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This paper discusses the implementation of 
interior  point (barrier) methods  for  linear 
programming  within the framework of the  IBM 
Optimization Subroutine Library.  This class of 
methods  uses quite different  computational 
kernels than the traditional simplex  method.  In 
particular, the matrices  we  must  deal  with are 
symmetric and, although still  sparse, are 
considerably  denser  than  those  assumed  in 
simplex  implementations.  Severe  rank  deficiency 
must also be accommodated,  making it difficult 
to use off-the-shelf  library  routines.  These 
features have particular implications for the 
exploitation of the newer  IBM  machine 
architectural features. In particular,  interior 
methods can benefit greatly from use of  vector 
architectures on the IBM 3090’” series  computers 
and “super-scalar” processing on the RlSC 
System/6000”  series. 

T he well-known simplex method  for  linear 
programming (LP) is nearly as old as LP itself, 

developed  by Dantzig in 1947.’ It is perhaps a 
coincidence  that  the  forerunner of today’s  inte- 
rior  point  methods was devised  at  about  the  same 
time as implementations of the simplex method, 
which could handle significant problems2 in the 
mid-1950s. This  forerunner was the logarithmic 
barrier  method of Frisch.  Despite  subsequent in- 
terest in barrier  methods  for nonlinear program- 
ming,4  they  were thought to be hopelessly im- 
practical as competitors  to  the simplex method 
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for LP. After all, these  methods involved non- 
linearizing a  linear problem as a first step-the 
reverse of the  usual  approach  to  hard  problems. 
Thirty  years  later, with great  fanfare,  Karmarkar’ 
devised an interior  point  method that could be 
shown  to  have nice theoretical  properties,  con- 
verging in fairly low-order polynomial time.  Fur- 
thermore, claims were made that  this method was 
orders of magnitude faster  than  the simplex 
method in practice.  However,  members of the LP 
profession were  assured  that the method  was far 
too complicated for  their  understanding. 

Undiscouraged, Gill et al.  were  able to show  that 
the method put  forward by Karmarkar was actu- 
ally equivalent  to a form of the logarithmic barrier 
function  method.  They  also  described  and  gave 
computational  experience with a primal barrier 
function  method.  Subsequently, Megiddo’ devel- 
oped an elegant theory  for  interior point methods 
involving barrier  functions  for  both the primal and 
dual LP problems.  This  work led to  the  develop- 
ment of a number of “primal-dual’’ interior point 
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methods, which have gradually assumed domi- 
nance in interior point methodology.  Outstanding 
work in this  area  has  been  done by Lustig, 
Marsten,  and  Shanno,'  who  developed  the OBI 
primal-dual optimizer,  and by Mehrotra,'  who 
developed a "predictor-corrector''  variant of the 
primal-dual method, which appears  to be even 
more efficient. This  variant was subsequently in- 
corporated  into OBI, '' and the superiority of this 
technique  was confirmed by thorough  computa- 
tional testing.  Currently it is the  method of choice 
for  most  problems. 

All three algorithmic approaches-the primal bar- 
rier, primal-dual, and predictor-corrector-have 
been implemented in Release 2 of the IBM Opti- 
mization Subroutine  Library (OSL). 

In  the next  section of this  paper we give a brief 
mathematical  background  on  barrier  approaches 
to LP to bring out  the  fundamental compute-in- 
tensive  steps  common to all current  barrier meth- 
ods.  It  is followed by a  discussion of how these 
steps  can  be  implemented, with emphasis  on  two 
architectures-the System/370* Vector Facility 
and  the IBM RISC System/6000*. This discussion 
includes  some  illustrative  computational  experi- 
ence  to  show  the effect of specially tailoring the 
code for the  architectures. 

Mathematical background 

We take  the  linear programming problem to be 
expressed in the form: 

min cjxj  
x j  

subject  to: 

where A is an m X n ( m  < n )  matrix that is 
usually large and in practice almost always 
sparse, with perhaps  four  to  ten  nonzeros  per col- 
umn. What makes  this problem different from 
those  considered in classical optimization, via 
calculus, is the  presence of inequalities [the 
bounds in (3)] and the linearity of all the func- 
tions.  The way in which these  characteristics are 
handled determines the  features of the  two 
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classes of methods  that  have  been  successful in 
practice. 

The simplex method  makes explicit use of the  fact 
that  the  linear  constraints,  together with the ine- 
qualities,  describe a (convex)  polyhedron, with 
the optimal solution at  one of its  vertices. ' It  uses 
a  descent  method, moving along edges of the 
polyhedron  from  one  vertex  to an adjacent one 
with a better solution value, until an optimum is 
obtained (or shown to be nonexistent). It is a com- 
binatorial method in the  sense  that  some of the 
bounds as shown in (3) are satisfied as equalities 
at  each  vertex  (i.e., tight) and  others  are satisfied 
as  strict inequalities (i.e.,  loose). The progress 
from vertex to vertex  can  then be viewed as a 
search  for  the  correct  set of loose  and tight 
bounds.  Alternatively,  we  can  think of it as a 
method that follows a path  on  the surface of the 
polyhedron defining the  set of feasible  solutions 
to (2) and (3). Further  details of the  method,  and 
its implementation in OSL, may be  found in a com- 
panion paper by the  authors. " 

In contrast  to  the simplex method,  barrier meth- 
ods  deal with the inequalities by introducing  non- 
linearities that  prevent  them  from being violated 
and then applying calculus-based  methods. In 
particular, logarithmic barrier  methods  work by 
considering a family of related  problems: 

min ~ ( x )  = (c jxj  - p In ( x j  - L ~ )  
X j 

- p In (Uj  - xj))  (4) 

subject  to: 

A x = b  ( 5 )  

where p + 0 and p > 0. 

