but al- 
low segments in a pairing to  be  either  deadheads 
or working segments.  A  deadhead segment in a 
pairing matrix then  does  not  cover the segment 
since it must be flown by a working crew. 

One final word  about  crew-base  constraints. 
These  constraints  require  that  the  total flying 
hours of  all pairings originating and ending at a 
given crew  base are within the  range of available 

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 



flying hours of crews  based  there.  Obviously,  the 
linear program can  incorporate  these  constraints, 
and  since the pairings from the  linear program- 
ming constitute  the majority of pairings and  the 
crew-base  constraints  are satisfied for  them,  any 
crew-base violations introduced  can  be easily re- 
paired in the usual way as done by TRIP. 

Example. Let us  suppose  that  there are eight seg- 
ments  listed by departure  station,  departure time 
and  arrival  time, and arrival  station: 

1. DFW 900-1200 LGA 
2. LGA 1300-1500 ORD 
3. ORD 1600-1800 RDU 
4. ORD 1700-1900 DFW 
5 .  RDU 1900-2100 LGA 
6. RDU 1900-2100 DFW 
7. LGA 1400-1600 ORD 
8. DFW 1600-1800 RDU 

For this  example,  the  times are rounded  to  hours, 
and all are considered  to be in the  same time zone. 
Consider  the pairings: 

1 .  DFW 900-1200 LGA 1400-1600 ORD 1700-1900 
DFW 

2. LGA 1300-1500 ORD 1600-1800 RDU 1900-2100 
LGA 

3. ORD 1600-1800 RDU 1900-2100 DFW 900-1200 
LGA 1300-1500 ORD 

4. DFW 1600-1800 RDU 1900-2100 DFW 
5. DFW 1600-1800 RDU i900-2iOO LGA 1400-1600 

ORD 1700-1900 DFW 

There  are  two overnight rests: DFW in pairing 3, 
and LGA in pairing 5 .  The coefficient matrix for 
these eight segments  (rows)  and five pairings (col- 
umns) is 

1 2 3 4 5  
1 1 

1 1  
1 1  

1 1 
1 1 

1 1  
1 1 

1 1  

A linear programming solution is x 1  = x2 = x j  
- x4 = x5 = 1/2. The follow-on segments in this 
solution are given below with corresponding lin- 
ear programming solution  values in parentheses. 

Segment Follow-ons 

- 

1 7 (1/2), 2 (1/2) 
2 3 (1)  
3 5 (1/2), 6 (1/2) 
4 1 (1/2), 8 (1/2) 
5 2 (1/2), 7 (1/2) 
6 1 (1/2), 8 (1/2) 
7 4 (1)  
8 6 (1/2), 5 (1/2) 

In listing follow-on segments, the segment ending 
a pairing is considered to be followed by the seg- 
ment beginning the pairing. Thus,  the pairing is 
thought of as a  circuit. Note  that, in this  example, 
even though all  of the x j  s are  fractional,  there  are 
two  segments, 2 and 7, with unique follow-ons in 
the pairings with positive x j s .  Our  procedure 
would begin by fixing these follow-ons so that  any 
subsequent pairings generated will have (2,3) and 
(7,4) as locked  pairs of segments. 

Conclusions 

We have  demonstrated large improvements in 
crew pairing by initially generating millions of 
pairings and solving a  linear program with a col- 
umn for  each pairing. This global approach  seems 
to avoid local optima  that  prevent TRIP from mak- 
ing further  improvements. For  these large linear 
programs,  we  have  consistently  observed a large 
improvement in the  linear programming objective 
value and  the  best TRIP-generated solution.  Fur- 
thermore,  the  linear programming solution has 
many fractional  variables. Finding good integer 
solutions is difficult, but  the  procedure  presented 
here  provides a practical  and effective solution 
procedure. 

Currently,  the  codes  developed implementing 
this approach are being used at AA for  the  two 
largest fleets of planes:  the  super 80s and 727s. 
Starting from the  best TRIP solution, improve- 
ments amounting to $300,000 have  been realized 
for  the  months of August,  September,  and  Octo- 
ber. Pay and  credit  have  been significantly re- 
duced.  This  reduction  has  been  particularly sig- 
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nificant in the summer  months when traditionally 
crews  are in short  supply.  The savings so far 
amount to 1.2 million dollars  per  year. When the 
same methodology is used to  handle  crew bal- 
ancing, weekly exceptions,  and  transitions,  and 
is applied to  the smaller fleets as well, savings 
should be  several  times  greater.  In  addition,  we 
expect  to improve  on the optimization procedure. 
Thus,  the  approach  has proven itself in practice 
and  opens  the possibility for moving toward 
global optimization of crew pairing. 

*Trademark or registered trademark of International Business 
Machines Corporation. 
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