Implementing interior
point linear
programming methods
in the Optimization
Subroutine Library

This paper discusses the implementation of
interior point (barrier) methods for linear
programming within the framework of the IBM
Optimization Subroutine Library. This class of
methods uses quite different computational
kernels than the traditional simplex method. In
particular, the matrices we must deal with are
symmetric and, although still sparse, are
considerably denser than those assumed in
simplex implementations. Severe rank deficiency
must also be accommodated, making it difficult
to use off-the-shelf library routines. These
features have particular implications for the
exploitation of the newer IBM machine
architectural features. In particular, interior
methods can benefit greatly from use of vector
architectures on the IBM 3090™ series computers
and “super-scalar” processing on the RISC
System/6000™ series.

he well-known simplex method for linear

programming (LP) is nearly as old as LP itself,
developed by Dantzig in 1947.' It is perhaps a
coincidence that the forerunner of today’s inte-
rior point methods was devised at about the same
time as implementations of the simplex method,
which could handle significant problems? in the
mid-1950s. This forerunner was the logarithmic
barrier method of Frisch.® Despite subsequent in-
terest in barrier methods for nonlinear program-
ming,* they were thought to be hopelessly im-
practical as competitors to the simplex method
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for Lp. After all, these methods involved ron-
linearizing a linear problem as a first step—the
reverse of the usual approach to hard problems.
Thirty years later, with great fanfare, Karmarkar®
devised an interior point method that could be
shown to have nice theoretical properties, con-
verging in fairly low-order polynomial time. Fur-
thermore, claims were made that this method was
orders of magnitude faster than the simplex
method in practice. However, members of the LP
profession were assured that the method was far
too complicated for their understanding.

Undiscouraged, Gill et al.® were able to show that
the method put forward by Karmarkar was actu-
ally equivalent to a form of the logarithmic barrier
function method. They also described and gave
computational experience with a primal barrier
function method. Subsequently, Megiddo’ devel-
oped an elegant theory for interior point methods
involving barrier functions for both the primal and
dual Lp problems. This work led to the develop-
ment of a number of “primal-dual” interior point
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methods, which have gradually assumed domi-
nance in interior point methodology. Outstanding
work in this area has been done by Lustig,
Marsten, and Shanno,® who developed the OBl
primal-dual optimizer, and by Mehrotra,” who
developed a “predictor-corrector” variant of the
primal-dual method, which appears to be even
more efficient. This variant was subsequently in-
corporated into OB1,' and the superiority of this
technique was confirmed by thorough computa-
tional testing. Currently it is the method of choice
for most problems.

All three algorithmic approaches—the primal bar-
rier, primal-dual, and predictor-corrector—have
been implemented in Release 2 of the IBM Opti-
mization Subroutine Library (OSL).

In the next section of this paper we give a brief
mathematical background on barrier approaches
to LP to bring out the fundamental compute-in-
tensive steps common to all current barrier meth-
ods. It is followed by a discussion of how these
steps can be implemented, with emphasis on two
architectures—the System/370* Vector Facility
and the 1BM RISC System/6000*. This discussion
includes some illustrative computational experi-
ence to show the effect of specially tailoring the
code for the architectures.

Mathematical background

We take the linear programming problem to be
expressed in the form:

min 2 CiX; 0]
o

subject to:

Ax=b 03]
Li=x,=U, 3)

where A is an m X n (m < n) matrix that is
usually large and in practice almost always
sparse, with perhaps four to ten nonzeros per col-
umn. What makes this problem different from
those considered in classical optimization, via
calculus, is the presence of inequalities [the
bounds in (3)] and the linearity of all the func-
tions. The way in which these characteristics are
handled determines the features of the two
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classes of methods that have been successful in
practice.

The simplex method makes explicit use of the fact
that the linear constraints, together with the ine-
qualities, describe a (convex) polyhedron, with
the optimal solution at one of its vertices. ' It uses
a descent method, moving along edges of the
polyhedron from one vertex to an adjacent one
with a better solution value, until an optimum is
obtained (or shown to be nonexistent). Itis a com-
binatorial method in the sense that some of the
bounds as shown in (3) are satisfied as equalities
at each vertex (i.e., tight) and others are satisfied
as strict inequalities (i.e., loose). The progress
from vertex to vertex can then be viewed as a
search for the correct set of loose and tight
bounds. Alternatively, we can think of it as a
method that follows a path on the surface of the
polyhedron defining the set of feasible solutions
to (2) and (3). Further details of the method, and
its implementation in OSL, may be found in a com-
panion paper by the authors.!

