
A systematic approach
to OSL application
programming

by A. S. Minkoff

The Optimization Subroutine Library (OSL)
provides powerful tools for solving mathematical
programming problems, and permits the
integration of these tools into larger applications.
In order to access the computational power, an
application must translate data between forms
used in the rest of the application and the form in
which the data can be manipulated by OSL.
OSL does not currently offer tools to aid in this
translation. The purpose of this aper is to
provide a systematic approach P or translating
symbolic representations of mathematical
programming problems into computer code that
performs all necessary interactions with both
OSL and the rest of the application.

T he Optimization Subroutine Library (OSL)
provides powerful tools for solving mathe-

matical programming problems, as attested to by
other OSL papers in this issue. But in order to
access that power, an osL-based application must
pose problems in a form that OSL recognizes and
interpret the solution that OSL provides. Although
there are common modes for symbolically ex-
pressing mathematical programming problems,
OSL does not offer a facility that translates sym-
bolic representations of problem elements into
application source code; the burden rests on the
application developer. This paper seeks to assist
the OSL application developer by formulating a
systematic approach for translating symbolic rep-
resentations of mathematical programming prob-
lems into computer code that properly sets up the
required inputs to OSL, runs the solver, and ex-
tracts the solution.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

The heart of an OSL application is the mathemat-
ical programming statement of the phenomenon
being modeled. The model can usually be ex-
pressed concisely in a symbolic format, with the
advantage that the same problem structure can
apply to a variety of problem instances in which
numerical values and even problem dimensions
may change.

The vehicle through which a mathematical model
is expressed in symbolic form is usually called a
modeling language. A number of modeling lan-
guages have been developed for use in mathe-
matical programming. 1-3 These language imple-
mentations either have been or potentially can be
set up to use OSL to perform the problem solution
task. But one of OSL'S strengths is that it can be
integrated within larger applications. To make
this integration seamless, the application devel-
oper must transform the pure model statement
into computer code. The aim of this paper is to
educate the developer as to how this can be done.

This paper makes several fundamental assump-
tions. First, the problem to be modeled is repre-
sented in a symbolic form. Although we do not
give a full syntax for this representation format,
we provide examples that allude to it. We focus
on linear programming problems; our final dis-

"Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

MINKOFF 49

cussion looks at modifications for other problem
types handled by OSL. From the implementation
perspective, we code the application in the C lan-
guage. The problem is stored internally and
loaded into OSLvia the ekklrndl subroutine. We do
not address the use of files formatted by MPS (the
Mathematical Programming System). (See Chap-
ter 10 of Reference 4.)

We begin with a discussion of how mathematical
programming problems may be represented sym-
bolically, and we present an example. Next, we
contrast problem representation in OSL with the
symbolic format. The organization of the OSL-
related portion of an application is studied, with
special attention paid to how this organization
manifests itself in computer code. The code must
be explicitly linked with the mathematical prob-
lem statement. An example helps reinforce these
concepts. In the conclusion, this approach is ex-
plored further and extensions are discussed.

Mathematical programming model
representation

Rather than use the syntax of a specific modeling
language, we use an algebraic symbol represen-
tation to describe models. The representation
must identify the following problem components:

Various entities that constitute the phenome-

Attributes of these entities (both given and vari-

Relationships among entities

Alternate terms for these components are em-
ployed, matching terminology used in many mod-
eling languages. Entities are often referred to as
“sets” or “indices”; their attributes are “data” that
are input to the problem, and “variables” that are
to be solved for; the “objective function” and “con-
straints” are the relationships of interest.

The problem description is usually organized us-
ing the devices of groups and indices within
groups. The group concept lends modeling lan-
guages their power in describing very large mod-
els, in terms of overall numbers of variables and
constraints, in relatively compact terms. An en-
tity group is a set of similar entities keyed by some
index. Indices will run over consecutive integers,
from 0 to N - 1, where there are N entities in a
particular set. (This numbering convention was

non

able)

50 MINKOFF

adopted to correspond with C language array in-
dexing schemes.) A compound entity may be de-
fined as a combination of primitive entities; each
compound entity may be pointed to with multiple
indices. The index of a compound entity is an
ordered set of integers. An attribute group is a
measure of a primitive or compound entity that
takes different values for each entity in the group.
This gives rise to data groups (input attributes)
and variable groups (output attributes). Although
models considered here have single objective
functions, they may have several constraint
groups, each one running over one or more indi-
ces. A constraint group is a logical function of
arithmetic expressions involving indices, data,
and variables.

