
A systematic approach 
to OSL application 
programming 

by A. S. Minkoff 

The  Optimization  Subroutine  Library  (OSL) 
provides  powerful  tools  for  solving  mathematical 
programming  problems,  and  permits  the 
integration  of  these  tools  into  larger  applications. 
In  order to access  the  computational  power, an 
application  must  translate  data  between  forms 
used  in  the  rest  of  the  application  and  the  form in 
which  the  data  can  be  manipulated  by  OSL. 
OSL  does  not  currently  offer  tools to aid in this 
translation.  The  purpose  of  this  aper is to 
provide  a  systematic  approach P or translating 
symbolic  representations  of  mathematical 
programming  problems  into  computer  code  that 
performs all necessary  interactions  with  both 
OSL  and  the  rest of the  application. 

T he Optimization Subroutine  Library (OSL) 
provides powerful tools for solving mathe- 

matical programming problems, as  attested  to  by 
other OSL papers in this issue. But in order  to 
access  that  power,  an  osL-based  application  must 
pose  problems in a form that OSL recognizes  and 
interpret  the solution that OSL provides. Although 
there  are  common  modes  for symbolically ex- 
pressing  mathematical programming problems, 
OSL does  not offer a facility that  translates  sym- 
bolic representations of problem elements  into 
application source  code;  the  burden  rests  on  the 
application developer.  This  paper  seeks to assist 
the OSL application developer by formulating a 
systematic  approach  for  translating  symbolic  rep- 
resentations of mathematical programming prob- 
lems  into  computer  code  that  properly sets up the 
required  inputs to OSL, runs  the  solver,  and  ex- 
tracts  the solution. 
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The  heart of an OSL application is  the  mathemat- 
ical programming statement of the  phenomenon 
being modeled. The model can usually be  ex- 
pressed  concisely in a symbolic  format, with the 
advantage  that  the  same problem structure  can 
apply to a variety of problem instances in which 
numerical values  and  even problem dimensions 
may change. 

The vehicle  through  which a mathematical model 
is expressed in symbolic form is  usually called a 
modeling language. A number of modeling lan- 
guages have  been  developed  for  use in mathe- 
matical programming. 1-3 These language imple- 
mentations  either  have  been or potentially can  be 
set  up  to use OSL to perform the problem solution 
task. But one of OSL'S strengths  is  that it can  be 
integrated within larger applications. To  make 
this integration seamless,  the application devel- 
oper  must  transform  the  pure model statement 
into  computer  code.  The aim of this  paper  is to 
educate  the  developer  as  to how this  can  be  done. 

This  paper  makes  several  fundamental  assump- 
tions. First,  the problem to  be modeled is repre- 
sented in a symbolic form. Although we  do not 
give a full syntax  for  this  representation  format, 
we provide  examples  that allude to it. We focus 
on linear programming problems;  our final dis- 
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cussion looks at modifications for other problem 
types handled by OSL. From  the implementation 
perspective, we code  the application in the C lan- 
guage. The problem is  stored internally and 
loaded into OSLvia the ekklrndl subroutine. We do 
not  address  the  use of files formatted by MPS (the 
Mathematical Programming System).  (See Chap- 
ter 10 of Reference 4.) 

We begin with a discussion of how mathematical 
programming problems may be represented sym- 
bolically, and we present  an example. Next, we 
contrast problem representation in OSL with  the 
symbolic format. The organization of the OSL- 
related portion of an application is studied, with 
special attention paid to how this organization 
manifests itself  in computer code. The  code  must 
be explicitly linked with  the mathematical prob- 
lem statement. An example helps reinforce these 
concepts. In the conclusion, this approach  is ex- 
plored further  and  extensions  are  discussed. 

Mathematical  programming  model 
representation 

Rather  than  use  the  syntax of a specific modeling 
language, we  use an algebraic symbol represen- 
tation to describe models. The  representation 
must identify the following problem components: 

Various  entities  that  constitute  the phenome- 

Attributes of these  entities  (both given and  vari- 

Relationships among entities 

Alternate terms for these components are em- 
ployed, matching  terminology used in many mod- 
eling  languages. Entities are often referred to  as 
“sets”  or “indices”; their attributes are  “data” that 
are input to  the problem, and “variables” that are 
to be solved for; the “objective function” and “con- 
straints” are the relationships of interest. 

The problem description is usually organized us- 
ing the  devices of groups and indices within 
groups. The  group  concept  lends modeling lan- 
guages their  power in describing very large mod- 
els, in terms of overall numbers of variables  and 
constraints, in relatively compact terms. An en- 
tity  group  is a set of similar entities keyed by some 
index. Indices will run  over  consecutive integers, 
from 0 to N - 1, where  there  are N entities in a 
particular  set. (This numbering convention was 

non 

able) 
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adopted to correspond  with C language array in- 
dexing schemes.) A compound entity may be de- 
fined as a combination of primitive entities; each 
compound entity may be pointed to with multiple 
indices. The  index of a compound entity  is an 
ordered  set of integers. An attribute group is a 
measure of a primitive or compound entity  that 
takes different values for each  entity in the group. 
This gives rise to  data groups (input attributes) 
and variable groups (output  attributes). Although 
models considered  here  have single objective 
functions, they  may  have  several  constraint 
groups, each  one running over  one  or  more indi- 
ces. A constraint  group  is a logical function of 
arithmetic  expressions involving indices, data, 
and variables. 

