A decomposition
method for quadratic
programming

We discuss the algorithms used in the
Optimization Subroutine Library for the solution
of convex quadratic programming problems. The
basic simplex algorithm for convex quadratic
programming is described. We then show how
the simplex method for linear programming can
be used in a decomposition crash procedure to
obtain a good initial basic solution for the
quadratic programming algorithm. We show how
this solution may be used as a starting solution
for the simplex-based algorithm.

Besides its ability to obtain good starting
solutions, this procedure has several additional
properties. It can be used directly to find an
optimal solution to a quadratic program instead
of simply finding a good initial solution; it
provides both upper and lower bounds on the
objective function value as the algorithm
proceeds; it reduces the complexity of
intermediate calculations; it avoids certain
numerical difficulties that arise in quadratic, but
not linear programming.

In this paper we review the basic algorithms for
convex quadratic programming that are part of
the Optimization Subroutine Library. The qua-
dratic programs have linear constraints, the var-
iables are subject to nonnegativity constraints,
and the objective function has a linear and a qua-
dratic part where the quadratic part is convex.

One of the motivating applications for quadratic
programming is the Markowitz! model of risk that
is used in portfolio analysis. In this application,
the linear term of the objective function is used to
measure the expected return of a portfolio, while
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the quadratic term is used to measure the risk or
variation about the mean associated with the port-
folio. It provides investors with a method to bal-
ance return and risk in selecting a portfolio of
investments. Other applications include asym-
metric risk models for portfolio analysis, least-
squares problems, proximal point algorithms, and
sequential quadratic programming for nonlinear
programming.

One property of quadratic programs that makes
them potentially more difficult to solve than linear
programs with the same number of variables and
constraints is that, unlike the solution to a linear
program, the solution to a quadratic program may
necessarily use all the variables of the problem. In
the application of portfolio analysis, this reflects
the practice of hedging against risk by diversify-
ing. In the context of solving quadratic programs,
this property is manifested in the difficulty of find-
ing good initial feasible solutions to a quadratic
program.

In this paper, we begin by discussing the opti-
mality conditions for a quadratic program. We
use these conditions to motivate the development
of an algorithm for quadratic programming based
on the simplex method for linear programming.
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This algorithm is essentially that of Dantzig.?
Given such an algorithm, we discuss a decompo-
sition procedure that uses our quadratic program-
ming algorithm, on a related but much smaller
quadratic program, in conjunction with the sim-
plex algorithm for linear programming to produce
a good starting solution to the original quadratic
programming problem. This is the first phase of
our solution procedure for quadratic program-
ming problems. The procedure used in this is a
decomposition procedure since it uses a subprob-
lem to generate good feasible solutions to the qua-
dratic program. This decomposition approach is
closely related to both Dantzig-Wolfe decompo-
sition® and simplicial decomposition. *

We describe a procedure for converting the start-
ing solution produced by the decomposition pro-
cedure into one that can be used by the simplex-
based quadratic programming algorithm. The
second phase of the algorithm consists of moving
from the starting solution output by the first phase
to an optimal solution to the quadratic program.
We conclude the paper with a brief discussion of
computational experience with this two-phase ap-
proach to convex quadratic programming.

Simplex-based algorithm for quadratic
programming

The problem we have in mind is (QP):’

(oP) minimize: cx+ Vax'0Ox
subject to: Ax=b
x=0

where A € R™", b € R™, c € R", x € R", and
Q € R™”" is positive semidefinite. The require-
ment that Q is positive semidefinite is what makes
the quadratic program convex and is equivalent to
the requirement that

2'0z=0

for all z € R". For simplicity, we assume that the
feasible region % of (QP) is nonempty,

P={x|Ax=b,x=0} % (D

and has no nonnegative directions of descent,
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{z]0z=0,Az=0, {c + 0x)'2<0,2=0,
XEP=C 2)

The first of these requirements is simply that the
program under consideration has some solution.
The second is equivalent to the requirement that
the program has an optimal solution. A final tech-
nical requirement is that A has full row rank.

