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In this paper  we  describe the simplex  algorithm 
and  briefly discuss the interaction of the detailed 
implementation of the algorithm with  the  changes 
in  computer  hardware  over  the  last 30 years. 
Then we give one example of the design  changes 
needed to implement the method  efficiently for 
the  IBM 3090m vector architecture. For the later 
RlSC System/6000m implementation,  it  was 
necessary to rethink this yet  again.  Finally  we 
discuss the issue of robustness  and the steps 
that  were taken to give maximum  reliability  in the 
simplex algorithm in the ISM Optimization 
Subroutine  Library. 

T he linear programming (LP) problem can be 
expressed in a  number of canonical  forms. 

We express it in the  very  general form: 

min cjxj 
x j  

subject  to: 

A x =  b 

Lj 5 xj 5 uj 

If the  number of variables, n ,  were  equal to the 
number of constraints, m, Equation ( 2 )  would be 
a  set of simultaneous  equations with (at most) a 
single solution.  There would be no possibility of 
optimization.  Normally, n is significantly greater 
than m ;  a typical medium-sized LP model might 

have 20 000 variables an1 d 5000 constraints.  The 
matrix A is almost  always  very sparse, typically 
with less than  ten  nonzero  elements in each col- 
umn-a very  important  factor in the  development 
of efficient algorithms.  In  geometric  terms  the 
constraints  describe  a  (convex)  polyhedron in the 
solution space of the x variables.  Points  on or 
inside the  polyhedron are feasible solutions. 
Those  outside  the  polyhedron are said to be in- 
feasible. 

One could imagine trying to solve the LP problem 
by choosing a  subset of m columns of A ,  fixing the 
other variables at  a bound and  attempting to solve 
the  equations.  Not all choices of m variables will 
be valid, but many (perhaps very many) will, and 
for  each of these  variables we would have  a so- 
lution and thus  a value of the  objective  expressed 
in ( 1 ) .  Each  such  solution  corresponds to a vertex 
of the  polyhedron of feasible  solutions,  and it can 
be shown  that an optimum solution must  occur at 
a  vertex.  It follows that by evaluating all possible 
choices  we could (in theory)  obtain  the  optimal 
choice of variables-optimal  in the  sense  that  the 
function of (1) is minimized. Although such  an 
approach would be  extremely ill-advised in prac- 
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tice,  an intelligent, ordered  search of this  set of 
solutions is in fact  the underpinning of the simplex 
method to  be discussed in this  paper. Geometri- 
cally, this method  moves  from  one  vertex  to an 
adjacent  vertex with improved solution value and 
continues until no  such  improvement is possible. 

The power of the  linear programming model as a 
decision-making tool derives from a number of 
circumstances: 

Many real-world problems  can be modeled in 
this way (see,  e.g., Williams'), from problems 
as simple as blending animal feedstuffs to  those 
as complex as modeling all of the flights of a 
large airline.  The  lower  and  upper  bounds on 
the variables correspond  to real  constraints  on 
the values that a decision variable may take,  the 
most normal lower bound being zero.  For ex- 
ample, the amount of oil pumped through  a pipe 
may not be  negative,  nor may it exceed  the  ca- 
pacity of the pipe. 
Simple extensions  to  the linear objective  and 
linear  constraints  to allow for  some nonlinear- 
ities make  the  technique  even more powerful. 
In  a  competitive  market  a  "best" solution is 
needed,  and  other  heuristic  techniques  do  not 
guarantee finding an optimal solution. 
Powerful algorithms exist  for solving such lin- 
ear programs (LPS), implemented in robust soft- 
ware  packages, which not only solve  them  but 
have facilities for model manipulation and  stan- 
dard  interfaces with model management sys- 
tems. 

Basic algorithmic approach 

In  this  section we give a  very simplified version of 
the primal simplex algorithm. Later we will give 
a version that is closer to modern implementa- 
tions,  but it is more  important  that  the  reader 
grasp  the  basic  concepts  than  the  details.  Inter- 
ested  readers  are  referred  to  Dantzig.2 

For most of this  paper  we will work with a slightly 
simpler representation of the  model,  where  the 
general  bounds in (3) are replaced by simple non- 
negativity constraints: 

xj 2 0 (3a) 

In  practice many of the  constraints are often in 
inequality form,  e.g. , 

12 FORREST AND TOMLIN 

n 

a,xj I bi 
j =  1 

In such  cases we introduce  "slack"  variables to 
convert  the  constraints  into  equalities.  The col- 
umns corresponding to these  variables are unit 
vectors  that  have  a  one in row  i  and  a  zero cj 
coefficient in the  objective, or  cost, function. All 
other variables will be  termed  "structural." 

Following the  practice hinted at in the  introduc- 
tion, let us divide the  variables  into  two groups-a 
set of ( n  - m )  independent or nonbasic variables 
X ,  and m dependent or basic variables x, .  The 
latter  are called basic  because  their  correspond- 
ing m columns B are assumed to  be linearly in- 
dependent.  The LP problem may be  rewritten: 

min c,' xB + c i  x ,  (4) 
X 

subject  to: 

Bx, + Nx,  = b ( 5 )  

x,,  x, 2 0 (6) 

where A = ( B ,   N )  . If we  set x N  to  some plausible 
feasible values, we may write: 

x, = B"b - B"Nx, (7) 

and in particular  when  we  choose X ,  = 0 ,  then 
x ,  = B - ' b ,  which results in a  value of the  ob- 
jective of z = c,TB - ' b .  