In contrast to the simplex method, barrier meth-
ods deal with the inequalities by introducing non-
linearities that prevent them from being violated
and then applying calculus-based methods. In
particular, logarithmic barrier methods work by
considering a family of related problems:

min F(x) = 2 (c;jx;—mlIn(x;,— L)
x j

= In (U, - x)) C))
subject to:
Ax=b &)
where pw — 0 and p > 0.

Since the logarithmic function is not even defined
for nonpositive arguments, then clearly the bounds
in (3) cannot be violated. Furthermore, as u is
positive, the objective becomes large as variables
approach their bounds. However, it can be shown
(see, e.g., Fiacco and McCormick?) that as the
barrier parameter p tends toward zero the solu-
tion to (4) and (5) tends toward a solution of (1)
through (3). Again in contrast to the simplex
method, these solutions follow a path through the
interior of the polyhedron.
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A primal barrier method. One standard approach
to solving a linear equality constrained optimiza-
tion problem as expressed in (4) and (5) is to use
a feasible-point descent method (see, e.g., Gill,
Murray, and Wright'?). Given a trial solution x
that satisfies Ax = b, the next iterate x is defined
as

X=x+ alx ©)
where Ax is the search direction, and « is the
step-length. The computation of Ax and e must be
such that Ax = b and the value of F decreases.
If we define g = VF(x), H = V*F(x), and y is
the vector of Lagrange multipliers for the linear

constraints, the Newton search direction Ax for
this problem satisfies the linear system

H A7 —Ax> (9

A o/\y /=0 )
To see how this system can be solved let us de-
fine:

s;=x;— Ly, t;=U,; ~ x;,

D = diag{(1/s} + 1/t})"'*}, and
D = diag{(1/s; — 1/t))}

Then the g, H terms in (7) are defined by:
g(x) =c — uDe and H(x) = uD?
and it follows from (7) that Ax and y must satisfy
(=78
A 0 y /T 0

Introducing a new vector r defined by Dr =
—pAx, we see that » and y then satisfy

o "4)6)- (5%

Equivalently we may say that y is the solution and
r the optimal residual of the least-squares prob-
lem:

minimize ||[Dc — uDDe — DATy||

y
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The Newton barrier direction is then obtained as
Ax = —(1/u)Dr

As we iterate, the vector y converges to the La-
grange multipliers for the constraints Ax = b in
the original problem. However, in practice it is
better to work with a correction Ay at each iter-

ation, updating y, d, and the reduced gradient r,
where the latter two terms are defined by:

d=c—A"y, and

r=Dd — uDDe

The details on how the barrier parameter w is
controlled and convergence is established are
given in Gill et al.® and will not be repeated here.
The core computational steps of an iteration are
seen to be:

1. Solve a least-squares problem:

min ||r — DATAy|| 8

Ay
2. Update the dual values:
y<y+ Ay, and
d<«d—-ATAy
3. Compute the search direction Ax from:
r=Dd — pDDe, and
Ax = —(1/u)Dr
4. Calculate the steplength a and update x
The most critical step in each iteration is solving
the least-squares problem in (8). Although Gill
et al.® advocated using an iterative method for
this step, in the great majority of cases it may be
done directly by solving the normal equations

AD*ATAy = ADr

which for reasons to become apparent below will
be written

ABATAy =v &)
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where v = ADr, ® = D> =(S2+ T3 ! and
S = diag{s;}, T = diag{t;}. This system is solved
by computing the Cholesky factors (triangular
factors) LL™ of AOA " and then backsolving to
obtain Ay = L~ "L 'v.

In practice, the system in (9) must be permuted to
reduce fill-in of new nonzeros in the relatively
sparse ABA T, so that the Cholesky factors are
actually computed from

LL" = PAGA'P’

where P is the permutation matrix that defines the
new row ordering. This implies that some non-
trivial procedures must be carried out before the
barrier algorithm can be even begun. In particu-
lar, the permutation P and the nonzero structure
of L must be determined.