One approach to solving quadratic programs is to
generalize the simplex method for linear program-
ming. In order to describe this method we need to
discuss the dual of the problem (QP)

y'b — Vau'Qu
Aly—Qu=c
u unrestricted
y unrestricted

(OD) maximize:
subject to:

The dual program is useful in two regards. First,
the value of each feasible solution to the dual pro-
gram is lower than the value of each feasible so-
lution to the primal program. This is easy to see.
If x is feasible in (QP) and (y, u) is feasible in
(QD), then

(c—ATy+Qu)x=0
which is equivalent to
cx—yb+x"Qu=0
Since Q is positive semidefinite we have that
0=(x—u)'O(x—u
= Vax'Qx — x"Qu + Yau"Qu

and combining this with the last inequality above
gives the stated relation between primal and dual
objective function values

c'x+ Yx"Qx=y"h — You"Qu 3)

This relation is the weak duality relationship of
the dual pair of quadratic programs (QFP) and
(QD). The second property of (QP) and (QD) is
that if both (QP) and (QD) have optimal solu-
tions, then there is a solution pair of the same
value. Furthermore, if x is optimal for (QP), then
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there exists y, so that (y, x) is optimal for (QD).
This property is called the strong duality prop-
erty. Due to our assumptions of feasibility and
boundedness, both programs have optimal solu-
tions.

In order to argue that the strong duality property
holds, we consider the following augmentation
subproblem (AP(x)) defined with respect to a
feasible solution x to the primal problem (QP)

(AP(x))

where:

(c+0x)'z<0
Az=0
;=0
z; unrestricted

whenever x; = 0
whenever x;> 0

We call this the augmentation subproblem be-
cause whenever it has a solution z, that solution
can be used to augment x to a solution x + 6z of
strictly lower value. Suppose AP(x) has no so-
lution. We argue that this implies that x is opti-
mal. If A P(x) has no solution, then an application
of Farkas’s Lemma allows us to conclude that the
linear system

(ATy); = (c + Qx);
(ATy)j =(c+ Qx)j

whenever x; =0

whenever x; >0 4)

has a solution. It is easy to see that if the relations
in Equation 4 hold, then the weak duality ine-
quality (Equation 3) holds with equality. This im-
plies that x has the same value in (QP) as (y, x)
has in (@D), and it is also easy to verify that
(y, x) is feasible for (QD).

The relations in Equation 4 are stronger than the
relations usually referred to as the complemen-
tarity relations, which state that forx € R", y €
R™, and u € R", then x and (y, u) are comple-
mentary if x(c — A"y + Qu); = 0for1 =j <
n. Simplex-based algorithms for quadratic pro-
gramming fall into the same framework as sim-
plex-based algorithms for linear programming. Of
the three properties

1. Primal feasibility
2. Complementarity
3. Dual feasibility

a primal simplex algorithm maintains the first

two, while a dual simplex algorithm maintains the
last two. Simplex algorithms do this by imposing
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the further restriction of moving from one basic
solution to another using pivots.

Restating the observations outlined above, we
know that we can solve a convex quadratic pro-
gram if we can find a solution to the system of
equations

Ax=p)

Aly—QOx+s=c

with

x=0,5=0

y unrestricted

that satisfies the additional complementarity con-
dition

s;x,=0 forl<j=n (5)

In matrix terms this system of equations can be
expressed as

y
0 A0 b
x|= 6
AT -0 1 [C} ©
s

In order to proceed with the description of the
simplex method for convex quadratic program-
ming, some new terms are introduced for clarity.