For simplicity, we assume  that  this solution is 
"feasible," i.e. , that x ,  is nonnegative. It  is, how- 
ever, unlikely to be optimal. To  search  for a better 
solution,  we  see  what  happens if we  change  one 
of the  nonbasic  (independent)  variables.  From (4) 
and (5)  we may express  the  objective completely 
in terms of the  nonbasic  variables as z + (c;  - 
cJB" N ) x , .  Now  consider  the "reduced  costs" 
for  columns a , j  in N :  

d .  J I  = C .  - c,TB"u,~ E N) (8) 

For any d j  < 0 the  objective will decrease  as x j  
is incrementally increased. If no such negative d j  
exists,  the solution is indeed  optimal,  and  we are 
done.  Otherwise  we  must find out how far this 
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nonbasic  variable  can  be  increased  without  caus- 
ing a basic variable to  become negative. Let  the 
value of the  chosen x j  be  a  parameter 8 2 0. We 
see  that: 

xB B”b - 8B-la,j (9) 

In  the  event  that all elements of B - *  a , j  are non- 
positive,  the  objective  can  be  decreased without 
limit as 8 increases  from  zero.  This unbounded 
situation  is normally only encountered  for incor- 
rectly  formulated models. Otherwise  we  increase 
8until  some member of xB reaches  zero, move the 
corresponding column ofB to N ,  and  replace it  by 
a , j  to obtain  a new basis.  This  process is re- 
peated, possibly thousands of times, until we 
reach  the optimal solution. 

In  practice the task of  finding the  set o f j  where 
d j  < 0 is done in two  parts.  First we compute  the 
shadow  prices or pi  values: 

7~ = c,TB-’ (10) 

and  then 

dj = cj - ~ T ~ u , ~  E N) 

The  other major computational effort is  in  finding 
B”a,j. 

History 

The simplex method was invented by George 
Dantzig about 1947. Its usefulness and suitability 
for  the  then newly invented  electronic  computer 
was  soon recognized and  exploited. By 1951 the 
method had been implemented on  an IBM card 
programmable calculator.  This machine had 16 to 
80 registers  and used punched  cards. Initially a 
new copy of B - I  had to  be punched in cards  for 
each  iteration,  but it was  seen by 1954 that  the 
algorithm could be adapted  to suit the  computer 
architecture. 

A  crucial  advance was to maintain B as  a prod- 
uct of elementary  transformations, or 

B” = E&-,  - E&, (1  1) 

where  the Ek are m X m identity  matrices with 
just one column 7 . k  modified, i.e., 
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These  transformations are often  referred to  as 
“column etas”  or  just  “etas,” and only one Ek 
need be  punched  out  per  iteration  and  added  to 
the  factorization of B - I .  Periodically B was 
computed from scratch  to eliminate the buildup of 
round-off error  and  reduce  the length of the  eta 
file. 

A problem with 45 constraints  and 70 variables 
was considered large at  that time and could take 
about eight hours  to  solve.  However,  the  basic 
concepts of simplex implementation had been  set 
for  the  next 30 years. As we  have  said,  the model 
matrix A is usually very  sparse.  The  elementary 
transformation  vectors may be  denser  but still 
only of the  order of hundreds of nonzeros  for  a 
problem with thousands of rows. 

The  work involved in the major tasks of each sim- 
plex iteration are then: 

1 .  Form  a  dense  m-vector c; and apply a se- 
quence of sparse  transformation  vectors ci t 
C J E k  for k = (1, 1 - 1 ,  - - * 2 ,  I} to obtain 7~. 

2. Compute d j  = cj - v T a  . j  for  some  columns 
j .  This involves taking the  inner  product of a 
series of sparse  vectors a , j  with a  dense 
m-vector 7 ~ .  

3. Expand  the  chosen  (sparse)  into a full 
m-vector  and apply the  sequence of elemen- 
tary  transformation  vectors a . j  + Eka . j  for 
k = (1,   2,  . * . I  - 1 ,  I}. 

Each of these major operations  consists of se- 
quentially applying sparse  inner  products  or ad- 
ditions to a dense  vector of length m ; so if we 
have enough registers or high-speed memory to 
contain m  values,  we  can  achieve a reasonable 
speed. Also note  that while operations 1 and  3 
involve the  basis  inverse,  step 2 could  scan  the 
entire matrix N .  If n > > m, this  scan may be 
time-consuming. 

In 1956 an LP code  for  the IBM 704 computer  ap- 
peared. The IBM 704 had 4 to 8K 36-bit words of 
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memory, plus tapes  for backing storage.  Tapes 
were ideally suited to  the algorithm as described 
so far, since the original matrix could be  stored  on 
one  or more  tapes, while the  elementary  trans- 
formations could also  be  created  on  one or more 
tapes.  Operation  3  read  the  tapes  forward (and 
was called FTRAN, for  forward  transformation), a 
new transformation  was  added to  the  end, and  the 
tapes could be  read  backwards  for  operation 1 
(called BTRAN). The  size of problem that could be 
solved with this  system was now up  to 256 rows. 

From 1960 to 1966, LP/% and C-E-I-R LP/90/94 were 
written  for  the  more powerful IBM 7090 and 7094 
computers, which had 32K  36-bit words, hard- 
ware floating point,  and  tapes.  These  codes  were 
very  sophisticated  and could solve problems of up 
to 1023 rows.3 With a sufficient number of tapes 
there  was a good match  between  the floating- 
point unit and the 1/0 devices.  (It  also made LP 
visually more  interesting  than it is now.) 

When IBM moved to  the dramatically different 
Systed360” and System/370* architectures, with 
much  larger memory and  disks,  the first IBM LP 
code (MPS/360) did not  take real advantage of 
the new hardware.  In  the UMPIRE code  for  the 
Univac 1108, the  authors4 did take  advantage 
of the fact  that  disks  were  random  access,  and 
that updating therefore did not  have  to  occur 
only at  the end of the file. Use of this knowl- 
edge allowed elementary  transformations with 
fewer  elements, with a  corresponding  increase in 
speed.  These  ideas  were  subsequently  incorpo- 
rated in IBM’s Mathematical Programming System 
Extended/370 (MPSX/370). By the  mid-l980s, with 
use of large real  and  virtual  memory,  the only 
change in overall design was  that virtual memory 
became  the  “slow”  device taking the place of 
disks,  whereas  the  cache  became  the high-speed 
memory. 

In  summary,  the simplex method  has evolved 
with computers  and  has,  sometimes  tardily,  taken 
advantage of each  advance in computer  architec- 
ture. 

