
Frontier: A graphical
interface for portfolio
optimization in a
piecewise linear-
quadratic risk framework

by D. L. Jensen
A. J. King

“Frontier” is a pilot graphical user interface for
portfolio optimization built for the new IBM
workstation, the RlSC System/SOOO”, out of basic
X-windows and OSL utilities. The program asks
the user to select a piecewise linear-quadratic
risk measure, draws a risWreward efficient
frontier, and permits the user to examine the
efficient frontier using zoom and histogram
display facilities. This paper describes the
interfaces and discusses possible extensions.

C omposing a portfolio of financial invest-
ments with the optimal characteristics of

both risk and expected reward is the central task
of modern portfolio theory, as advocated by Mar-
kowitz’ and his successors. Modern portfolio the-
ory guides the investor to quantify measures of
risk and expected return for the appropriate set of
assets, identify those combinations that are “ef-
ficient”-that is, those assets that meet all the
requirements of the investor and provide the low-
est risk for a desired level of expected return-
and then select one portfolio from this “efficient
frontier” to match the investor’s tolerance for
risk.

In principle, computing a minimum risk portfolio
for a given level of expected return is a well-
defined optimization problem. Over the years a
body of literature has developed concerning the

practical aspects of estimating asset return dis-
tributions from past data, using statistical meth-
ods and modeling investor requirements by
means of mathematical programming techniques.
However, the modeling of appropriate risk mea-
surement criteria is critical to the success of this
method.

The risk measure chosen by Markowitz was the
variance of portfolio return. He chose the method
for reasons of simplicity and computational effi-
ciency. In the variance-as-risk framework, the in-
vestor constructs the variance-covariance matrix
of asset returns (perhaps from historical data) and
applies techniques of parametric quadratic pro-
gramming to draw a meadvariance efficient fron-
tier. This procedure is simple. It relies only on the
estimation of the covariance matrix to specify
risk, and leads to relatively low-dimensional qua-
dratic programs for which effective algorithms ex-
ist. But variance-as-risk suffers from a serious
drawback. It penalizes both high and low portfo-
lio returns and fails to capture an investor’s basic

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

62 JENSEN AND KING IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

preference for high versus lower portfolio re-
turns.

A more appealing family of risk measures pro-
posed by many investigators is based on the no-
tion of “downside risk.” These are constructed
out of pieces: a linear or quadratic piece to pe-
nalize below-target portfolio returns, and a piece
with zero slope to indicate indifference to above-
target portfolio returns. Such a risk measure ap-
plies a penalty only when returns fall below a
certain target. An efficient “frontier” can be pro-
duced by computing a minimum risk portfolio for
each level of target expected return, just as for the
meardvariance efficient frontier.

The chief drawback of this procedure lies in the
difficulty of computing the minimum risk portfolio
for the piecewise linear-quadratic risk measures
used to model downside risk. The authors’ out-
lined a method to compute the minimum risk port-
folio for downside risk models, which has the
same simplicity as the variance-as-risk model but
is far more computationally intensive. This pro-
cedure takes the same empirical data used to con-
struct the variance-covariance matrix and em-
ploys it directly as an empirical (nonparametric)
estimate of the distribution of asset returns. For
each datum a set of new variables is introduced to
represent each piece of the risk objective, and the
whole problem is then solved as a large-scale qua-
dratic program.

Justification for this nonparametric downside risk
framework comes from two sources. The first is
theoretical. In Reference 2 it is shown that the
two procedures have similar error distributions.
This means that one is not able to control errors
more effectively by separately estimating the
variance-covariance matrix than by employing
the nonparametric procedure. The second is prac-
tical. Using ten years of global stock market data,
W. V. Harlow3 tabulates an impressive series of
results showing the year-by-year superiority of
the nonparametric downside risk framework.