An example of a mathematical programming
problem, expressed in the format just indicated,
is given next. We study the meaning of the prob-
lem and the symbolic representation, then use
this problem later to exemplify the techniques de-
scribed in this paper. The problem arises in the
context of fixed-income portfolio revision. Sup-
pose we have a portfolio of fixed-income instru-
ments and want to revise its composition so as to
maximize expected return, but under a number of
constraints. A formulation of this problem under
stochastic conditions follows in traditional sym-
bolic terminology. Afterwards, the various pieces
of the formulation are classified according to the
scheme for representing the model.

Define the following set indices:

i Fixed-income instruments that may be bought
or sold

t Time period (when either a liability must be
paid or a coupon payment is received); let
the portfolio be revised at time 0, the first
payment or liability occur at time 1, and the
final period be T

s Scenario for final instrument values and inter-
est rates

j Asset class to which instruments may belong

Input data to the problem are:

PROB, Probability of scenario s occur-
ring

riod t under scenario s (also in-
corporates projected value of se-
curity at t = T)

FLOits Cash inflow from security i in pe-

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

I-RA TE ,,

B-RA TE ts

LIAB,

S-PRC,

B-PRC,

CASHO
HOLD,
GRP,

P-GRP,

MIN-INV,

Interest rate on short-term in-
vestments forecasted for period
t under scenario s
Interest rate on short-term bor-
rowing forecasted for period t
under scenario s
Liability, or amount to be paid
from cash, in period t
Price obtained from sale of one
unit of instrument i
Price required to buy one unit of
instrument i
Initial cash on hand
Initial holding of instrument i
Asset class indicator (equals 1 iff
instrument i belongs to class j)
Maximum dollar-weighted pro-
portion of portfolio that may be
invested in asset class j
Minimum wealth acceptable at
period T under scenario s

The decision variables for this problem are de-
noted as:

port , New portfolio holding in instrument i
sell, Amount of instrument i sold to revise

buy, Amount of instrument i bought to revise

inv, Amount of cash invested short-term in

bor, Amount of cash borrowed short-term in

portfolio

portfolio

period t under scenario s

period t under scenario s

With these definitions, we seek to maximize

S

subject to

FLO,,port, + I-RATE,-l,sinv,-l,s - inv,
i

+ bor, - B-RATE,sbor,-,,s = LIAB,

vs, t L 1 (2)

invos - bor,, - 2 S-PRCpell,
i

+ 2 B-PRCibuyi = CASHO V S (3)
i

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

port, + sell, - buy, = HOLDi V i (4)

(GRP, - P-GRPj)S-PRCiporti
i

I 0 V j (5)

inv, 2 MIN-INV, V s (6)

The literal interpretation of this problem is one of
maximizing expected wealth at the end of the time
horizon (period T) . This is stated in Equation 1.
By including instrument value at time T in
FLO,,, inv, represents not only cash on hand at
the end of the horizon, but also total value of the
portfolio. Equation 2 tracks the flow of money at
each time period and scenario, whether the
money comes from coupons, final instrument
value, investments, or borrowing. Initial cash on
hand (period 0) is determined through Equation 3.
It takes into account any cash on hand prior to
revising the portfolio, plus new purchases, sales,
and borrowing. Equation 4 determines the
amount of each instrument bought and sold by
comparing the new holding of the instrument to
the original holding. Equation 5 limits the amount
of investment in each asset class. Finally, Equa-
tion 6 seeks to limit risk by putting a lower bound
on terminal wealth under each scenario. Note that
each variable must take on only nonnegative Val-
ues.

The primitive entities in this problem are the
ked-income instruments (for example, corpo-
rate bonds from a certain company, of a certain
coupon rate and maturity), time periods (like June
1992), scenarios, and asset classes (e.g., junk
bonds). Compound entities are combinations of
two or more primitive entities, such as period-
scenario. A relevant attribute of this compound
entity is the interest rate data group I-RATE,
whereas the liability LIAB is an attribute solely of
time period. Equations 1-6 are all relationships
among entities, reflected in their attributes. Equa-
tion l is an arithmetic relationship whose value
we want to maximize, while the others are logical
relationships that must be satisfied in any accept-
able solution to the problem.

