A global approach
to crew-pairing
optimization

The problem addressed in this paper is crew-
pairing optimization in airline flight planning:
finding tours of duty (pairings) that are legal and
cover every flight leg at the least cost. The legal
rules and cost of a pairing are determined by
complex Federal Aviation Agency and contractual
requirements. In addition, the problem is made
more difficult by the hub-and-spoke system used
by airlines that multiplies the possible ways a
pairing can link flight legs. The state-of-the-art
crew-pairing TRIP system of American Airlines
uses subproblem optimization and, as is true for
other crew-scheduling systems, may not be able
to improve a solution even though a better one
exists. We report on the methodology developed
during a joint study by IBM and American
Airlines Decision Technologies to use the IBM
Optimization Subroutine Library in conjunction
with TRIP to improve on crew-pairing solutions
by taking a global approach. The resulting
improvements have been a reduction of 5 to 11
percent in excess crew cost. Estimated total
savings are five million dollars per year.

merican Airlines (AA) employs more than

25000 pilots and flight attendants to fly its
fleet of over 600 aircraft. Crew cost is over 1.3
billion dollars per year and is second only to fuel
cost. In its effort to better utilize crew resources,
AA spent about 6000 hours of CPU time on an IBM
3090* system during 1989-90, running its crew-
pairing code, the Trip Reevaluation and Improve-
ment Program (TRIP). Estimated savings gener-
ated by the improvements in the TRIP code during
the past five years are in excess of 20 million dol-
lars per year.'

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

by R. Anbil
R. Tanga
E. L. Johnson

A crew pairing is a sequence of flights that starts
and ends at a crew base and typically lasts two or
three days. A crew member works four or five
pairings per month. The most important part of
efficient crew utilization is making up pairings
that cover all flight legs and minimize excess cost.
This problem is called crew-pairing optimization.
Figure 1 illustrates a pairing that begins and ends
at the Dallas—Fort Worth (DFW) Airport, an AA
crew base.

One of the difficulties in constructing pairings is
observing the many union and Federal Aviation
Agency (FAA) rules governing the legality and
penalties of a pairing. Some of these rules have to
do with the duration and flying time of a duty
period, i.e., the time that a crew is flying or is
between flights, but not resting overnight. During
the planning stages, a duty period is usually re-
stricted to eight hours of flying and 12 hours of
total duty time, including briefing and debriefing.
Between duty periods, there are overnight rests
or layovers that must exceed some minimum du-
ration. The most difficult legal rule to check con-
cerns the longer layover time required if there
have been more than eight hours of flying in any
24-hour period preceding the layover.

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

ANBIL, TANGA, AND JOHNSON 71

In addition to legal rules for pairings, the cost
structure is also very complex. The main com-
ponents of excess cost are pay and credit: guar-
anteed hours of pay minus actual hours flown.
The three main causes of pay and credit are pair-
ings that include (1) long or frequent sits within a
duty period, (2) long overnight rests between duty
periods, and (3) ‘“deadheading” (transporting
crews as passengers). Pay and credit are calcu-
lated as a maximum of several pay guarantees.

There are three considerations other than legality
and excess costs that a crew-pairing optimizer must
take into account. First, crew assignments must
consider the number of crews available at the var-
ious crew bases. This constraint is called crew bal-
ance and is usually expressed as a minimum and
maximum number of flying hours per month avail-
able at each crew base. The second consideration is
preference for keeping crews on the same plane
during a duty period as much as possible. In TRIP,
a penalty is added to the cost of a pairing for each
time the crew changes planes during a duty period.
The third consideration is preference for shorter
pairings. Usually, AA restricts the maximum
lengths of domestic pairings to three days, i.e.,
three duty periods. The restriction is imposed be-
cause longer pairings would cause greater difficulty
in rescheduling if weather or other factors cause a
pairing to be disrupted. In addition, computational
experience has shown that longer pairings do not
generally lead to significantly lower costs.

In addition to the complexity of the rules and
checks for legality, another reason for the inher-
ent difficulty of this problem is the explosion in
the number of pairings caused by the hub-and-
spoke network of AA’s domestic schedule. As
mentioned before, it is preferable to leave the
crew on the same plane as long as possible. How-
ever, a change of planes for the crew at a hub can
definitely lead to better pairings, and allowing this
change of planes explodes the number of possible
pairings. Just as passengers can connect in many
ways, so can the crews.