A set of variables indexing a full rank submatrix
of the matrix in Equation 6 is called a basis B for
the quadratic programming problem. We say a
solution (y, x, s) uses a variable if it is nonzero
on that variable. A solution (y, x, s) to the system
of equations above is called basic if it is the
unique solution to this system of equations using
only the variables in a basis B. Given a basic
solution (y, x, s), we call the solution primal
feasible if x is nonnegative, dual feasible if s is
nonnegative, and complementary if Equation 5
holds. We call a basis complementary B if all the
variables y are in the basis and x; € B if and only
if s, € B. Note that if a basis B is complementary,
then the associated basic feasible solution
(y, x, s) satisfies the condition in Equation 5.

If we are using a primal simplex method, we will
move from one primal feasible complementary
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basic solution to another. This will be done by
alternately performing two operations called pric-
ing and pivoting. The pricing operation deter-
mines a variable x; to introduce into the basis.
The pivoting operation determines a new com-
plementary basis containing the variable x;. We
now discuss these two operations.

Pricing. Without worrying about how we obtain
an initial solution, suppose that we have a primal
feasible basic solution (y, x, s) with respect to a
complementary basis B. We may rewrite the op-
timality conditions described in Equation 4 as

L=
5;=0

s:=0

J

whenever x; =0

whenever x; >0

Since (y, x, s) is complementary, checking this
condition is equivalent to checking whether s is
nonnegative. This is called the pricing operation
of the simplex method. If some variable s; is less
than 0, then it is beneficial to introduce the vari-
able x; into the basis B. In particular, there is a
unique vector (w, z, t) with z; = +1 and

w

e

t

0 A0
AT -0 I

which only uses variables in B U {x;}. Since B is
a complementary basis, the inner product of s and
z is equal to s;. But this number s, is also equal
to

(c~ATy+0Qx)"z=(c+ 0%z

That is to say, the negative number s, is equal to
the directional derivative of the objective func-
tion at the point x in the direction z. Thus, for at
least some small step in the direction z, the ob-
Jective function decreases. So the pricing opera-
tion either allows us to conclude that x is an op-
timal solution to (QP), in the case where s is
nonnegative, or provides a direction z of potential
objective function improvement.

Pivoting. Once we have an augmenting direction
Z, we use that direction to update our current
solution x. We must determine the maximum
length step we can take in this direction while
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preserving primal feasibility. Additionally, after
taking such a step, we must convert the new and
improved solution to a complementary basic fea-
sible solution. We refer to this operation as piv-
oting. While in the case of linear programming
this step from one basic feasible complementary
solution to another requires a single basis ex-
change, in the case of quadratic programming this
may require several basis exchanges.

The procedure that we describe is illustrated in
Figure 1. In this example, suppose the solution at
the beginning of a pivot sequence is x°. It is the
optimal solution to the quadratic programming
problem when variable x, is not used. If, how-
ever, we introduce x, into this solution, while
maintaining complementarity on variables x,, x,,
and x5, this defines a unique direction passing
through the points x°, x!, and %! of the figure.
The point %' optimizes the quadratic function
along this line segment, but violates the nonneg-
ativity requirements on the first three coordi-
nates. The best feasible point on this line segment
is x!, so we move to x!. Note that the comple-
mentarity condition is violated on the pair of var-
iables x, and s,. This argument is now repeated.
We maintain the conditions x, = 0 and comple-
mentarity on the variables x, and x;. These con-
ditions define a unique direction passing through
the points x', x2, and 22 of the figure. The best
feasible point on this line segment is x?, which
violates nonnegativity on coordinates 2 and 3.
This argument is repeated once more. The point
x* represents a basic feasible complementary so-
lution.

We now describe this operation in greater detail.
Given a direction z, the pivoting operation then
pursues this direction in order to find a new com-
plementary basis of improved value. We consider
solutions of Equation 6 along the half line (y(6),
x(0), s(0)) = (y, x, s) + 0(w, z, t) where @is
greater than 0.