To determine P we require the nonzero structure
of AA ™. It may be obtained in OSL in one of two
ways. The first method considers the Boolean ma-
trices derived from A and A" (which have a one
in each position where A or A" have a nonzero
and zeros elsewhere). The Boolean product of A
and A7 then has the desired nonzero structure.
The second method uses only the Boolean matrix
derived from A and sums the outer products of
the columns with themselves. Having obtained
the nonzero structure of AA", processing must
be done by some ordering method. OSL and many
other codes use some version of what is known as
a “minimum degree”’ ordering algorithm.'* Once
the permutation P is available, a ““symbolic fac-
torization” * is carried out to compute where the
nonzero elements will be in the Cholesky factor
L. When this nonzero structure for L is available,
the memory requirements for the algorithm can
be computed, and if insufficient space is available,
the procedure may be halted.

Appropriate data structures are required so that
we may compute

PAGA'PT = E 6,Paja’ P’

J

This requires either the ability to access the ma-
trix A row-wise or the computation of the outer
products of the columns of A and their addition
to the appropriate elements of the data structure
that will contain L. The implementation in OSL
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allows either alternative, with the outer product
form much preferred for vector platforms.

By far, the greatest computational effort in most
cases now comes in computing the Cholesky fac-
tors at each iteration. This effort is the principal
topic of the next section. For simplicity we ignore
the permutation P from now on.

The primal-dual barrier method. In discussing the
primal-dual method we shall follow the descrip-
tion of the method by Lustig, Marsten, and
Shanno® with the difference that variables are
treated as having arbitrary lower bounds (as in
OSL), rather than assuming that they have been
normalized to zero (as in their OBI1 system). It is
convenient to rewrite the primal LP problem [(1)-
(3)] so that the upper and lower bound constraints
are separate:

min ¢ x

subject to:

Ax=b,

xz=L,

—xz=-U

and its dual problem:’

max by +L7z—U™w

yiow
subject to:
Ay+z—-w=c¢
z=z0,w=0

Now, let us write the barrier function form of the
primal, to convert it to an equality constrained
problem, with the slack variables s and ¢ on the
upper and lower bounds (as defined in the previ-
ous subsection) explicitly included:

min 2 (cjx;—pwlIns;—plnt)
o

subject to:
Ax=b,
x—s=1,

—x—t==-U
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This has as its classical Lagrangian:
L(x, 5,5, 2, w, i)
= 2 (c;jx;j—pwIns;—plnt)—y"(Ax — b)
j
-z (x—s—-L)—-w'(U—-x—1 (10

The first order necessary conditions for (10) can
be written:

SZe = pe,
TWe = pe,
Ax=0b,
x—s=1L,
x+t=U,
Aly—-w+z=c (1D

where the multipliers z and w correspond to
the slack variables in the dual LP above and
S = diag{s;}, T = diag{t;}, Z = diag{z;} and
W = diag{w,}. Notice that these conditions com-
prise the primal and dual equality constraints plus
the nonlinear equations SZe = pe, TWe = pue.
These terms become the LP complementarity con-
ditions' as u approaches zero.

The straightforward primal-dual method pro-
ceeds by taking, for a decreasing sequence of val-
ues of w, a step of Newton’s method for these
nonlinear equations to compute a search direction
(Ax, As, At, Ay, Az, Aw). After some tedious but
elementary algebra, the computational steps are
seen to require solving a set of equations:

A®ATAy = A@r(p) — Ax + b 12)

where ® = (§$7'Z + T7'W) ' and 1(u) = ¢ —
ATy + u(T™! — S YHe. The value of Ay may now
be used to compute:

Ax = O(A"Ay — 7(p)),

As = Ax,

At = —Ax,

Az =8 Yue — SZe — ZAs),
Aw =T '(ne — TWe + WA?)
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Two steplengths, a, and «p, in the primal and
dual spaces, are chosen to preserve feasibility,
and then a new approximate minimizing solution
is determined as ¥ = x + apAx, § = 5 + apAs,
t=1t+ apAt, y =y + apAy, 2 = z + apAz,
W = w + apAw. These steps are repeated until
the relative gap between the (feasible) primal and
dual solutions falls below some user-specified tol-
erance.