Since the logarithmic function is not even defined 
for nonpositive arguments, then clearly the bounds 
in  (3) cannot be violated.  Furthermore,  as p is 
positive,  the  objective  becomes large as variables 
approach  their  bounds.  However, it can be shown 
(see,  e.g.,  Fiacco  and  McCormick4)  that  as  the 
barrier parameter p tends  toward zero  the solu- 
tion to (4) and (5)  tends  toward a solution of (1) 
through (3). Again  in contrast  to  the simplex 
method,  these  solutions follow a path  through  the 
interior of the  polyhedron. 
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A primal  barrier  method. One standard  approach 
to solving a  linear  equality  constrained optimiza- 
tion problem as expressed in (4) and ( 5 )  is to  use 
a  feasible-point  descent method (see,  e.g., Gill, 
Murray,  and Wright12). Given a trial solution x 
that satisfies Ax = b ,  the  next  iterate X is defined 
as 

where Ax is the search  direction, and a is the 
step-length. The  computation of Ax and a must be 
such  that A i  = b and  the value of F decreases. 

If we define g _= V F ( x ) ,  H = V’F(x) ,  and y is 
the vector of Lagrange multipliers for  the linear 
constraints,  the Newton  search  direction A x  for 
this problem satisfies the  linear  system 

(:: “ 6 ) ( - p ” )  = 6) 
To see how this  system  can be solved  let us de- 
fine: 

s . = x . - L . ,  t . =  u.-x.  
D = diag{(l/s; + l / t ~ ) - ” ’ } ,  and 

D = diag{(l/sj - l/tj>> 

J J J J  J J ’  

Then  the g ,  H terms in (7) are defined by: 

g(x) = c - pDe  and H(x)  = pD-’  

and it follows from (7) that Ax and y must satisfy 

Introducing a new vector r defined by Dr = 
- P A X ,  we see  that r and y then satisfy 

( Z DA’)   ( r )  - (Dc - p D d e )  
AD 0 y 0 

- 

Equivalently we may say  that y is the solution and 
r the optimal residual of the  least-squares prob- 
lem: 

minimize llDc - p D b e  - DATyll 
Y 
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The  Newton  barrier  direction is then  obtained as 

Ax = - ( l / p ) D r  

As we  iterate,  the  vector y converges to  the  La- 
grange multipliers for  the  constraints A x  = b in 
the original problem.  However, in practice it is 
better  to work with a correction A y  at each  iter- 
ation, updating y , d ,  and  the  reduced  gradient r , 
where  the  latter  two  terms are defined by: 

d = c - A T y ,  and 

r = Dd - pDDe 

The  details  on how the  barrier  parameter p is 
controlled  and  convergence is established are 
given in  Gill et al.  and will not  be  repeated  here. 
The  core  computational  steps of an iteration are 
seen  to be: 

1. Solve a least-squares  problem: 

min IIr - D A ~ A Y ~ ~  (8) 
AY 

2. Update  the  dual  values: 

y t y  + A y ,  and 

d+-d - A T A y  

3.  Compute the  search  direction A x  from: 

r = Dd - pDDe,  and 

Ax = - ( l / p ) D r  

4. Calculate the  steplength a and  update x 

The  most critical step in each  iteration is solving 
the  least-squares problem in (8). Although Gill 
et a1.6 advocated using an iterative method for 
this step, in the  great majority of cases it may be 
done  directly by solving the  normal  equations 

AD2A T A y  = ADr 

which for  reasons  to become  apparent below will 
be  written 

AOATAy = v 
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B 
where u = A D r ,  0 = D 2  = ( , T 2  + T - 2 ) - 1  and 
S = diag{sj} ,  T = diag{t j } .  This system is solved 
by computing  the Cholesky factors (triangular 
factors) L L  of A O A  and  then backsolving to 
obtain A y  = L - T L - l ~ .  

In  practice,  the  system in (9) must be permuted to 
reduce fill-in  of new nonzeros in the relatively 
sparse A O A  T ,  so that  the  Cholesky  factors are 
actually computed from 

LLT = PAOATPT 

B 

D 

where P is the  permutation matrix that defines the 
new row ordering.  This implies that some non- 
trivial procedures must be carried  out  before  the 
barrier algorithm can  be  even  begun.  In  particu- 
lar,  the permutation P and the nonzero  structure 
of L must  be  determined. 

To determine P we  require  the  nonzero  structure 
of A A  T .  It may be  obtained in OSL in one of two 
ways.  The first method considers  the Boolean ma- 
trices  derived  from A and A (which have  a  one 
in each  position  where A or A have a nonzero 
and  zeros  elsewhere).  The Boolean product of A 
and A T  then  has  the  desired  nonzero  structure. 
The  second  method  uses only the Boolean matrix 
derived from A and  sums  the  outer  products of 
the  columns with themselves. Having obtained 
the  nonzero  structure of A A  T ,  processing must 
be  done by some  ordering  method. OSL and many 
other  codes  use some version of what is known as 
a “minimum degree”  ordering algorithm. l 3  Once 
the  permutation P is available,  a  “symbolic  fac- 
torization” l3  is carried  out  to  compute  where  the 
nonzero  elements will be in the  Cholesky  factor 
L .  When this  nonzero  structure  for L is available, 
the memory requirements  for  the algorithm can 
be  computed,  and if insufficient space is available, 
the  procedure may be  halted. 

Appropriate data  structures  are  required so that 
we may compute 

This  requires  either  the ability to  access  the ma- 
trix A row-wise or  the computation of the  outer 
products of the columns of A and  their addition 
to  the  appropriate  elements of the  data  structure 
that will contain L .  The implementation in OSL 

allows either  alternative, with the  outer  product 
form much preferred  for  vector  platforms. 

By far,  the  greatest  computational effort in most 
cases now comes in computing  the  Cholesky  fac- 
tors  at  each iteration.  This effort is the principal 
topic of the  next  section. For simplicity we ignore 
the  permutation P from now on. 

