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“Frontier”  is  a  pilot  graphical  user  interface for 
portfolio  optimization built for the new  IBM 
workstation,  the  RlSC System/SOOO”, out of  basic 
X-windows  and OSL utilities.  The  program  asks 
the user to select  a  piecewise  linear-quadratic 
risk  measure,  draws  a  risWreward  efficient 
frontier,  and  permits  the  user to examine  the 
efficient  frontier  using  zoom  and  histogram 
display  facilities.  This  paper  describes the 
interfaces  and  discusses  possible  extensions. 

C omposing a portfolio of financial  invest- 
ments  with the optimal characteristics of 

both risk  and expected reward  is the central task 
of modern  portfolio theory, as advocated by  Mar- 
kowitz’ and  his successors. Modern  portfolio the- 
ory  guides the investor to quantify  measures of 
risk  and expected return for the appropriate set of 
assets, identify those combinations that are “ef- 
ficient”-that is, those assets that meet  all the 
requirements of the investor and  provide the low- 
est risk for a desired  level of expected return- 
and  then select one  portfolio  from  this  “efficient 
frontier” to match the investor’s tolerance for 
risk. 

In  principle,  computing a minimum  risk  portfolio 
for a given  level of expected return is a well- 
defined  optimization  problem. Over the years a 
body of literature has  developed  concerning the 

practical aspects of estimating asset return dis- 
tributions  from past data, using statistical meth- 
ods  and  modeling investor requirements by 
means of mathematical  programming techniques. 
However, the modeling  of appropriate risk  mea- 
surement criteria is critical to the success of this 
method. 

The  risk  measure chosen by  Markowitz  was the 
variance of portfolio return. He chose the method 
for reasons of simplicity  and computational effi- 
ciency. In the variance-as-risk framework, the in- 
vestor constructs the variance-covariance matrix 
of asset returns (perhaps from  historical data) and 
applies  techniques of parametric quadratic pro- 
gramming to draw a  meadvariance efficient fron- 
tier. This procedure is  simple. It relies  only  on the 
estimation of the covariance matrix to specify 
risk, and  leads  to  relatively  low-dimensional qua- 
dratic programs  for  which  effective  algorithms ex- 
ist. But  variance-as-risk  suffers  from a serious 
drawback. It penalizes  both high and low  portfo- 
lio returns and  fails to capture an investor’s basic 
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preference for high versus lower  portfolio  re- 
turns. 

A more  appealing  family of risk  measures  pro- 
posed  by  many investigators is based  on the no- 
tion of “downside risk.” These are constructed 
out of pieces: a linear or quadratic piece to pe- 
nalize  below-target  portfolio returns, and a piece 
with zero slope to indicate  indifference to above- 
target portfolio returns. Such a risk  measure ap- 
plies a penalty  only  when returns fall  below a 
certain target. An  efficient “frontier” can  be  pro- 
duced  by  computing a minimum  risk  portfolio  for 
each level of target expected return,  just as for the 
meardvariance  efficient frontier. 

The chief  drawback of this procedure lies in the 
difficulty  of computing the minimum  risk  portfolio 
for the piecewise linear-quadratic risk  measures 
used to model  downside risk. The authors’ out- 
lined a method to compute the minimum  risk port- 
folio for downside  risk  models,  which  has the 
same  simplicity as the variance-as-risk  model  but 
is far more  computationally  intensive.  This  pro- 
cedure takes the same  empirical data used to con- 
struct the variance-covariance matrix  and  em- 
ploys  it directly as an  empirical (nonparametric) 
estimate of the distribution of asset returns. For 
each datum a set of  new variables is introduced  to 
represent each piece of the risk objective, and the 
whole  problem  is  then  solved as a large-scale  qua- 
dratic program. 

Justification for this  nonparametric  downside  risk 
framework  comes  from  two sources. The  first  is 
theoretical. In Reference 2 it  is  shown  that the 
two procedures have  similar error distributions. 
This  means that one  is  not  able to control errors 
more  effectively by separately estimating the 
variance-covariance matrix  than by  employing 
the nonparametric procedure. The second  is prac- 
tical. Using  ten years of global  stock  market data, 
W. V. Harlow3 tabulates an  impressive  series of 
results showing the year-by-year superiority of 
the nonparametric downside  risk  framework. 