An example of a mathematical programming 
problem, expressed in the format just indicated, 
is given next. We study  the meaning of the  prob- 
lem and  the symbolic representation,  then  use 
this problem later to exemplify the  techniques  de- 
scribed in this paper. The problem arises in the 
context of fixed-income portfolio revision. Sup- 
pose we have a portfolio of fixed-income instru- 
ments  and  want to revise its composition so as  to 
maximize expected  return, but under a number of 
constraints. A formulation of this problem under 
stochastic  conditions follows in traditional sym- 
bolic terminology. Afterwards, the  various pieces 
of the formulation are classified according to  the 
scheme for representing  the model. 

Define the following set indices: 

i Fixed-income instruments  that may be bought 
or sold 

t Time period (when either a liability must be 
paid or a coupon payment is received); let 
the portfolio be revised at time 0, the first 
payment or liability occur at time 1, and the 
final period be T 

s Scenario for final instrument values and inter- 
est  rates 

j Asset  class  to which instruments may belong 

Input  data to the problem are: 

PROB, Probability of scenario s occur- 
ring 

riod t under  scenario s (also in- 
corporates projected value of se- 
curity  at t = T )  

FLOits Cash inflow from security i in pe- 
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I-RA TE ,, 

B-RA TE ts 

LIAB, 

S-PRC, 

B-PRC, 

CASHO 
HOLD, 
GRP, 

P-GRP, 

MIN-INV, 

Interest  rate  on  short-term in- 
vestments  forecasted  for period 
t under  scenario s 
Interest  rate  on  short-term  bor- 
rowing forecasted  for period t 
under  scenario s 
Liability, or amount to  be paid 
from cash, in period t 
Price  obtained from sale of one 
unit of instrument i 
Price  required to  buy  one unit of 
instrument i 
Initial cash  on hand 
Initial holding of instrument i 
Asset  class  indicator  (equals 1 iff 
instrument i belongs to class j )  
Maximum dollar-weighted pro- 
portion of portfolio that  may  be 
invested in asset  class j 
Minimum wealth  acceptable  at 
period T under  scenario s 

The decision variables  for  this problem are  de- 
noted as: 

port ,  New portfolio holding in instrument i 
sell, Amount of instrument i sold  to revise 

buy, Amount of instrument i bought to  revise 

inv, Amount of cash  invested  short-term in 

bor, Amount of cash borrowed  short-term in 

portfolio 

portfolio 

period t under  scenario s 

period t under  scenario s 

With  these definitions, we  seek  to maximize 

S 

subject to 

FLO,,port, + I-RATE,-l,sinv,-l,s - inv, 
i 

+ bor, - B-RATE,sbor,-,,s = LIAB, 

vs, t L 1 (2) 

invos - bor,, - 2 S-PRCpell, 
i 

+ 2 B-PRCibuyi = CASHO V S  (3 )  
i 
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port, + sell, - buy, = HOLDi V i  (4) 

(GRP, - P-GRPj)S-PRCiporti 
i 

I 0 V j  (5)  

inv, 2 MIN-INV, V s (6) 

The literal interpretation of this problem is  one of 
maximizing expected  wealth  at  the  end of the time 
horizon (period T ) .  This  is  stated in Equation 1. 
By including instrument  value  at time T in 
FLO,,,  inv, represents  not  only  cash  on  hand  at 
the  end of the horizon, but also total  value of the 
portfolio. Equation  2  tracks  the flow of money  at 
each time period and  scenario,  whether  the 
money  comes from coupons, final instrument 
value,  investments, or borrowing. Initial cash  on 
hand (period 0) is  determined  through  Equation 3. 
It  takes  into  account  any  cash  on hand prior  to 
revising the portfolio, plus new purchases,  sales, 
and borrowing. Equation 4 determines  the 
amount of each  instrument bought and sold by 
comparing the new holding of the  instrument to 
the original holding. Equation 5 limits the  amount 
of investment in each  asset  class. Finally, Equa- 
tion 6 seeks  to limit risk by putting a lower bound 
on terminal wealth  under  each  scenario. Note  that 
each  variable  must  take on only  nonnegative Val- 
ues. 

The primitive entities in this problem are  the 
ked-income instruments (for example, corpo- 
rate  bonds  from  a  certain  company, of a  certain 
coupon  rate  and  maturity), time periods (like June 
1992), scenarios,  and  asset  classes (e.g., junk 
bonds). Compound  entities  are  combinations of 
two or more primitive entities,  such as period- 
scenario. A relevant  attribute of this compound 
entity is the  interest  rate  data  group I-RATE, 
whereas  the liability LIAB is  an  attribute solely of 
time period. Equations 1-6 are all relationships 
among entities, reflected in their attributes.  Equa- 
tion l is  an  arithmetic  relationship  whose  value 
we  want  to maximize, while the  others  are logical 
relationships  that  must  be satisfied in any  accept- 
able solution to  the problem. 