The primal-dual barrier method. In  discussing the 
primal-dual method  we shall follow the descrip- 
tion of the method by Lustig,  Marsten,  and 
Shanno8 with the difference that  variables are 
treated as having arbitrary  lower  bounds (as in 
OSL), rather  than  assuming  that  they  have  been 
normalized to  zero (as in their OB1 system). It is 
convenient to rewrite the primal LP problem [( 1)- 
(3)] so that  the  upper  and  lower  bound  constraints 
are  separate: 

min cTx  
X 

subject  to: 

Ax = b ,  

x 2 L ,  

- x r - u  
and  its  dual  problem: 

max bTy  + L T z  - UTw 

subject  to: 

Y,Z ,W 

A T y + z - w = c  

2 2 0 ,  w 2 0  

Now, let us  write  the  barrier  function form of the 
primal, to  convert it to  an  equality  constrained 
problem, with the slack variables s and t on  the 
upper  and lower bounds (as defined in the previ- 
ous  subsection) explicitly included: 

min (cjxj  - p In sj - p In t j )  
‘ j  

subject  to: 

Ax = b, 

x - s = L ,  
- x - t = - U  
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This  has as its  classical Lagrangian: 

L(X3 s7 Y ,  2, w, p)  

= (cjxj - p In sj - p In tj) - yT(Ax - b) 
j 

- Z T ( X  - s - L) - WT(U- x - t )  (10) 

The first order  necessary  conditions  for (10) can 
be  written: 

SZe = pe ,  

TWe = pe ,  

Ax = 6, 

x - s = L ,  

x + t = U ,  

A T y - w + z = c  (1 1) 

where  the multipliers z and w correspond  to 
the slack variables in the dual LP above  and 
S = diag{s ,} ,  T = diag{t , } ,  Z = d i a g { z , }  and 
W = diag{ w,}. Notice  that  these  conditions com- 
prise  the primal and  dual  equality  constraints plus 
the  nonlinear  equations SZe = pe,  TWe = pe.  
These  terms  become  the LP complementarity  con- 
ditions'  as p approaches  zero. 

The straightforward primal-dual method  pro- 
ceeds by taking,  for a decreasing  sequence of  Val- 
ues of p, a  step of Newton's  method  for  these 
nonlinear  equations  to  compute  a  search  direction 
(Ax, As, A t ,  Ay, Az, Aw). After  some  tedious  but 
elementary  algebra, the computational  steps are 
seen  to require solving a  set of equations: 

AOATAy = A O T ( ~ )  - Ax + b (12) 

where 0 = (S"Z + T"W)" and ~ ( p )  = c - 
ATy + p(T" - S")e.ThevalueofAymaynow 
be  used  to  compute: 

AX = O(ATAy - ~ ( p ) ) ,  

As = A x ,  

At = - A x ,  

Az = S"(pe - SZe - ZAs), 

Aw = T"(pe - TWe + WAt) 
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Two  steplengths, ap and aD,  in the primal and 
dual spaces,  are  chosen  to  preserve  feasibility, 
and  then  a new approximate minimizing solution 
[s determined as 2 = x + apAx, 3 = s + a,As, 

6 = w + aDAw.  These  steps  are  repeated until 
the  relative gap between the (feasible) primal and 
dual  solutions falls below some user-specified tol- 
erance. 

This rather  terse  outline of the primal-dual 
method is sufficient to point out  its  relationship 
with the  barrier primal method.  Most impor- 
tantly,  the major computational step is seen  to  be 
the solution of a linear  system,  whose  matrix 
AOA has  the  same  structure  as  the  matrix 
whose Cholesky factors  we  needed  in  the primal 
barrier  method.  Thus  the bulk of the  work,  and 
the preprocessing, are very similar. The potential 
advantage of the primal-dual approach is that  fea- 
sible dual information is available,  and  the num- 
ber of steps may be  smaller.  Lustig,  Marsten,  and 
Shanno'  present  extensive  computational  expe- 
rience with this  method,  and our own  experience 
with OSL is that it takes  fewer  iterations  and  is 
more  robust  than the primal method  on  most 
problems. 

The predictor-corrector method. The predictor- 
corrector  method is a variant,  due to  Mehrotra,' 
of the primal-dual barrier  method.  Once again we 
follow an excellent  description given by  Lustig, 
Marsten,  and  Shanno"  suitably modified to con- 
sider general lower as well as  upper  bounds.  The 
essence of the  method is a  more  ambitious  ap- 
proach to solving for  the first order necessary 
conditions of ( 1  1). Instead of routinely applying 
Newton's  method to this  nonlinear  system, Meh- 
rotra  asked  whether it might not  be  possible to 
derive modifications Ax, As, A t ,  Ay, Az, Aw to 
the  current trial solution x,  s f  t ,  y , z ,  w by di- 
rectly solving for  them.  Substituting  x + Ax for 
x, etc., in ( I l ) ,  one  obtains the system: 

t = t + &,At, 9 = y + aDAy, .? = z + ( Y ~ A z ,  

AAX=b-Ax, 

A ~ - A s = L - x + s ,  

A x + A t = U - x - t ,  

A T A y + b z - A w = ~ - A T y - z + w ,  

SAz + ZAs = p e  - SZe - ASAZe, 

TAW + WAt = p e  - TWe - ATAWe (13) 
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where A S  = diag{Asi},  etc. Unfortunately  this 
system is also nonlinear because of the  product 
terms ASAZ and ATA W in the  last  two  equations. 
A direct  approach is to  derive  approximations  for 
these  product  terms, plug them  into  the right side 
of (13), and  then  solve  the  system. 