Crew-pairing optimization is normally a monthly
planning problem. This frequency is caused by
monthly flight schedule changes. When there are
mid-month adjustments to the flight schedule, the
crew-pairing problem must be readdressed during
the month. In addition, the transition period from
the end of one month to the beginning of the next
month poses special scheduling difficulties and

72 ANBIL, TANGA, AND JOHNSON

Figure 1 Example of crew pairing with DFW airport as crew base

TIME AWAY FROM BASE

DUTY PERIOD #1

] o | | st []

! I i ! l | {
LOCAL DFW AUS AUS ORD ORD SBFO
TIME 9:00 10:00 1%00 13:00 14:00 15:00

4 8:00 SIGN IN SIGN OUT 15:15 »

frequently forces some deadheading in order to
get crews home.

Thus, crew-pairing optimization is a particularly
challenging combinatorial optimization problem.
The next section discusses current methodology
to address this intriguing problem.

Current methodology

AA’s crew-pairing optimization system, TRIP, has
been continuously improved over the last 20
years, with major improvements in the last three
years.! Despite these improvements it continues
to be based on a subproblem approach that may
lead to suboptimum solutions. In this section, the
subproblem approach is explained. The following
sections present a new approach jointly devel-
oped by American Airlines Decision Technolo-
gies (AADT) and IBM that partially overcomes
those shortcomings.

The overall crew-pairing optimization process
consists of sequentially solving several problems.
The first problem solved is called the daily prob-
lem. It assumes that the flight segments are flown
every day. The advantage of looking at the daily
problem is twofold. First, the problem becomes
more tractable because the daily problem only
has a number of segments to cover that are equal
to the number of daily segments, i.e., any pairing
that includes a segment in any of its duty periods
will cover that segment every day, since the same
pairing will be started each day. The largest num-
ber of daily segments in AA’s schedule is about

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

TIME AWAY FROM BASE

OVERNIGHT REST

v

DUTY PERIOD #2

[| st |

| st |

| | | 1
LOCAL SFO LAX LAX
TIME 8:00 900 10:00

I | 1 [
SAN SAN DFW
11:45 13:00 19:30

lq4 7:00 SIGN IN

SIGN OUT 18:45 W

one thousand, even for its largest fleet. The sec-
ond advantage of the daily pairing problem is that,
from an operational standpoint, it gives regularity
to crew assignments.

After daily pairings have been determined from
the solution to the daily problem, there are sev-
eral other phases to the crew-pairing optimization
process. Crew base constraints must be met,
weekly exceptions must be handled, and the tran-
sition period must be planned. The subsequent dis-
cussion deals with the daily problem, which is the
heart of the crew-pairing optimization problem.

The daily problem solution procedure begins by
finding a workable solution. This initial phase
uses a code called the Initial Solution Generator
and attempts to adapt the daily solution of the
previous months to the current month. The TRIP
code then iteratively selects and solves a sub-
problem in order to improve the initial solution.
Each TRIP iteration consists of three phases. The
first phase is subproblem selection. This process
starts by choosing some number of pairings, typ-
ically 5 to 10, from all of the pairings that cover
the daily flight segments. The subproblem then
consists of the segments covered by the chosen
set of pairings. For this smaller number of seg-
ments, all possible pairings are generated. Thus,
pairing generation is the second phase. The pair-
ings are checked for legality based on all of the
rules. Additionally, the cost is calculated for each
pairing, including all applicable penalties. The
third phase of each TRIP iteration is the optimi-
zation phase. If there is a better set of pairings

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

that exactly covers these chosen segments, the
new pairings replace the chosen set of old pair-
ings. In any case, we are ready to begin the next
iteration.

The optimization problem is formulated as a set-
partitioning problem.? This well-known integer
programming problem has a coefficient matrix
with a row for each flight segment and a column
for each pairing. The entries are 0 or 1, with a 1
signifying that the pairing for the column includes
the segment corresponding to that row. The next
section gives the precise formulation of the set-
partitioning problem. Details about the optimiza-
tion method used in TRIP are available in Refer-
ence 1.