Problem  representation  in OSL 

OSL offers several  means  to  represent  instances of 
mathematical programming problems. It  takes  a 
substantial  amount of work  to transform an alge- 
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Figure 1 Matrix  to  illustrate  storage-by-indices  format 

3 . 2  2 . 8  1.9 
1.1 1.4 0 

braic  statement in the form described in the  last 
section to  one of these  formats. We can, how- 
ever, build a systematic and relatively straight- 
forward  approach  on  the problem representation 
format known in OSL as storage by indices. This 
is an internal  format, meaning the problem is 
stored in arrays inside the program, as opposed to 
externally in a file (OSL permits  this option, too, 
as it accepts MPS-format files4). A series of arrays 
and integer variables  is used to contain problem 
information. These  are  essentially  the arguments 
to OSL subroutine ekklrndl, and  are reviewed as 
follows: 

nrow Number of constraint  rows in problem 
ncol Number of variable columns in problem 
ne1 Number of nonzero coefficients in the  con- 

dobj Objective function coefficients 
drlo Lower  bounds  on row activities 
drup Upper  bounds on row activities 
dclo Lower  bounds on column activities 
dcup Upper  bounds on column activities 
mrow Row indices for nonzero coefficients in 

rncol Column indices for nonzero coefficients in 

dels Values of nonzero coefficients in con- 

straint  matrix 

constraint matrix 

constraint  matrix 

straint matrix 

The storage-by-indices format applies to  the  last 
three  arrays. To further illustrate how this  format 
works,  consider  the simple matrix  shown in Fig- 
ure 1. This  matrix would be  stored as: 

m o w = (  1 1 2 2 2 3 3 1 2  3) 
m o l = (  1 2 1 2 3 1 2 4 5  6) 
dels = (1.6 2.1 3 . 2  2.8 1.9 1.1 1.4 1 1 1) 

The  nonzero  elements of the  matrix  are  contained 
in del s. At  the  i-th position of del s, the  value  there 
is  located in row rnrow[i] and column rncol[i] of the 
matrix. 

We observe  here a fundamental conflict between 
the storage-by-indices format and the group rep- 
resentation of the mathematical model. In OSL, 
indices are global, whereas in the group repre- 
sentation,  they  are local. For  instance, in the 
portfolio revision problem, suppose  there  are 10 
instruments labeled 1 through 10 (temporarily dis- 
regarding the convention of starting with 0), and 
the columns are  sorted in the  order  that  the  vari- 
able groups  are listed. Then  the column repre- 
senting sel l  is actually the 13th column, globally 
speaking, in the model. This is  because ten port 
columns precede  the first sell  column. The local 
index of sel l  is 3, and the global index is 13. This 
conflict could be alleviated to some  extent 
through the  use of OSL'S block description facility, 
but  this  introduces  other bookkeeping measures 
and will not be  adopted here. 

The indexing conflict is relieved with a pair of 
index adjustment schemes: 

1. A local index within a group that  converts sin- 

2. A local-to-global index conversion scheme 
gle or multiple indices to  an integer 

The local scheme is trivial when a group runs  over 
a single index. Where there  are multiple indices, 
the  last  index is varied first in making the  corre- 
spondence  between  ordered sets of indices and 
the local index integer. The local-to-global con- 
version  is accomplished by determining offsets 
for each group relative to global column 0 (for 
variables) or global row 0 (for constraints).  The 
first variable group has a column offset of 0, and 
the  second  has a column offset equal to the num- 
ber of columns in the first variable group. Each 
subsequent  variable group's offset is equal to the 
number of columns processed prior to reaching 
that  variable group. The  same  scheme  is applied 
to global row index determination. Note  that 
lower and  upper  bounds and objective function 
coefficients must be loaded into  the  respective 
arrays  under  the global indexing scheme. 

The OSL application 

OSL, as a subroutine library, is designed to be 
integrated within systems  that may perform other 
functions as well. OSL may be imbedded in an 
application that  also  contains  database manager, 
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spreadsheet, graphics, user  interface,  and  other 
facilities. We  isolate the optimization  function in 
this  paper by assuming that  the  relevant  opera- 
tions  are  performed in a  function (in the  sense 
used in the C language) called from another  pro- 
gram. We  also  discuss  the  nature of communica- 
tion between  the  function  and  the calling pro- 
gram. 

The optimization-specific function,  which we 
label oslproc, can  be divided into six tasks: 

1. Function initialization 
2. Receive input  data 
3. Prepare OSL inputs 
4. Solve problem 
5. Retrieve OSL outputs 
6. Transmit  solution 

Function initialization covers  declarations of all 
variables  and  constants  and definitions of all mac- 
ros  that are  used in the  processing  portions of the 
program. Values of some  variables are initialized 
in this  task as well. 

The  task of acquiring input data,  whether from 
flat files, databases,  and/or  keyboard  entry, is as- 
sumed to  occur in another module. Receiving in- 
put  data  corresponds  here  to having data  passed 
from the calling program as arguments  to os1  proc, 
or  to assigning datavariables  to  the ex te rn  storage 
class (and using the  same  names  for  the  variables 
in the calling program). 