Since z; is greater than 0, x; is equal to 0, and s;
is less than 0, solutions on this half line are not
complementary except for possibly one value of
0. To define this value of theta, we first observe
thatif ¢; # 0, then ¢; > 0 by the convexity of the
objective function. To see why ¢; = 0, consider
the product

o alir Zl[%]ea-ve:
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Figure 1 Pivoting in simplex algorithms for quadratic programming

— (0,0,1,0)

min - 4/3x, — 8/3x, — 4x; — 10x,
+2x2 + 4x2 + X3 + Vox2
Xyt Xp+Xg+ X, =1,x20
X4 Xy Xg X4 VALUE

X" 1/3 1/3 1/3 0 ~11/3
s 0 0 0 -10
X! 0 3/18 | 4/18 | 11/18 | —6551/648
s 0 0 0 -145/18
X' —20/21| —11/2 | -5/21 | 66/21 | —171/21
x2 0 0 19 | 89 -8 70/81
52 43 | 0 0 ~58/9
2 0 23 | -13 | 2 ~12 4/9
3 0 0 0 1 -91/2
$ 233 | 19/3| 5 0
X3 0 0 -5(13 | 1813 | -106/13

which is nonpositive since Q is positive semidef-
inite. But the definition of (w, z, ) implies that
this product is also equal to —z't. The comple-
mentarity of the basis B implies z't = ¢; and so
t; = z'Qz. Given t; >0, (y(0), x(8), s(6)) is
complementary for the single value 6* = —(s,/t;).
If (y(6%), x(6*), s(8*)) is also primal feasible,
then the new basis is B\{s;} U {x;}. (In the ex-
ample of Figure 1 this case never occurs.)

Otherwise, either ¢; = 0 or there is some variable
x, such that x, + 6*z, is less than zero. In the
latter case we cannot move as far along the half
line as (y, x, s) + 6(w, z, t) while remaining
primal feasible. In either case, the scalar 8 is re-
defined using a minimum ratio test

Xk

zk<0}

0=min{

Ly

so as to maximize the steplength in the direction
z while preserving primal feasibility. We know
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that there is at least one index &k with z, < 0 since
% is bounded. If x, is a variable such that 6 =
—(x,/z,), then (¥(8), x(0), s(8)) is a primal fea-
sible basic solution with respect to the basis
B\{x;} U {x;}. Although this basis is not com-
plementary, the convexity of the objective func-
tion ensures B! = B\{x,} U {s,} is a comple-
mentary basis and the associated basic solution
(9, &', §1) has a better value than (y(8), x(9),
s(8)). It is in fact the solution to the quadratic
program where the variables x; in B' are set un-
restricted in sign while the variables x not in B!
are fixed at zero. If the solution (9!, %', §') is
primal feasible, then we take that point as our
next complementary basic feasible solution.

Otherwise, consider iteratively applying the fol-
lowing argument. We suppose we have a primal
feasible basic solution (y*, x*, s*) and a com-
plementary basis B* containing all the variables x
used by x*. If the basic solution say (%, %%, §%)
associated with B* is feasible, then it becomes our
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new primal feasible complementary solution. Oth-
erwise, 6 defined by

J J

xj<o}

. X;
6 = min —
X

is positive. Furthermore, the set B**! indexed by
BA{x,;} U {s,} is a complementary basis where j
is a binding index in determining 6. This fact is not
immediately obvious, but follows from the as-
sumption that Q is positive semidefinite. The ar-
gument is now repeated with B**! replacing B*.
Note that at each pass of the argument presented
in this paragraph, the number of variables x; in the
basis B* decreases by one. Once this number of
variables reaches m, the basis is guaranteed to be
a complementary primal feasible basis.