The computational requirements of these piece- 
wise linear-quadratic risk  models are greater than 
those imposed by variance  models. Nevertheless, 
they are well  within the capabilities of modern 
RISC (Reduced Instruction-Set Computer)  hard- 
ware  and  advanced  optimization software. In 
Reference 2 we reported reasonable times to draw 
an  efficient frontier for a 1000 asset portfolio  with 
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1000 data points  (one  million observations in all), 
on an IBM  RISC System/6000*  Model 540 using the 
quadratic programming solver that is standard in 
the IBM Optimization Subroutine Library (OSL). 

This  paper describes a pilot user interface for 
portfolio  optimization  called “Frontier. ” Frontier 
has  been  successfully demonstrated to audiences 
in Europe, the United States, and Japan. It is 
intended to illustrate the capabilities of advanced 
workstation environments and the usefulness of 
X-windows  and OSL utilities in custom-designing 
a portfolio  manager’s interface with state-of-the- 
art optimization software. The source code for 
Frontier is  available as a sample  OSL/X-windows 
driver. 

This  paper  is  divided into five parts. The first part 
describes the mathematical  model that must  be 
passed  to OSL; the second discusses the particular 
application that is  available  with the sample code 
for Frontier. In the third  and fourth parts the im- 
plementation of the Frontier program  is described 
in detail. Finally, since Frontier is just  a pilot  pro- 
gram  and as such  is  deficient in  many respects, in 
the last section we discuss possible extensions to 
the program to make  it a more  complete solution. 

The  mathematical  model 

If  all asset returns are known at the outset, i.e., 
there is  no risk, then the portfolio  optimization 
problem  is  to  maximize the total portfolio return 
subject to a budget constraint. Additional con- 
straints may  be  added to reflect investment pol- 
icies,  such as distribution requirements. The 
mathematical statement of the risk-free  portfolio 
optimization  problem  is 

n 

maximize: r ‘x = r jx j  

subject to: er Ax ur 
j =  1 

e c s x s u c  (1) 

The vector r represents the asset returns for each 
of thej = 1 ,  * , n securities. The inequalities are 
vector inequalities, interpreted componentwise. 
The vectors er and ur are the row upper and  lower 
bounds; ec and uc are the column upper and 
lower  bounds.  The  problem  shown in Equation 1 
is a linear  program that can be  solved  by the Op- 
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timization Subroutine Library. But if the asset 
returns are not  known, a mathematical  model 
must  be  formed that accounts for the risk of in- 
vesting  in securities with  uncertain returns. 

The nonparametric linear-quadratic risk  frame- 
work presented in  Reference 2 is as follows. First, 
a list is obtained of possible asset return scenarios 
rs together with a probability  weighting p s ,  for 
each s = 1, - - - , S. (Such scenarios may  come 
from  historical data or simulations.) Next, a risk 
measure is designed  from the class of linear-qua- 
dratic tracking functions by  selecting a lower 
slope q- , an upper  slope q+ , and a curvature e .  
This produces a risk function of the form: 

1 . 4+ 
q+t - 5 ( q + ) 2  If-5 t 

e 

Examples of risk  measures for particular param- 
eter settings follow shortly. Finally, a target is 
selected. In the examples in this paper, the target 
is the level of expected return (other targets are 
possible, as shown in Reference 5 ) .  Putting  all this 
together, a mathematical  model is designed that 
minimizes the expected risk of deviations  about a 
target expected return, subject  to the original con- 
straints of the model  shown  in Equation 1. For 
convenience we denote by f the expected return 
vector 

S 

f =  P S Y S  

s=l 

and  by X the set of vectors satisfying the con- 
straints of Equation 1, namely 

With this notation, the mathematical  program to 
compute the efficient frontier describing the min- 
imum  risk for given  level T of expected return is 
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S 

minimize: <r:x - fTx) 

subject to: JTx ~ 

s= 1 

x E X  (2)  