The input arguments to OSL subroutines  are  as- 
sembled in the next  task.  Preparing OSL inputs 
involves taking the  raw  input  data  and organizing 
them, as described in the previous  section. 

OSL subroutines permit varying  levels of control 
in the  solution of mathematical programming 
problems. Although this is where  the  real  power 
of OSL lies, we  do not dwell at length on solving 
problems  here. OSL may  be  accessed  with  a  few 
subroutine calls, and efficient use of OSL is cov- 
ered  elsewhere. 

OSL provides  a  routine  for printing solutions,  but 
the destination of the  printout is generally  a file or 
the terminal. We need to  store  the solution in 
array  variables, so that it can be manipulated by 
other  modules in the  system.  Processing OSL out- 
puts is concerned  with  extracting  the  solution 
from  the main work  array. 
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Once  the solution is  extracted, we need  to  trans- 
mit the  solution  back to the calling program. We 
can  use  the  same  methods  here  that we use  for 
receiving input  data. 

The next  sections  detail  one way  to implement 
each of these  tasks.  We  describe  and  illustrate  the 
coding of these  tasks in the C language. 

Coding  the OSL application 

This  section  describes how one  proceeds from a 
symbolic  statement of a  mathematical program- 
ming problem to  the  source code  for  the optimi- 
zation  component of a  system  that  uses OSL. The 
objective of this  section  is to relate how to pro- 
duce  the  function os1  proc. The  function is written 
in C and is designed to  be called from another 
module that  acquires the  data  and  stores  them in 
the  arrays  we name in the problem statement.  The 
task of receiving the input data is achieved by 
constructing  a  header file that  declares  the  perti- 
nent  variables  with  the  appropriate  storage  class. 
The  header file  will be included in both  the calling 
program and oslproc, to  assure  consistency in the 
use of the  variables. The bulk of os1  proc is  devoted 
to  the OSL input preparation  task.  Once  the OSL 
input is  ready, we invoke  the  appropriate OSL 
subroutines.  Afterwards, os1 proc places  the  solu- 
tion in arrays named after  the problem state- 
ment’s variable  groups.  These  arrays  have  stor- 
age class extern, so that  other modules may access 
the  solution  for  report writing and  other  func- 
tions. In the  next  section, we  show how these 
techniques are applied to  the problem statement 
described in the  section  on  mathematical pro- 
gramming model representation. Below, we 
study  the implementation of each  task  enumer- 
ated in the  previous  section. 

Function initialization. Before the  code for os1  proc 
is listed, a  series of header files must  be included. 
These include standard  header files such as 
s t d l i  b. h, the OSL header file ekkc. h, and an appli- 
cation-specific header file. Call this  last file 
os1  proc. h. 

The file os1proc.h performs  several  duties. It de- 
clares os lp roc  and  some  special-purpose  proce- 
dures used in preparing OSL inputs. It declares  a 
number of OSL subroutine arguments, both  scalar 
and  array.  This  also  includes  the  use of macros to 
define the  sizes of the  arrays  and  to  set up syn- 
onyms for key  elements of some of these  arrays. 
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Figure 2 addcol 

void addcol(doub1e  aobj.  double alo. double aup) 
{ 
dob j [ncol] - aob  j : 
dclo[ncoll-  alo; 
dcup [ncoll- aup; 
ncol++; 
return: 

I 

The file os1proc.h also  declares  the problem- 
specific arrays  that match data and variable 
groups from the problem statement. For each  set, 
we define a variable  that holds the number of el- 
ements in the  set  and a macro  that supplies the 
maximum number of elements permissible in the 
set.  The  latter  is used in the  declarations of the 
model’s arrays  (hence  storage  capacity may be 
easily modified; alternatively, one may allocate 
space for these  arrays dynamically). Finally, we 
define macros for each  variable and constraint 
group that  obtains  the local index from the indices 
that  are used to refer to the individual variable or 
constraint. 

Additional local variables  are  declared within 
oslproc.  These  are  the  temporary floating-point 
and integer variables used as arguments to  the 
special-purpose  functions,  arrays for column and 
row offsets, a return  code variable, and set  index 
variables.  The  other initialization tasks  are  to al- 
locate  space for the 0% work  array (if this is being 
done dynamically), and to  set row, column, and 
constraint  matrix element counters  to  zero. 

Receive  input  data. This  task  has  already been 
accomplished by  virtue of having the  data  stored 
in arrays  with  the extern  storage  class. 

Prepare OSL inputs. This task is accomplished se- 
quentially. First, columns are defined to the prob- 
lem representation, one by one. Then each row is 
established by first  defining the row, then each of 
the nonzero elements in the row. We use the word 
“add” to refer to this process of defining a column, 
row, or element. The special-purpose functions 
support this process, so we study them first. (Note 
that these functions are not supplied with OSL.) 