As s true for any subproblem approach, TRIP may
reach a solution that cannot be improved even
after many additional hours of CPU time have
been expended doing further iterations. The rea-
son is that even if each subproblem is optimized,
an improvement requiring large changes to the
incumbent solution cannot be found when the
subproblems are each too small. The subproblem
optimizer cannot handle large problems and is ef-
fectively limited to problems of about 100 seg-
ments and 10 000 columns. The main thrust of our
efforts is to overcome this deficiency in the sub-
problem approach. This paper describes a global
approach that, although falling short of global op-
timization, takes into consideration the entire
problem and constructs a crew-pairing solution
without using the initial solution.

ANBIL, TANGA, AND JOHNSON 73

Global approach and SPRINT code

Many millions of pairings are first generated. A
corresponding linear program can be constructed
by creating a column for each pairing and a row
for each segment. The constraints require that
each segment be covered exactly once. The cost
of the variable associated with a pairing is the
total excess cost of the pairing, including penal-
ties. The resulting integer program is called a set-
partitioning problem and has the form:

x;=0orl,j=1,"+*,n
Zaijxj=1,alli=l,'-~,m
=1

minimize X i X,

where m is the number of segments, » is the num-
ber of pairings, and

1 if pairing j includes segment i
%= | 0 otherwise

¢; = total excess cost of pairing j

The linear programming relaxation relaxes x; = 0
or 1 to 0 = x; = 1 and thus allows fractional
values of the variables so that a given segment
may be covered by fractional values of two or
more pairings. For that reason, the solution is
unusable in practice. Moreover, this set-parti-
tioning linear program is widely known to be a
class of difficult linear programs to solve. The
benefits derived from solving the linear program
are discussed in the next section. The rest of this
section will explain the method used to solve set-
partitioning linear programs having a very large
number of columns.

The IBM-AADT joint study began by generating 12
million pairings, and these pairings were con-
verted to input for the IBM Optimization Subrou-
tine Library (0SL). This problem presented a dou-
ble challenge in that even small set-partitioning
linear programming (LP) problems may be difficult
to solve, and this problem had 12 million columns.
Removing duplicate columns and keeping the
ones with lowest costs among the duplicates re-
duced the problem to 5.5 million columns
(5534503 to be exact). During the summer of
1989, this LP problem was solved to optimality at
the IBM Thomas J. Watson Research Center on a

74 ANBIL, TANGA, AND JOHNSON

3090 Vector Facility. Anuj Mehrotra, a summer
student, implemented and tested several iterative
approaches. The first attempts involved solving
ever-increasingly larger sets of columns. The 5.5-
million-column problem was never solved in this
way.

The method that did work was the “SPRINT” ap-
proach of John Forrest. This method requires
solving a subproblem consisting of a small subset
of the columns and using the optimum dual var-
iables from the subproblems to price out all 5.5
million columns. A new subproblem is formed by
retaining only the columns in the optimum basis
of the old subproblem and collecting some small
set of good columns based on the new reduced
costs. A good number of columns for the sub-
problems proved to be 5000. The idea of choosing
more than one column that prices out to enter the
basis is an old idea. What is different here is that
5000 such columns were collected. The main re-
sult, however, is an empirical one: this method
works well for set-partitioning linear programs
with a huge number of columns. The critical fac-
tor was to price out over all of the 5.5 million
columns every time a new subproblem was cre-
ated. The initial CPU time on a 3090E Vector Fa-
cility was about 12 hours. Forrest then worked on
the SPRINT code and reduced the running time to
56.9 minutes. He tuned the subproblem size and
selection process. The idea in column selection is
to collect columns into *“‘buckets’ based on re-
duced costs and to fill up the required subproblem
columns based on the best buckets first, until the
required number of columns would be exceeded
by a bucket. At this point, columns are chosen
randomly from the last bucket. Also, to improve
performance, Forrest perturbed significantly the
right side of the problem in order to decrease de-
generacy. Using Forrest’s SPRINT code, many
problems of 2 to 12 million columns were solved
on the 3090 Vector Facility at IBM’s National En-
gineering/Scientific Support Center in Dallas,
Texas, and solution times were consistently less
than one hour. When a good starting basis was
available, running times to reach optimality were
typically 20 minutes. Currently the RISC Sys-
tem/6000* Model 540 is being used with good
success at AADT to solve 2- to 3- million-column
problems. The SPRINT approach is illustrated in
Figure 2.