Restatement of the  simplex  algorithm 

This  restatement of the algorithm is not com- 
pletely general-it only deals with the  case  where 
all variables  have  zero  lower  bounds  and infinite 
upper  bounds.  However, it is sufficient for un- 
derstanding  the  remainder of this  paper.  For brev- 

14 FORREST AND TOMLIN 

ity we also omit discussions of some preliminar- 
ies.  These include “presolving” to remove 
redundancies from the LP model and  “crashing” 
an initial basis.  The  steps  involved  often allow a 
“good” basis to  be  chosen, which can  reduce the 
number of iterations  needed by a substantial 
amount. 

The  steps of the simplex method  (and  their  asso- 
ciated jargon) may be  described as follows: 

0. (INVERT and Initialization) Choose (or read in) 
a basis B from the columns of A and define xB 
and x N ,  the  vectors of basic  and  nonbasic  var- 
iables. Set xN = 0. Compute  the  product  form 
inverse of B .  In  practice  we  factorize (some 
permutation of) B as L U where L is lower tri- 
angular and U is upper  triangular.  The  product 
form of their  inverses may be  written trivially 
as : 

B” = u;’u;’ . . . u;’L;’ . . . L;’ 

where  each of the L;’ and U,’ are elementary 
transformation  vectors, of the  same  type as 
E k ,  constructed from the columns of L and U .  
For  convenience  we will usually continue  to 
write: 

B-’ = E,E,-, - * * E,El 

After completing this  factorization, histori- 
cally known as INVERT, we may compute: 

xB = /3 = B”b 

1. (FORMC) If the solution is feasible (xB non- 
negative), we wish to minimize the  true  objec- 
tive c T~ and form a  vector  containing  the  cost 
of each  basic variable: q = c; . If the solution 
is not feasible, in order  to  move  toward  feasi- 
bility we try to minimize the  “sum of infeasi- 
bilities.” To accomplish this  we  try to increase 
all basic variables below zero by giving them 
“costs” of - 1.0 and by giving feasible  varia- 
bles a  cost of zero. We then define q T  using 
these  costs  instead of c i .  

2. (BTRAN) Apply the transformations in reverse 
order: 

aT = - q T E I  * - * E  E 
2 1  
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Note  that  these  are  the negative of the values 
1 described  earlier. 

I 3. (PRICE) Compute  the  reduced  costs  for some 
or all  of the  nonbasic  variables: 

d j  = cj + ~ ~ u , ~  (a.j E N) 

where a ,  denotes  columnj of the matrix. If the 
problem is infeasible,  we omit the c j  term. 

tive reduced  costs. If there  are no negative 
reduced costs, we have finished, with an  op- 
timal solution if the problem is feasible,  or  we 
have  proved  that  there is no feasible solution 
otherwise. 

D Choose onej ,  say g ,  among those with nega- 

4. (FTRAN) Apply the  transformations in forward 
order: 

a = B”a,g = E, * * * E,E,a,g 
D 

5 .  (CHUZR) Choose which variable will leave the 
basis  because it reaches  zero first. When the 
solution is feasible,  we may describe this in 
terms of a  ratio  test of finding: 

where p becomes  the pivot row and x B p  leaves 
the basis. If there is no  such  row,  the problem 
is unbounded. When infeasible, the  test is sim- 
ilar but  somewhat more complicated. 

6. (UPDATE) The factorization of B is modified. 

this involves  creating a new eta E,,, so that 
B In  the  product form of the simplex algorithm, 

where  (lettingp,,, = p )  the  nonunit column of 
E,,] is defined by 

The new values of the  basic variables are then: 
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F 

X B  = p = E,+,P 

More sophisticated  implementations of the 
simplex method may directly  update the tri- 
angular factors L and U .  

We then  repeat from step 1. Periodically we  must 
INVERT (refactorize), or  repeat from step 0, for 
speed (since the  representation of B -’ is becom- 
ing longer and longer) and  to  avoid the buildup of 
round-off error. 

Exploiting  the 3090 Vector  Facility 

Up until the  late 1980s, the way to a  fast simplex 
implementation was to reduce  the  amount of data 
moved into high-speed memory and get the  data 
there  as  fast  as  possible by minimizing disk I/o 
times or  cache  misses.  Once  the  data  were in 
high-speed memory, the time for  the floating- 
point operations  dominated  the  algorithm, so re- 
ducing the  number of such  operations was of par- 
amount  concern.  This  situation  changed with the 
introduction of the IBM 3090” Vector  Facility, as 
some floating-point operations  became more im- 
portant  than  others.  This  comparison is particu- 
larly apparent  when  we  consider  the pricing op- 
eration. 

There  are many ways to  choose a variable with a 
negative reduced cost. Variants  (termed pricing 
strategies) include: 

1.  Passing through  the  entire  matrix N ,  comput- 
ing d j ,  and  choosing the column with the  most 
profitable reduced cost (called “full pricing”) 

2. Only scanning part of the  matrix to obtain 
some reasonably profitable reduced  costs 
(“partial pricing”) 

3.  As above  for 1 or 2 but  selecting  several col- 
umns at  a time (“multiple  pricing”). All  of 
these could then  be  updated  simultaneously, 
which involved only one  pass  through  the 
transformation data. 

4. Using the  Devex  method (from the  Latin 
“steepest”)  due  to  Harris,* which uses full 
pricing but requires  additional  work to com- 
pute weights w j  and to select  the column on  the 
basis of the  best weighted reduced  cost djlwj  

Method 3 was preferred from the mid-1950s to  the 
mid-l980s,  as it allowed several  iterations  for a 
partial pass  through the matrix and  one  pass 
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Table 1 Sparse  inner product speedup 

2.18 
2.41 
2.61 
2.77 
2.91 
3.35 

through  the  transformation  data.  Method 4 typi- 
cally took  fewer  iterations  but  more time on most 
models, as  the  iterations  were  considerably  more 
expensive. With changes in computer  architec- 
ture,  the  advantage of being able to make several 
updates in one  pass  through  the  transformation 
data declined. For a single update  better use 
could  be  made of the  registers,  and the balance 
between  cache  overhead  and floating-point oper- 
ations was reasonable. 

