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We discuss  the  algorithms  used in the 
Optimization  Subroutine  Library  for  the solution 
of  convex  quadratic  programming  problems.  The 
basic  simplex  algorithm  for convex  quadratic 
programming is described. We then  show  how 
the  simplex method for  linear  programming  can 
be  used in a  decomposition  crash  procedure to 
obtain  a  good initial basic solution for  the 
quadratic  programming  algorithm. We show  how 
this solution may  be  used  as a  starting solution 
for  the  simplex-based  algorithm. 

Besides its ability to obtain  good starting 
solutions, this procedure  has  several  additional 
properties. It can be  used directly to find an 
optimal solution to a  quadratic  program instead 
of simply finding a  good initial solution; it 
provides  both upper  and  lower  bounds  on  the 
objective function value as the  algorithm 
proceeds; it reduces  the  complexity  of 
intermediate  calculations; it avoids  certain 
numerical difficulties that  arise in quadratic,  but 
not linear  programming. 

I n  this  paper  we review the basic algorithms for 
convex  quadratic programming that are part of 

the Optimization Subroutine  Library.  The  qua- 
dratic  programs  have  linear  constraints,  the var- 
iables are subject  to nonnegativity constraints, 
and  the  objective  function  has  a  linear  and  a  qua- 
dratic  part  where  the  quadratic  part is convex. 

One of the motivating applications  for  quadratic 
programming is the  Markowitz' model of risk that 
is used in portfolio analysis. In this  application, 
the  linear  term of the  objective  function is used to 
measure  the  expected  return of a  portfolio, while 

the  quadratic  term is used to  measure  the risk or 
variation about  the  mean  associated with the  port- 
folio. It provides  investors with a  method to bal- 
ance  return  and risk in selecting a portfolio of 
investments.  Other  applications  include  asym- 
metric risk models for portfolio analysis,  least- 
squares  problems, proximal point  algorithms,  and 
sequential  quadratic programming for  nonlinear 
programming. 

One property of quadratic  programs  that  makes 
them potentially more difficult to solve  than  linear 
programs with the  same  number of variables  and 
constraints is that, unlike the  solution to a  linear 
program,  the solution to a quadratic  program may 
necessarily use all the  variables of the  problem.  In 
the application of portfolio analysis,  this reflects 
the  practice of hedging against risk by diversify- 
ing. In the  context of solving quadratic  programs, 
this property is manifested in the difficulty of find- 
ing good initial feasible  solutions to a quadratic 
program. 

In this paper, we begin by discussing  the opti- 
mality conditions  for a quadratic  program. We 
use  these  conditions  to  motivate the development 
of an algorithm for  quadratic programming based 
on the simplex method for  linear programming. 
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This algorithm is  essentially  that of Dantzig.2 
Given such an algorithm,  we  discuss  a  decompo- 
sition  procedure  that  uses  our  quadratic program- 
ming algorithm, on a related  but much smaller 
quadratic  program, in conjunction with the sim- 
plex algorithm for  linear programming to produce 
a good starting solution to  the original quadratic 
programming problem.  This  is  the first phase of 
our solution procedure  for  quadratic program- 
ming problems.  The  procedure used in this is a 
decomposition  procedure  since it uses a subprob- 
lem to  generate good feasible  solutions to  the qua- 
dratic  program.  This  decomposition  approach is 
closely related to  both Dantzig-Wolfe decompo- 
sition3  and simplicial decomposition. 

We describe a procedure  for  converting  the  start- 
ing solution produced by the  decomposition  pro- 
cedure  into  one  that  can  be used by the simplex- 
based  quadratic programming algorithm. The 
second  phase of the algorithm consists of moving 
from the starting  solution  output by the first phase 
to  an  optimal solution to  the quadratic  program. 
We conclude  the  paper with a brief discussion of 
computational  experience with this two-phase  ap- 
proach  to  convex  quadratic programming. 