Problem representation in OSL

OSL offers several means to represent instances of
mathematical programming problems. It takes a
substantial amount of work to transform an alge-

MINKOFF 51

Figure 1 Matrix to illustrate storage-by-indices format

3 . 2 2 . 8 1.9
1.1 1.4 0

braic statement in the form described in the last
section to one of these formats. We can, how-
ever, build a systematic and relatively straight-
forward approach on the problem representation
format known in OSL as storage by indices. This
is an internal format, meaning the problem is
stored in arrays inside the program, as opposed to
externally in a file (OSL permits this option, too,
as it accepts MPS-format files4). A series of arrays
and integer variables is used to contain problem
information. These are essentially the arguments
to OSL subroutine ekklrndl, and are reviewed as
follows:

nrow Number of constraint rows in problem
ncol Number of variable columns in problem
ne1 Number of nonzero coefficients in the con-

dobj Objective function coefficients
drlo Lower bounds on row activities
drup Upper bounds on row activities
dclo Lower bounds on column activities
dcup Upper bounds on column activities
mrow Row indices for nonzero coefficients in

rncol Column indices for nonzero coefficients in

dels Values of nonzero coefficients in con-

straint matrix

constraint matrix

constraint matrix

straint matrix

The storage-by-indices format applies to the last
three arrays. To further illustrate how this format
works, consider the simple matrix shown in Fig-
ure 1. This matrix would be stored as:

m o w = (1 1 2 2 2 3 3 1 2 3)
m o l = (1 2 1 2 3 1 2 4 5 6)
dels = (1.6 2.1 3 . 2 2.8 1.9 1.1 1.4 1 1 1)

The nonzero elements of the matrix are contained
in del s. At the i-th position of del s, the value there
is located in row rnrow[i] and column rncol[i] of the
matrix.

We observe here a fundamental conflict between
the storage-by-indices format and the group rep-
resentation of the mathematical model. In OSL,
indices are global, whereas in the group repre-
sentation, they are local. For instance, in the
portfolio revision problem, suppose there are 10
instruments labeled 1 through 10 (temporarily dis-
regarding the convention of starting with 0), and
the columns are sorted in the order that the vari-
able groups are listed. Then the column repre-
senting sel l is actually the 13th column, globally
speaking, in the model. This is because ten port
columns precede the first sell column. The local
index of sel l is 3, and the global index is 13. This
conflict could be alleviated to some extent
through the use of OSL'S block description facility,
but this introduces other bookkeeping measures
and will not be adopted here.

The indexing conflict is relieved with a pair of
index adjustment schemes:

1. A local index within a group that converts sin-

2. A local-to-global index conversion scheme
gle or multiple indices to an integer

The local scheme is trivial when a group runs over
a single index. Where there are multiple indices,
the last index is varied first in making the corre-
spondence between ordered sets of indices and
the local index integer. The local-to-global con-
version is accomplished by determining offsets
for each group relative to global column 0 (for
variables) or global row 0 (for constraints). The
first variable group has a column offset of 0, and
the second has a column offset equal to the num-
ber of columns in the first variable group. Each
subsequent variable group's offset is equal to the
number of columns processed prior to reaching
that variable group. The same scheme is applied
to global row index determination. Note that
lower and upper bounds and objective function
coefficients must be loaded into the respective
arrays under the global indexing scheme.

The OSL application

OSL, as a subroutine library, is designed to be
integrated within systems that may perform other
functions as well. OSL may be imbedded in an
application that also contains database manager,

52 MINKOFF IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 4

spreadsheet, graphics, user interface, and other
facilities. We isolate the optimization function in
this paper by assuming that the relevant opera-
tions are performed in a function (in the sense
used in the C language) called from another pro-
gram. We also discuss the nature of communica-
tion between the function and the calling pro-
gram.

The optimization-specific function, which we
label oslproc, can be divided into six tasks:

1. Function initialization
2. Receive input data
3. Prepare OSL inputs
4. Solve problem
5. Retrieve OSL outputs
6. Transmit solution

Function initialization covers declarations of all
variables and constants and definitions of all mac-
ros that are used in the processing portions of the
program. Values of some variables are initialized
in this task as well.

The task of acquiring input data, whether from
flat files, databases, and/or keyboard entry, is as-
sumed to occur in another module. Receiving in-
put data corresponds here to having data passed
from the calling program as arguments to os1 proc,
or to assigning datavariables to the ex te rn storage
class (and using the same names for the variables
in the calling program).

The input arguments to OSL subroutines are as-
sembled in the next task. Preparing OSL inputs
involves taking the raw input data and organizing
them, as described in the previous section.

OSL subroutines permit varying levels of control
in the solution of mathematical programming
problems. Although this is where the real power
of OSL lies, we do not dwell at length on solving
problems here. OSL may be accessed with a few
subroutine calls, and efficient use of OSL is cov-
ered elsewhere.

OSL provides a routine for printing solutions, but
the destination of the printout is generally a file or
the terminal. We need to store the solution in
array variables, so that it can be manipulated by
other modules in the system. Processing OSL out-
puts is concerned with extracting the solution
from the main work array.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

Once the solution is extracted, we need to trans-
mit the solution back to the calling program. We
can use the same methods here that we use for
receiving input data.

The next sections detail one way to implement
each of these tasks. We describe and illustrate the
coding of these tasks in the C language.