This rather terse outline of the primal-dual
method is sufficient to point out its relationship
with the barrier primal method. Most impor-
tantly, the major computational step is seen to be
the solution of a linear system, whose matrix
AB®AT has the same structure as the matrix
whose Cholesky factors we needed in the primal
barrier method. Thus the bulk of the work, and
the preprocessing, are very similar. The potential
advantage of the primal-dual approach is that fea-
sible dual information is available, and the num-
ber of steps may be smaller. Lustig, Marsten, and
Shanno® present extensive computational expe-
rience with this method, and our own experience
with OSL is that it takes fewer iterations and is
more robust than the primal method on most
problems.

The predictor-corrector method. The predictor-
corrector method is a variant, due to Mehrotra,®
of the primal-dual barrier method. Once again we
follow an excellent description given by Lustig,
Marsten, and Shanno ! suitably modified to con-
sider general lower as well as upper bounds. The
essence of the method is a more ambitious ap-
proach to solving for the first order necessary
conditions of (11). Instead of routinely applying
Newton’s method to this nonlinear system, Meh-
rotra asked whether it might not be possible to
derive modifications Ax, As, At, Ay, Az, Aw to
the current trial solution x, s, ¢, y, z, w by di-
rectly solving for them. Substituting x + Ax for
x, etc., in (11), one obtains the system:

AAx =b — Ax,
Ax—As=L—x+s,
MAx+At=U-—-x—1,

ATAy+Az—-Aw=c—-ATy—z+w,
SAz + ZAs = pe — §SZe — ASAZe,
TAw + WAt = pe — TWe — ATAWe  (13)
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where AS = diag{As,}, etc. Unfortunately this
system is also nonlinear because of the product
terms ASAZ and ATAW in the last two equations.
A direct approach is to derive approximations for
these product terms, plug them into the right side
of (13), and then solve the system.

The predictor step in the predictor-corrector
method solves the affine variant of the model, that
is, it omits the p and A-product terms from the
right sides of the last two expressions:

AAxX = b — Ax,
Ax~As=L—x+s,
AR +Af=U-x-1,
ATAY+ A2 —Aw=c—ATy—z+w,
SAz + ZAs = —SZe,
TAW + WAL = —TWe (14)

Just as in the ordinary primal-dual method, the
essential step is the solution of a system of the
form:

ABATAY =D

where @ is defined as for (12) and only the right
side ¥ is slightly different.

With A§, Az, Af, and AW available, we are ready
to perform the corrector step, which solves the
linear system:

AAx=b — Ax,
Ax—As=L—x+s,
Ax+At=U-x-1,

ATAy+Az—Aw=c—ATy—z+w,
SAz+ZAs=Me—SZe—AS'AZe,
TAw + WAt = pe — TWe — ATAWe  (15)

The essential step is again the solution of a system
of the form:

ABA Ay = v

where the right side v is different again from that
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in the predictor step, but the diagonal O is iden-
tical. Thus the same factorization of A®A" is
used for both predictor and corrector steps, and
only back substitution for Ay, etc., must be done
twice. Since the factorization normally dominates
the computation, we would expect a net decrease
in time if the number of iterations is reduced.
Lustig et al.’ report that this is indeed almost
always the case (often by a substantial factor)
with their OB1 code, and our experience with OSL
Release 2 is similar. In view of these results and
the stability of the method, the predictor-correc-
tor method must be considered the current
method of choice.

Solving the fundamental system

The previous section has emphasized that the key
computational step in all of the interior point
methods considered here is the solution of a sym-
metric system A®A "Ay = v. This sort of calcu-
lation is quite different from the key computa-
tional steps in the simplex method, which mostly
involve working with sparse triangular factors ob-
tained by Gaussian elimination from a square sub-
matrix B (the basis) of the coefficient matrix A. "
These factors used in the simplex method can
usually be manipulated in such a way that they are
not too dense in comparison with B (or A) itself.
However, A®A " is itself usually much denser
than any basis B, and its Cholesky factors LL ™
are normally much denser again—often by a fac-
tor of three or four or more—even after reorder-
ing to minimize the fill-in. Despite the fact that
interior methods typically only require a few
dozen iterations, compared to about 2 m (where
m is the number of rows) for the simplex method,
the difference in the central computational step
means that the efficiency of the Cholesky factor-
ization is crucial.