Examples of risk measures that can be con- 
structed from the piecewise linear-quadratic 
tracking  function are the theoretically significant 
and  intuitively  appealing downside risk measures: 
the lower  partial  mean and lower  partial  vari- 
ance. These risk measures apply a positive  pen- 
alty  to  all  values  coming in  below zero, and are 
zero for all  positive  values. The lower partial 
mean  is constructed by setting q-  = 1, q+ = 0, 
e = +m: 

if t<O 
P l , o ; + m ( t )  = { otherwise 

and the lower  partial  variance  by q - = -m, q + - - 
0, e = 1: 

1 

P-m,ol(t) = 

k t *  otherwise 

(As far as the program Frontier is concerned, any 
real  number  with absolute value in excess of 
1.0 x i O 3 I  is infinite.) 

The data requirements of the mathematical  model 
may  be  summarized as: the number n of securities 
in the portfolio universe and the number  and type 
of constraints describing the feasible set X ,  the list 
of asset return scenarios r s ,  s = 1, - - , S, together 
with their probabilities p s ,  and the shape param- 
eters (q - ,   q+ ,  e )  for the piecewise  linear-qua- 
dratic risk measure. 

Example  applications 

The  program Frontier has an interactive facility 
for defining the risk  measure. In its present de- 
sign, however, Frontier must generate the re- 
mainder of the required data from  files  and  by 
simulation.  This section describes the data struc- 
tures and discusses two example applications. 
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The  data  read by Frontier  are in two  parts, (1) the 
constraints  that define the portfolio universe X ,  
and (2 )  the  parameters describing the probability 
distribution of the  asset  returns.  To  understand 
how this information is structured, it helps to fol- 
low the simple example called ASSET distributed 
with Frontier.  In this model the  investor wishes to 
choose  a portfolio consisting of long positions in 
each of four  assets:  Corporate  bonds (C), Nikkei 
stock  index (N), Standard  and  Poors 500 stock 
index (S) ,  and u.S. Treasury bills ( T ) .  There are 
nonnegativity restrictions  on  each  asset holding, 
plus three  other  constraints describing budget 
limitations and  diversity  requirements: 

X C  + X N  + X S  + xT= 1 (Budget) 
X N  - 0 . 5 ~ s  5 0 (Diversity 1)  

XC + xT 2 0.3 (Diversity 2)  
X C ~ o ~ X N 2 0 , X ~ ~ o , X T ~ o  

(long positions only) (3) 

The  asset  returns ( r )  depend  on  two  factors, 
World GNP (sw) and U.S. ten-year  Treasury  rates 
( s u ) ,  plus an  independent  component  for  each  as- 
set: 

rc = 1 . 0 5 ~ ~  - 0 . 2 0 ~ ~  + tc + Fc 

rN = -0.1OSu - 10.5Osw + tN + r;V 

rs = - 0 . 2 0 ~ ~  - 8 . 3 5 ~ ~  + ts + Fs 
YT = 1 .OOS, - 0.005sw + tT + TT (4) 

The  expected  return  vector is F. The  factors 
( s u ,  sw) are distributed  approximately log-normal 
in the following manner: 

su = 1 - euu 

sw = evW - 1 .o 

where (vu, YJ w) are  jointly normal random vari- 
ables with joint  covariance matrix 

and mean value 0. The  independent  components 
are also  approximately log-normal: 

ti = e’] - 1.0 j E  {C, N ,  S, T }  
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where  the vj are independent normal random  var- 
iables with mean zero  and  standard  deviations. 

dc = 0.025, dN = 0.04, d ,  = 0.04, d, = 0.0 (6) 

Finally,  we recall that in the minimal risk model 
(Equation 2) ,  we must  have  a  constraint bounding 
the  expected  returns  from  below: 

1 . 0 7 ~ ~  + 1 . 3 1 ~ ~  + 1 . 1 8 ~ ~  + 1 . 0 3 ~ ~ 2  0 (7) 

The  data needed to define the model are: 

1 .  The  expected  return  vector F, as in Equation 7 
2 .  The  factor  covariance  matrix C and  standard 

deviations d ,  as in Equations 5 and 6 
3 .  The  factor matrix F as in Equation 4 
4. The  linear  system of constraints  and  bounds: 

er I A x  I ur and ec 5 x I uc, as in Equation 
3.  