The computational requirements of these piece-
wise linear-quadratic risk models are greater than
those imposed by variance models. Nevertheless,
they are well within the capabilities of modern
RISC (Reduced Instruction-Set Computer) hard-
ware and advanced optimization software. In
Reference 2 we reported reasonable times to draw
an efficient frontier for a 1000 asset portfolio with

IBM SYSTEMS JOURNAL, VOL 31, NO 1 , 1992

1000 data points (one million observations in all),
on an IBM RISC System/6000* Model 540 using the
quadratic programming solver that is standard in
the IBM Optimization Subroutine Library (OSL).

This paper describes a pilot user interface for
portfolio optimization called “Frontier. ” Frontier
has been successfully demonstrated to audiences
in Europe, the United States, and Japan. It is
intended to illustrate the capabilities of advanced
workstation environments and the usefulness of
X-windows and OSL utilities in custom-designing
a portfolio manager’s interface with state-of-the-
art optimization software. The source code for
Frontier is available as a sample OSL/X-windows
driver.

This paper is divided into five parts. The first part
describes the mathematical model that must be
passed to OSL; the second discusses the particular
application that is available with the sample code
for Frontier. In the third and fourth parts the im-
plementation of the Frontier program is described
in detail. Finally, since Frontier is just a pilot pro-
gram and as such is deficient in many respects, in
the last section we discuss possible extensions to
the program to make it a more complete solution.

The mathematical model

If all asset returns are known at the outset, i.e.,
there is no risk, then the portfolio optimization
problem is to maximize the total portfolio return
subject to a budget constraint. Additional con-
straints may be added to reflect investment pol-
icies, such as distribution requirements. The
mathematical statement of the risk-free portfolio
optimization problem is

n

maximize: r ‘x = r jx j

subject to: er Ax ur
j = 1

e c s x s u c (1)

The vector r represents the asset returns for each
of thej = 1 , * , n securities. The inequalities are
vector inequalities, interpreted componentwise.
The vectors er and ur are the row upper and lower
bounds; ec and uc are the column upper and
lower bounds. The problem shown in Equation 1
is a linear program that can be solved by the Op-

JENSEN AND KING 63

timization Subroutine Library. But if the asset
returns are not known, a mathematical model
must be formed that accounts for the risk of in-
vesting in securities with uncertain returns.

The nonparametric linear-quadratic risk frame-
work presented in Reference 2 is as follows. First,
a list is obtained of possible asset return scenarios
rs together with a probability weighting p s , for
each s = 1, - - - , S. (Such scenarios may come
from historical data or simulations.) Next, a risk
measure is designed from the class of linear-qua-
dratic tracking functions by selecting a lower
slope q- , an upper slope q+ , and a curvature e .
This produces a risk function of the form:

1 . 4+
q+t - 5 (q +) 2 If-5 t

e

Examples of risk measures for particular param-
eter settings follow shortly. Finally, a target is
selected. In the examples in this paper, the target
is the level of expected return (other targets are
possible, as shown in Reference 5) . Putting all this
together, a mathematical model is designed that
minimizes the expected risk of deviations about a
target expected return, subject to the original con-
straints of the model shown in Equation 1. For
convenience we denote by f the expected return
vector

S

f = P S Y S

s=l

and by X the set of vectors satisfying the con-
straints of Equation 1, namely

With this notation, the mathematical program to
compute the efficient frontier describing the min-
imum risk for given level T of expected return is

64 JENSEN AND KING

S

minimize: <r:x - fTx)

subject to: JTx ~

s= 1

x E X (2)

Examples of risk measures that can be con-
structed from the piecewise linear-quadratic
tracking function are the theoretically significant
and intuitively appealing downside risk measures:
the lower partial mean and lower partial vari-
ance. These risk measures apply a positive pen-
alty to all values coming in below zero, and are
zero for all positive values. The lower partial
mean is constructed by setting q- = 1, q+ = 0,
e = +m:

if t<O
P l , o ; + m (t) = { otherwise

and the lower partial variance by q - = -m, q + - -
0, e = 1:

1

P-m,ol(t) =

k t * otherwise

(As far as the program Frontier is concerned, any
real number with absolute value in excess of
1.0 x i O 3 I is infinite.)