54 MINKOFF 

Figure 2 lists  the function addcol . It  is used to add 
a new column to the internal problem represen- 
tation. The function addcol takes  these arguments: 

aobj  Column’s objective function coefficient 
a l o  Lower bound for column 
aup Upper bound for column 

These  values  are added to the objective value  ar- 
ray dobj, and the lower and upper bound arrays 
dclo  and dcup, all at position ncol. Arrays ncol,  dobj, 
dclo, and dcup will be declared to be global in 
scope, so they need not be included as arguments 
to addcol . The column counter  variable ncol is in- 
cremented  only after the arguments are loaded in, 
because  the ncol- th  element is stored  at position 
ncol-1 in the C arrays. 

Function addrow is shown in Figure 3. It  is similar 
to addcol except  that  rows  have  no objective func- 
tion coefficients, only  bounds d r l  o and drup. Func- 
tion addel in Figure 4 is used to add a nonzero 
element from the  constraint matrix to  the OSL ar- 
rays rnrow, rncol, and del s. Argument ico l  is the 
global index of the added element’s column, and 
ael  is  the  value of the element. It  is assumed that 
the element belongs in the row most recently 
added to  the problem representation.  The  ele- 
ment is  only added if it is nonzero. Again, since 
the OSL arrays  have global scope,  they  can be 
omitted from the function call. It  is important to 
note  that in OSL, row and column numbering start 
at 1, even  when  the  driver program is written in 
C. The function addrow increments nrow prior to the 
respective addel calls, so nrow can  be used as is. But 
one must be added to i col , because  we  have  cho- 
sen to number these  rows internally starting  at 
zero. 

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 



Given the  above functions, the  preparation of OSL 
input follows somewhat straightforwardly. (The 
reader may find  it helpful to refer to  the  code 
listings in the  next  section through the remainder 
of this  section.)  First  the  variable  groups  are proc- 
essed.  The processing for each  variable  group 
works  as follows. The column offset is  deter- 
mined as described in the  section  on problem rep- 
resentation in OSL. Then a series of for-loops is 
initiated, one for each of the group’s indices. We 
begin with  the leftmost index, meaning that  we 
increment  the rightmost index  earliest, as we 
have indicated previously. Following the for-loop 
initializations, we may want to  test membership 
of the  index combination in some  subset, if not all 
combinations of indices need be included in the 
model. The objective function coefficient and 
lower and  upper  bounds for the column to  be 
added are obtained from the model statement, 
and addcol is called with  these arguments. Then 
the for-loops are closed and  we  move  on to the 
next  variable group. 

Next  we must treat  the  rows of the problem, by 
processing each  constraint group. We obtain the 
row offset for the  constraint group as we did for 
variable groups. Likewise, we begin for-loops for 
each of the indices that  the group runs  over.  In- 
side  the loops, we  check for subset membership 
and specify lower and upper row bounds. A call 
to addrow adds  the new row to the problem. Now, 
within that loop, the nonzero  elements  for  the row 
must be added  to  the problem representation 
through calls to addel .  Three different types of el- 
ement processing may be carried  out, depending 
on how variables  appear in a constraint group in 
the model statement: 

1. A variable  appears in the  constraint group in a 

2. A variable  appears in the  constraint group sin- 

3. A variable  does not appear in the  constraint 

summation term. 

gly, without a summation term. 

group. 

Obviously, in the last case, it is not necessary  to 
add  elements to the  constraint  arrays.  The differ- 
ence  between  the first and second  cases is that  the 
first case  requires for-loops over  the summation 
indices to add multiple columns from the  variable 
group to  the element set,  whereas  the  second calls 
for only a single element. In  each  case,  we must 
determine  the global index of the column to be 
added. This number is found by adding the local 
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Figure 3 addrow 

void addrow(doub1e alo. double aup) 
{ 
drlo [nrowl- alo; 
drup [nrowl- aup: 
mow++; 
return: 

1 

Figure 4 addel 

void addel(1ong icol.  double  ael) 
{ 
if  (ael I -  0 )  ( 
mrow[nell- nrow: 
mcol [nell- icol + 1: 

nel++: 
dels [nell- ael: 

1 
return: 

1 

column index, as supplied by  the local index 
macro, to the column offset for that group. This 
column number, and the  value of the coefficient, 
are  the arguments to addel .  

It should be noted that if a constraint group con- 
tains  only  one  variable group that  is not in a sum- 
mation, then  that  constraint may be in fact a lower 
or upper bound  on  the variable. If so, it is more 
efficient to  use this information in determining 
one  or  both of the  variable group’s bounds, and 
not include it as a constraint group. 

Solve problem. Once all the  arrays  have been set 
up, the OSL subroutines  are invoked. The  sub- 
routine  sequence  can range from a bare minimum 
to more sophisticated  measures  that  can  speed 
the solution process, including pre- and post- 
solve, scaling, parameter setting, decomposition, 
and making use of previous  solutions  or  bases. 
The  content of the  code  that performs this  task  is 
independent to some  extent of the problem in- 
stance, although there will be  cases in which one 
might obtain solutions  more efficiently by apply- 
ing some model-specific manipulations. Efficient 
use of OSL subroutines is covered elsewhere, and 



#!define maxspc 100000 
!#define MXEL 10000 

1 !!define MXROW 500 
#define MXCOL 500 
#define o s l i l n  47 
#!define o s l r l n  34 
#define o s l n l n  30 

void  addcol(doub1e.  double,  double): 
void  addrow(double,   double);  
vo fd   adde l t in t ,   doub le ) ;  
i n t   o s l p r o c  0 ; 