We  now perform a simple algebraic manipulation 
to simplify the  data  structures (and confuse the 
innocent).  Notice  that  the  return  on a portfolio 
x = ( x c ,   x N ,   x , ,   x T )  may be computed as 

( J +  r )Tx  = ( Y +  Fs + t ) T ~  

= r’x + STFTX + t T X  

We define now two  additional “assets” in our 
portfolio, namely ( y u ,  yw), corresponding  to 
“positions” we  will take in the  factors  as a con- 
sequence of our  positions in the  actual  assets. 
These  “factor  positions”  are given by the  system 
of equations 

y U  = 1 .O5xc - 0. l oxN - 0 . 2 0 ~ ~  + 1 .OOX,  

y w  = 0 . 2 0 ~ ~  - 1 0 . 5 0 ~ ~  - 8 . 3 5 ~ ~  + 0 . 0 0 ~ ~  (8) 

or, in symbols 

y = F T x  

If we include the  system of Equation 8 in our 
linear system of Equation 3,  we may compute  the 
return on a portfolio x as 

(F+r )Tx=PTx+sTFTx+tTx=fTx+sTy+tTx  
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This allows us to  enter  the matrix F as  part of the 
constraints of the  model, as we  see below in 
Equation 9. 

In  summary,  the  data  required by Frontier  are in 
two  parts.  The first describes  the  set of linear 
equalities, inequalities and  bounds from the  sys- 
tems  shown in Equations 7, 8, and 3: 

f i x  3 0 (expected  returns) 
- y  + FTx = 0 (factor  equations) 
er 5 Ax 5 ur (portfolio  universe) 

e c ~ x ~ u c  (9) 

The  second  describes  the  covariances  and  stan- 
dard  deviations of the  normal  random  vector u 
that is used to  construct  the log-normal random 
factor s and  independent  components t ,  namely 

The system  depicted by Equation 9 is passed in to 
Frontier in standard MPS4 (Mathematical Pro- 
gramming System)  format  (see  the file ASSET.DTX 
in Appendix A). The first row is the  expected 
return  row,  the  next  bloc of rows are  the  factor 
rows, followed by the portfolio constraints.  The 
covariance  data  (Equation 10) are read in from 
another file by columns.  The first entry of this file 
is an integer NF stating  the  number of factors in 
the model (see  the file ASSET.COVDAT in Appen- 
dix  A). 

The problem ASSET is a simple model that is in- 
cluded in the  Frontier  package merely as an  ex- 
ample  for the  user  to explore. Also included is a 
much  larger problem (of a similar type), called 
EX3B, with a portfolio universe of 1000 assets  and 
a factor model involving 15 factors. Solution 
times are reported in Reference 2. They range 
from  about  one minute for a small sample of 50, 
to  over  one  hour  for a large sample of 1000. It 
should be  remarked  that  a sample of 1000 corre- 
sponds  to  over  three  years of daily closing data, 
and 85 years of monthly closing data! Typical as- 
set allocation problem  sizes would involve far 
fewer  stocks, although the  constraints might be 
more  complex (and a  realistic problem formula- 
tion would incorporate minimum purchase con- 
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ditions, requiring a mixed-integer problem  formu- 
lation). 

Computing  the  efficient  frontier  with OSL 

The  fundamental  computation is to calculate  and 
draw  the efficient frontier  for  the problem shown 
in Equation 2, whether  the  probability model is a 
factor model as described in the  previous  section, 
or  the probability model is generated  from his- 
torical data. 