Decomposition for quadratic programming

We have previously explained how the simplex
method can be generalized in a fairly natural way
to derive algorithms for convex quadratic pro-
gramming. However, there are certain difficulties
that arise in quadratic programming that do not
arise in linear programming that make the prac-
ticality of such an algorithm questionable. We
first note that although all bases have cardinality
m + n, the effective size of a basis is the m plus
the number of variables x; in the basis. This is
because the variables s; index unit columns and
their values can be easily determined once the
values of y and x are set. The number of x var-
iables in the basis is bounded above by the rank
of A plus the rank of Q. In the case of linear
programming, the basis always has m variables.

A second problem that arises in practice is that
the matrices Q and A may be badly scaled relative
to each other. One effective technique for han-
dling badly scaled problems in linear program-
ming applications is to scale the constraint ma-
trix. In the case of quadratic programming,
scaling applied to the constraint matrix must also
be applied to the quadratic part of the objective
function Q. Since Q and A may be out of scale
with respect to each other, this technique may not
be as effective.

In order to solve convex quadratic programming
problems and overcome these difficulties, we
want to capitalize on the relative simplicity of
solving linear programming problems. The tool-
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box we have at hand is the Optimization Subrou-
tine Library (OSL). In OSL there is a fast and re-
liable simplex routine for linear programming,
tuned to take advantage of the various hardware
platforms on which OSL runs. OSL also has a sim-
plex-based approach for quadratic programming
based on the ideas sketched in the section de-
scribing the standard form convex quadratic pro-
gram. The library also provides a framework by
which different mathematical programs can com-
municate information to each other.

The algorithm described in this section represents
an attempt to exploit these attributes of the Op-
timization Subroutine Library while overcoming
some of the problems mentioned at the beginning
of the section. In order to motivate the procedure,
we reconsider the primal quadratic program (QP)
and the augmentation subproblem (AP(x)).
Given a feasible solution x° to (QP) we recall that
determining whether x° is optimal is equivalent to
determining whether AP(x°) has a feasible solu-
tion. But AP(x?) is alinear system and so this can
easily be tested using linear programming. Thus,
an algorithm for solving quadratic programs could
consist of alternately solving AP(x°) to find an
augmenting direction z° and then using z° to up-
date x° to a new and better solution to the qua-
dratic program x!.

This approach, however, is bound to converge
very slowly in most circumstances. A natural
modification is to use information not only from
the current solution of AP(x*) but also from pre-
vious iterations. This idea is illustrated in Figure
2. In this example, we suppose that x° is our ini-
tial solution. We find that the direction leading
from the point x° to the point x' is an improving
direction. The point along that direction which
optimizes the quadratic objective function is la-
beled #'. From this point we see that the direction
leading to x? is improving. However, instead of
optimizing the quadratic objective over the line
segment joining X! and x? we optimize over the
triangle (simplex) with corners x°, x!, and x2.
The optimal solution is given by %?. Again we
look for an improving direction from out of the
current point and find moving toward x > improves
the quadratic objective function. We now opti-
mize over the simplex with corners x°, x!, x2,
and x*. The optimal solution to this subproblem
is optimal for the entire problem. The method of
collecting the points x* is now formalized.
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Figure 2 Decomposition algorithm for quadratic programming

(1,1,1) (0,1,1)—] —(1,0,1) —(0,0,1)
X3 L x2 L x0
(1,1,0)— (0,1,0)— - (1,0,0) '-(0,0,0)

min — 15x, — 12x, — 9X,

+9x2 +9x3 + 9x3

0< x<1

X X, X VALUE | BOUND

XN 0 0 0 0
X! 1 1 1 -9 -36
X 23 |28 |23 | -12
x2 1 0 0 -6 -15
X! 566 | 712 | 712 | —123/8
x3 0 1 0 -3 -137/8
B se |23 |12 | —1212
x4 566 | 2/3 |12 | -1212 | -121/2

Suppose we collect the solutions x* as the col-
umns of a matrix X* and solve problem QMP(X*)
where QMP is defined by

¢"XA + BATXTOXA
e'A=1
A=0

minimize:

(OMP(X))

Since each of the solutions x’ comprising the col-
umns of X* is a feasible solution to QP, the con-
straints

AXA=b

XA =0
are satisfied implicitly. Any feasible solution A to
OMP(X) corresponds to a feasible solution XA to

QP since the matrix X has columns that are fea-
sible for QP.
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Although QMP is a quadratic programming prob-
lem, it has a single linear constraint. The rank of
the matrix X'QX in the objective function is
bounded above by the number of columns col-
lected in the matrix X. Furthermore, the solution
to QMP(X) is guaranteed to have lower value
than the value of any of the columns of X.