Let us re-examine  work involved in pricing in 
more detail, writing the  core  computational  step 
in full as: 

m 

d, = cj + riai i  (a,, E N )  (13) 
i= l  

In general, nearly all of the a iJ are zero-normally 
less  than  ten in any column will be nonzero-and 
only  the  nonzero  elements  are  stored in a  data 
structure  consisting of the following arrays: 

Elements-a  64-bit array of floating-point num- 
bers giving the  nonzero  elements.  The  size of 
this  structure  is  the  total  number of nonzeros in 
the matrix. 
Indices-an integer array of similar size giving 
the row of the  matrix  on which the  correspond- 
ing element lies 
Start-an integer array giving the position in the 
above  two  arrays of the first element and  row 
index  for  each column 
Number-an integer array giving the number of 
nonzero  elements in each column 

The double  loop  that  can  be defined for  comput- 
ing (13), and then using dl for  several columns, 
can  be  translated  into FORTRAN as: 
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DO Column = Start,End 
C on l y  do i f  n o t   b a s i c  

I F (  ......) THEN 
Inner-Product=Q.QDQ 
DO I = Start(Co1umn)  ,Start(Column) + 

Number(Co1 umn) - 1 
Row-i ndex = I n d i c e s   ( I )  
Inner-Product = Inner-Product + 
P i  (Row_index)*Elements(I) 

ENDDO 
C use  Inner-Product 

...... 
END1 F 

ENDDO 

The FORTRAN compiler for the 3090 can  vectorize 
the inner loop as: 

C l oad  number o f  nonzero  elements 
L R1,Number-of-Nonzeros 

C e n t e r   s m a l l e r   o f   s e c t i o n   s i z e  and number 
C remain ing   to  be  done 
LOOP  VLVCU R 1  
C row  numbers  where there  are  nonzero  elements 

C load  corresponding  values  from  dense P I  

C m u l t i p l y  and accumulate  inner  product 
C using  the  nonzero  elements o f  column 

C back t o   l o o p  i f  any  more  elements 

VL V1,Indices 

VLID VE,Vl,Pi 

VMCD V4,VE,Elements 

BP  LOOP 

The  speed of this  vectorization  is  approximately 
four cycles per element as compared  to  approx- 
imately 18 cycles  per  element for the  correspond- 
ing scalar coding. This  comparison  looks prom- 
ising until we find that  there is a fixed overhead of 
approximately 180 cycles for the  vector  loop  as 
compared  to 15 cycles  for  the  scalar loop. For 
different numbers of nonzero  elements we obtain 
the  results in Table 1. 

A speedup of two is not  seen until a column has 
more than 30 elements, which is  not  common. 
The  break-even point is  between 11 and 12. 

Let us examine  a medium-sized, fairly dense LP 
which,  after  “reduction”  to  remove  redundan- 
cies,  has 3526 rows, 9625 variables,  and 70560 
elements, giving an  average of  7.33 nonzero ele- 
ments  per column (the  “slack”  variables  are  not 
included in the  statistics). No column has  more 
than 25 entries,  and we can  expect  no significant 
increase in speed if we vectorize  the inner loops. 

The 3090 Vector  Facility  has  a relatively large 
startup time, and so we need to  use it for large 
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numbers of homogeneous operations.  There  are 
no large numbers in the first column of Table 2, 
but  there are plenty of large numbers.  For  exam- 
ple, there are 588 columns with exactly  seven el- 
ements. 

The solution to using the  Vector Facility effi- 
ciently is to reorder  the  matrix so that all columns 
with  the  same  number of entries  are  grouped  to- 
gether  and  then  vectorize  the  outer  loop of the 
inner  product loop, rather  than  the  inner loop. If 
we have T columns  with  exactly K nonzero ele- 
ments, we can  store  this  as  two  dense blocks-Zk, 
fork=l,.**,K,t=l,...,Tfortheelements 
and  a similar one, Ikt, for  the  corresponding row 
indices. 

With this  scheme  the FORTRAN loop  above  can be 
restructured  for  each  such block as: 

D O k = l , K  
D O t = l , T  

Row-index = I ( t , k )  
Inner-Product ( t )  = Inner_Produc t ( t )  + 

P i  (Row_index)*Elernents(t,k) 
ENDDO 

ENDDO 

the inner loop of which the FORTRAN compiler can 
vectorize  (for  the  kth  nonzero in each of the  col- 
umns) as: 

1. LOAD the  vector of indices 

VL V1,Indices 

to get (i,,,  i,,, - - , i k T )  

2 .  Use  the LOAD INDIRECT vector  instruction 

VLID  VZ,Vl,Pi 

to get PI = (- - rik, * .) 

3. Denoting the  kth row of Z (in memory) as 

Z ROW= (aikl, aikz, . * 7 ark,) 

use the MULTIPLY AND ADD instruction 

VMAD V4,VZ,Elements 

to add the element-by-element product of this 
vector with PI  to update  the  reduced  costs: 
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Table 2 Frequency of nonzeros  per  column 

Number of Number of 
Nonteros  in Column Structural Columns 

1 569 
2  1,438 
3 938 
4 84 
5 520 
6 124 
7 588 
8 2,656 
9  1,364 

10 84 
11 188 

12 100 
13 56 
14 156 
1s 204 
16 80 
17 84 
18 8 
20 4 
21 8 
22 40 
23 216 
24 88 
25 24 

. . . Vector Break Even . . . 

DJ + D J + P I + Z R O W  

To use  stride  one  and avoid cache misses, these 
two  blocks of data  are  stored row-wise. We also 
sort  the  blocks so that all of the  nonbasic columns 
are  at  the beginning. This  ordering  means  that we 
need not  look  at  the  basic columns. The  only 
drawback is that for each  iteration we may have 
to modify two blocks of the  matrix,  one  to  adjust 
the block for  the incoming column and one for the 
outgoing. For problems of any  size  this  overhead 
is trivial. 

One obvious  question is whether we can  do  this 
sorting for every  matrix. If we decide to  sort only 
for  columns  with  less  than  a  certain number of 
nonzero  entries, as problems become larger we 
can  achieve  a  success  rate approaching 100 per- 
cent. All columns with enough nonzeros  vector- 
ize in the normal (unblocked)  way;  hence, if we 
arbitrarily  set 30 as an acceptable number for  a 
vector length, the  number of columns  that fall in 
a block with too few columns must be  less  than 
30 X 30. In practice we find that  this  reordering of 
the  matrix for vectorization  is  worthwhile  for all 
matrices with more  than  a few hundred columns. 