The data requirements of the mathematical model
may be summarized as: the number n of securities
in the portfolio universe and the number and type
of constraints describing the feasible set X , the list
of asset return scenarios r s , s = 1, - - , S, together
with their probabilities p s , and the shape param-
eters (q - , q+ , e) for the piecewise linear-qua-
dratic risk measure.

Example applications

The program Frontier has an interactive facility
for defining the risk measure. In its present de-
sign, however, Frontier must generate the re-
mainder of the required data from files and by
simulation. This section describes the data struc-
tures and discusses two example applications.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

The data read by Frontier are in two parts, (1) the
constraints that define the portfolio universe X ,
and (2) the parameters describing the probability
distribution of the asset returns. To understand
how this information is structured, it helps to fol-
low the simple example called ASSET distributed
with Frontier. In this model the investor wishes to
choose a portfolio consisting of long positions in
each of four assets: Corporate bonds (C), Nikkei
stock index (N), Standard and Poors 500 stock
index (S) , and u.S. Treasury bills (T) . There are
nonnegativity restrictions on each asset holding,
plus three other constraints describing budget
limitations and diversity requirements:

X C + X N + X S + xT= 1 (Budget)
X N - 0 . 5 ~ s 5 0 (Diversity 1)

XC + xT 2 0.3 (Diversity 2)
X C ~ o ~ X N 2 0 , X ~ ~ o , X T ~ o

(long positions only) (3)

The asset returns (r) depend on two factors,
World GNP (sw) and U.S. ten-year Treasury rates
(s u) , plus an independent component for each as-
set:

rc = 1 . 0 5 ~ ~ - 0 . 2 0 ~ ~ + tc + Fc

rN = -0.1OSu - 10.5Osw + tN + r;V

rs = - 0 . 2 0 ~ ~ - 8 . 3 5 ~ ~ + ts + Fs
YT = 1 .OOS, - 0.005sw + tT + TT (4)

The expected return vector is F. The factors
(s u , sw) are distributed approximately log-normal
in the following manner:

su = 1 - euu

sw = evW - 1 .o

where (vu, YJ w) are jointly normal random vari-
ables with joint covariance matrix

and mean value 0. The independent components
are also approximately log-normal:

ti = e’] - 1.0 j E {C, N , S, T }

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

where the vj are independent normal random var-
iables with mean zero and standard deviations.

dc = 0.025, dN = 0.04, d , = 0.04, d, = 0.0 (6)

Finally, we recall that in the minimal risk model
(Equation 2) , we must have a constraint bounding
the expected returns from below:

1 . 0 7 ~ ~ + 1 . 3 1 ~ ~ + 1 . 1 8 ~ ~ + 1 . 0 3 ~ ~ 2 0 (7)

The data needed to define the model are:

1 . The expected return vector F, as in Equation 7
2 . The factor covariance matrix C and standard

deviations d , as in Equations 5 and 6
3 . The factor matrix F as in Equation 4
4. The linear system of constraints and bounds:

er I A x I ur and ec 5 x I uc, as in Equation
3.

We now perform a simple algebraic manipulation
to simplify the data structures (and confuse the
innocent). Notice that the return on a portfolio
x = (x c , x N , x , , x T) may be computed as

(J + r)Tx = (Y + Fs + t) T ~

= r’x + STFTX + t T X

We define now two additional “assets” in our
portfolio, namely (y u , yw), corresponding to
“positions” we will take in the factors as a con-
sequence of our positions in the actual assets.
These “factor positions” are given by the system
of equations

y U = 1 .O5xc - 0. l oxN - 0 . 2 0 ~ ~ + 1 .OOX,

y w = 0 . 2 0 ~ ~ - 1 0 . 5 0 ~ ~ - 8 . 3 5 ~ ~ + 0 . 0 0 ~ ~ (8)

or, in symbols

y = F T x

If we include the system of Equation 8 in our
linear system of Equation 3, we may compute the
return on a portfolio x as

(F+r)Tx=PTx+sTFTx+tTx=fTx+sTy+tTx

JENSEN AND KING 65

This allows us to enter the matrix F as part of the
constraints of the model, as we see below in
Equation 9.