Coding the OSL application

This section describes how one proceeds from a
symbolic statement of a mathematical program-
ming problem to the source code for the optimi-
zation component of a system that uses OSL. The
objective of this section is to relate how to pro-
duce the function os1 proc. The function is written
in C and is designed to be called from another
module that acquires the data and stores them in
the arrays we name in the problem statement. The
task of receiving the input data is achieved by
constructing a header file that declares the perti-
nent variables with the appropriate storage class.
The header file will be included in both the calling
program and oslproc, to assure consistency in the
use of the variables. The bulk of os1 proc is devoted
to the OSL input preparation task. Once the OSL
input is ready, we invoke the appropriate OSL
subroutines. Afterwards, os1 proc places the solu-
tion in arrays named after the problem state-
ment’s variable groups. These arrays have stor-
age class extern, so that other modules may access
the solution for report writing and other func-
tions. In the next section, we show how these
techniques are applied to the problem statement
described in the section on mathematical pro-
gramming model representation. Below, we
study the implementation of each task enumer-
ated in the previous section.

Function initialization. Before the code for os1 proc
is listed, a series of header files must be included.
These include standard header files such as
s t d l i b. h, the OSL header file ekkc. h, and an appli-
cation-specific header file. Call this last file
os1 proc. h.

The file os1proc.h performs several duties. It de-
clares os lp roc and some special-purpose proce-
dures used in preparing OSL inputs. It declares a
number of OSL subroutine arguments, both scalar
and array. This also includes the use of macros to
define the sizes of the arrays and to set up syn-
onyms for key elements of some of these arrays.

MINKOFF 53

Figure 2 addcol

void addcol(doub1e aobj. double alo. double aup)
{
dob j [ncol] - aob j :
dclo[ncoll- alo;
dcup [ncoll- aup;
ncol++;
return:

I

The file os1proc.h also declares the problem-
specific arrays that match data and variable
groups from the problem statement. For each set,
we define a variable that holds the number of el-
ements in the set and a macro that supplies the
maximum number of elements permissible in the
set. The latter is used in the declarations of the
model’s arrays (hence storage capacity may be
easily modified; alternatively, one may allocate
space for these arrays dynamically). Finally, we
define macros for each variable and constraint
group that obtains the local index from the indices
that are used to refer to the individual variable or
constraint.

Additional local variables are declared within
oslproc. These are the temporary floating-point
and integer variables used as arguments to the
special-purpose functions, arrays for column and
row offsets, a return code variable, and set index
variables. The other initialization tasks are to al-
locate space for the 0% work array (if this is being
done dynamically), and to set row, column, and
constraint matrix element counters to zero.

Receive input data. This task has already been
accomplished by virtue of having the data stored
in arrays with the extern storage class.

Prepare OSL inputs. This task is accomplished se-
quentially. First, columns are defined to the prob-
lem representation, one by one. Then each row is
established by first defining the row, then each of
the nonzero elements in the row. We use the word
“add” to refer to this process of defining a column,
row, or element. The special-purpose functions
support this process, so we study them first. (Note
that these functions are not supplied with OSL.)

54 MINKOFF

Figure 2 lists the function addcol . It is used to add
a new column to the internal problem represen-
tation. The function addcol takes these arguments:

aobj Column’s objective function coefficient
a l o Lower bound for column
aup Upper bound for column

These values are added to the objective value ar-
ray dobj, and the lower and upper bound arrays
dclo and dcup, all at position ncol. Arrays ncol, dobj,
dclo, and dcup will be declared to be global in
scope, so they need not be included as arguments
to addcol . The column counter variable ncol is in-
cremented only after the arguments are loaded in,
because the ncol- th element is stored at position
ncol-1 in the C arrays.

Function addrow is shown in Figure 3. It is similar
to addcol except that rows have no objective func-
tion coefficients, only bounds d r l o and drup. Func-
tion addel in Figure 4 is used to add a nonzero
element from the constraint matrix to the OSL ar-
rays rnrow, rncol, and del s. Argument ico l is the
global index of the added element’s column, and
ael is the value of the element. It is assumed that
the element belongs in the row most recently
added to the problem representation. The ele-
ment is only added if it is nonzero. Again, since
the OSL arrays have global scope, they can be
omitted from the function call. It is important to
note that in OSL, row and column numbering start
at 1, even when the driver program is written in
C. The function addrow increments nrow prior to the
respective addel calls, so nrow can be used as is. But
one must be added to i col , because we have cho-
sen to number these rows internally starting at
zero.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

Given the above functions, the preparation of OSL
input follows somewhat straightforwardly. (The
reader may find it helpful to refer to the code
listings in the next section through the remainder
of this section.) First the variable groups are proc-
essed. The processing for each variable group
works as follows. The column offset is deter-
mined as described in the section on problem rep-
resentation in OSL. Then a series of for-loops is
initiated, one for each of the group’s indices. We
begin with the leftmost index, meaning that we
increment the rightmost index earliest, as we
have indicated previously. Following the for-loop
initializations, we may want to test membership
of the index combination in some subset, if not all
combinations of indices need be included in the
model. The objective function coefficient and
lower and upper bounds for the column to be
added are obtained from the model statement,
and addcol is called with these arguments. Then
the for-loops are closed and we move on to the
next variable group.