Simplex-based algorithm for quadratic 
programming 

The problem we  have in mind is ( Q P )  : 

(QP) minimize: cTx + '/ZxTQx 
subject  to: Ax = b 

x 2 0  

whereA E R""", b E R", c E R", x E R", and 
Q E R""" is positive semidefinite. The  require- 
ment  that Q is positive semidefinite is what  makes 
the  quadratic program convex  and is equivalent to 
the  requirement  that 

zTQz 2 0 

for all z E R ". For simplicity, we  assume  that  the 
feasible region 9 of ( Q P )  is nonempty, 

9 = { x l A x = b , x ~ 0 } # 0  (1) 

and  has no nonnegative  directions of descent, 
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{zIQz = 0, Az = 0, (c  + QxlTz < 0, z 2 0, 

x €  9) = 0 ( 2 )  

The first of these  requirements is simply that  the 
program under  consideration  has  some  solution. 
The  second is equivalent  to  the  requirement  that 
the program has an optimal solution. A final tech- 
nical requirement  is  that  A  has full row  rank. 

One approach  to solving quadratic  programs is to 
generalize the simplex method for linear program- 
ming. In  order  to  describe  this  method  we  need  to 
discuss  the  dual of the problem ( Q P )  

(QD) maximize: yTb - %uTQu 
subject  to: ATy - Qu I c 

u unrestricted 
y  unrestricted 

The  dual program is useful in two  regards. First, 
the value of each  feasible  solution to  the dual  pro- 
gram is lower than the value of each  feasible so- 
lution to  the primal program.  This is easy  to  see. 
If x is feasible in ( Q P )  and ( y, u )  is feasible in 
(eo), then 

( C  - ATy + Q u ) ~ x  2 0 

which is equivalent  to 

cTx - yTb + xTQu 2 0 

Since Q is positive semidefinite we  have  that 

0 5 !h(x - u)'Q(x - U )  

= '/U'QX - xTQu + '/2uTQu 

and combining this with the  last inequality above 
gives the  stated relation between primal and  dual 
objective function  values 

C ~ X  + '/2xTQx 2 yTb - '/2uTQu (3) 

This relation is the weak duality  relationship of 
the dual pair of quadratic  programs ( Q P )  and 
( Q D )  . The  second  property of ( Q P )  and ( Q D )  is 
that if both ( Q P )  and ( Q D )  have  optimal solu- 
tions,  then  there is a solution pair of the  same 
value.  Furthermore, if x is optimal for ( Q P ) ,  then 
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there  exists y ,  so that ( y ,  x )  is optimal for ( Q D ) .  
This  property is called the strong  duality prop- 
erty.  Due  to  our assumptions of feasibility and 
boundedness,  both  programs  have optimal solu- 
tions. 

In  order  to argue  that  the  strong duality property 
holds,  we  consider the following augmentation 
subproblem ( A P ( x ) )  defined with respect  to  a 
feasible  solution x to  the primal problem ( Q P )  

( A P ( x ) )  (c  + Q x ) ~ z  < 0 
where: A z  = 0 

zj  2 0 whenever x, = 0 
z j  unrestricted  whenever x, > 0 

We call this  the  augmentation  subproblem  be- 
cause  whenever it has a solution z ,  that solution 
can be used to augment x to a solution x + Bz of 
strictly  lower  value.  Suppose A P ( x )  has no so- 
lution. We argue  that  this implies that x is opti- 
mal. If A P (   x )  has no solution,  then  an application 
of Farkas's  Lemma allows us to  conclude  that  the 
linear  system 

(ATy), 5 (c + Qx), whenever x, = 0 

(A'y), = (c  + ex),. whenever x, > 0 (4) 

has  a  solution. It is easy  to  see  that if the relations 
in Equation 4 hold,  then  the weak duality ine- 
quality (Equation 3) holds with equality. This im- 
plies that x has the same value in ( Q P )  as ( y ,   x )  
has in ( Q D ) ,  and it is also  easy to verify that 
( y , x )  is feasible  for (QD)  . 