The good performance of the SPRINT code is due
in part to the remarkably small number of sub-

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

Figure 2 SPRINT approach to solving the 5.5-million-column problem

OLD SUBPROBLEM
4163

5 MILLION

L]

BEST COLUMNS

J

NEW SUBPROBLEM

problems that need to be solved to globally opti-
mize the large problems. In the case of the 5.5-
million-column problem, only 25 subproblems
were solved. One way to look at the solution proc-
ess is to note that at most 125000 (= 25 X 5000)
columns out of 5.5 million ever got into any of the
small LP problems.

Another reason for the small solution time is that
the 5000-column problems could be solved rela-
tively quickly. Even these problems are difficult
linear programs, being of the set-partitioning type
for which degeneracy is known to lead to poor
performance, particularly for primal simplex
codes. We do use primal simplex, and degeneracy
is a problem, but the SPRINT OSL code has enough
tools available to provide good performance. Pri-
mal, rather than dual, simplex was used because
for each subproblem the optimum basis for the
previous problem is available and is feasible from
a primal, but not dual, standpoint.

One surprise that we found from the solution of
the 5.5-million-column problem was that it was
not as massively degenerate as is usually the case
for set-partitioning problems. Degeneracy can be
measured by the percent of basic variables at or
near zero in the basic solution. For typical smaller
set-partitioning problems, 80 percent degeneracy

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

is common. For the 5.5-million-column problem it
was only about 25 percent degenerate. That is,
out of 837 basis variables, over 600 were positive
in the linear programming optimum basic solu-
tion. The linear programming problems are still
difficult; in fact we found the degenerate problems
in the 25 percent category to be more difficult than
the ones in the 80 percent category. The less-
degenerate problem was typically associated with
a better linear programming objective value and
usually with a larger difference between the linear
programming objective value and the objective
value of the initial integer solution.

In fact, the degree of degeneracy usually corre-
sponds to the degree of integrality of the linear
programming solution. Folklore has it that linear
programming solutions to set-partitioning prob-
lems are usually integer or close to integer. Our
experience for small crew-scheduling set-parti-
tioning problems bears out that contention. How-
ever, the problems that involve millions of col-
umns have linear programming solutions that are
consistently far from integer. The original 5.5-mil-
lion-column problems had one column in the lin-
ear programming solution at a value of one. The
values of the rest of the variables that were pos-
itive in the linear programming optimum solution
were spread out between zero and one.

ANBIL, TANGA, AND JOHNSON 7§

The real interest raised by the linear programming
solution was not its countering of folklore but its
objective function value. The original best solu-
tion from TRIP was about $57,000 per day, and the
LP solution was about $48,000. That value was
later lowered to almost $46,000 using some more
columns. The fact that the linear programming
objective value could be improved from $48,000
to $46,000 by generating more columns in addi-
tion to the original 12-million columns, points out
that there are really billions of columns and no
one knows how small the optimum linear pro-
gramming objective function value might be.
However, from a practical point of view it was
already good enough: about $11,000 per day. The
more pressing question was how much of that
could be realized by an integer solution. The next
section describes methodology for finding an in-
teger solution. That problem turned out to be
much more difficult than anticipated.

Integer solutions

The problem of finding integer solutions was
much more difficult than originally envisioned.
For smaller crew-scheduling problems, simply
rounding up variables closest to one and resolving
the linear programming worked well. However,
that approach failed on the large problem because
the resulting smaller problems eventually became
infeasible. The usual branch-and-bound codes did
not work well either, even on small subproblems.
As a result, a special-purpose code was written
that exploits the connectivity of the flight sched-
ule to “lock” connecting segments. When every
segment has been linked to a unique connecting
segment, we have found a feasible integer solu-
tion, and we terminate.

The branching scheme that worked best was one
suggested by Ryan.® The idea is to look at each
segment and at every pairing with positive solu-
tion values in the optimum linear programming.
In general, any given segment will have some
number of segments following it in the various
pairings. Although the pairings may have frac-
tional linear programming values, it may be that
every pairing involving the given segment has the
same follow-on segment. In this case, we fix that
follow-on; otherwise, the follow-on is fixed to be
the segment that has the largest LP value among all
of the follow-ons for all of the segments. In essence,
we are letting the LP solution decide on a most fa-
vorable connecting segment to some segment.