In summary, the data required by Frontier are in
two parts. The first describes the set of linear
equalities, inequalities and bounds from the sys-
tems shown in Equations 7, 8, and 3:

f i x 3 0 (expected returns)
- y + FTx = 0 (factor equations)
er 5 Ax 5 ur (portfolio universe)

e c ~ x ~ u c (9)

The second describes the covariances and stan-
dard deviations of the normal random vector u
that is used to construct the log-normal random
factor s and independent components t , namely

The system depicted by Equation 9 is passed in to
Frontier in standard MPS4 (Mathematical Pro-
gramming System) format (see the file ASSET.DTX
in Appendix A). The first row is the expected
return row, the next bloc of rows are the factor
rows, followed by the portfolio constraints. The
covariance data (Equation 10) are read in from
another file by columns. The first entry of this file
is an integer NF stating the number of factors in
the model (see the file ASSET.COVDAT in Appen-
dix A).

The problem ASSET is a simple model that is in-
cluded in the Frontier package merely as an ex-
ample for the user to explore. Also included is a
much larger problem (of a similar type), called
EX3B, with a portfolio universe of 1000 assets and
a factor model involving 15 factors. Solution
times are reported in Reference 2. They range
from about one minute for a small sample of 50,
to over one hour for a large sample of 1000. It
should be remarked that a sample of 1000 corre-
sponds to over three years of daily closing data,
and 85 years of monthly closing data! Typical as-
set allocation problem sizes would involve far
fewer stocks, although the constraints might be
more complex (and a realistic problem formula-
tion would incorporate minimum purchase con-

66 JENSEN AND KING

ditions, requiring a mixed-integer problem formu-
lation).

Computing the efficient frontier with OSL

The fundamental computation is to calculate and
draw the efficient frontier for the problem shown
in Equation 2, whether the probability model is a
factor model as described in the previous section,
or the probability model is generated from his-
torical data.

Frontier does this by employing OSL subroutines
to generate the equivalent quadratic program

minimize: p , 2 eu,2 + q-v; + q u, (11)

subject to: JTx + R - R = 0 (12)

X E X (13)

cl + +I
R ? O + r (14)

r ~ x - R - u , - u , ~ - v ~ = O (15)

S

r J x - k = ~ (16)
s=l

us- 5 0, u: 2 0, v, free

(s = 1, * - - , S) (17)

Equations 12 and 16 serve to set the variable R to
the true expected value (because r, is a sample
from a random return with mean zero, it may be
that Z, p , r , is not zero). Equation 14 is therefore
the lower bound row for the expected returns.
Equation 15 allocates the difference r: x - R to
the three pieces of the piecewise linear quadratic
tracking function. The variable us- picks up the
negative linear part, the variable u: the positive
linear part, and the variable u , (as a consequence
of the optimization) will be assigned to the part
over which the tracking function is quadratic.

Frontier assumes that the first row of the model
is the “idealized” expected return row, and that
the true expected return is the sum of the ideal-
ized and the sample expected return. Frontier
builds the model as follows:

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

b
1. Use OSL subroutines EKKCOL to add variables

R and R to the first row (Equation 12).
2. Use OSL subroutine EKKROW to add the ex-

pected return bounding row (Equation 14). Ini-
tially, the lower bound on this row is set to 0.

3. Call subroutine SAMPLE a total of S times to
read in the samples r , and construct, one row
at a time, a matrix block for the Equation 15.