The relations in Equation 4 are stronger  than  the 
relations usually referred to  as  the complemen- 
tarity  relations, which state  that  for x E R n ,  y E 
R", and u E R", thenx and ( y ,  u )  are comple- 
mentary if x j ( c  - ATy + Qu) ,  = 0 for 1 5 j I 
n.  Simplex-based algorithms for  quadratic pro- 
gramming fall into  the  same  framework as sim- 
plex-based algorithms for  linear programming. Of 
the  three  properties 

1.  Primal feasibility 
2. Complementarity 
3. Dual feasibility 

a primal simplex algorithm maintains the first 
two, while a  dual simplex algorithm maintains the 
last  two. Simplex algorithms do  this by imposing 
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the  further  restriction of moving from  one  basic 
solution to another using pivots. 

Restating the  observations outlined above,  we 
know that  we  can  solve a convex  quadratic pro- 
gram if we  can find a solution to  the system of 
equations 

A x =  b 

A ~ ~ - Q X + S = C  

with 

y unrestricted x 2 0, s 2 0 

that satisfies the  additional  complementarity  con- 
dition 

s j x j =  0 for 1 < j <  n (5 )  

In matrix terms  this  system of equations  can  be 
expressed  as 

" 

Y 

x =[:I A 0  

[:T - Q  I] 
S 

In order  to proceed with the  description of the 
simplex method for  convex  quadratic program- 
ming, some new terms  are  introduced  for  clarity. 

A set of variables indexing a full rank  submatrix 
of the matrix in Equation 6 is called a basis B for 
the  quadratic programming problem. We say a 
solution ( y ,  x ,  s) uses a variable if it is nonzero 
on  that  variable. A solution ( y , x, s) to  the  system 
of equations  above is called basic if it is the 
unique solution  to  this  system of equations using 
only the  variables in a  basis B .  Given a basic 
solution ( y ,  x ,  s), we call the  solution primal 
feasible if x is nonnegative, dual feasible if s is 
nonnegative,  and complementary if Equation 5 
holds. We call a basis complementary B if all the 
variables y are in the  basis  and x j  E B if and only 
if sj B .  Note that if a basis B is complementary, 
then the  associated  basic  feasible  solution 
( y ,  x ,  s) satisfies the  condition in Equation 5 .  

If  we are using a primal simplex method,  we will 
move from one primal feasible  complementary 
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basic solution to  another. This will be  done by 
alternately performing two  operations  calledpric- 
ing and  pivoting.  The pricing operation  deter- 
mines a variable x j  to introduce  into  the  basis. 
The pivoting operation  determines  a new com- 
plementary basis containing  the variable x j .  We 
now discuss  these  two  operations. 

Pricing. Without worrying about how we  obtain 
an initial solution,  suppose  that  we  have a primal 
feasible  basic solution ( y , x ,  s) with respect to a 
complementary  basis B.  We may rewrite  the op- 
timality conditions  described in Equation 4 as 

sj 2 0 whenever xj  = 0 

sj = 0 whenever x i  > 0 

Since ( y ,  x ,  s) is complementary,  checking  this 
condition  is  equivalent to checking whether s is 
nonnegative.  This is called the  pricing  operation 
of the simplex method. If some variable s j  is less 
than 0, then it is beneficial to introduce  the vari- 
able x j  into  the basis B .  In  particular,  there is a 
unique  vector (w, z ,  t) with z j  = + 1 and 

which only uses  variables in B U { xj}. Since B is 
a complementary  basis,  the  inner  product of s and 
z is equal to s j .  But this  number sj  is also  equal 
to 

(C - ATy + QX) '~  = ( C  + Q x ) ~ z  

That is to  say,  the negative number sj  is equal  to 
the directional  derivative of the  objective  func- 
tion at  the point x in the direction z .  Thus,  for  at 
least  some small step in the  direction z ,  the  ob- 
jective  function  decreases. So the pricing opera- 
tion either allows us to conclude  that x is an  op- 
timal solution  to ( Q P ) ,  in the  case  where s is 
nonnegative, or provides  a  direction z of potential 
objective  function  improvement. 