Table 3 Example  with  scalar  PRICE 

Wurk  per Work per lteratlons Work 
Iteration  Itlevation 

20,000 5,600 
Devex 10,000 6,000 

Table 4 Example  with  vectorized  PRICE 

Work per Work per lteratlons Work 
ttlraration  Lteratlon 

20,000 5,000 
Devex 

With this  reordering,  we  achieve  a  performance 
improvement of a  factor of four, which is close  to 
the  asymptotic  improvement 18/4. This improve- 
ment only applies  to PRICE. For  the  other time- 
consuming  operations,  we  are  unable  to  do much 
reordering,  partly  because of the  order  depen- 
dency of the  operations  and  partly  because  these 
structures  are continually changing (but  see 
Eldersveld  and  Saunders'  for a quite different ap- 
proach). 

Now we must consider  the effect of being able to 
improve  this  particular  portion of the  code by a 
significant amount. As we  mentioned,  the con- 
ventional wisdom (based  on  tests when IBM'S 
MPSX/370 was being developed in the early 1970s) 
was  that  partial pricing was preferable,  even 
though it might take  more  iterations. To  see why, 
consider  the effect of two different pricing strat- 
egies (in Table 3) on a hypothetical  problem, us- 
ing an arbitrary unit of work (very approximately 
one million floating-point operations).  The  econ- 
omy of the  Devex  method in number of iterations 
is clear  even though the time is longer. 

Now let us see  what is the effect of being able to 
do  some floating-point operations (especially in 
PRICE) four  times  as  fast.  The new times are 
shown in Table 4. They  represent  a significant 
gain. 

The  point to  be made is that the gain came  about 
after a multistage process of examining what a 
new architecture  has  to offer: 
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1 .  Identify which parts of the  current implemen- 
tation of the algorithm could expect  a gain. 

2. Identify which parts of the algorithm could 
gain if the  data  structures  were modified. 

3.  Identify any modifications to  the algorithm, or 
even totally different algorithms, which are 
more suited  to the new architecture. 

4. Balance the  last  three  points to obtain  the max- 
imum improvement. 

Much the  same  general  approach is advocated by 
Zenios and  Mulvey. I o  This  discussion  has  con- 
cerned  the simplex algorithm and its modifica- 
tions,  but  interior point algorithms currently  seem 
able  to make more extensive  use of many of these 
architectural  changes. I' 

The initial work on  vectorizing PRICE was done 
for MPSXi370. On easy  problems  (where  the  scalar 
code had given satisfactory  performance)  there 
was little speedup,  whereas  the  best  result 
achieved reduced  the running time on  one prob- 
lem from 574 minutes to 150 minutes, a factor of 
3.8. An experimental IBM Yorktown  code  gave  us 
the  opportunity  to  repeat  the  steps  outlined  above 
with a new design so that  every  aspect could be 
considered  and  every  opportunity  taken  to  vec- 
torize  the  code.  This  code  evolved  into  the sim- 
plex component of the IBM Optimization Subrou- 
tine Library (OSL). Table 5 (part of Table 1 of 
Forrest  and  Tomlin")  summarizes  some of the 
resulting improvements  compared  to  scalar MPSX 
code (times are given in minutes  on a 3090). 

The  last  entry in Table 5 is the problem we used 
as  our  earlier  example  but showing the  unreduced 
dimensions. Also note  that  the  speedup  ratios are 
better  for  larger,  denser  problems.  These  results 
were  obtained in  1987 and 1988; since  then the 
OSL simplex algorithm has  been  further im- 
proved. 

Another  opportunity afforded by improved 
PRICE-type calculations is in the  implementation 
of another variant of the simplex algorithm that is 
even more expensive  on  scalar machines-the 
dual simplex algorithm. This algorithm makes 
even more extensive  use of pricing calculations 
and is well-suited to many problems. Using the 
new data  structures,  we  obtain  the  results in 
Table 6 for  the 4422 (original) rowed problem. (All 
times are scaled to 3090E minutes,  except  for  the 
RISC System/6000* time.) 
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Table 5 Speed  improvement of vectorired  research  code Over  scalar MPSX1370 

Rows Columns Ptonretos lteratlons Time Speedup 

1,152 2,763 10,941 1,045 0.05 1 .o 
147 2,655 14,005  976 0.10  1.6 

4,98 1 6,221 34,895 5,988 1.30 2.9 
930 3,523 14,173 1,562 0.12 1.3 
398 2,750 1 1,334 1,753 0.17 1.5 

3,829 8,216 108,968 7,418 3.51 3.3 
822 1,571 11,127 2,699 0.40 3.1 

3,526 9,625 74,090 13,273 7.92  4.0 
1,442 3,652 43,220 6,092 3.71 5.0 
5,564 6,181 46,578 10,018 4.90 2.8 
2,357 11,004 128,286 21,523 17.83 4 .O 
2,942 11,717 99,121 16,679 9.65 3.7 
4,422 6,711 110,342 42,580 47.21 12.2 

RISC and the RISC System/6000 

After  several  years  spent writing a  code from 
scratch  to  take  advantage of the 3090 vector ar- 
chitecture,  we  were  then  faced with the new RISC 
architecture in the RISC System/6000. To under- 
stand  the  consequences of this  architecture  for 
the simplex method,  we need to look at  the com- 
parative  characteristics of some  important 
classes of operations in terms of machine cycles: 

Dense  processing  for simple (one-dimensional) 
arrays.  The critical (composite)  operation  here 

tistics  are: 
3090 scalar-I4 cycles 
3090 vector-2 cycles  (asymptotic) 
RISC System/6000-2 cycles 

Sparse  processing  for simple sparse/dense  ar- 
ray  operations.  The critical sequence of instruc- 
tions  here is LOAD (an index) - LOAD (a value) 
- MULTIPLY - ADD. The statistics are: 

3090 scalar-I8 cycles 
3090 v e c t o r 4  cycles  (asymptotic) 
RISC System/6000-4 cycles 

For  sparse  work  the floating operations  can be 
free.  The  bottleneck is in getting the  numbers  to 
and  from  registers.  This  situation suggests that 
extra  work should be done  once  the numbers 
are in the registers. 
There is no special advantage  to  restructuring 
the matrix, in contrast  to  the Vector Facility. 
Cache misses are considerably more expensive. 