Next we must treat the rows of the problem, by
processing each constraint group. We obtain the
row offset for the constraint group as we did for
variable groups. Likewise, we begin for-loops for
each of the indices that the group runs over. In-
side the loops, we check for subset membership
and specify lower and upper row bounds. A call
to addrow adds the new row to the problem. Now,
within that loop, the nonzero elements for the row
must be added to the problem representation
through calls to addel . Three different types of el-
ement processing may be carried out, depending
on how variables appear in a constraint group in
the model statement:

1. A variable appears in the constraint group in a

2. A variable appears in the constraint group sin-

3. A variable does not appear in the constraint

summation term.

gly, without a summation term.

group.

Obviously, in the last case, it is not necessary to
add elements to the constraint arrays. The differ-
ence between the first and second cases is that the
first case requires for-loops over the summation
indices to add multiple columns from the variable
group to the element set, whereas the second calls
for only a single element. In each case, we must
determine the global index of the column to be
added. This number is found by adding the local

IBM SYSTEMS JOURNAL, VOL 31, NO 1. 1992

Figure 3 addrow

void addrow(doub1e alo. double aup)
{
drlo [nrowl- alo;
drup [nrowl- aup:
mow++;
return:

1

Figure 4 addel

void addel(1ong icol. double ael)
{
if (ael I - 0) (
mrow[nell- nrow:
mcol [nell- icol + 1:

nel++:
dels [nell- ael:

1
return:

1

column index, as supplied by the local index
macro, to the column offset for that group. This
column number, and the value of the coefficient,
are the arguments to addel .

It should be noted that if a constraint group con-
tains only one variable group that is not in a sum-
mation, then that constraint may be in fact a lower
or upper bound on the variable. If so, it is more
efficient to use this information in determining
one or both of the variable group’s bounds, and
not include it as a constraint group.

Solve problem. Once all the arrays have been set
up, the OSL subroutines are invoked. The sub-
routine sequence can range from a bare minimum
to more sophisticated measures that can speed
the solution process, including pre- and post-
solve, scaling, parameter setting, decomposition,
and making use of previous solutions or bases.
The content of the code that performs this task is
independent to some extent of the problem in-
stance, although there will be cases in which one
might obtain solutions more efficiently by apply-
ing some model-specific manipulations. Efficient
use of OSL subroutines is covered elsewhere, and

#!define maxspc 100000
!#define MXEL 10000

1 !!define MXROW 500
#define MXCOL 500
#define o s l i l n 47
#!define o s l r l n 34
#define o s l n l n 30

void addcol(doub1e. double, double):
void addrow(double, double);
vo fd adde l t in t , doub le) ;
i n t o s l p r o c 0 ;

LOC i n t nrow.ncol.ne1:
LOC i n t m o w [MXEL] ,mcol [MXELI :
LOC double dob j [MXCOLI . dc lo [MXCOL] .dcup [MXCOL] :
LOC doub le d r lo [MXROW] .drup [MXROW] .de l8 [MXEL] :
LOC doub le *dspace . o s l r [os l r ln] :
LOC i n t r t c o d e . o s l i [o s l i l n l , os ln [os ln ln] :

#!define MX-i 20

#define MX-t 20
LOC i n t n-i;

LOC i n t n-t;
#def ine MX-s 20

#define MX-j 20
LOC i n t n-s:

LOC i n t n-j;

LOC double PROB[MX-s] ;
LOC double FLO[MX-iI [MX-t] [MX-s] ;
LOC double I-RATE [MX-tl [MX-sl :

LOC double LIAB [MX-t] ;
LOG double B-RATEIMX-t] [MX-SI ;

LOC double S-PRC [MX-i] ;
LOC double 3-PRC [MX-i] ;

LOC double HOLD [MX-i] :
LOG double CASHO:

LOC double GRPfMX-il [MX-jl :
LOC double P-GRP [MX-j J ;
LOC double MIN-INV;
LOC double port [MX-i] :
d e f i n e p o r t - i d x (i) (i)
LOG double sell [MX-il :
d e f i n e s e l l - i d x f i) (i)
LOC double buy[MX_i] ;
#def ine buy- idx(i) (i)
LOC double inv [MX-tl [MX-s] ;
#define inv-idx(t ,s) (t)*n-s + (s)
LOC double bor IMX-t] [MX-SI ;
#def ine bor - idx(t , s) (t)*n-s + (8)

will not be discussed further here. (See Chapter 8 first use a call to ekknget to obtain the index where
of Reference 4.) the solution starts in the work area. This will be

in the 7th position in the osln array argument to
Retrieve OSL outputs. After the solution is deter- ekknget, but in C, this would be denoted osln[6].
mined, it must be retrieved. It is stored in the OSL Also, because OSL is FORTRAN-based, we must
work area, but somewhere in the middle and ac- subtract one from osln[6] to get the C array posi-
cording to global column indices. To extract it, we tion of the first column of the solution. Then the

56 MINKOFF IBM SYSTEMS JOURNAL, VOL 31, NO I , 1992

Figure 6 Initialization

int oslproc 0
(
double dtemp.dtemp-o,dtemp-1,dtemp-u:
int ico1,coloff E301 .rowoff 1301 ,re;
int i.t.6.j;

dspace - (double *) malloc(maxspc'sizeof(doub1e));
if (!dspace) return (1000) :

nrow .. ncol - ne1 0 ;

global column number must be added to this po-
sition, to get the storage location of the solution
value for the corresponding variable. We may use
the same global column number calculation as
was done in constraint processing when adding
elements. Dual variable values are extracted in a
similar fashion (although this is not done in the
example that follows).

Transmit solution. The arrays storing the solution
elements were previously defined as external ar-
rays, hence the values will be available to the
calling program. Employing this approach, it is
not necessary to take any action to transmit the
solution.

Example

The approach outlined in the preceding section is
illustrated next, using the model statement given
in the section on mathematical programming
model representation.

The header file is listed in Figure 5. Correspon-
dences may be detected between elements of the
set, data group, and variable group descriptions,
and declarations in the header. More than one
index may range over a given set, although this is
not the case here. A set is identified by the first
listed index for it. Then the actual size of the set
will be stored in the variable named by the set
identifier prefixed by n-. The macro for the max-
imum size of the set is denoted by MX- prepended
to the set identifier.

This header is included in the calling program, so
that all variables are accessible to both calling
program and os1 proc. We use the LOC macro to have

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

Figure 7 Preparing columns

I' Variable port * I
coloff to] - ncol:
for (i - 0; i < n-i: i++) I:
dtemp-o - 0:
dtemp-1 - 0:
dtemp-u * le31:
addcol(dtemp-o.dtemp-1.dtemp-u);

3
I * Variable sell * /
colofflll = ncol:
for (i - 0; i < n-i: i++) I
dtemp-o - 0:
dtemp-1 .. 0;
dtemp-u - le31;
addcol(dtemp-o,dtemp-l,dtemp-u);

1
I* Variable buy * /
coloff121 - ncol;
for (i = 0: i < n-i: i++) {
dtemp-o - 0:
dtemp-1 - 0;
dtemp-u .. le31:
addcol(dtemp-o,dtemp-l,dtemp-u):

I
I" Variable inv * /
coloff [3] - ncol;
for (t - 0: t < n-t; t++) {
for (s - 0: s < n-s: a++) f

dtemp-o = PROBE61 :
dtemp-1 = MIEIM[sI ;

dtemp-1 - 0: dtemp-o = 0:

1
dtemp-u .. le31:
addcol(dtemp-o,dtemp-l,dtemp-u):

if (t - n_t - 1) I

I else {

1
1

coloff [4] - ncol; f a Variable bor *I

for (t - 0; t < n-t; t++) {
for (s - 0; a < n-s; s++) {
dtemp-o - 0:
dtemp-1 - 0:

' dtemp-u - le31;
addcol(dtemp-o,dtemp-l.dtemp-u);

1
I

MINKOFF 57

Figure 8A Preparing rows

rowoff IO] - nrow: / * Constraint group 1: Track cash * I

for (s = 0: s < n-s; s++) (
for (t - 1: t < n-t: t++) (
dtemp-1 = LIAB[t] :
dtemp-u - LIAB[tI :
addrow(dtemp-1,dtemp-u):
for (i - 0 ; i < n-i: i++) I