Pivoting. Once  we  have an augmenting direction 
z ,  we  use  that  direction  to  update  our  current 
solution x .  We must  determine  the maximum 
length step  we  can  take in this  direction while 

preserving primal feasibility. Additionally,  after 
taking such  a  step,  we  must  convert  the new and 
improved solution to a  complementary  basic  fea- 
sible solution. We refer to this  operation as piv- 
oting. While in the  case of linear programming 
this step from one  basic  feasible  complementary 
solution to  another requires  a single basis  ex- 
change, in the  case of quadratic programming this 
may require  several  basis  exchanges. 

The  procedure  that  we  describe is illustrated in 
Figure 1. In  this  example,  suppose the solution at 
the beginning of a pivot  sequence is xo. It is the 
optimal solution to  the  quadratic programming 
problem when variable x 4  is not  used. If, how- 
ever, we introduce x 4  into  this  solution, while 
maintaining complementarity on variables x 1  , x 2 ,  
and x 3 ,  this defines a unique  direction  passing 
through the  points x o ,   x ' ,  and 2' of the figure. 
The  point 2' optimizes the  quadratic  function 
along this line segment,  but  violates the nonneg- 
ativity requirements  on  the first three  coordi- 
nates. The  best  feasible point on  this line segment 
is x I , so we move to x I .  Note  that  the  comple- 
mentarity  condition is violated on  the pair of var- 
iables x 4  and s 4 .  This  argument is now repeated. 
We maintain the  conditions x I  = 0 and comple- 
mentarity  on the variables x 2  and x 3 .  These  con- 
ditions define a unique direction  passing  through 
the points x I ,  x 2 ,  and i 2  of the figure. The  best 
feasible point on this line segment is x 2 ,  which 
violates nonnegativity on  coordinates 2 and 3.  
This argument is repeated  once  more.  The  point 
x 3  represents a basic  feasible  complementary so- 
lution. 

We now describe  this  operation in greater  detail. 
Given a  direction z ,  the pivoting operation  then 
pursues  this  direction in order  to find a new com- 
plementary basis of improved  value. We consider 
solutions of Equation 6 along the half line ( y (  e), 
x ( 8 ) ,  s(8)) = ( y ,  x ,  s )  + 8 ( w ,  z ,  t)  where 8 i s  
greater  than 0. 

Since z j  is greater  than 0, x j  is equal  to 0, and s j  
is less  than 0, solutions  on  this half line are not 
complementary  except  for possibly one value of 
8. To define this value of theta,  we first observe 
that if t j  # 0, then tj > 0 by the convexity of the 
objective  function. To  see why tj  2 0, consider 
the  product 
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Figure 1 Pivoting in  simplex algorithms for quadratic programming 
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which is nonpositive  since Q is positive semidef- 
inite. But the definition of (w , z, t )  implies that 
this  product  is  also  equal  to -z ' t .  The comple- 
mentarity of the basis B implies z T t  = t j  and so 
t j  = zTQz. Given t j  > 0, ( y ( 8 ) ,  x ( 8 ) ,  s(0)) is 
complementary  for  the single value 8" = - ( s i / t j ) .  
If ( y (  e*) ,  x( e*), s( e*))  is also primal feasible, 
then  the new basis is B\{sj} U { x j } .  (In  the  ex- 
ample of Figure 1 this  case  never  occurs.) 