In  an  earlier  paper,  we  stated  that “One lesson 
from this (vectorization)  exercise is that it  may be 

is LOAD - MULTIPLY - ADD. The relevant Sta- 
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Table 6 Solution  times  for  4422 row problem 

System Time Iteratione 

MPSX Version 1 5 17 302,357 
MPSX Version 2 83 48,858 
OSL Primal 25 36,050 
OSL Dual 11 11,410 

On RISC System16000 520 
OSL  Dual 32 11,449 

advantageous to search  for  other  column  selec- 
tion schemes which are  better  than  Devex  even if 
they need more computation, including schemes 
which were  considered  and  rejected  some  years 
ago.” I ’  

On the RISC System/6000, it is possible to  do  extra 
floating-point operations  at small (or  sometimes 
no) extra  cost,  and  some of these  ideas looked 
even more promising. In  particular, taking two 
inner  products simultaneously turns  out  to be 
only 20 percent more expensive  than  one. At the 
suggestion of Don  Goldfarb,  we  experimented 
with the  steepest-edge pricing, to which Devex 
pricing can be regarded as  an approximation. l2 

Although this approach did not  lead to universal 
success, it did lead to  a  substantial  reduction in 
iterations  for many problems.  Tables 7-9 show 
the  results, on a  set of nontrivial test  problems, of 
using the  steepest-edge  method in comparison to 
several  other  strategies  on  the mainframe com- 
puter and in comparison to  the  standard  Harris 
Devex method on a RISC machine (all times ex- 
clude input). 
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Table  7  Test  problem  characteristics 

Eodel 25FV47  PILOTS OFLOO1 

original 
Rows 821 1,441 6,071 
Columns 1,571 3,652 12,230 
Nonzeros 10,400 43,167 35,632 

Reduced 
Rows 715 1,374 4,840 
Cokumns 1,484 3,361 10,999 
Nonzeros 9,994 40,757 33,146 

Table 8 Times (in seconds)  on  a 3090s with  Vector 

Model 25fV47 PILOTS DFLOOl 

Facility 

MPSX (no Detrex) 
Iterations 3,681 8,432 >600,000 
Solution  time 47.5 892.8 >54,aOO.O 

OSL-Full pricing 
Iterations 2,917 11,165 964,893 
Solution time 19.6 338.9 31,580.4 

OSt-Nmis Devex 
Iterations 2,183 5,483 50,327 
Solution  time 15.3 176,4 1,342.4 

0SL“Steepest edge 
Iterations 1,361 3,376 21,117 
Solution  time 14.1 148.3 740.9 

Table 9 Times (in seconds)  for  a RISC System/6000 
Model 540 

Model 25W47 PILOTS DFLOOl 

OSG-Banis Devex 
Iterations 2,f91 5,211 43,012 
Solution  time 26.1 273.2 3,829.9 

OSG-Steepest edge 
Iterations 1,184 3,297 17,343 
Solution  time 16.6 201.8 1,514.6 

Returning to  the 4422-row problem,  and applying 
these  steepest-edge  ideas  to  the dual algorithm, 
we  obtained  a new “best  time” of 7.5 minutes to 
solve it in 4827 iterations  on  the RISC System/6000 
Model 540 (see  Table  6). 
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Stability 

One of the  objectives of the IBM Research simplex 
code which became  part of OSL was to  be  as  fast 
as possible. The  other main objective  was to solve 
all problems presented  to  the code. With finite 
precision arithmetic this last  objective is impos- 
sible to  achieve, but it remains  a  worthy  target. 
This section  describes  the  steps  taken  to  ap- 
proach  this target as closely as possible and, if the 
target is unreachable  for  any  reason,  to fail in as 
controlled a  manner as possible. 

First let us discuss some of the  ways in which the 
simplex algorithm can  fail, bearing in  mind that in 
every  case  the  worst possibility is that  the algo- 
rithm does  not recognize that it is failing and 
never  terminates.  One well-known possibility is 
that  the algorithm “cycles.” This outcome is pos- 
sible if the 8 computed in step 5 is zero  for  several 
iterations,  because  then we are not making any 
progress in the  objective,  and it is possible to 
bring in and  throw  out  the  same  sets of variables 
from the basis ad infinitum. Zero  moves  occur 
very frequently,  and in such cases  the problem is 
termed  “degenerate.” When this  happens,  the 
simplex algorithm is likely to  take more  iterations 
than  usual,  but luckily there  are  ways  to avoid 
actual cycling in these  cases.  It  turns  out  that 
some of the  ideas  discussed  below, as well as  the 
Devex  method  discussed  earlier, help to  reduce 
the number of iterations. 

A more serious problem is oscillation. At step 0 
the simplex algorithm first finds a factorization. 
The  steps in finding LU such  that B = LU are 
similar to  those involved in solving simultaneous 
equations by Gaussian  elimination,  and we may 
find that  one  equation is a  linear  combination of 
others. In this  case  we find ourselves  attempting 
to divide by a  zero  pivot, which is illegal. Other 
forms of ill-conditioning may also  lead  to unac- 
ceptable  pivots  (“singularity”) in INVERT. In this 
case  the normal practice (as in MPSX/370) is to dis- 
card  the offending column, replacing it by the 
“slack” column for  that  constraint,  or  an  “arti- 
ficial” variable if the  constraint  was an equality. 
This may change  the  objective value or make the 
solution infeasible when it had been  feasible. The 
danger is that  at  one  refactorization  the problem 
is feasible so that  the algorithm is in “phase 2”; 
then steps 1 to  6  are  repeated  several  times. At 
each iteration  the  accuracy of the  factorization 
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B 
will decrease.  This  decrease will not be recog- 
nized,  and  some bad iterations may occur. At the 
next  refactorization  the basis is discovered  to be 
“singular,” a column is replaced,  and  the problem 
becomes infeasible so that  we are back in “phase 
1.” The algorithm now tries to become  feasible, 
succeeds,  but may or may not  have  a solution that 
is as good as  the  one it had before. On numerically 
difficult problems  such  a  situation could and did 
happen with MPSXi370. Even if the new basis is not 
singular,  the solution (p)  used in step 5 may have 
become  inaccurate, so that  after  refactorization 
the problem is slightly infeasible. 