I' Variable port * I
icol - coloff[O] + port-idx(i):
dtemp - PLO[il [tl [SI :
addel (icol ,dtemp) :

icol - coloff[3] + inv-idx(t-1,s);
I* Variable inv ' I

dtemp = I-RATEft-11 [SI :
addel (icol.dtemp) :
icol - coloff[3] + inv-idx(t,s);
dtemp = -1:
addel (icol , dtemp) :
I * Variable bor * I
icol - coloff [4] + bor-idx(t.s) :
dtemp - 1:
addel(ico1,dtemp):
icol - coloff [4] + bor-idx(t-1 . s) :
dtemp - -B_RATE[t] [SI :
addel (ico1,dtemp) :

1

1
1

Figure 8B Preparing rows

I* Constraint group 2: Track initial cash " 1

t - 0: rowoff [I] - nrow;
for (s - 0: s < n-s: s++) {
dtemp-1 - CASHO:
dtemp-u - CASHO:
addrow(dtemp-1,dtemp-u) :

I* Variable inv * I
icol = coloff [3] + inv-idx(t.s) :
dtemp = 1;
addel(ico1,dtemp);
/ * Variable bor * I

dtemp = -1:
icol = coloff [4] + bor-idx(t,s) :

addel(ico1,dtemp):

/ * Variable sell * I
icol .. coloff [I] + sell-idx(i) :
dtemp = -S-PRC[i] :
addel(ico1,dtemp):

for (i = 0: i < n-i: i++)

1
for (i - 0: i < n-i: i++) (

I * Variable buy * I

dtemp - B_PRC[i] : icol - coloff [21 + buy-idx(i) :

addel(ico1,dtemp);

1
1

Figure 8C Preparing rows

/ * Constraint group 3: Determine sell and buy * /
rowoff [21 - nrow;
for (i - 0: i < n-i: i++) C
dtemp-1 = HOLD[i] :
dtemp-u - HOLD [i] :
addrow(dtemp-1,dtemp-u) :

I* Variable port * I
icol - coloff [O] + port-idx(i) :
dtemp - 1:
addel(ico1,dtemp):
/ * Variable sell
icol - coloff[l]
dtemp - 1;
addel(ico1,dtemp
I* Variable buy
icol - coloff [2]
dtemp - -1;
addel(ico1,dtemp

1

I
t buy-idx (i) :

these arrays and variables declared with the extern program, where the arrays are originally set up.
storage class in os1 proc, but without it in the calling One may verify that the macros for determining

58 MINKOFF IBM SYSTEMS JOURNAL, VOL 31, NO 1. 1992

Figure 8D Preparing rows

/ * Constraint group 4: Limit class investment * /

for (j =. 0 ; j < n-j; j++) I
rowoff E31 - nrow:
dtemp-1 .. -1e31;
dtemp-u - 0;
addrow(dtemp-1,dtemp-u):
for (i - 0: i < n-i: i++) (

icol - coloff [OI + port-idx(i):
/ * Variable port * /

dtemp - (GRP[i] [jl-P_GRP[jl)*SPRC[il:
addel(ico1,dtemp):

1
1

Figure 9 Solving the problem

I
ekkdsca(&rtcode.dspace.maxspc.l);
ekkdscm(&rtcode.dspace.1,5):
ekkrget(&rtcode.dspace.oslr,oslrln);
oslr[2] * -1.0:
ekkrset(&rtcode.dspace.oslr.oslrln);
ekklmdl(&rtcode.dspace,l,nrow.ncol,nel.dobj,drlo,drup,dclo~dcup,mrow~mcol,dels~:
ekksslv(&rtcode.dspace,l,Z):

local column indices will give the appropriate re-
sults. For example, inv-idx(Q.8) will return 0, and
the rightmost index is incremented soonest.

We now examine the function oslproc. The rest of
the initialization task (beyond what is done in the
header file) is listed in Figure 6. Integer variables
corresponding to each set index are declared
here.

Figure 7 displays the code that adds all the col-
umns to the problem representation. Observe that
for variable group i nv, a lower bound may be ob-
tained from Equation 6 of the problem formula-
tion. But this bound, and the objective coefficient,
only apply to the last period.

Constraint processing code is shown in Figure 8,
A-D. The fifth constraint group, corresponding to
Equation 6, was previously diagnosed as a col-

umn bound, so no processing is done here. Also
observe processing for constraint group 1; vari-
ables i n v and bor appear twice in Equation 2, but
with different subscripts, and this must be incor-
porated in the formation of the OSL arrays.