Otherwise,  either t j  = 0 or there is some variable 
xk such  that x k  + 0*zk is less  than  zero.  In  the 
latter  case  we  cannot move as  far along the half 
line as ( y , x ,  s) + 8 (w, z, t )  while remaining 
primal feasible.  In  either case,  the scalar 8 is re- 
defined using a minimum ratio  test 

so as  to maximize the  steplength in the  direction 
z while preserving primal feasibility. We know 

that  there is at least  one  index k with z k  < 0 since 
9 is bounded. If x k  is a  variable  such  that 8 = 
-( X k / z k ) ,  then ( y (  e ) ,  x( e ) ,  s( e ) )  is a primal fea- 
sible basic solution with respect  to  the basis 
B\{xk} U { x j } .  Although this  basis is not  com- 
plementary,  the  convexity of the  objective  func- 
tion ensures B L  = B\{xk} u { s k }  is a comple- 
mentary  basis  and  the  associated  basic  solution 
(E', i ' ,  b ' )  has  a  better value than ( y ( 8 ) ,  x ( O ) ,  
s( e)). It is  in fact  the  solution to the  quadratic 
program where  the  variables x j  in B ' are  set un- 
restricted in  sign while the  variables x not in B 1  
are fixed at  zero. If the  solution ( 9  ' , i I, b ') is 
primal feasible,  then  we  take  that  point as  our 
next  complementary  basic  feasible  solution. 

Otherwise,  consider  iteratively applying the fol- 
lowing argument. We suppose we  have  a primal 
feasible basic  solution ( y k ,  x k ,  s k ,  and a com- 
plementary basis B containing all the variables x 
used  by x k .  If the basic solution say (E", ik, bk) 
associated with Bk is feasible, then it becomes our 
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new primal feasible complementary solution. Oth- 
erwise, 0 defined by 

is positive.  Furthermore,  the  set Bk+l indexed by 
Bk\{ x j }  U { s j }  is a complementary  basis wherej 
is  a binding index in determining 6. This  fact  is not 
immediately obvious,  but follows from the as- 
sumption  that Q is positive semidefinite. The ar- 
gument is now repeated with Bk+' replacing B k .  

Note  that  at  each  pass of the argument presented 
in this  paragraph,  the  number of variables xj in the 
basis B k  decreases by one. Once  this number of 
variables  reaches m, the  basis is guaranteed to be 
a complementary primal feasible  basis. 

Decomposition for quadratic programming 

We have  previously  explained how the simplex 
method  can  be generalized in a fairly natural way 
to  derive algorithms for convex  quadratic pro- 
gramming. However,  there  are  certain difficulties 
that  arise in quadratic programming that do not 
arise in linear programming that make the  prac- 
ticality of such  an algorithm questionable. We 
first note  that although all bases  have cardinality 
m + IZ, the effective size of a basis is the m plus 
the  number of variables x j  in the  basis.  This is 
because  the  variables s j  index unit columns  and 
their values can  be easily determined  once  the 
values of y and x are  set.  The number of x var- 
iables in the  basis is bounded  above by the  rank 
of A plus the rank of Q. In the  case of linear 
programming, the basis always  has m variables. 

A second  problem  that  arises in practice is that 
the  matrices Q and A may be badly scaled relative 
to  each  other.  One effective technique  for han- 
dling badly scaled  problems in linear program- 
ming applications is to scale  the  constraint ma- 
trix.  In  the  case of quadratic programming, 
scaling applied to  the  constraint matrix must also 
be applied to  the quadratic  part of the  objective 
function Q. Since Q and A may be out of scale 
with respect  to  each  other, this  technique may not 
be as effective. 

In  order  to  solve  convex  quadratic programming 
problems  and  overcome  these difficulties, we 
want to capitalize  on  the  relative simplicity of 
solving linear programming problems.  The tool- 
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box we have at hand is  the Optimization  Subrou- 
tine Library (OSL). In OSL there is a fast  and re- 
liable simplex routine  for  linear programming, 
tuned  to  take  advantage of the various  hardware 
platforms on which OSL runs. OSL also  has  a sim- 
plex-based approach  for  quadratic programming 
based on  the  ideas  sketched  in  the  section  de- 
scribing the  standard  form  convex  quadratic  pro- 
gram. The  library  also  provides a framework  by 
which different mathematical  programs  can  com- 
municate information to  each  other. 