LOC i n t  nrow.ncol.ne1: 
LOC i n t  m o w  [MXEL] ,mcol [MXELI : 
LOC double dob j [MXCOLI . dc lo  [MXCOL] .dcup [MXCOL] : 
LOC doub le   d r lo  [MXROW] .drup [MXROW] .de l8  [MXEL] : 
LOC doub le   *dspace .   o s l r [os l r ln ] :  
LOC i n t   r t c o d e .   o s l i   [ o s l i l n l  , os ln   [os ln ln]  : 

#!define MX-i 20 

#define MX-t 20 
LOC i n t  n-i; 

LOC i n t  n-t; 
#def ine MX-s 20 

#define MX-j 20 
LOC i n t  n-s: 

LOC i n t  n-j; 

LOC double PROB[MX-s] ; 
LOC double FLO[MX-iI  [MX-t]  [MX-s] ; 
LOC double I-RATE [MX-tl [MX-sl : 

LOC double LIAB [MX-t] ; 
LOG double B-RATEIMX-t] [MX-SI ; 

LOC double S-PRC  [MX-i] ; 
LOC double 3-PRC [MX-i] ; 

LOC double HOLD [MX-i] : 
LOG double CASHO: 

LOC double GRPfMX-il [MX-jl : 
LOC double P-GRP [MX-j J ; 
LOC double MIN-INV; 
LOC double port [MX-i] : 
# d e f i n e   p o r t - i d x ( i )   ( i )  
LOG double sell [MX-il : 
# d e f i n e   s e l l - i d x f i )   ( i )  
LOC double buy[MX_i] ; 
#def ine   buy- idx( i )   ( i )  
LOC double   inv [MX-tl  [MX-s] ; 
#define  inv-idx(t ,s)   ( t )*n-s  + (s) 
LOC double  bor IMX-t]  [MX-SI ; 
#def ine   bor - idx( t , s )   ( t )*n-s  + ( 8 )  

will not be discussed  further  here. (See Chapter 8 first use  a call to ekknget to  obtain  the  index  where 
of Reference 4.) the  solution starts in the  work  area.  This will be 

in the 7th position in the osln  array argument to 
Retrieve OSL outputs. After the solution is  deter- ekknget, but in  C, this would be  denoted osln[6]. 
mined, it must  be  retrieved.  It  is  stored in the OSL Also, because OSL is  FORTRAN-based, we must 
work  area,  but  somewhere in the middle and  ac-  subtract  one from osln[6]  to get the  C  array posi- 
cording  to global column indices. To extract  it,  we tion of the first column of the solution. Then  the 
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Figure 6 Initialization 

int  oslproc 0 
( 
double dtemp.dtemp-o,dtemp-1,dtemp-u: 
int ico1,coloff E301 .rowoff  1301  ,re; 
int  i.t.6.j; 

dspace - (double * )  malloc(maxspc'sizeof(doub1e)); 
if ( !dspace)  return (1000) : 

nrow .. ncol - ne1 0 ;  

global column number  must  be  added to this po- 
sition, to get the storage location of the  solution 
value  for  the  corresponding  variable. We may use 
the  same global column number calculation as 
was  done in constraint  processing  when adding 
elements. Dual variable  values are  extracted in a 
similar fashion (although this is not  done in the 
example  that follows). 

Transmit solution. The  arrays  storing  the solution 
elements  were  previously defined as external  ar- 
rays,  hence  the  values will be available to  the 
calling program. Employing this  approach, it is 
not  necessary  to  take  any  action  to  transmit  the 
solution. 

Example 

The approach  outlined in the preceding section is 
illustrated  next, using the model statement given 
in the  section on mathematical programming 
model representation. 

The  header file is listed in Figure 5. Correspon- 
dences  may  be  detected  between  elements of the 
set,  data  group, and variable  group  descriptions, 
and  declarations in the  header.  More  than  one 
index  may range over  a given set, although this is 
not  the  case  here. A set  is identified by the first 
listed index  for it. Then  the  actual  size of the  set 
will be  stored in the  variable named by the  set 
identifier prefixed by n-. The macro for the max- 
imum size of the  set  is  denoted  by MX- prepended 
to the set identifier. 

This  header  is included in the calling program, so 
that all variables are accessible to both calling 
program and os1 proc. We use  the LOC macro to have 
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Figure 7 Preparing  columns 

I' Variable  port * I  
coloff to] - ncol: 
for (i - 0; i < n-i:  i++) I: 
dtemp-o - 0: 
dtemp-1 - 0: 
dtemp-u * le31: 
addcol(dtemp-o.dtemp-1.dtemp-u); 

3 
I *  Variable  sell * /  
colofflll = ncol: 
for  (i - 0; i < n-i:  i++) I 
dtemp-o - 0: 
dtemp-1 .. 0; 
dtemp-u - le31; 
addcol(dtemp-o,dtemp-l,dtemp-u); 