Considerable progress has been made in efficient
sparse Cholesky factorization'*"* since barrier
methods were first proposed, to the point where
interior methods would compete successfully
with the simplex method on many classes of LP
problems—particularly large ones (see Tomlin'®
for further details). Furthermore, sparse Cholesky
factorization is able to make more efficient use of
vectorization'? than the simplex method because
the densities are relatively higher, giving longer
vector calculations and lower overheads. However,
it is the exploitation of dense processing that has
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Figure 1 Cholesky factor structure for model PILOTS

g
o

s e

ik » .

RN
NP 2N

P -w&:.

"‘.. e

A 2
. ,J“ l"‘\“
o o mmaow ANt

24 A .,h ${.

LI -oc,

.
l
‘ ‘n‘t lg; J 1‘
Mllhw .Ms!, llq '
ﬁiquv&&.av-ﬁf&."'u
[P Yo" meal
LK) ."i"'." :t‘ '.:‘..
3 e
e et we wwe mmedid
st s e S
L L il R e
A LY .l."l‘ :»": ;bl‘.r‘
D o I M :J.:-:‘-h
. R L T o P o
1 St 7;;'-1":...‘-"' il &
; R R N
L - o R N e et b
: 3.7 % 3 ke

[0 P el N g .l}. -
VoaR AT TR ERRTEr iRy
LR R N O
ver e e
. '.,’-‘u'nn '~"'1 e
! u il
R ]
Lot
.. .4
b .--.‘.'.’*v.."""c ’ﬂf o

Yo ova tist Ul llamllhbﬁl *’"
, : &

l! [Y T}
fow .-‘i.a.rff'*i:.ﬁ"

&‘

made quite significant gains possible in situations
where the sheer number of nonzeros to be proc-
essed might make interior point methods look un-
promising. To see why this might be important,
consider Figure 1, where each dot represents a non-
zero in the Cholesky factor L (after a minimum de-
gree permutation of the rows) for the model PILOTS
(shown later in Tables 1-3).

Clearly, the lower right corner is very close to
being completely dense, and there are distinct ad-
vantages to treating it as such.”

Exploiting the Vector Facility. The form of
Cholesky factorization commonly used for sparse
processing is of the “pull from behind” variety.
That is, each column j of L is computed from the
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original column F ; of F = A®@A 7 and the already

calculated columns L, -+, L; ;:
-1 172
=\f-2 L (16)
k=1
-1
fij - 2 ljklik
k=1
ly=— (i>) (17)
i

While (17) obviously requires actual arithmetic
only for columns k with nonzero [/, and only for
nonzero [, within such columns, the number of
such floating-point operations may still be very
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Table 1 Test problem characteristics

" Model - 25FV47  PILOTS  DFLOOf
* "Rows. = 821 1,441 6,071
~ Columins 1,57 3,652 12,230
- Nonzeros 10,400 43,167 35,632
Reduced
. Rows 715 1,374 4,840
Columns 1,484 3,361 10,999
~ Nonzeros 9,994 40,757 33,146
L Nonzeros )
No dense : 30,464 201,464 1,513,330
: With Dense 30,805 202,988 1,609,375
Number of -
" Dense columns 141 417 1,532
-+ :Clique columns 340 425 375

large, and it only vectorizes moderately well. If it
is assumed that the current L ; is being kept and
updated in full (unpacked) array form, then for
every nonzero /;;, the row indices for the nonzero
l;, must be LOADed into a vector register, the cor-
responding elements of L ; must be gathered (with
a LOAD INDIRECT), updated with a MULTIPLY AND
SUBTRACT, then restored with a STORE INDIRECT
to L ;. Ignoring startup times, we see that the Vec-
tor Facility requires six cycles per element to per-
form this innermost loop. If, on the other hand, L
can be treated as dense, each L ; (or more cor-
rectly, segment of L ;) can be LOADed once, and
the inner loop consists only of MULTIPLY AND
SUBTRACTs (one cycle per element), with a final
STORE of the updated column L ;. Again if startup
times are ignored, this process is nearly six times
faster per element (though, of course, there may
be more elements).