The predictor step in the  predictor-corrector 
method  solves  the afine variant of the  model,  that 
is, it omits the p and A-product terms from the 
right sides of the last  two  expressions: 

A A i z b - A x ,  

A i - A i = L - x + s ,  

A i + A i = U - x - t ,  

A T A 9 + A & - A G = ~ - A T y - z + + ,  

SA& + ZAi = -SZe, 

TAG + WAi = -TWe (14) 

Just  as in the ordinary primal-dual method,  the 
essential  step is the solution of a system of the 
form: 

AOATAi, = 3 

where 0 is defined as  for (12) and only the right 
side 3 is slightly different. 

With A i ,  A?, A i ,  and AG available, we are ready 
to perform the corrector step, which solves  the 
linear  system: 

A & = b - A x ,  

& - A s = L - x + s ,  

h + A t = U - x - t ,  

A T A y + A ~ - A w = c - A T y - z + + ,  

SAz + ZAs = p e  - SZe - ASA2e, 

TAW + WAt = p e  - TWe - APAWe (15) 

The  essential step is again the solution of a  system 
of the form: 

AOATAy = v 

where  the right side v is different again from that 
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in the  predictor step, but  the diagonal 0 is iden- 
tical. Thus the same  factorization of AOA is 
used for  both  predictor  and  corrector  steps,  and 
only back  substitution  for A y  , etc., must  be  done 
twice.  Since  the  factorization normally dominates 
the  computation,  we would expect a net  decrease 
in time if the  number of iterations  is  reduced. 
Lustig et  al. lo report  that  this is indeed  almost 
always  the  case (often by a  substantial  factor) 
with their OBI code, and  our  experience with OSL 
Release 2 is similar. In view of these  results  and 
the stability of the  method,  the  predictor-correc- 
tor  method  must  be  considered  the  current 
method of choice. 

Solving  the  fundamental  system 

The  previous  section  has  emphasized  that the key 
computational  step in all of the interior  point 
methods  considered  here is the  solution of a sym- 
metric  system A O A  T A y  = v .  This sort of calcu- 
lation is quite different from  the  key  computa- 
tional steps in the simplex method, which mostly 
involve working with sparse  triangular  factors  ob- 
tained by Gaussian elimination from  a  square  sub- 
matrix B (the basis) of the coefficient matrix A .  l4 

These  factors  used in the simplex method  can 
usually be manipulated in such a way  that  they  are 
not  too  dense in comparison with B (or A )  itself. 
However, AOA is itself usually much denser 
than  any  basis B ,  and  its  Cholesky  factors L L T  
are normally much denser again-often by a fac- 
tor of three  or  four  or more-even after  reorder- 
ing to minimize the fill-in. Despite the fact  that 
interior  methods typically only require a few 
dozen  iterations,  compared  to  about 2 m (where 
m is the  number of rows) for  the simplex method, 
the difference in the  central  computational step 
means  that  the efficiency of the  Cholesky  factor- 
ization is crucial. 

Considerable  progress  has  been  made in efficient 
sparse  Cholesky  since  barrier 
methods  were first proposed,  to  the point where 
interior  methods would compete successfully 
with the simplex method  on many classes of LP 
problems-particularly large ones  (see Tomlin l6 

for further details). Furthermore,  sparse Cholesky 
factorization is able to make more efficient use of 
vect~rization'~ than the simplex method because 
the densities are relatively higher, giving longer 
vector calculations and lower overheads.  However, 
it  is the exploitation of dense processing that has 
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made quite significant  gains possible in situations 
where the  sheer number of nonzeros to  be proc- 
essed might make interior point methods look un- 
promising. To  see why this might  be important, 
consider Figure 1, where each dot represents a non- 
zero in the Cholesky factor L (after a minimum de- 
gree permutation of the rows) for  the model PILOTS 
(shown later in Tables 1-3). 

Clearly,  the  lower right corner is very  close  to 
being completely  dense,  and  there are distinct ad- 
vantages to treating it as  such. l5  

Exploiting the Vector Facility. The  form of 
Cholesky  factorization commonly used  for  sparse 
processing is of the  “pull  from  behind”  variety. 
That  is,  each column j of L is computed from the 

original column F ,  of F = A @ A  and  the  already 
calculated columns L - - - , L,-l : 

\ k = l  

j -  1 

f j  - l jklik 

While  (17) obviously requires  actual  arithmetic 
only for  columns k with nonzero l j k  and only for 
nonzero within such  columns,  the  number of 
such floating-point operations may still be  very 
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Table 1 Test  problem  characteristics 

Model 25FV47  PtLOTS  DFLOOI 

osigir*tl 
Rows 82 1 1 , 4 4 1  6,071 
Columns 1,571 3,652 12,230 
Nonzeros 10,400 43,167 35,632 

Reduced 
Rows 715 1,374 4,840 
Columns 1,484 3,361 10,999 
Nonzeros 9,994 40,757 33,146 

L Nonzeros 
No dense 30,464 201,464 1,513,330 
With Dense 30,805 202,988 1,609,375 

Number af 
Dense cohmns 141  417 1,532 
Clique columns 340  425 375 

large,  and it only vectorizes  moderately well. If  it 
is assumed  that the  current L , j  is being kept  and 
updated in full (unpacked)  array  form,  then  for 
every  nonzero I j k  , the row indices for  the  nonzero 
l j k  must  be LOADed into a vector  register,  the  cor- 
responding  elements of L , j  must be gathered (with 
a LOAD  INDIRECT), updated with a MULTIPLY AND 
SUBTRACT, then  restored with a STORE  INDIRECT 
to L,. Ignoring startup times, we see that the Vec- 
tor Facility requires six cycles per element to per- 
form this innermost  loop.  If,  on  the  other  hand, L 
can  be  treated  as  dense,  each L , j  (or more cor- 
rectly,  segment of L , j )  can  be LOADed once, and 
the inner  loop  consists only of MULTIPLY AND 
SUBTRACTS (one  cycle  per  element), with a final 
STORE of the updated column L , j .  Again if startup 
times are  ignored,  this  process is nearly six times 
faster  per  element  (though, of course,  there may 
be more elements). 