1 
I* Variable  buy * /  
coloff121 - ncol; 
for  (i = 0: i < n-i:  i++) { 
dtemp-o - 0: 
dtemp-1 - 0; 
dtemp-u .. le31: 
addcol(dtemp-o,dtemp-l,dtemp-u): 

I 
I" Variable  inv * /  
coloff [3] - ncol; 
for (t - 0: t < n-t; t++) { 
for (s - 0: s < n-s: a++) f 

dtemp-o = PROBE61 : 
dtemp-1 = MIEIM[sI ; 

dtemp-1 - 0: dtemp-o = 0: 

1 
dtemp-u .. le31: 
addcol(dtemp-o,dtemp-l,dtemp-u): 

if (t - n_t - 1) I 

I else { 

1 
1 

coloff [4] - ncol; f a  Variable  bor *I  

for (t - 0; t < n-t;  t++) { 
for (s - 0; a < n-s; s++) { 
dtemp-o - 0: 
dtemp-1 - 0: 

' dtemp-u - le31; 
addcol(dtemp-o,dtemp-l.dtemp-u); 

1 
I 
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Figure 8A Preparing  rows 

rowoff IO] - nrow: / *  Constraint  group  1:  Track  cash * I  

for ( s  = 0: s < n-s; s++) ( 
for (t - 1: t < n-t: t++) ( 
dtemp-1 = LIAB[t] : 
dtemp-u - LIAB[tI : 
addrow(dtemp-1,dtemp-u): 
for  (i - 0 ;  i < n-i:  i++) I 

I' Variable  port * I  
icol - coloff[O] + port-idx(i): 
dtemp - PLO[il [tl [SI : 
addel  (icol  ,dtemp) : 

icol - coloff[3] + inv-idx(t-1,s); 
I* Variable  inv ' I  

dtemp = I-RATEft-11 [SI : 
addel  (icol.dtemp) : 
icol - coloff[3] + inv-idx(t,s); 
dtemp = -1: 
addel  (icol , dtemp) : 
I *  Variable  bor * I  
icol - coloff [4] + bor-idx(t.s) : 
dtemp - 1: 
addel(ico1,dtemp): 
icol - coloff [4] + bor-idx(t-1 . s )  : 
dtemp - -B_RATE[t] [SI : 
addel  (ico1,dtemp) : 

1 

1 
1 

Figure 8B Preparing rows 

I* Constraint  group  2:  Track  initial  cash " 1  

t - 0: rowoff [I] - nrow; 
for ( s  - 0: s < n-s: s++) { 
dtemp-1 - CASHO: 
dtemp-u - CASHO: 
addrow(dtemp-1,dtemp-u) : 

I* Variable  inv * I  
icol = coloff [3] + inv-idx(t.s) : 
dtemp = 1; 
addel(ico1,dtemp); 
/ *  Variable  bor * I  

dtemp = -1: 
icol = coloff [4] + bor-idx(t,s) : 

addel(ico1,dtemp): 

/ *  Variable  sell * I  
icol .. coloff [I] + sell-idx(i) : 
dtemp = -S-PRC[i] : 
addel(ico1,dtemp): 

for  (i = 0: i < n-i:  i++) 

1 
for  (i - 0: i < n-i:  i++) ( 

I *  Variable  buy * I  

dtemp - B_PRC[i] : icol - coloff [21 + buy-idx(i) : 

addel(ico1,dtemp); 

1 
1 

Figure 8C Preparing  rows 

/ *  Constraint  group  3:  Determine  sell  and  buy * /  
rowoff [21 - nrow; 
for (i - 0: i < n-i:  i++) C 
dtemp-1 = HOLD[i] : 
dtemp-u - HOLD [i] : 
addrow(dtemp-1,dtemp-u) : 

I* Variable  port * I  
icol - coloff [O] + port-idx(i) : 
dtemp - 1: 
addel(ico1,dtemp): 
/ *  Variable  sell 
icol - coloff[l] 
dtemp - 1; 
addel(ico1,dtemp 
I* Variable  buy 
icol - coloff [2] 
dtemp - -1; 
addel(ico1,dtemp 

1 

I 
t buy-idx  (i) : 

these arrays  and variables declared with the extern program, where the  arrays  are  originally set up. 
storage class in os1 proc, but without it in the  calling One may verify that the  macros  for  determining 
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Figure 8D Preparing  rows 

/ *  Constraint  group 4: Limit  class  investment * /  

for (j =. 0 ;  j < n-j;  j++) I 
rowoff E31 - nrow: 
dtemp-1 .. -1e31; 
dtemp-u - 0; 
addrow(dtemp-1,dtemp-u): 
for  (i - 0: i < n-i:  i++) ( 

icol - coloff [OI + port-idx(i): 
/ *  Variable port * /  

dtemp - (GRP[i] [jl-P_GRP[jl)*SPRC[il: 
addel(ico1,dtemp): 

1 
1 

Figure 9 Solving the problem 

I 
ekkdsca(&rtcode.dspace.maxspc.l); 
ekkdscm(&rtcode.dspace.1,5): 
ekkrget(&rtcode.dspace.oslr,oslrln); 
oslr[2] * -1.0: 
ekkrset(&rtcode.dspace.oslr.oslrln); 
ekklmdl(&rtcode.dspace,l,nrow.ncol,nel.dobj,drlo,drup,dclo~dcup,mrow~mcol,dels~: 
ekksslv(&rtcode.dspace,l,Z): 

local column indices will give the  appropriate re- 
sults. For example, inv-idx(Q.8) will return 0, and 
the rightmost index is incremented soonest. 