The approach used in OSL and elsewhere is to
define a sparse/dense ‘‘cutoff”” and to partition F:

F FJ
A AT — < 11 21)
® F Fy

so that F,, corresponds to the submatrix that will
be treated as dense. The standard cutoff in OSL is
to partition at the first column encountered with
a nonzero density of 0.7, though this may be var-
ied by the user. The technique then is to use stan-
dard sparse matrix processing to comute L, and
L, ,where L, ,L/,=F, andL,, = F, L], then
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Table 2 Times (in seconds) for an IBM 3090J with
Vector Facility

Model 25FV47 PILOTS DFLOO1

No dense, no cliques

Total Cholesky time 4.80 107.74  2,462.76
Dense Cholesky time 0.0 0.0 0.0
Solution time 9.01 131.21  2,535.83
Iterations 26 37 47
With dense, no cliques
Total Cholesky time 3.35 74.18  1,387.87
Dense Cholesky time 0.40 9.97 462.33
Solution time 7.56 97.72  1,469.52
Iterations 26 37 47

With dense and cliques :
Total Cholesky time 2.73 43.33 819.42
Dense Cholesky time 0.40 10.00 462.87
Solution time 6.95 67.00 901.34
Iterations 26 37 47

Table 3 Times (in seconds) for a RISC System/6000

Model 530
Model 25FV47 PILOTS DFLOO1

No dense, no cliques < o

Total Cholesky time 9.08 255.79  6,234.21

Dense Cholesky time 0.0 0.0 0.0

Solution time 20.28 326.08 6,410.53

Iterations 26 37 40
With dense, no cliques

Total Cholesky time 5.56 161.31  3,307.60

Dense Cholesky time 0.71 21.63  1,295.67

Solution time 16.66 230.82  3,495.13

Iterations 26 36 47
With dense and cliques

Total Cholesky time 4.02 90.28  2,133.43

Dense Cholesky time 0.70 21.62  1,240.45;

Solution time 15.14 159.61  2,313.36 |

Iterations 26 37 45

pass through the columns of L,, to produce the
matrix:

Fzz =Fy— L21L2T1 (18)

which is treated as dense while producing the re-
mainder of the Cholesky factor:

Ly Lsz - Fzz

Dense Cholesky factorization is a well-studied
subject, and some efficient routines exist, notably
in the IBM Engineering and Scientific Subroutine
Library (ESSL). !® Unfortunately, we were unable

FORREST AND TOMLIN 33




to directly use the ESSL routine, partly because of
a conflict in data structures, but most importantly
because the systems encountered in LP interior
point methods become not only ill-conditioned
but rank-deficient, despite strenuous attempts (in
OSL ““‘presolve’”) to remove redundant constraints
from the model by inspection. This situation must
be dealt with gracefully by identifying and omit-
- ting the offending rows from the algorithm as they
are encountered. This process is not one that
standard library routines are equipped to handle,
thus we produced custom vector assembler code.

Agarwal and Gustavson® discussed several effi-
cient schemes for factorization using ‘‘blocks” or
submatrices of the matrix to be factored. Gener-
ally they favor subdividing the matrix into dense
subblocks which will fit into the high-speed cache
memory (‘‘blocking for cache’), an approach we
encounter below in discussing the RISC Sys-
tem/6000. This approach is designed to minimize
the number of ““cache misses” (references to data
not currently in the cache), which degrade the
computation speed. We chose to ““block for reg-
isters,” " that is, to subdivide the matrix into
blocks that will fit into the 16 vector registers (or
eight vector double registers). This is a “‘pull from
behind” method that proceeds as follows:

1. For each group of eight consecutive columns,
load a block of elements with row size equal to
at most the section size (number of elements
per vector register). They begin with the im-
mediate subdiagonal element of the first col-
umn in position 0 of the first pair of registers,
the immediate subdiagonal of the second in
position 1 of the second pair of registers, and
so on. Thus, successive pairs of registers after
the first have one more dummy element at the
top than the previous pair, leaving the ele-
ments properly aligned (necessary only for the
immediate subdiagonal block).

2. Update the block by the same subset of the
rows from all previous (updated) columns.
These vector operations multiply the same
portion of a column resident in memory by
(nonzero) scalars and add it to the vector reg-
isters. Since we potentially use the memory-
resident data eight times, we expect delays
caused by cache misses to be slight.

3. Perform the pivots, update these eight column
segments entirely within the registers (storing
them only when fully updated), and update the
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appropriate diagonals. The vector mask regis-
ter may be used here to avoid operating on the
dummy elements.