AP(x) can be used to collect points x’ to add to
X*. After enough points are collected, an optimal
solution to QP will be obtained. However, one of
the drawbacks of this approach is a problem that
is also present in the method described in the sec-
tion on the simplex-based algorithm for quadratic
programming. Namely, neither method provides
lower bounds on the value of the problem (QP) as
it proceeds.

This difficulty can be overcome if we solve a po-
tentially more difficult problem than AP(x) as a
subproblem of the overall procedure. This sub-
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problem is similar to the problem AP(x) and is
defined as QSP(x).

(c+0x)"z
Az=0
= —X

minimize:

(QSP(x))

This problem always has an optimal solution when
% satisfies the feasibility assumptions in Equations
1 and 2. We claim that the optimal solution of this
subproblem provides a lower bound on the value of
the program (QP). In order to see this we consider
the dual of this program QSD(x).

(QOSD(x)) minimize: —vy'x
Aly+y=c+ 0Ox
y unrestricted vy=0
We first observe that, due to the nonnegativity of
v, any feasible solution (y, y) to QSD(x) may be
combined with x to form a feasible solution (y, x)
to @D. Furthermore, the value of this solution to
QSD(x) is the duality gap between the dual fea-
sible solution (y, x) and the primal feasible so-
lution x

—yx=ATy—c—-0x0)'x

=(yh - Vax"Qx) — (c"x + Y2x"Qx)

If this duality gap is nonzero and z solves
OSP(x), then x + z is a better feasible solution
to QP than x and should be added to the collec-
tion of points X. If the gap is zero then no aug-
menting direction exists and the current solution
x is optimal.

The algorithm suggested by this discussion is
given in Figure 3.

In the example, the points of Figure 2 labeled x !,
x2, and x3 are the solutions to the problems
QSP(x°), QSP(%"), and QSP(%?), respectively.
In addition, the solutions of the subproblems give
lower bounds on the objective function values,
which are also listed in Figure 2.

Termination

It can be argued that the decomposition algo-
rithms discussed are finite algorithms. In prac-
tice, however, it is not advisable to run these al-
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Figure 3 The decomposition algorithm

1. Initiallzatlon TR

. Solve the lmear pfogram ob’samy B
- fram.dropping the. matrifomm, QPy
. to obtain-a feasible point x0.

R ‘xoe-[xﬂ] K« 0;

2 Master probtem step
- Solve QMP xk) to obtam a so|ut|on xk xkxf.

3 Subprobfem s!ep
Solve QSP(xk) 1o ab%a, a's

a Test optumahty

- L {c +ka)Txk+1 .»0 : :
~ then stop with an optlmal snlutmn Xk, i

b Oantmue by augmentmg )("E a
- 'Xm(ﬁ [Xk [ Xk_,, xk+1]
k P “k+1;
Goto2;

gorithms to completion, but to instead use them
to find a good starting solution for the algorithm.
In order to implement the starting solution, one
needs to be able to convert a solution of
OMP(X*) to a basic feasible complementary so-
lution to QP. This can be accomplished using
ideas outlined earlier during the discussion of piv-
oting.