4. Call OSL subroutine EKKDSCB to add the block
(Equation 15) to the model. Set the linear ob-

for the variables: u -, u , and u + .
5. Call OSL subroutine EKKROW to add the Sam-

ple expected return row in Equation 16.
6. Call OSL subroutine EKKQMDL to add the qua-

dratic penalty (the diagonal matrix with entries
p,e) for each quadratic variable u s .

D jective values p s q - and p s q + and the bounds

Frontier next sets up the parametric perturbation

metric quadratic programming subroutine of OSL
that draws efficient frontiers. In the case at hand,
the quadratic model is being “perturbed” by add-
ing T times the perturbation vector [0, * * * , 0, 1,
0, - - - , 01 to the row bounds, where the 1 lies in
the position corresponding to Equation 14.
EKKQPAR is an efficient parametric programming
routine designed for the specific task of comput-

b
ing an efficient frontier with either cost or row-
bound perturbations. There are two phases. First,
EKKQPAR solves the quadratic program with T set
to its lower bound-in our case the lower bound
is zero, corresponding to the minimum risk prob-
lem. Then, repeatedly, at the given complemen-
tary basic solution EKKQPAR increases 7 up to the
point where one of the variables (primal or dual)
would violate its bound if T were to increase any

B
further. This variable is then pivoted out of the
basis. The procedure repeats until T has reached
its maximum size, which corresponds to the max-
imum expected return problem.

If the objective value ROBJVAL were captured and
solution NCOLSOL returned by OSL at each T vis-
ited in this procedure, the user would be able to
trace and store the efficient frontier and the effi-
cient portfolios. Fortunately, OSL facilities allow

and examine OSL variables while the program is
executing via a user-exit subroutine EKKITRU.
Each time EKKQPAR finds a point Ton the efficient
frontier (after making the pivot), it calls EKKITRU
with mode 9. The EKKITRU subroutine tests the
mode and writes each .r-value, objective value,

D in preparation for a call to EKKQPAR, the para-

1 the user to follow the progress of the algorithm

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

1

and optimal portfolio out to a binary file, ready to
be accessed by the graphics subroutines that dis-
play the efficient frontier.

Frontier user interface

Frontier is initialized (in X-windows) by the com-
mand string

run pname nsamp

where pname is a problem name and nsamp is an
integer specifying the number of samples to be
taken (the size of S) . The two files pname.dtx and
pname.covdat are found and then the program
Frontier is executed, displaying the user interface
windows.

The user interface for Frontier is designed to al-
low the user to specify the tracking function pa-
rameters: left slope q - , right slope q +, and cur-
vature e . Since the efficient frontier will be written
to a file, the user also is asked to provide an iden-
tifier for the particular frontier to be drawn. Once
these items are keyed into the appropriate boxes,
the frontier can be drawn by selecting the appro-
priate box and clicking a mouse button. If all goes
well, the OSL output scrolls by and the efficient
frontier grows in leaps and bounds. (See Figure
1 .>

The interface is designed so that the user may
examine the efficient frontier. Clicking the mouse
on the frontier will display a histogram of simu-
lated total returns from the corresponding effi-
cient portfolio, generated by locating the appro-
priate record in the frontier file, reading in the
optimal portfolio x, computing the total return
u, = r:x for each sample rs of asset returns, and
then displaying the distribution of u s , s = 1, * ,
S as a histogram. (The histogram is centered
at 0; to get the true value one must add the ex-
pected return values.) Clicking up and down the
frontier gives a graphic demonstration of the risk
vs reward concept; the histogram changes shape
dramatically for different levels of reward.