The algorithm described in this  section  represents 
an attempt  to exploit these  attributes of the Op- 
timization Subroutine  Library while overcoming 
some of the  problems  mentioned at  the beginning 
of the  section.  In  order  to  motivate the  procedure, 
we reconsider  the primal quadratic program ( Q P )  
and  the  augmentation  subproblem (AP(  x)). 
Given a feasible solution xo to ( Q P )  we recall that 
determining whether xo is optimal  is  equivalent to 
determining whether AP( x o )  has a feasible solu- 
tion. But A P ( x o )  is a  linear  system  and so this  can 
easily be tested using linear programming. Thus, 
an algorithm for solving quadratic  programs could 
consist of alternately solving A P ( x o )  to find an 
augmenting direction z o  and  then using z o  to up- 
date xo to a new and  better  solution  to  the  qua- 
dratic program x '. 

This  approach,  however, is bound to converge 
very slowly in most  circumstances. A natural 
modification is to use  information  not only from 
the  current solution of A P (   x k )  but  also from pre- 
vious iterations.  This  idea is illustrated in Figure 
2. In  this  example,  we  suppose  that x o  is our ini- 
tial solution. We  find that  the  direction leading 
from the point x o  to  the  point x is an improving 
direction.  The point along that  direction which 
optimizes the  quadratic  objective  function is la- 
beled 2 '. From  this point we  see  that  the  direction 
leading to x* is improving. However,  instead of 
optimizing the  quadratic  objective over  the line 
segment joining .t and x 2  we optimize  over the 
triangle (simplex) with corners x o ,  x I ,  and x 2 .  
The optimal solution is given by f2.  Again we 
look for  an improving direction  from  out of the 
current point and find moving toward x improves 
the  quadratic  objective  function. We now opti- 
mize over  the simplex with corners xo, x l ,  x * ,  
and x3. The optimal solution to this  subproblem 
is optimal for  the  entire  problem. The method of 
collecting the  points x k  is now formalized. 
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Figure 2 Decomposition  algorithm  for  quadratic  programming 

min - 15x, - 1 Zx, - 9x3 

+ 9x: + 9x; + 9xg 
0 2  x 2 1  

Suppose  we collect the solutions x k  as  the col- 
umns of a matrix X k  and  solve problem Q M P ( X k )  
where Q M P  is defined by 

D (QMP(X))  minimize: cTXh + %hTXTQXh 
eTh = 1 
A 2 0  

Since  each of the solutions x i  comprising the  col- 
umns of X k  is a  feasible solution to Q P ,  the  con- 
straints 

A X h = b  

X h  2 0  B 

are satisfied implicitly. Any feasible solution A to 
Q M P ( X )  corresponds  to a feasible solution X h  to 
Q P  since  the matrix X has  columns  that are fea- 
sible for Q P .  

b 
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Although Q M P  is a quadratic programming prob- 
lem, it has a single linear  constraint.  The  rank of 
the matrix X T Q X  in the  objective  function is 
bounded above by the number of columns col- 
lected in the  matrix X .  Furthermore,  the  solution 
to Q M P ( X )  is guaranteed  to  have  lower  value 
than  the value of any of the  columns of X .  

A P ( x )  can be used to collect points x i  to  add  to 
X k .  After enough points are  collected,  an optimal 
solution to Q P  will be obtained.  However,  one of 
the  drawbacks of this  approach is a problem that 
is also present in the  method  described in the sec- 
tion on  the simplex-based algorithm for  quadratic 
programming. Namely,  neither  method  provides 
lower bounds on  the value of the problem ( Q P )  as 
it proceeds. 

This difficulty can be overcome if we  solve a po- 
tentially more difficult problem than A P ( x )  as a 
subproblem of the  overall  procedure.  This  sub- 
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problem is similar to  the problem A P ( x )  and  is 
defined as Q S P ( x ) .  