4. Load the next section of (or remaining) rows of
the group and update them by all preceding
columns, as in step 2.

5. Complete the updates, using only register-to-
register arithmetic and the new diagonal val-
ues for the columns computed in step 3. Store
the updated column segments and modified di-
agonals for this set of rows.

6. Repeat steps 4 and 5 until all rows have been
processed for this group of eight columns.

Some indication of the advantages of this ap-
proach over a naive dense Cholesky implemen-
tation is given in Forrest and Tomlin." Other
computational results are given in the next sec-
tion.

Clique (supernode) processing. Given the advan-
tages of dense processing, when applicable, it is
reasonable to search for other opportunities for
sustained vector (or at any rate floating-point)
computation. This search has been done for some
time in other applications that require factoriza-
tion of sparse symmetric matrices.” A key ob-
servation is that after ordering a matrix using
some minimum degree algorithm," one encoun-
ters groups of columns with identical nonzero
structure (except immediately under the diago-
nal), as shown schematically in Figure 2. These
groups of columns are known as cliques or su-
pernodes—terms derived from the graph theo-
retic processes of the minimum degree algorithm.

Use of the cliques can significantly improve the
speed of at least part of the Cholesky inner loop
in (17). When a clique is encountered as L ; is
updated, the amount of gathering and scattering
of data can be reduced. As before, when the first
column of the clique is encountered, the row in-
dices for the nonzero /;, must be LOADed into a
vector register and the corresponding elements of
L ; must be gathered (with a LOAD INDIRECT).
However, after this initialization, for each col-
umn in the clique it is only necessary to update
with a MULTIPLY AND SUBTRACT. After the clique
has been processed, the appropriate elements of
L ; are restored with a single STORE INDIRECT to
L ;. This method resembles a miniature dense up-
date with some pre- and post-processing over-
head.
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The clique phenomenon can be exploited even
more usefully in the process of updating the dense
segment discussed above. Let us rewrite (18) in
outer product form as:
F_zz =Fy - 2 LFIEI)(L.(IEI))T

k
where L ¢V is the k™ column of L,,. One way of
implementing this update would be to extract the
dense submatrix of F,,, as computed so far, cor-
responding to the nonzero elements of L " and
then perform a dense outer product update. For
a single column k, this method is no more efficient
than vectorizing the sparse outer product update
in a straightforward way with gather-scatter.
However, when there are several columns with
identical structure, it can be beneficial to think
about blocking the extracted submatrix in the reg-
isters and then applying all of the outer product
updates for the columns in the clique without fur-
ther gather-scatter (except for the subsequent
storage back into L ;). This resembles the blocked
dense processing described above except that:

a. The columns of F,, from which (some) non-
zero elements will be loaded are not necessar-
ily contiguous.

b. Only seven dense columns can be included in
a block since we need to maintain a vector
register of the nonzero row indices to which
the elements correspond.

Experience would seem to indicate that much of
the advantage of clique processing derives from
this updating of the dense segment. Some com-
putational experience with clique processing is
presented in the next section.

Exploiting the RISC System/6000 architecture. Most
of the detailed techniques we have described for a
vector processor are simply inappropriate for the
RISC System/6000 architecture. The broad outline
of the sparse/dense processing approach does,
however, remain appropriate, with differences in
algorithmic detail and software engineering.

With very careful coding, the RISC System/6000
can sustain computation of floating-point multi-
ply-adds at one per cycle in dense matrix com-
putations,? thus becoming remarkably competi-
tive with even a vector processor. To achieve this
rate, at least two conditions are necessary—
avoidance of cache misses and coding to achieve
instruction overlap. The latter is usually achieved
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Figure 2 Clique (supernode) structure
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by means of loop unrolling—a technique that
places several consecutive calculations in an in-
ner loop, with a corresponding increase in loop
increment, so that the floating-point unit may be
working on one set of operands while others are
being fetched or pointers incremented.