The user may also “zoom” on the frontier to ex-
amine it more closely. By pressing on the zoom
button, the mouse pointer is set to outline a zoom
rectangle: the first click locates the upper-left cor-
ner and the second the lower-right corner. The
zoom rectangle magnifies to the whole window;

JENSEN AND KING 67

Figure 1 Frontier output-the efficient frontier with return histogram for highlighted portfolio (OSL output at bottom)

1.22

1.20

1.18

1.16

O
K

1.14
w z

1.12

1.10

1.08

1.06

I OSL/RS6000
ZoomlRefreshl r 40-

35-

30-

25- -
1

m
m a 20-

15-

10- -
5- El
0 lm- f

RISK RETURN (EXPECTED RETURN - 1.1778)

+****** Assets: 1 .300000 2 ,233333 3 ,466667 4 .000000E+00
Normal Termination

LINQUAD: Time spent in linear setup
LINQUAD: Tlme spent in sampling

0.670000000000000040

LINQUAD: Time spent in quadratic setup 0.700000000000000067E-01
0.170000000000000012

LINQUAD; Time spent in efficient frontier 10.3800000000000008
Stopping run...
lit enter to remove this window
1

the original frontier may be restored by clicking
the "refresh" button. Efficient frontiers already
drawn may be recalled by entering the frontier
name and clicking the "view" button. In this way,
efficient frontiers for various settings of risk pa-
rameters may be visually compared.

Conclusions and extensions

Frontier is a pilot program, created to demon-
strate the capabilities of OSL and X-windows in a
realistic application in financial portfolio manage-
ment. It is also a state-of-the-art implementation
of the piecewise linear-quadratic risk frame-
work-the user can select a risk function, draw a
frontier, and examine the results of investing in

any one of the efficient portfolios. Drawing the
frontier gives a compelling graphical demonstra-
tion of the power of OSL and the IBM RISC Sys-
tem/6000. A wealth of output documents the so-
lution of complex problems, and the efficient
frontier leaps across the screen.

More capabilities could be built into Frontier and
the efficient frontier more quickly drawn. Our
suggestions fall into three groups: (1) the graph-
ical user interface, (2) the data interface, and (3)
the computational kernel.

Possible extensions to Frontier would allow the
user to view the efficient portfolio as a table of
entries, edit the portfolio table, and simulate the

68 JENSEN AND KING IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

result on another histogram window for compar-
ison. For example, the user may wish to delete
from the efficient portfolio all those stocks rep-
resented at levels below 0.1 percent. Also, the
user should be able to edit the list of drawn fron-
tiers and select any one of them for comparative
viewing in a separate frontiedhistogram window.
These are relatively simple tasks that can be im-
plemented with standard X-toolkit (or Motif) text
widgets.

The data interface could also be extended to per-
mit a wide variety of user inputs and interfaces.
This can be a challenging task. It should not be
difficult to integrate the user’s database with the
Frontier program. But what if the user wants to
enter in a constraint apos t? One could design an
interface such as those in the above paragraph to
display and edit a table of column or row bounds
(say, only those pertaining to the portfolio uni-
verse X), but that is about all one can do without
a more general modeling language or data inter-
faces than OSL presently provides. A further,
easy-to-implement, extension would be a facility
to allow the user to generate an entirely new set
of sample returns with which to simulate the total
portfolio return and test the robustness of the effi-
cient frontier with respect to different sample sets.

The computational kernel can be modified in a
number of ways. As we indicated in Reference 2,
by far the greatest time is spent in finding the first
point on the efficient frontier. The issue here is to
find a good starting basis. One possibility is to find
the point at the other (maximum expected return)
end of the frontier. This may be faster. Another
is to apply some decomposition techniques more
suited to the problem structure-such as the finite
generation method as reported in King.6

A more important innovation in a completely dif-
ferent direction is to allow the user to set mini-
mum purchase levels, a level below which the
asset holding is constrained to be zero. This can
be accomplished with zero-one variables, as fol-
lows. Suppose that one wishes to hold an amount
greater than y or none of a certain stock xi. In-
troduce two variables yi and zi, and add the fol-
lowing set of constraints

xi = aizj + y j
0 ‘Xj 5 MZj

y j 2 0, and zi = 0 or 1

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

where M is an overestimate of an upper bound for
the variablexi. Whenx, is not zero, the zero-one
variable is forced to take the value one and this in
turn forces xi to be at least as large as ai. This
problem now falls in the (largely unexplored)
realm of mixed-integer quadratic programming.
OSL provides basic facilities for creating branch
and bound algorithms for solving this class of
problems.
*Trademark or registered trademark of International Business
Machines Corporation.