(QSP(x)) minimize: (c  + Qx)'z 
A z = O  
2 2  -x 

This problem always has  an optimal solution when 
9 satisfies the feasibility assumptions in Equations 
1 and 2. We claim that  the optimal solution of this 
subproblem provides a lower bound on the value  of 
the program (QP). In  order  to  see this we consider 
the dual of this program QSD(x). 

(QSD(x)) minimize: - yTx 
A ~ Y + ~ = C + Q X  
y unrestricted y 2 0 

We first observe  that,  due  to  the nonnegativity of 
y, any  feasible  solution ( y ,  y) to QSD(x)  may be 
combined with x to form a feasible solution ( y , x )  
to Q D .  Furthermore,  the  value of this solution to 
QSD(x)  is the duality gap between  the  dual  fea- 
sible solution ( y ,  x )  and  the primal feasible so- 
lution x 

-yTx = (ATy - c - Q x ) ~ x  

= ( yTb  - 1/2xTQx) - ( C ~ X  + 1/2xTQx) 

If this  duality  gap is nonzero  and z solves 
QSP( x ) ,  then x + z is a  better feasible solution 
to QP than x and should be  added to  the collec- 
tion of points X .  If the gap is zero  then no aug- 
menting direction  exists  and  the  current solution 
x is optimal. 

The algorithm suggested by this discussion is 
given in Figure 3. 

In  the  example,  the  points of Figure 2 labeled x ' , 
x 2 ,  and x 3  are  the  solutions  to  the problems 
Q S P ( x o ) ,   Q F P ( i ' ) ,  and Q S P ( i 2 ) ,  respectively. 
In  addition,  the  solutions of the  subproblems give 
lower  bounds on  the objective  function  values, 
which are  also  listed in Figure 2. 

Termination 

It  can  be argued that  the  decomposition algo- 
rithms  discussed  are finite algorithms.  In  prac- 
tice,  however, it is not  advisable to run  these al- 
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Figure 3 The  decomposition  algorithm 

Solve the, linear  program  obtained 
from dropping the matrix Q from (QP) 
to obtain  a feasible point xo. 
fi c [xT; k t 0; 

2. Master  problem step 
Solve QMP(Xk) to obtain  a  sotution Gk = XkY. 

3. Subpr@bkrn Hep 
Solve aSP(ik} to obtain B solufidn xk+?. 

a. Test optimality 
if (c + Qik)Txk+i = 5 
then  stop with an  optimal  solution %. 

b.  Continue by  augmenting Xk. 
xk+' e [Xk I Gk + xk*l]; 
k t k + l ;  

Go to 2: 

gorithms to  completion,  but to instead  use  them 
to find a good starting solution for  the algorithm. 
In  order  to implement the  starting  solution,  one 
needs to be able to  convert a solution of 
QMP(Xk)  to a  basic  feasible  complementary so- 
lution to QP.  This  can  be  accomplished using 
ideas outlined earlier during the  discussion of piv- 
oting. 

We suppose  that  we  have  a  complementary  basis 
B o  and a primal feasible  solution x O . In  order  to 
convert x O to  a  basic  feasible  complementary so- 
lution requires  two  passes of the  variables.  In the 
first pass, we convert x o  to a  basic  feasible solu- 
tion by choosing a variable x j  where x j  is not  ba- 
sic,  but  has x; > 0. Then  we  consider the unique 
direction z o  satisfying z; = + 1 and 