We suppose that we have a complementary basis
B° and a primal feasible solution x°. In order to
convert x° to a basic feasible complementary so-
lution requires two passes of the variables. In the
first pass, we convert x° to a basic feasible solu-
tion by choosmg a variable x; where x; is not ba-
sic, but has x > 0. Then we con51der the unique

direction z° satlsfymg z) = +1and
w

0 A O [o]
Z|=

AT -0 I 0

t
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which only uses variables in B® U {x;}. Either z°
or —z" is augmenting with respect to x. Call this
direction z°. We then take a step in that direction
of length 8 where 6is the maximum distance that
we can move while decreasing the objective func-
tion value and maintaining the feasibility of x' =
x® +0z°. If the minimizer of the quadratic func-
tion along this half line occurs before any variable
X; goes to zero, then the quadratic function must
have curvature along this half line and so 7} # 0.
This then implies that B' = B\{s;} U {x;} is a
complementary basis. Otherwise, some variable
component of x' corresponding to a variable x,
with 7)< 0 goes to zero. It turns out that B! =
B"\{x,, s;} U {x;, s;) is a complementary basis.
In either of the two cases above, the number of
variables that x' uses and that are not in B is at
least one less than the number of variables that x°
uses and that are not in B®. Additionally, either x'
does not use x; or x; € B'. Thus, in one pass of
the variables we can obtain a feasible solution x*
and a complementary basis B so that every vari-
able that x* uses is also in B*.

But now we are in the situation already discussed

in the last paragraph in the section on pivoting.
After one additional pass over the variables we
will have a complementary basic feasible solution
and thus can initiate the algorithm.

Conclusions

As an example to illustrate the usefulness of the
decomposition approach to convex quadratic
programming, we will consider a problem from
NETLIB,® PILOTNOV. The problems in NETLIB are
linear programming problems, and so we need to
add a positive semidefinite matrix to the data to
create a convex quadratic programming problem.
The matrix we add is tridiagonal with twos on the
diagonal and negative ones off the diagonal. The
linear programming problem has 975 rows, 2172
columns, and 13 057 nonzeros, and the positive
semidefinite matrix has 6514 additional nonzeros.

If the decomposition algorithm is run for 25 major
iterations, an upper bound of 505882 453 and a
lower bound of 501 304 145 are obtained after 6633
linear programming simplex operations. The
solution from the decomposition is converted
to a basic complementary solution of value
505 112 850 using another 302 pivots. This solu-
tion is converted to an optimal solution of value
504 976 497 using 97 pivots of the type outlined in
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an earlier section. The optimal solution has 1144
basic primal variables and requires the solutions
of systems of equations with 2119 variables. On
the other hand, each system solved by the sim-
plex algorithm for linear programming uses only
975 variables. The problem is solved in a total of
261 seconds on a RISC System/6000 Model 530
workstation.

If the decomposition approach is limited to five
major iterations, the lower bound established has
value 490959083, the solution value after con-
version to a complementary solution has value
505478 905, and 322 seconds of execution time
have been consumed. Only 2656 linear program-
ming pivots have been performed; 176 pivots are
required to convert the solution to a complemen-
tary basic feasible solution; 219 additional pivots
are required to obtain an optimal solution. The
total time required is 569 seconds.

The decomposition approach with 25 major iter-
ations allowed us to limit the the number of pivots
in this larger system to 399. Each iteration of the
quadratic programming code requires more work
than an iteration of the linear programming code,
and so limiting the number of the expensive iter-
ations is crucial for the efficient solution of qua-
dratic programming problems. If the decomposi-
tion approach is not used, the basic simplex
algorithm for quadratic programming imple-
mented in the Optimization Subroutine Library is
an order of magnitude slower when applied to this
problem.

This problem can certainly be considered a rela-
tively difficult problem and the running time
improvement observed here is not seen on all
problems. However, on all but small quadratic
programs, the decomposition approach does give
smaller execution times than the pure simplex ap-
proach. Furthermore, even a few iterations of the
approach often lead to very good starting solu-
tions for the quadratic programming solver.
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