The penalty for a cache miss on the RISC machine
is much more severe than on the mainframe com-
puter. Thus, since there are no vector registers to
provide a “‘blocking for registers” strategy, it
makes sense to adopt a strict ‘“‘blocking for
cache” policy for matrix computations in this
environment (see the highly useful document in
Reference 20). This blocking strategy implies a
different approach to dense Cholesky factoriza-
tion—the “push from behind” approach. With
this scheme, each column is already fully updated
by previous columns when it is encountered. It
must then be pivoted on:

L=y,

<= (>))
i
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and later columns k = j + 1,j + 2, - - - updated:

2
by ly — lkj >

Lyl =1l (i>k) (19)

Although we have written the formulae for indi-
vidual elements, the same algorithm applies when
we consider subblocks of the dense segment F,,.
We were fortunate to be able to modify the
FORTRAN dense Cholesky code from ESSL/6000*
(the RISC System/6000 version of ESSL) which im-
plements this push-ahead block strategy very ef-
ficiently by using subblocks that will fit in cache
and loop unrolling. The modifications involved a
change in data structure for compatibility with
OSL and a capability to gracefully survive loss of
rank (see above). Computational results indicat-
ing the efficacy of this approach to the dense seg-
ment are given in the following section.

The use of clique (supernode) processing is also
very important on the RISC System/6000, for any
device which enables us to avoid indexing and
storing is particularly beneficial. Thus, updating a
sparse vector L ; by a clique is done by essentially
creating a miniature ‘‘vector register” from the
floating-point registers of the RISC machine, load-
ing it with elements of L ; corresponding to the
nonzero row indices in the clique, then perform-
ing an unrolled loop over the columns of the
clique.

One of the most computationally beneficial steps
for the RISC System/6000 is the updating of the
dense segment by the cliques. This step follows
the basic outline explained above for vector proc-
essing, except that the extraction of a subblock of
the dense segment, corresponding to the rows of
a clique, is not carried out explicitly, but implic-
itly, using loop unrolling. Great care is also taken
to avoid cache misses. The computational effect
of the clique processing is shown in the next sec-
tion.

Some computational results

To illustrate the importance of the sparse/dense/
clique processing in Cholesky factorization for
both the mainframe Vector Facility and the RISC
architecture we present comparative results with
three quite well-known LP test models. These
models are widely understood to be nontrivial,
bellwether models. The characteristics of the
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models are displayed in Table 1. The “reduced”
model that we actually work with is the result of
the presolve routine EKKPRSL of OSL. We have
run the problems with and without a dense seg-
ment (with the default cutoff density at 0.7) and
with a dense segment and cliques (the current
standard). As a result, we have two figures for the
number of nonzeros in the Cholesky factor—that
obtained with no dense segment defined and one
with.,

Table 2 gives the results for running each of the
three cases on an IBM 3090J system for each of the
three problems. For each case we give the total
time spent in the Cholesky routine, the amount of
that time that was spent in the dense Cholesky
factorization, the total time to reach a solution
(including input and all preprocessing), and the
number of iterations taken by the method, which
in all cases is the predictor-corrector variant of
the primal-dual method. It can be seen that the
improvement in total Cholesky time with increas-
ing use of dense processing itself improves with
increasing model size from a factor of less than
two for 25Fv47 to a factor of three for DFL00I1.
Furthermore, we see the importance of this im-
provement in reducing total solution time with
increasing problem size—at least for this sample
of models. The occasional small discrepancy in
timings for the same operations is due to the
coarseness of the timer.

Table 3 gives similar figures for running the same
set of cases on a RISC System/6000 Model 530. We
see here that the relative improvement from sim-
plest to most sophisticated processing is just a
little less than for the mainframe with the Vector
Facility. This should not be a surprise. What is
impressive is that the solution times for the RISC
machine are all only a factor of less than three
more than the mainframe times. The picture is
clouded slightly by the variability in the number
of iterations. It is the result of small changes in
accuracy when the computations are performed
in different order for the variations of the
Cholesky factorization. It is perhaps more appar-
ent on the RISC machine because of the greater
accuracy of its arithmetic. However, even with
these variations the pattern of the results is clear.

Conclusions

The computational results show that interior
point methods can be implemented in a general-
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purpose mathematical programming system such
as OSL and solve very substantial problems rap-
idly on both mainframe computers and worksta-
tions. Furthermore, both types of computers are
able to benefit from advances in both sparse and
dense matrix processing techniques. Interior
point LP methods are not yet (and may never be)
the answer to all demands for rapid solution. In
particular, there is at present no counterpart to
the ability of the simplex method to efficiently
exploit solutions to related problems (that is, a
“warm start’’). Applied interior point LP optimi-
zation is still in its infancy compared with the
simplex method and its variants. However, it is
rapidly becoming a standard tool for solving
large, difficult problems from scratch.
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