E 

What can  be  done  about  such  situations?  The  an- 
swer is many things,  each of which helps, but 
where  the cumulative effect is important,  as  the 
ideas  often  work  better  together  than in isolation. 

E 
First let us look at  the  accuracy problem in iso- 
lation.  Prevention being the best cure, we  seek  to 
make  the  operations as  accurate  as possible and 
then  check  their  accuracy.  The first step is to  have 
the most accurate  factorization  that is possible, as 
this will be the  keystone of  all our efforts. The 
“numerically  correct”  approach  to  simultaneous 
equations will attempt  to  do  two things: 

b 
1. Look for ways to implicitly reorder the rows to 

obtain a near triangular form, reduce the amount 
of work, and minimize the number of nonzeros. 
For  the LP factorization this approach reduces 
the number of floating-point operations needed 
to transform B into U-which helps reduce the 
buildup of error. 

2. Choose large elements as pivots to use in elim- 
inating others in that row or  column. B 

The best-known method to  achieve  these goals is 
called the  “dynamic  MarkowitzI3 method”- dy- 
namic because we are continually looking at the 
sizes of the elements. MPSX/370 and many other 
systems  were designed for smaller memories and 
used  a bit map  representation of the basis (a 1 
where  there  was  an element and 0 where there 
was not) or some  other symbolic representation. 
This allowed them  to  attempt  to  reduce  the num- 
ber of operations,  but  gave no control  over  the 
size of the  pivots. If these pivots were subse- 
quently  found  to be too  small, it was necessary  to 
resort  to  a fairly primitive method to continue. 
With current large memories and work done by 

D 
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Reid14  we can implement the full dynamic Mar- 
kowitz method.  It is essentially  identical  to  the 
one now in ESSL-the Engineering and Scientific 
Subroutine  Library. Is 

Given a  stable  factorization,  then in the  worst 
case we could refactorize  every  iteration,  assum- 
ing that we can recognize the buildup of inaccu- 
racy.  However,  the  update  described in step 6 is 
known to  be unstable.  The most stable  update is 
due  to  Bartels  and  Golub. l6 This  method was not 
practicable  before  the  days of large memories, 
and the  authors implemented a more  practicable 
method.  The  latter  lacks a  priori theoretical  sta- 
bility but  has  greater stability in practice  than  the 
product  form  update and allows for  a  check on 
stability. If the  check  fails,  there is no  recovery 
except  for  a  refactorization,  but as it  is more 
suited  to most computer  architectures  than  the 
Bartels-Golub method, it  is used in OSL. We can 
accept  the  occasional  premature  refactorization; 
it is the  average time on which we must judge 
performance. In OSL the stability checks  were 
made considerably  tighter  than in MPSX/370. 

After tolerably accurate basis factors  have  been 
obtained,  the  next  step is modifying the algorithm 
itself to  improve  overall  accuracy.  Previously  we 
mentioned the  improvement in performance  due 
to using the  Devex  ideas from Harris,  and col- 
umns chosen using this form of pricing do  seem to 
be “better” for an  accurate  sequence of itera- 
tions. But the  same  paper  contained  ideas  on 
pivot choice  that  were widely ignored. Pursuing 
some of them, we see  that in the  textbook non- 
degenerate  case we only have  a single pivot 
choice in step 5 .  However,  most  loss of accuracy 
in iterating comes from pivots  where p, is close 
to  zero.  To  see why this should be so let us ex- 
amine the following case: 

Row Alpha Beta 
I 1 .o 0.0 
2 0.000000 1 0.0 

Here  the minimum value of f3 is achieved  for  both 
rows,  and we  may choose  the  larger  pivot  on  row 
1, which will tend  to give a  more  stable pivot in 
the UPDATE step  than using the smaller value  on 
row 2. But in practice p values are rarely  exactly 
0, sometimes  because of buildup of rounding 
error  and  often  because  the  data  have been given 
with limited accuracy.  For  example,  a value of 113 
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will normally be given as 0.333333. Thus, it is 
common to have p values of lo-’ to 10”’. 

Now in the following case: 

Row Alpha Beta 
1 1 .o 1 .o 
2 0.000000 1 0.000000099 

the  situation is not as  clear.  The minimum is 
achieved  for  row 2 with 8 at 0.99, but this choice 
of pivot would be  bad.  Alternatively, we could 
simply reject all values no greater  than lo”, but 
that would lead to  even  worse  problems.  Some 
re-examination is required. So far,  we  have de- 
fined a variable as “infeasible” if it  is less  than 
zero.  However,  since in practice  we  are working 
to fixed accuracy,  there must always be a feasi- 
bility tolerance  (the default value in OSL is lo-*), 
and  “infeasible” is defined as below minus this 
value.  Some  tolerance is necessary from an ele- 
mentary  numerical  standpoint,  but  the slightly 
higher values used in LP are due  to  the  inherent 
inaccuracy of the  data  referred  to  above. 

Luckily, the solution to our pivoting problem lies 
in using the feasibility tolerance  constructively. 
Suppose  we pivot on row 2, then p1 becomes 
0.01, which is feasible,  but if we pivot on row 1 ,  
then p2 becomes 0.000000099-0.0000001, or 
- which is also  feasible, given our definition 
of feasibility. Thus, row 1 gives an acceptable  and 
stable  pivot.  The problem normally arises when 
all of a,  p, and 8 are small, so it is likely that 
p - 8a would not  be  very negative. In general 
then,  we  have a set of pivot choices with different 
8 all valid with respect  to  the user-defined feasi- 
bility tolerance.  This  set gives us more flexibility 
and allows us to  choose larger pivots. Having 
larger pivots  tends in turn  to make the  Devex 
weights for column selection more accurate.  It 
can  also allow the algorithm to  escape degeneracy 
more  quickly. 