76 ANBIL, TANGA, AND JOHNSON

Then, that connection is fixed from there on. Ryan
suggested branching on follow-ons, and since we
only explore one of the “‘branches,” our implemen-
tation is not done by branching. For that reason, we
chose the one that we expect to be correct.

The overall scheme is to first get a good linear
programming solution as described in the previ-
ous section. Then, a small number of columns,
between 10000 and 15000, with best reduced
costs are chosen for the initial integer phase.
Branching is done as described in the previous
paragraph by locking follow-ons to segments.
New columns are generated whenever the num-
ber of columns becomes too small or if the linear
programming objective changes too much. In this
way, we continue until at some point every seg-
ment has a unique follow-on. When this happens,
we have found a feasible integer solution. For
problems with a large number of segments, the
linear program may become infeasible before ev-
ery segment has been connected to a follow-on.
We then generate more columns to resolve the
infeasibility. Needless to say, the integer meth-
odology is empirically derived. Other variants
may work as well, but on the problems in our test
set this procedure seemed to work best.

Maintaining integer feasibility in set-partitioning
problems of this nature is quite difficult. In es-
sence, our procedure can be said to convert it into
a set-packing problem (with “less than or equal
to” rather than “equal to”” constraints). Covering
may seem to be more natural in that it can be
interpreted in this problem as deadheading (flying
the crew as passengers). However, for the do-
mestic daily problem, AA does not normally per-
mit deadheads. In the later phases of planning,
deadheads may be incorporated. Nevertheless,
even if deadheads are allowed, they cannot be
modeled exactly by simply changing the “equals
to” to “‘greater than or equal to”” because the pair-
ing costs and legality are affected by a segment
being flown as a deadhead. An exact formulation
would keep the set-partitioning structure but al-
low segments in a pairing to be either deadheads
or working segments. A deadhead segment in a
pairing matrix then does not cover the segment
since it must be flown by a working crew.

One final word about crew-base constraints.
These constraints require that the total flying
hours of all pairings originating and ending at a
given crew base are within the range of available

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

flying hours of crews based there. Obviously, the
linear program can incorporate these constraints,
and since the pairings from the linear program-
ming constitute the majority of pairings and the
crew-base constraints are satisfied for them, any
crew-base violations introduced can be easily re-
paired in the usual way as done by TRIP.

Example. Let us suppose that there are eight seg-
ments listed by departure station, departure time
and arrival time, and arrival station:

DFW 900-1200 LGA

LGA 1300-1500 ORD
ORD 1600-1800 RDU
ORD 1700-1900 DFW
RDU 1900-2100 LGA
RDU 1900-2100 DFW
LGA 1400-1600 ORD
DFW 1600-1800 RDU

e R bl e

For this example, the times are rounded to hours,
and all are considered to be in the same time zone.
Consider the pairings:

1. DFW 900-1200 LGA 1400-1600 ORD 1700-1900
DFW

2. LGA 1300-1500 orRD 1600-1800 RDU 1900-2100
LGA

3. ORD 1600-1800 RDU 1900-2100 DFW 900-1200
LGA 1300-1500 ORD

4. DFW 1600-1800 RDU 1900-2100 DFW

5. DFW 1600-1800 RDU 1900-2100 LGA 1400-1600
ORD 1700-1900 DFW

There are two overnight rests: DFW in pairing 3,
and LGA in pairing 5. The coefficient matrix for
these eight segments (rows) and five pairings (col-
umns) is

1 2 3 4 5
1)1 1
2 1 1
3 1 1
41 1
5 1 1
6 1 1
7 1 1
8 1 1

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

A linear programming solution is x;, = x, = x,
= x, = x5 = 1/2. The follow-on segments in this
solution are given below with corresponding lin-
ear programming solution values in parentheses.

Follow-ons

7 (1/2), 2 (1/2)
3(D

5(1/2), 6 (1/2)
1(1/2), 8 (1/2)
2(172),7(172)
1(1/2), 8 (1/2)
4(1)

6 (1/2), 5 (1/2)

Segment

00 2N AW =

In listing follow-on segments, the segment ending
a pairing is considered to be followed by the seg-
ment beginning the pairing. Thus, the pairing is
thought of as a circuit. Note that, in this example,
even though all of the x;s are fractional, there are
two segments, 2 and 7, with unique follow-ons in
the pairings with positive x;s. Our procedure
would begin by fixing these follow-ons so that any
subsequent pairings generated will have (2,3) and
(7,4) as locked pairs of segments.