Frontier  does  this by employing OSL subroutines 
to generate  the  equivalent  quadratic program 

minimize: p ,  2 eu,2 + q-v;  + q u,  (11) 

subject  to: JTx + R - R = 0 (12) 

X E X  (13) 

cl + +I 
R ? O + r  (14) 

r ~ x - R - u , - u , ~ - v ~ = O  (15) 

S 

r J x - k = ~  (16) 
s=l  

us- 5 0, u: 2 0, v,  free 

(s = 1, * - - , S) (17) 

Equations 12 and 16 serve  to  set  the variable R to 
the  true  expected value (because r,  is a sample 
from a random  return with mean zero, it may be 
that Z, p ,  r ,  is not zero).  Equation 14 is therefore 
the lower bound  row  for  the  expected  returns. 
Equation 15 allocates  the difference r: x - R to 
the  three pieces of the piecewise linear  quadratic 
tracking  function. The variable us- picks  up the 
negative linear  part, the variable u: the positive 
linear part,  and  the variable u ,  (as a consequence 
of the optimization) will be  assigned to  the  part 
over which the tracking  function is quadratic. 

Frontier  assumes  that  the first row of the model 
is the  “idealized”  expected  return row,  and  that 
the  true  expected  return is the  sum of the ideal- 
ized and  the sample expected  return.  Frontier 
builds the model as follows: 
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b 
1. Use OSL subroutines EKKCOL to add variables 

R and R to  the first row  (Equation 12). 
2. Use OSL subroutine EKKROW to add  the  ex- 

pected  return bounding row  (Equation 14). Ini- 
tially, the  lower  bound  on  this row is set  to 0. 

3. Call subroutine SAMPLE a  total of S times to 
read in the  samples r ,  and  construct,  one row 
at a time, a matrix block for  the  Equation 15. 

4. Call OSL subroutine EKKDSCB to add  the block 
(Equation 15) to  the model. Set  the linear ob- 

for  the  variables: u -, u ,  and u + . 
5. Call OSL subroutine EKKROW to  add  the Sam- 

ple expected  return row in Equation 16. 
6. Call OSL subroutine EKKQMDL to add  the  qua- 

dratic  penalty  (the diagonal matrix with entries 
p,e)  for  each quadratic variable u s .  

D jective values p s q -  and p s q +  and  the  bounds 

Frontier  next  sets up the parametric  perturbation 

metric  quadratic programming subroutine of OSL 
that  draws efficient frontiers.  In  the  case  at  hand, 
the  quadratic model is being “perturbed” by add- 
ing T times the  perturbation  vector [0,  * * * , 0, 1, 
0, - - - , 01 to  the row bounds,  where  the 1 lies in 
the position corresponding  to  Equation 14. 
EKKQPAR is an efficient parametric programming 
routine designed for the specific task of comput- 

b 
ing an efficient frontier with either  cost  or row- 
bound perturbations.  There  are  two  phases.  First, 
EKKQPAR solves  the  quadratic program with T set 
to its lower bound-in our  case  the lower bound 
is zero,  corresponding to  the minimum risk prob- 
lem.  Then,  repeatedly,  at  the given complemen- 
tary  basic  solution EKKQPAR increases 7 up to  the 
point  where one of the variables (primal or dual) 
would violate its bound if T were  to  increase any 

B 
further.  This variable is then pivoted out of the 
basis.  The  procedure  repeats until T has reached 
its maximum size, which corresponds  to  the max- 
imum expected  return  problem. 

If the  objective value ROBJVAL were  captured  and 
solution NCOLSOL returned by OSL at each T vis- 
ited in this  procedure,  the  user would be able to 
trace and  store  the efficient frontier  and  the effi- 
cient  portfolios.  Fortunately, OSL facilities allow 

and  examine OSL variables while the program is 
executing via a user-exit  subroutine EKKITRU. 
Each time EKKQPAR finds a point Ton the efficient 
frontier  (after making the pivot), it calls EKKITRU 
with mode 9. The EKKITRU subroutine  tests  the 
mode  and  writes  each .r-value, objective  value, 

D in preparation  for  a call to EKKQPAR, the para- 

1 the user  to follow the  progress of the algorithm 
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and optimal portfolio out  to a  binary file, ready to 
be accessed by the  graphics  subroutines  that dis- 
play the efficient frontier. 