r w l  
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which only uses  variables in BO U {x,}. Either z o  
or - zo  is augmenting with respect  to x. Call this 
direction To .  We then  take a step in that  direction 
of length 8 where 8 is the maximum distance  that 
we  can  move while decreasing  the  objective  func- 
tion value and maintaining the feasibility of x I = 
x o  + OFo. If the minimizer of the  quadratic func- 
tion along this half line occurs  before  any variable 
x, goes to  zero, then the quadratic  function must 
have  curvature along this half line and so t? # 0. 
This  then implies that B' = B,\{sj} U {xj} is a 
complementary basis. Otherwise, some variable 
component of x ' corresponding  to  a variable xk 
with .Ti< 0 goes  to  zero. It turns  out  that B ' = 
Bo\{ xk, s j }  U { x,, sk) is a complementary  basis. 
In  either of the  two  cases  above,  the number of 
variables  that x' uses  and  that are not in B ' is at 
least  one  less  than  the  number of variables that x o  
uses  and  that  are not in BO. Additionally, either x ' 
does  not  use x j  or xj E B ' . Thus, in one  pass of 
the variables we  can  obtain a feasible solution x 
and a complementary basis B so that  every vari- 
able  that x k  uses is also in B k .  

But now we are in the  situation  already  discussed 
in the  last  paragraph in the  section on pivoting. 
After one additional  pass  over the variables we 
will have a complementary  basic feasible solution 
and  thus  can initiate the  algorithm. 

Conclusions 

As an example to illustrate  the usefulness of the 
decomposition  approach  to  convex  quadratic 
programming, we will consider a problem from 
NETLIB,6 PILOTNOV. The  problems in NETLIB are 
linear programming problems,  and so we need to 
add a positive semidefinite matrix to  the  data  to 
create  a  convex  quadratic programming problem. 
The matrix we  add is tridiagonal with twos on the 
diagonal and negative ones off the diagonal. The 
linear programming problem has 975 rows, 2172 
columns,  and 13 057 nonzeros,  and  the  positive 
semidefinite matrix  has 65 14 additional  nonzeros. 

If the  decomposition algorithm is run  for 25 major 
iterations, an upper bound of 505 882 453 and a 
lower  bound of 501  304 145 are obtained  after 6633 
linear programming simplex operations.  The 
solution from the  decomposition is converted 
to a basic  complementary solution of value 
505 112 850 using another 302 pivots. This solu- 
tion is converted to an optimal solution of value 
504 976 497 using 97 pivots of the  type outlined in 
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an  earlier  section.  The optimal solution  has 1144 
basic primal variables  and  requires the solutions 
of systems of equations with 2119 variables. On 
the  other  hand,  each  system  solved by the sim- 
plex algorithm for  linear programming uses  only 
975 variables. The problem is solved  in  a  total of 
261 seconds on a RISC System/6000 Model 530 
workstation. 

If the  decomposition  approach is limited to five 
major iterations,  the  lower bound established  has 
value 490 959 083, the  solution  value  after  con- 
version to  a  complementary  solution  has  value 
505478905, and 322 seconds of execution time 
have  been  consumed. Only 2656 linear  program- 
ming pivots  have  been  performed; 176 pivots are 
required to  convert  the solution to a complemen- 
tary  basic  feasible  solution; 219 additional  pivots 
are  required to obtain  an  optimal  solution. The 
total time required is 569 seconds. 

The  decomposition  approach with 25 major iter- 
ations allowed us to limit the  the  number of pivots 
in this larger system to 399. Each iteration of the 
quadratic programming code  requires  more  work 
than an iteration of the  linear programming code, 
and so limiting the  number of the  expensive  iter- 
ations is crucial  for  the efficient solution of qua- 
dratic programming problems. If the decomposi- 
tion approach is not used,  the  basic simplex 
algorithm for  quadratic programming imple- 
mented in the Optimization Subroutine  Library is 
an  order of magnitude slower  when applied to this 
problem. 

This problem can  certainly  be  considered  a  rela- 
tively difficult problem and  the running time 
improvement observed  here is not  seen  on all 
problems. However,  on all but small quadratic 
programs,  the  decomposition  approach  does give 
smaller execution times than the  pure simplex ap- 
proach.  Furthermore,  even  a  few  iterations of the 
approach  often lead to very good starting solu- 
tions for  the  quadratic programming solver. 
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