Conclusions

We have demonstrated large improvements in
crew pairing by initially generating millions of
pairings and solving a linear program with a col-
umn for each pairing. This global approach seems
to avoid local optima that prevent TRIP from mak-
ing further improvements. For these large linear
programs, we have consistently observed a large
improvement in the linear programming objective
value and the best TRIP-generated solution. Fur-
thermore, the linear programming solution has
many fractional variables. Finding good integer
solutions is difficult, but the procedure presented
here provides a practical and effective solution
procedure.

Currently, the codes developed implementing
this approach are being used at AA for the two
largest fleets of planes: the super 80s and 727s.
Starting from the best TRIP solution, improve-
ments amounting to $300,000 have been realized
for the months of August, September, and Octo-
ber. Pay and credit have been significantly re-
duced. This reduction has been particularly sig-

ANBIL, TANGA, AND JOHNSON 77

nificant in the summer months when traditionally
crews are in short supply. The savings so far
amount to 1.2 million dollars per year. When the
same methodology is used to handle crew bal-
ancing, weekly exceptions, and transitions, and
is applied to the smaller fleets as well, savings
should be several times greater. In addition, we
expect to improve on the optimization procedure.
Thus, the approach has proven itself in practice
and opens the possibility for moving toward
global optimization of crew pairing.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. R. Anbil, E. Gelman, B. Patty, and R. Tanga, “Recent
Advances in Crew-Pairing Optimization at American Air-
lines,” Interfaces 21, No. 1, 62-74 (1991).

2. G. L. Nemhauser and L. A. Wolsey, Integer and Combi-
natorial Optimization, Wiley-Interscience Series in Dis-
crete Mathematics and Optimization, John Wiley & Sons,
Inc., New York (1988).

3. D. M. Ryan and J. C. Falkner, “A Bus Crew Scheduling
System Using a Set Partitioning Model,” Asia Pacific Jour-
nal of Operational Research, No. 4, 39-56 (1987).

Accepted for publication September 19, 1991.

Ranga Anbil American Airlines Decision Technologies, Mail
Drop 3F22, P.O. Box 619616, Dallas~-Fort Worth Airport,
Texas 75261. Dr. Anbil is a principal at AADT managing the
Crew Scheduling Research Group. Before joining AADT in
1986, he was an assistant professor at North Dakota State
University in the Industrial Engineering Department. He re-
ceived his Ph.D. from Ohio State University in industrial en-
gineering in 1984. At AADT Dr. Anbil manages the various
crew-pairing projects using TRIP.

Rajan Tanga American Airlines Decision Technologies, Mail
Drop 3F22, P.O. Box 619616, Dallas—Fort Worth Airport,
Texas 75261. Mr. Tanga is a senior consultant at AADT cur-
rently on leave to study at the Wharton School of the Uni-
versity of Pennsylvania. He joined AADT in 1988 after re-
ceiving his master’s degree in industrial engineering from Ohio
University. He received his bachelor’s degree in mechanical
engineering with highest honors from Gulbarga University in
India. Mr. Tanga has worked mainly at applying mathematical
technologies to complex scheduling problems.

Ellis L. Johnson IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598-0218. Dr. Johnson is an IBM Fellow in mathematical
programming. He is also the Coca-Cola Professor of Industrial
and Systems Engineering and Co-director of the Computa-
tional Optimization Center at Georgia Institute of Technol-
ogy. Currently working in the area of mathematical program-
ming, he established and managed the Optimization Center in
the Mathematical Sciences Department at IBM Research from
1986 until 1990, during which time he oversaw the technical

78 ANBIL, TANGA, AND JOHNSON

aspects of the development of the Optimization Subroutine
Library (OSL). His work in integer programming has included
projects with General Motors and American Airlines, and he
contributed to the codes for MPSX.V2 MIP and OSL MIP.
The paper describing the methodology developed to solve the
General Motors problems received the Lanchester Prize from
ORSA/TIMS in 1983. In 1985, Dr. Johnson was awarded the
Dantzig Prize of the Mathematical Programming Society and
the Society of Industrial and Applied Mathematics for his
mathematical programming research, and in 1987 he was
elected to the National Academy of Engineering.

Reprint Order No. G321-5462.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