Frontier  user  interface 

Frontier is initialized (in X-windows) by the com- 
mand string 

run pname  nsamp 

where pname is a problem name and  nsamp is an 
integer specifying the  number of samples  to  be 
taken  (the size of S) .  The  two files pname.dtx and 
pname.covdat  are  found  and  then  the program 
Frontier is executed, displaying the  user interface 
windows. 

The  user  interface  for  Frontier is designed to al- 
low the  user  to specify the  tracking  function  pa- 
rameters: left slope q -  , right slope q +, and  cur- 
vature e .  Since  the efficient frontier will be  written 
to  a file, the  user  also is asked  to provide an iden- 
tifier for  the  particular  frontier to be drawn.  Once 
these items are keyed into  the  appropriate  boxes, 
the  frontier  can be drawn by selecting  the  appro- 
priate box and clicking a  mouse  button. If all goes 
well, the OSL output  scrolls by and  the efficient 
frontier  grows in leaps  and  bounds.  (See  Figure 
1 .> 

The  interface is designed so that  the  user may 
examine  the efficient frontier. Clicking the  mouse 
on  the  frontier will display a histogram of simu- 
lated total returns from the  corresponding effi- 
cient  portfolio,  generated by locating  the  appro- 
priate  record in the  frontier file, reading in the 
optimal portfolio x, computing the total  return 
u, = r:x for  each  sample rs  of asset  returns,  and 
then displaying the  distribution of u s ,  s = 1, * , 
S as a histogram. (The histogram is centered 
at 0; to get the  true value one  must  add  the  ex- 
pected  return  values.) Clicking up  and  down  the 
frontier gives a  graphic  demonstration of the risk 
vs reward  concept;  the histogram changes  shape 
dramatically for different levels of reward. 

The  user may also  “zoom” on the  frontier  to ex- 
amine it more closely. By pressing on  the zoom 
button,  the  mouse  pointer is set  to outline  a zoom 
rectangle: the first click locates the upper-left cor- 
ner  and  the  second  the lower-right corner.  The 
zoom rectangle magnifies to  the whole  window; 
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Figure 1 Frontier  output-the  efficient  frontier  with  return  histogram  for  highlighted  portfolio (OSL output  at  bottom) 
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the original frontier may be  restored by clicking 
the "refresh" button. Efficient frontiers already 
drawn may be recalled by entering the  frontier 
name and clicking the "view" button.  In this way, 
efficient frontiers  for  various settings of risk pa- 
rameters may be visually compared. 

Conclusions  and  extensions 

Frontier is a pilot program,  created  to demon- 
strate  the capabilities of OSL and X-windows in a 
realistic application in financial portfolio manage- 
ment. It is also a state-of-the-art implementation 
of the piecewise linear-quadratic risk frame- 
work-the user  can  select  a risk function,  draw  a 
frontier,  and examine the  results of investing in 

any one of the efficient portfolios. Drawing the 
frontier gives a compelling graphical demonstra- 
tion of the power of OSL and the IBM RISC Sys- 
tem/6000. A wealth of output  documents  the so- 
lution of complex problems,  and  the efficient 
frontier leaps across  the  screen. 

More capabilities could be built into  Frontier  and 
the efficient frontier more quickly drawn.  Our 
suggestions fall into  three  groups: (1) the graph- 
ical user  interface, (2) the  data  interface,  and (3) 
the  computational  kernel. 

Possible extensions to Frontier would allow the 
user  to view the efficient portfolio as a table of 
entries, edit the portfolio table,  and simulate the 

68 JENSEN AND KING IBM  SYSTEMS  JOURNAL,  VOL  31,  NO  1,  1992 



result  on  another histogram window  for  compar- 
ison. For example,  the  user may wish to delete 
from the efficient portfolio all those  stocks  rep- 
resented at levels below 0.1 percent. Also, the 
user  should  be  able to edit  the list of drawn  fron- 
tiers and select  any one of them  for  comparative 
viewing in a  separate  frontiedhistogram window. 
These  are  relatively  simple  tasks  that  can  be im- 
plemented  with  standard X-toolkit (or Motif) text 
widgets. 