We now examine the function oslproc. The  rest of 
the initialization task (beyond what is done in the 
header file) is listed in Figure 6. Integer variables 
corresponding to  each  set index are declared 
here. 

Figure 7 displays the code  that  adds all the col- 
umns to  the problem representation.  Observe  that 
for variable group i nv, a lower bound may be ob- 
tained from Equation 6 of the problem formula- 
tion. But this bound, and the objective coefficient, 
only apply to  the  last period. 

Constraint processing code is shown in Figure 8, 
A-D. The fifth constraint group, corresponding to 
Equation 6, was previously diagnosed as a col- 

umn bound, so no processing is done here. Also 
observe processing for constraint group 1; vari- 
ables i n v  and bor  appear twice in Equation 2, but 
with different subscripts, and this must be incor- 
porated in the formation of the OSL arrays. 

A minimum set of OSL calls to solve  the optimi- 
zation problem is provided in Figure 9. Necessary 
OSL initialization is performed by ekkdsca and 
ekkdscm. Because  the objective is to maximize, we 
use  the calls to ekkrget  and ekkrset  to change OSL’s 
default of minimization. The internally stored 
problem is converted  by ekklmdl to a format that 
OSL can  work  with directly. The single call to 
ekkss lv  solves  the linear programming problem 
with  the simplex algorithm. Additional code 
should be placed here to determine the final prob- 
lem status (optimal, infeasible, unbounded, etc.), 
and to check  the  return  codes from each OSL call. 
The final problem status should be  passed  back to 
the calling program as  the  return  code for oslproc. 
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Figure 10 Extracting  the  solution 

I* Variable port *I  
for ( i -  0 :  i < n-i;  i++) ( 
icol - coloff [O] + port-idx(i) ; 
port [il - dspace[osln[61-1 + icoll ; 

? 

for (i - 0; i < n-i;  i++) ( 
/ *  Variable sell * I  

icol = coloff[l] + sell-idx(i); 
sell[i] - dspace[oslnl6] -1 + icoll ; 

1 
/ *  Variable buy */ 
for (i = 0 ;  i < rei: i++) 
buy [i] - dspace [osln [6] - 1 + icolf ; 
icol - coloff [21  + buy-idx(i) : 

3 
/ *  Variable inv * /  
for (t - 0: t < n-t: t++) I 
for (s .. 0: s < n-s; s++) ( 

icol - coloff [3] + inv-idx(t, s) : 
invCt1 [SI - dspace[osln[6] - 1  + icoll ; 

1 
1 
/ *  Variable bor * /  
for (t - 0 ;  t < n-t; t++) I: 
for (a  - 0 ;  s < n-s:  s++) ( 

icol - coloff [41 + bor-idx(t.s) : 
bor [tl [SI - dspace[osln[6] -1 + icol] ; 

1 
1 

Figure 10 shows how the solution is  retrieved 
from the  work  area  and  stored in the  appropriate 
arrays.  The  arrays  are  stored  externally, so this 
information will be passed back implicitly to the 
calling program. 

Conclusion 

We have described an approach to developing 
OSL applications that  can  be applied to most  for- 
mulations of mathematical programming prob- 
lems. From a symbolic representation of the 
problem, the application developer may generate 
computer  code  that will perform the formatting of 
data for OSL, solve the problem, and retrieve  the 
solution. The  emphasis  is on seamlessly integrat- 
ing OSL with  the  rest of the application by working 
with data  directly as the  data may be  stored else- 
where in the application. 

The  approach described in this paper may be  ap- 
plied to  any linear programming problem that  can 
be  represented in the symbolic format described. 
But OSL handles other mathematical program- 
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ming variations as well. The  same techniques may 
be modified to allow one  to  write applications for 
quadratic and linear mixed-integer programming. 
For  quadratic programming, one must recognize 
which terms in the objective function contain the 
product of two variables  (or  one  variable 
squared). Then  we invoke a function similar to 
addel to add an element to the  quadratic matrix. 
And the  solve  task  must include calls to ekkqmdl (to 
load the  quadratic piece of the objective function) 
and ekkqslv  (to solve it). 

Release 2 of OSL allows the specification of 
mixed-integer programming problems within an 
OSL application, instead of relying on an MPS-type 
deck residing in an  external file. Then, once 
again, these  procedures may be applied. The 
problem statement must contain indications of 
which variable groups are integer-valued. This in- 
formation is used to  create  the  arrays  that will be 
used in the call to ekkimdl , where integer variable 
information is communicated to OSL. The  solve 
task  must likewise be modified. 

Because  the programming approach described 
here is fairly well-defined, it is possible to codify 
the  rules  into a program that  does  the  code gen- 
eration automatically. The  author is currently  en- 
gaged  in developing such a tool. 
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