The  approach used in OSL and  elsewhere is to 
define a  sparse/dense “cutoff’ and to partition F :  

so that F22 corresponds  to  the submatrix  that will 
be  treated as dense.  The  standard cutoff  in OSL is 
to partition at  the first column  encountered with 
a nonzero  density of 0.7, though this may be var- 
ied by the  user.  The  technique  then is to  use  stan- 
dard  sparse  matrix  processing  to  comute L , , and 
L,,, where L,,LA = F , ,  and L,, = F 2 , L i T r  then 

Table  2  Times  (in  seconds)  for  an  IBM 30905 with 
Vector  Facility 

Model 25FV47 PILOTS DFLOOl 

No dense, no cliques 
Total  Cholesky  time 4.80 107.74 2,462.76 
Dense  Cholesky  time 0.0 0.0 0.0 
Solution  time 9.01 131.21 2,535.83 
Iterations 26 37 47 

With dense, no  cliques 
Total  Cholesky  time 3.35 74.18 1,387.87 
Dense Cholesky  time 0.40 9.97 462.33 
Solution  time 7.56 97.72 1,469.52 
Iterations 26 37 47 

With dense and cliques 
Total  Cholesky  time 2.73 43.33 819.42 
Dense Cholesky  time 0.40 10.00 462.87 
Solution  time 6.95 67.00 901.34 
Iterations 26 37 47 

Table 3 limes (in seconds)  for  a RlSC System/6000 
Model 530 

Model  25FV47  PILOTS DFL#l 

No dense, no cliques 
Total Cholesky time 9.08 255.79 6,234.21 
Dense Cholesky  time 0.0 0.0 0.0 
Solution  time 20.28 326.08 6,410.53 
Iterations 26 37 40 

With dense, no  cliques 
Total Cholesky  time 5.56 161.31 3,307.60 
Dense Cholesky  time 0.71 21.63 1,295.67 
Solution  time 16.66 230.82 3,495.13 
Iterations 26 36 47 

With dense and cliques 
Total Cholesky  time 4.02 90.28 2,133.43 
Dense Cholesky  time 0.70 21.62 1,240.45 
Solution  time 15.14 159.61 2,313.36 
Iterations 26 37 45 

pass  through  the  columns of L,, to produce  the 
matrix: 

which is treated  as  dense while producing the re- 
mainder of the  Cholesky  factor: 

L22G = F 2 2  

Dense  Cholesky  factorization is a well-studied 
subject,  and  some efficient routines  exist,  notably 
in the IBM Engineering and Scientific Subroutine 
Library (ESSL). Unfortunately,  we  were  unable 
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to  directly  use  the ESSL routine,  partly  because of 
a conflict in data  structures,  but  most importantly 
because the systems  encountered in LP interior 
point  methods  become  not only ill-conditioned 
but  rank-deficient,  despite  strenuous  attempts (in 
OSL “presolve”)  to remove  redundant  constraints 
from  the model by inspection. This situation must 
be  dealt with gracefully by identifying and omit- 
ting the offending rows  from  the algorithm as they 
are  encountered.  This  process is not one  that 
standard  library  routines  are equipped to  handle, 
thus  we  produced  custom  vector  assembler  code. 

Agarwal and  Gustavson’’  discussed  several effi- 
cient  schemes  for  factorization using “blocks” or 
submatrices of the  matrix  to be factored.  Gener- 
ally they  favor subdividing the matrix into  dense 
subblocks which will  fit into  the high-speed cache 
memory (“blocking for  cache”),  an approach  we 
encounter below in discussing the RISC Sys- 
tem/6000. This  approach is designed to minimize 
the  number of “cache  misses”  (references  to  data 
not  currently in the  cache), which degrade  the 
computation  speed. We chose  to  “block  for reg- 
i s t e r~ , ’ ’ ’~  that  is,  to subdivide  the matrix into 
blocks that will  fit into  the 16 vector  registers  (or 
eight vector  double  registers).  This is a  “pull from 
behind”  method  that  proceeds as follows: 

1. For  each  group of eight consecutive  columns, 
load a block of elements with row size equal to 
at  most the section size (number of elements 
per  vector  register).  They begin with the im- 
mediate subdiagonal element of the first col- 
umn  in position 0 of the first pair of registers, 
the immediate subdiagonal of the  second in 
position 1 of the  second  pair of registers,  and 
so on.  Thus, successive  pairs of registers  after 
the first have  one  more dummy element at  the 
top  than  the  previous  pair, leaving the ele- 
ments  properly aligned (necessary only for  the 
immediate subdiagonal block). 

2. Update  the block by the  same  subset of the 
rows  from all previous  (updated)  columns. 
These  vector  operations multiply the  same 
portion of a column resident in memory by 
(nonzero)  scalars  and  add it to  the  vector reg- 
isters.  Since  we potentially use  the memory- 
resident  data eight times, we expect  delays 
caused  by  cache  misses  to be slight. 

3. Perform  the  pivots,  update  these eight column 
segments  entirely within the  registers  (storing 
them only when fully updated),  and  update  the 

appropriate diagonals. The  vector mask regis- 
ter may be used here to avoid operating  on the 
dummy elements. 

4. Load  the  next  section of (or remaining) rows of 
the  group  and  update  them by all preceding 
columns, as in step 2. 

5. Complete  the  updates, using only  register-to- 
register  arithmetic  and  the new diagonal val- 
ues  for  the  columns  computed in step 3 .  Store 
the updated  column  segments  and modified di- 
agonals for  this  set of rows. 

6.  Repeat  steps 4 and 5 until all rows  have  been 
processed  for  this  group of eight columns. 

Some indication of the  advantages of this  ap- 
proach  over a naive dense  Cholesky implemen- 
tation is given in Forrest  and  Tomlin. l7 Other 
computational  results are given in the next  sec- 
tion. 