The  data  interface could also  be  extended to per- 
mit a  wide  variety of user  inputs  and  interfaces. 
This  can  be  a challenging task.  It  should not be 
difficult to integrate  the user’s database  with  the 
Frontier program. But what if the  user  wants  to 
enter in a  constraint apos t?  One  could design an 
interface  such as those in the above  paragraph  to 
display  and edit a  table of column or row  bounds 
(say, only  those pertaining to the portfolio uni- 
verse X), but  that is about all one can  do  without 
a  more  general modeling language or  data inter- 
faces  than OSL presently  provides. A further, 
easy-to-implement,  extension would be  a facility 
to allow the  user  to  generate  an  entirely new set 
of sample  returns with which  to  simulate  the  total 
portfolio return and test  the robustness of the effi- 
cient frontier with respect to different sample sets. 

The computational  kernel  can  be modified in a 
number of ways. As we indicated in Reference 2, 
by far the greatest time is  spent in  finding the first 
point on  the efficient frontier.  The  issue  here is to 
find a good starting  basis.  One possibility is to find 
the point at  the  other (maximum expected  return) 
end of the  frontier.  This may be faster.  Another 
is to apply  some  decomposition  techniques  more 
suited  to  the problem structure-such as  the finite 
generation  method as reported in King.6 

A  more  important  innovation in a  completely dif- 
ferent  direction is to allow the  user to  set mini- 
mum purchase  levels,  a level below which the 
asset holding is  constrained to  be zero.  This  can 
be  accomplished with zero-one  variables, as fol- 
lows. Suppose  that  one  wishes  to hold an  amount 
greater  than y or  none of a  certain  stock xi. In- 
troduce two variables yi and zi, and  add  the fol- 
lowing set of constraints 

xi = aizj + y j  
0 ‘Xj 5 MZj 

y j  2 0, and zi = 0 or 1 
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where M is an  overestimate of an  upper  bound  for 
the  variablexi.  Whenx, is not zero,  the  zero-one 
variable is forced to  take  the  value  one and  this in 
turn  forces xi to  be at least as large as ai. This 
problem now falls in the (largely unexplored) 
realm of mixed-integer quadratic programming. 
OSL provides  basic facilities for  creating  branch 
and bound algorithms for solving this  class  of 
problems. 
*Trademark or registered trademark of International Business 
Machines Corporation. 

Appendix  A 

Example:  ASSET.DTX 

NAME ASSETS 
ROWS 

N OBJRW 
E REWARD 
E USLONG 
E WLDGNP 
E BUDGET 
L D I V E R S l  
G DIVERS2 

COLUMNS 
USLONG USLONG -1.08 
WLDGNP WLDGNP -1.00 
CORPB USLONG 1.05 WLDGNP -.2Q 
CORPB BUDGET 1.00 DIVERS2 1.00 
CORPB REWARD 1.07 
N I K K E I  USLONG -.lo WLDGNP 10.58 
N I K K E I  BUDGET 1.00 D I V E R S l  1.08 
N I K K E I  REWARD 1.31 
SP5Q0 USLONG -.20 WLDGNP 8 . 3 5  
SP500 BUDGET 1.80 D I V E R S l  -. 50 
SP50Q REWARD 1.18 
T B I L L S  USLONG 1.00 WLDGNP 8.085 
T B I   L L S  BUDGET 1.80 DIVERS2 1 .OO 
T B I   L L S  REWARD 1.03 

RHS 
RHS USLONG 8.08 WLDGNP 0.00 
RHS BUDGET 1.08 D I V E R S l  0.08 
RHS DIVERS2 0.30 REWARD 0.08 

BOUNDS 
FR BND USLONG 
FR BND WLDGNP 
LO BND SP500 0.0 
LO BND N I K K E I  Q.O 
LO  BND T B I L L S  8.0 
LO  BND CORPB 0.0 

ENDATA 
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Example:  ASSET.COVDAT 

2 
Q .QQ3 
Q.QQQOQ5 
8.888885 
Q . QQQ25 
Q . QQ4 
Q . QQ4 
Q.QQ1 
Q .QQ25 
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