A minimum set of OSL calls to solve the optimi-
zation problem is provided in Figure 9. Necessary
OSL initialization is performed by ekkdsca and
ekkdscm. Because the objective is to maximize, we
use the calls to ekkrget and ekkrset to change OSL’s
default of minimization. The internally stored
problem is converted by ekklmdl to a format that
OSL can work with directly. The single call to
ekkss lv solves the linear programming problem
with the simplex algorithm. Additional code
should be placed here to determine the final prob-
lem status (optimal, infeasible, unbounded, etc.),
and to check the return codes from each OSL call.
The final problem status should be passed back to
the calling program as the return code for oslproc.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 MINKOFF 59

Figure 10 Extracting the solution

I* Variable port *I
for (i - 0 : i < n-i; i++) (
icol - coloff [O] + port-idx(i) ;
port [il - dspace[osln[61-1 + icoll ;

?

for (i - 0; i < n-i; i++) (
/ * Variable sell * I

icol = coloff[l] + sell-idx(i);
sell[i] - dspace[oslnl6] -1 + icoll ;

1
/ * Variable buy */
for (i = 0 ; i < rei: i++)
buy [i] - dspace [osln [6] - 1 + icolf ;
icol - coloff [21 + buy-idx(i) :

3
/ * Variable inv * /
for (t - 0: t < n-t: t++) I
for (s .. 0: s < n-s; s++) (

icol - coloff [3] + inv-idx(t, s) :
invCt1 [SI - dspace[osln[6] - 1 + icoll ;

1
1
/ * Variable bor * /
for (t - 0 ; t < n-t; t++) I:
for (a - 0 ; s < n-s: s++) (

icol - coloff [41 + bor-idx(t.s) :
bor [tl [SI - dspace[osln[6] -1 + icol] ;

1
1

Figure 10 shows how the solution is retrieved
from the work area and stored in the appropriate
arrays. The arrays are stored externally, so this
information will be passed back implicitly to the
calling program.

Conclusion

We have described an approach to developing
OSL applications that can be applied to most for-
mulations of mathematical programming prob-
lems. From a symbolic representation of the
problem, the application developer may generate
computer code that will perform the formatting of
data for OSL, solve the problem, and retrieve the
solution. The emphasis is on seamlessly integrat-
ing OSL with the rest of the application by working
with data directly as the data may be stored else-
where in the application.

The approach described in this paper may be ap-
plied to any linear programming problem that can
be represented in the symbolic format described.
But OSL handles other mathematical program-

60 MINKOFF

ming variations as well. The same techniques may
be modified to allow one to write applications for
quadratic and linear mixed-integer programming.
For quadratic programming, one must recognize
which terms in the objective function contain the
product of two variables (or one variable
squared). Then we invoke a function similar to
addel to add an element to the quadratic matrix.
And the solve task must include calls to ekkqmdl (to
load the quadratic piece of the objective function)
and ekkqslv (to solve it).

Release 2 of OSL allows the specification of
mixed-integer programming problems within an
OSL application, instead of relying on an MPS-type
deck residing in an external file. Then, once
again, these procedures may be applied. The
problem statement must contain indications of
which variable groups are integer-valued. This in-
formation is used to create the arrays that will be
used in the call to ekkimdl , where integer variable
information is communicated to OSL. The solve
task must likewise be modified.

Because the programming approach described
here is fairly well-defined, it is possible to codify
the rules into a program that does the code gen-
eration automatically. The author is currently en-
gaged in developing such a tool.

Cited references

1. A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A Us-
er’s Guide, Scientific Press, Redwood City, CA (1988).

2. R. Fourer, D. M. Gay, and B. W. Kernighan, “A Modeling
Language for Mathematical Programming,’’ Management
Science 36, No. 5 , 519-554 (1990).

3. A. M. Geoffrion, “SML: A Model Definition Language for
Structured Modeling,” Working Paper No. 360, Western
Management Science Institute, University of California,
Los Angeles (1988).

4. Optimization Subroutine Library: Guide and Reference,
SC23-0519-2, IBM Corporation; available through IBM
branch offices.

Accepted for publication September 19, 1991.

Alan S. Minkoff IBM Corporation, 33 Maiden Lane, New
York New York 10038. Dr. Minkoff is a financial quantitative
analyst with IBM’s Mathematical and Analytics Computation
Center (MACC) in New York City. His main responsibility is
to provide expertise to customers in the fields of optimization
(including the use of IBM’s Optimization Subroutine Library
and MPSX) and neural networks. He also conducts research
into applications of optimization in the financial and other
industries. His main research interests are in applications of
the new breed of optimization heuristics, including simulated
annealing and tabu search, and in developing tools to enhance

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

the use of optimization. Prior to joining MACC, Dr. Minkoff
worked for IBM’s Data Systems Division, developing oper-
ations research-based decision support tools for various man-
ufacturing applications. Dr. Minkoff got his undergraduate
degree, a B.S. in statistics, at Princeton University, and re-
ceived a Ph.D. in operations research from MIT.

Reprint Order No. G321-5460.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

1
MINKOFF 61