Clique (supernode)  processing. Given  the  advan- 
tages of dense  processing, when applicable, it is 
reasonable  to  search  for  other  opportunities  for 
sustained  vector  (or at any rate floating-point) 
computation. This search  has  been  done  for  some 
time in other  applications  that  require  factoriza- 
tion of sparse  symmetric  matrices. l5 A key ob- 
servation is that  after  ordering a matrix using 
some minimum degree  algorithm, l3 one  encoun- 
ters  groups of columns with identical  nonzero 
structure  (except immediately under  the diago- 
nal), as shown schematically in Figure 2. These 
groups of columns are known as cliques or su- 
pernodes-terms derived  from  the  graph  theo- 
retic  processes of the minimum degree algorithm. 

Use of the  cliques  can significantly improve the 
speed of at  least  part of the  Cholesky  inner  loop 
in (17). When a clique is encountered  as L , j  is 
updated,  the  amount of gathering  and  scattering 
of data  can be reduced. As before,  when  the first 
column of the clique is encountered,  the  row in- 
dices  for  the  nonzero l ik  must  be LOADed into  a 
vector  register  and  the  corresponding  elements of 
L, j  must be gathered (with a LOAD INDIRECT). 
However,  after  this initialization, for  each  col- 
umn  in the clique it is only  necessary  to  update 
with a MULTIPLY AND SUBTRACT. After the clique 
has been processed,  the  appropriate  elements of 
L, j  are restored with a single STORE INDIRECT to 
L , j .  This method resembles a miniature  dense up- 
date with some pre-  and  post-processing  over- 
head. 
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The clique phenomenon  can be exploited even 
more usefully in the  process of updating the  dense 
segment discussed  above. Let us rewrite (18) in 
outer  product form as: 

F,, = F,, - J~.?’)(L!;’))~ 

where L.fl) is the kth column of L,, . One way of 
implementing this  update would be to  extract  the 
dense submatrix of F,,, as computed so far, cor- 
responding to  the nonzero  elements of L.(;l) and 
then perform a  dense  outer  product  update.  For 
a single column k ,  this method is no more efficient 
than  vectorizing  the  sparse  outer  product  update 
in a  straightforward way with gather-scatter. 
However, when there  are  several columns with 
identical  structure, it can be beneficial to think 
about blocking the extracted  submatrix in the reg- 
isters  and  then applying all of the  outer  product 
updates  for  the  columns in the clique without fur- 
ther  gather-scatter  (except  for  the  subsequent 
storage  back  into L , j ) .  This  resembles  the blocked 
dense  processing  described  above  except  that: 

a. The columns of F,, from which (some) non- 
zero  elements will be  loaded  are not necessar- 
ily contiguous. 

b. Only seven  dense  columns  can be included in 
a block since we need to maintain a  vector 
register of the nonzero row indices to which 
the  elements  correspond. 

k 

Experience would seem  to  indicate  that much of 
the  advantage of clique processing  derives from 
this updating of the  dense  segment.  Some com- 
putational  experience with clique processing is 
presented in the next  section. 

Exploiting  the RISC Systed6000 architecture. Most 
of the detailed techniques we have described for a 
vector processor  are simply inappropriate for the 
RISC Systed6000 architecture. The broad outline 
of the sparse/dense processing approach does, 
however, remain appropriate, with  differences  in 
algorithmic detail and software engineering. 

With very  careful  coding,  the RISC System/6000 
can  sustain  computation of floating-point multi- 
ply-adds at  one per cycle in dense matrix com- 
putations, 2o thus becoming remarkably  competi- 
tive with even a vector  processor.  To  achieve  this 
rate,  at least  two  conditions  are necessary- 
avoidance of cache misses and coding to  achieve 
instruction  overlap. The  latter is usually achieved 

IBM  SYSTEMS  JOURNAL,  VOL 31, NO 1, 1992 

Figure 2 Clique  (supernode)  structure 

\ 
xxxxxxxxx 
xxxxxxxxx 

xxxxxxxxx 
xxxxxxxxx \ 
xxxxxxxxx 
xxxxxxxxx 

xxxxxxxxx \ 
by means of loop unrolling-a technique  that 
places several  consecutive  calculations in an in- 
ner  loop, with a corresponding  increase in loop 
increment, so that  the floating-point unit may be 
working on  one  set of operands while others  are 
being fetched or pointers  incremented. 

The penalty for  a  cache miss on  the RISC machine 
is much more severe  than  on  the mainframe com- 
puter.  Thus,  since  there  are no vector  registers to 
provide  a “blocking for  registers”  strategy, it 
makes sense  to adopt  a  strict “blocking for 
Cache” policy for matrix computations in this 
environment  (see  the highly useful document in 
Reference 20). This blocking strategy implies a 
different approach  to  dense Cholesky  factoriza- 
tion-the “push from behind”  approach. With 
this scheme,  each column is already fully updated 
by previous columns  when it is encountered.  It 
must then be pivoted on: 
i 

l j  + dlj, 

FORREST AND TOMLIN 35 



and  later  columns k = j + 1, j + 2 ,  - - - updated: 

I k k   l k k  - l k j  9 

1, 1 ,  - 1, 1kj (i > k)  (19) 

2 

Although we  have  written  the formulae for indi- 
vidual elements,  the  same algorithm applies when 
we  consider  subblocks of the  dense segment F22.  
We were  fortunate  to  be  able  to modify the 
FORTRAN dense  Cholesky  code  from ESSL/6000* 
(the RISC System/6000 version of ESSL) which im- 
plements  this  push-ahead block strategy  very ef- 
ficiently by using subblocks  that will  fit  in cache 
and  loop unrolling. The modifications involved a 
change in data  structure  for compatibility with 
OSL and a capability to gracefully survive  loss of 
rank (see above).  Computational  results indicat- 
ing the efficacy of this  approach to  the  dense seg- 
ment are given in the following section. 