Appendix A

Example: ASSET.DTX

NAME ASSETS
ROWS

N OBJRW
E REWARD
E USLONG
E WLDGNP
E BUDGET
L D I V E R S l
G DIVERS2

COLUMNS
USLONG USLONG -1.08
WLDGNP WLDGNP -1.00
CORPB USLONG 1.05 WLDGNP -.2Q
CORPB BUDGET 1.00 DIVERS2 1.00
CORPB REWARD 1.07
N I K K E I USLONG -.lo WLDGNP 10.58
N I K K E I BUDGET 1.00 D I V E R S l 1.08
N I K K E I REWARD 1.31
SP5Q0 USLONG -.20 WLDGNP 8 . 3 5
SP500 BUDGET 1.80 D I V E R S l -. 50
SP50Q REWARD 1.18
T B I L L S USLONG 1.00 WLDGNP 8.085
T B I L L S BUDGET 1.80 DIVERS2 1 .OO
T B I L L S REWARD 1.03

RHS
RHS USLONG 8.08 WLDGNP 0.00
RHS BUDGET 1.08 D I V E R S l 0.08
RHS DIVERS2 0.30 REWARD 0.08

BOUNDS
FR BND USLONG
FR BND WLDGNP
LO BND SP500 0.0
LO BND N I K K E I Q.O
LO BND T B I L L S 8.0
LO BND CORPB 0.0

ENDATA

JENSEN AND KING 69

Example: ASSET.COVDAT

2
Q .QQ3
Q.QQQOQ5
8.888885
Q . QQQ25
Q . QQ4
Q . QQ4
Q.QQ1
Q .QQ25

Cited references

1. H. M. Markowitz, Portfolio Selection = EfJicient Diversi-
fication of Investments, John Wiley & Sons, Inc., New
York (1959).

2. A. J. King and D. L. Jensen, Linear-Quadratic Eficient
Frontiers for Portfolio Optimization, Research Report RC-
16524, IBM Thomas J. Watson Research Center, York-
town Heights, NY 10598 (1991).

3. W. V. Harlow, Asset Allocation in a Downside Risk
Framework, Salomon Brothers, New York (1991).

4. Optimization Subroutine Library Guide and Reference,
SC23-0519-2, IBM Corporation (1991); available through
IBM branch offices.

5. R. S. Dembo and A. J. King, Tracking Models and the
Optimal Regret Distribution in Portfolio Optimization, Re-
search Report, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598 (1991).

6. A. J. King, “An Implementation of the Lagrangian Finite
Generation Method,” in Numerical Technique for Sto-
chastic Optimization, Yu. Ermoliev and R. J-B Wets, Ed-
itors, Springer-Verlag, New York (1988).

Accepted for publication September 19, 1991.

David L. Jensen ZBM Research Division, Thomas J. Watson
Research Center, P. 0. Box 218, Yorktown Heights, New York
10598. Dr. Jensen received his Ph.D. in operations research
from Cornel1 University in 1985. He joined IBM’s Thomas J.
Watson Research Center in 1987. His interests are in network
flows, combinatorial optimization, interior point algorithms,
and applications of mathematical programming.

Alan J. King ZBM Research Division, Thomas J. Watson Re-
search Center, P.O. Box 218, Yorktown Heights, New York
10598. Dr. King earned his Ph.D. at the University of Wash-
ington, Seattle, in 1986, and joined IBM’s Thomas J. Watson
Research Center in 1988. His interests are in stochastic pro-
gramming and its application to decision-making under un-
certainty for engineering and economic systems.

Reprint Order No. G321-5461.

70 JENSEN AND KING IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