The use of clique  (supernode)  processing is also 
very  important  on  the RISC System/6000, for  any 
device which enables us to avoid indexing and 
storing is particularly beneficial. Thus, updating a 
sparse  vector L . j  by a clique is done by essentially 
creating a miniature “vector register” from the 
floating-point registers of the RISC machine, load- 
ing  it with elements of L, j  corresponding  to  the 
nonzero  row indices in the  clique,  then perform- 
ing an unrolled loop  over the columns of the 
clique. 

One of the  most  computationally beneficial steps 
for  the RISC System/6000 is the updating of the 
dense segment by the  cliques.  This  step follows 
the basic  outline explained above  for  vector  proc- 
essing,  except  that  the  extraction of a subblock of 
the  dense  segment,  corresponding  to  the rows of 
a clique, is not  carried  out  explicitly,  but implic- 
itly, using loop unrolling. Great  care is also  taken 
to avoid cache  misses.  The  computational effect 
of the clique  processing is shown in the  next  sec- 
tion. 

Some  computational  results 

To illustrate  the  importance of the  sparse/dense/ 
clique processing in Cholesky  factorization  for 
both  the mainframe Vector Facility and  the RISC 
architecture  we  present  comparative  results with 
three  quite well-known LP test  models.  These 
models are widely understood to be nontrivial, 
bellwether  models.  The  characteristics of the 
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models are displayed in Table 1. The  “reduced” 
model that we actually work  with is the  result of 
the  presolve  routine EKKPRSL of OSL. We have 
run  the  problems with and  without a dense seg- 
ment (with the default cutoff density at 0.7) and 
with a dense segment and  cliques  (the  current 
standard). As a  result,  we  have  two figures for  the 
number of nonzeros in the Cholesky factor-that 
obtained with no dense  segment defined and one 
with. 

Table 2 gives the  results  for running each of the 
three  cases  on  an IBM 30905 system  for  each of the 
three  problems. For  each  case  we give the  total 
time spent in the  Cholesky  routine, the amount of 
that time that was spent in the  dense  Cholesky 
factorization,  the  total time to  reach a  solution 
(including input and all preprocessing),  and  the 
number of iterations  taken by the  method, which 
in  all cases is the  predictor-corrector  variant of 
the primal-dual method. It can  be  seen  that the 
improvement in total  Cholesky  time with increas- 
ing use of dense  processing itself improves with 
increasing model size from a factor of less  than 
two  for 25FV47 to a  factor of three  for DFL001. 
Furthermore, we see  the  importance of this im- 
provement in reducing total  solution time with 
increasing problem size-at least  for  this  sample 
of models. The  occasional small discrepancy in 
timings for  the  same  operations is due  to  the 
coarseness of the  timer. 

Table 3 gives similar figures for running the same 
set of cases  on a RISC System/6000 Model 530. We 
see  here  that  the  relative  improvement  from sim- 
plest to most sophisticated  processing is just a 
little less  than  for  the mainframe with the  Vector 
Facility.  This should not  be a surprise.  What is 
impressive is that  the  solution  times  for  the RISC 
machine are all only a  factor of less  than  three 
more than  the mainframe times. The picture is 
clouded slightly by the variability in the  number 
of iterations. It is the result of small changes in 
accuracy when the  computations are performed 
in different order  for  the  variations of the 
Cholesky  factorization. It is perhaps  more  appar- 
ent  on  the RISC machine because of the  greater 
accuracy of its  arithmetic.  However,  even with 
these  variations the  pattern of the results is clear. 

Conclusions 

The  computational  results  show  that  interior 
point methods  can be implemented in a general- 
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purpose  mathematical programming system  such 
as OSL and  solve  very  substantial  problems  rap- 
idly on both mainframe computers  and  worksta- 
tions.  Furthermore,  both  types of computers are 
able to benefit from advances in both  sparse  and 
dense  matrix  processing  techniques.  Interior 
point LP methods  are  not yet (and may never  be) 
the  answer  to all demands  for rapid solution.  In 
particular,  there is at present no counterpart  to 
the ability of the simplex method to efficiently 
exploit  solutions  to  related  problems  (that is, a 
“warm start”). Applied interior  point LP optimi- 
zation is still in its infancy compared with the 
simplex method  and  its  variants.  However, it is 
rapidly becoming a  standard tool for solving 
large, difficult problems from scratch. 

Acknowledgments 

We are indebted  to  Jenny  Edwards  for  converting 
the ESSLl6000 dense  Cholesky  routines  to  function 
under OSL, to  Fred  Gustavson for helpful discus- 
sions,  and  to Irvin  Lustig  for  generating,  and giv- 
ing us permission  to use, Figure 1. 

*Trademark or registered trademark of International Business 
Machines Corporation. 

Cited references 

1 .  G. B. Dantzig, Linear  Programming  and  Extensions, 
Princeton University Press, Princeton, NJ (1963). 

2. W. Orchard-Hays, “History of Mathematical Program- 
ming Systems,” in Design  and  Implementation of Opti- 
mization  Software, H. J. Greenberg, Editor, Sijthoff  and 
Noordhoff, The Netherlands (1978), pp. 1-26. 

3. K. R.  Frisch, The Logarithmic  Potential  Method of Con- 
vex  Programming, memorandum of  May 13, 1955, Uni- 
versity Institute of Economics, Oslo, Norway. 

4. A. V. Fiacco and G. P. McCormick, Nonlinear  Program- 
ming:  Sequential  Unconstrained  Minimization  Tech- 
niques, John Wiley & Sons,  Inc., New  York  and Toronto 
(1968). 

5. N. Karmarkar, “A New  Polynomial-Time  Algorithm for 
Linear Programming,’’ Cornbinatorica 4,373-395 (1984). 

6. P. E. Gill, W. Murray, M.  A. Saunders, J. A. Tomlin, 
and M. H. Wright, “On Projected Newton Barrier Meth- 
ods for Linear Programming and an Equivalence to Kar- 
markar’s Projective Method,” Mathematical  Program- 
ming 36, 183-209 (1986). 

7. N. Megiddo, “Pathways to the Optimal Set in Linear Pro- 
gramming,” in Progress in Mathematical  Programming, 
N. Megiddo, Editor, Springer-Verlag, New  York (1989), 
pp. 131-158. 

8. I .  J. Lustig, R. E. Marsten, and D. F. Shanno, Compu- 
tational  Experience  with  a  Primal-Dual  Interior  Point 
Method for Linear  Programming, Technical Report SOR 
89-17, Princeton University, Princeton, NJ (1989). To ap- 
pear in Linear  Algebra  and  Its  Applications. 

9. S. Mehrotra, On the Implementation  of  a  (Primal-Dual) 

IBM SYSTEMS JOURNAL,  VOL 31, NO 1. 1992 

Interior  Point  Method, Technical Report 90-03, Depart- 
ment of Industrial Engineering and Management Sci- 
ences, Northwestern University, Evanston, IL (1990). 

10. I. J. Lustig, R. E. Marsten, and D. F. Shanno, On  Im- 
plementing  Mehrotra’s  Predictor-Corrector  Interior 
Point  Method for Linear  Programming, Technical Report 
SOR 90-03, Department of Civil Engineering and Opera- 
tions Research, Princeton University, Princeton, NJ 
( 1990). 

1 1 .  J.  J. H. Forrest and J. A. Tomlin, “Implementing the 
Simplex Method for the Optimization Subroutine Li- 
brary,” IBM Systems  Journal31, No. 1 ,  11-25 (1992, this 
issue). Also, Research Report RJ 8174, IBM  Almaden 
Research Center, San Jose, CA (1991). 

12. P. E. Gill,  W. Murray, and M. H. Wright, Practical  Op- 
timization, Academic Press, London and New York 
(1981). 

13. J. A. George and J. W. Liu, Computer  Solution  of  Large 
Sparse  Positive Definite Systems, Prentice-Hall, Inc., En- 
glewood  Cliffs, NJ (1981). 

14. E. M. L. Beale, “The Evolution of Mathematical Pro- 
gramming Systems,” Journal of the Operational  Re- 
search  Society  36, 357-366 (1985). 

15. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct  Meth- 
ods  for  Sparse  Matrices, Oxford University Press, Ox- 
ford ( 1986). 

16. J. A. Tomlin, “A Note on Comparing Simplex and Inte- 
rior Methods for Linear Programming,’’  in Progress 
in Mathematical  Programming, N. Megiddo, Editor, 
Springer-Verlag, New  York (1989), pp. 91-103. 

17. J.  J. H. Forrest and J. A. Tomlin, “Vector Processing in 
Simplex  and Interior Methods for Linear Programming,’’ 
Annals of Operations  Research 22, 71-100 (1990). 

18. Engineering and  ScientiJc  Subroutine  Library  Guide  and 
Reference, SC23-0184-4, IBM Corporation (1990); avail- 
able through IBM branch offices. 

19. R. C. Agarwal  and F. G. Gustavson, Vector  and  Parallel 
Algorithms for  Cholesky  Factorization on IBM 3090, Re- 
search Report RC 14901, IBM Thomas J. Watson Re- 
search Center,  P.O. Box 218, Yorktown Heights, NY 
10598 (1989). 

20. IBM RISC System16000 Performance Tuning for  Numer- 
ically Intensive  FORTRAN  and  C  Programs, GG24-3611, 
IBM Corporation (1990); available through IBM branch 
offices. 

General references 

IBM System1370 Vector  Operations, SA22-7125-3, IBM Cor- 
poration (1988); available through IBM branch offices. 
Optimization  Subroutine  Library  Guide  and  Reference, 
SC23-0519-2, IBM Corporation (1991); available throughIBM 
branch offices. 

Accepted for publication  September 10, 1991. 

John J. H.  Forrest IBM Research  Division,  Thomas J.  Wat- 
son Research  Center,  P.O. Box 218, Yorktown  Heights,  New 
York 10598-0218. Mr. Forrest is a research staff member at the 
Thomas J. Watson Research Center. He has overall respon- 
sibility for the contributions of  IBM Research to the Optimi- 
zation Subroutine Library. In this position he was responsible 
for much of the design of OSL and for the simplex and mixed- 
integer portions of the library. He has helped to develop sev- 

FORREST AND TOMLIN 37 



era1 other mathematical  programming packages, including 
UMPIRE  and  Sciconic.  Mr.  Forrest  has a B.A. from  Oxford 
University and  an  M.S.  from the  University of California at 
Berkeley. 

John A. Tornlin IBM Research  Division,  Almaden  Research 
Center, 650 Harry Road, Sun Jose, California 95120-6099. Dr. 
Tomlin is a research staff member  at  the Almaden  Research 
Center.  He  has  been with IBM  since 1987. He gained  a B.Sc. 
(honors) in 1963 and a Ph.D. in mathematics in  1967, both from 
the University of Adelaide, South Australia. Since 1968 he has 
been  involved in research  and  development in mathematical 
programming systems  and  their  applications, first with Sci- 
con,  Ltd.,  London, then at  Stanford  University,  and  subse- 
quently  at  Ketron,  Inc.  In 1970 he was  awarded an IBM post- 
doctoral fellowship at Stanford  University. He  is a  member of 
the Association for Computing  Machinery and the Operations 
Research  Society of America and is a charter member of the 
Mathematical  Programming Society. 

Reprint  Order No. (3321-5458. 

38 FORREST AND TOMLIN IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992 