Unhappily, while these  ideas  help, we can still 
construct  situations  where difficulties occur. 
Having allowed small negative p values, we must 
expect  them actually to  occur. Most of them will 
not  cause  any  problems, but from time to time we 
will have a situation similar to  the following: 

Row Alpha Beta 
1 1 .o 0.005 
2 0.0001 -0.000000001 
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If we now pivot on  row 1, p2 becomes 
-0.000005001. This  condition  causes us to de- 
clare  the problem to  be back in an infeasible state. 
If we pivot on  row 2, our 8 will be  negative,  and 
the objective function will move in the wrong di- 
rection.  In both cases  we  are allowing the  state of 
the problem to get worse,  thus bringing back the 
threat of oscillation. 

The solution here  was suggested by Gill et  al. , l7 

although we  have  not followed all of their  ideas. 
The value of the variable pivoting on  row 2 is 
currently - and  for  this  situation  to  occur 
the variable will normally be within the feasibility 
tolerance of zero. To  overcome  our problem we 
will leave it at  that  value  and  take it out of the 
basis,  but  instead of setting it to  zero, we  will 
leave it at its current  nonzero value. Such  a vari- 
able is called superbasic and  naturally  occurs in 
nonlinear programming. Now  we  make  a  move 
taking 8 = 0. It is still possible  to  make  such  a 
move for  a  very small a,  but  our  changes to in- 
feasibility are becoming smaller  and  smaller. 

We have  reduced  the stability problem by these 
techniques,  but  not eliminated it. We still have 
the possibility of oscillating between feasibility 
and infeasibility and making no  overall  progress. 
The  basic problem can be posed as a question- 
how  would  we rank  the  state of the solutions  at 
three  consecutive  iterations,  where  the  objective 
and sum of infeasibilities are  as follows? 

Objective Sum of infeasibilities 
1 1 000000.0 0.0 
2 999999.0 0.00001 
3 100000 1.0 0.0 

Since we are minimizing the  objective,  then ob- 
viously 3 is worse  than 1 ,  but is it the  step from 
1 to 2 or  the  one  from 2 to 3 that is bad? The 
problem is that we have  been differentiating be- 
tween  “phase l”  when the problem is infeasible 
and “phase 2” when it  is feasible,  but  not giving 
any weights to  the  two  phases.  This  situation 
brings us to  the idea of a composite objective 
function. ’’ This function  exists  (but is rarely 
used) in MPSX/370 and  has been used in some  other 
commercial codes.  The initial idea was to  work 
toward optimality while still infeasible.  The only 
difference between  the  phase 1 and 2 algorithm is 
in the  creation of a pricing vector,  and  we  can  use 
some combination of the  two. If we  use w F  as a 
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weight for  the  feasible  objective  and w I  for  the 
infeasible objective, it  is only the  ratio  that mat- 
ters. 

When the problem is feasible  there is no differ- 
ence in algorithms, as  the infeasible objective is 
empty. When the problem is infeasible there is the 
possibility that  the algorithm may incorrectly  ter- 
minate,  because  too much weight has been given 
to  the feasible  objective. It is easy  to  check for, 

algorithm continued.  However, it is considerably 
more efficient to use some heuristic  ideas  to mod- 
ify the weights before  this  happens. OSL period- 
ically adjusts  the weights (so that w F  decreases if 
it changes  at all) in an  attempt  to  keep  the  best 
balance. Normally the weight given to  the infea- 
sible objective is several  orders of magnitude 
greater  than  the weight given to  the feasible one. 

Returning to  our  example, we can now answer  the 
question if we know the weights. If w,/w, is 
greater  than lo-”,  then 1 to 2 was good (and bad 
otherwise),  whereas if w,/w,  is less  than 5 X 

then 2 to 3 was good. If weights have been 
changed  between 1 and 2 ,  we would use  the final 
weights for  the  test,  and similarly for 2 and 3 .  

b and  then the weights may be adjusted and the 

b 

b With given weights we now also know whether  a 
refactorization is “worse”  than  the  previous  one. 
One simple idea implemented in OSL is a “his- 
tory”  array.  This small array  keeps a history of 
each iteration-which variables entered and left 
the  basis. Unlike MPSX/370, which always contin- 
ues  iterating, OSL always  tries  to go in the  correct 
direction, so if it appears  that  a  refactorization is 
worse (or if the basis was singular), it strips off a 

gion,  and  tries again. This is repeated if neces- 
sary.  There  are  two final possibilities: 

1. The new basis is not  the  same  as  the original 
one.  In  this  case we are making progress,  and 
we  continue, refactorizing more frequently 
than  before,  as it looks as if we were being too 
ambitious. 

2 .  The first iteration was bad, so we are back to 
the original basis.  In this case we mark the 
variable that  entered on the first iteration  as 
“dangerous” and carry  on with great  caution. 
Eventually we must make one good iteration, 
or all variables will have been rejected. In this 
case  the  code  declares semifailure and returns 

D certain  number of iterations, using the history re- 

D 
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a  status of “optimal,”  but with some  variables 
excluded from consideration. 

We  may use  the  idea of a composite  objective 
function in a  more  constructive  way  to avoid 
problems,  rather  than just  to  detect  them. If we 
deliberately allow a problem to  become infeasible 
after being feasible,  we  can  extend  the  Devex 
ideas to give us more flexibility and  stability.  The 
ideas we have just discussed would still force us 
to pivot on  row 2 in the following case: 

Row Alpha Beta 
1 1 .o 1 .o 
2 0.000000 1 - 0 .oooooooo 1 

and we know that we would prefer to pivot on row 
1. But now suppose  we are feasible, w F  is 
w I  is 1,  and the  gradient or reduced  cost of the 
incoming variable is -200.0. Now pivoting on 
row 1 will give us a new infeasibility of 
0.000000101. (To be absolutely  accurate it  will be 

[the infeasibility tolerance]  less  than  this.) 
But the  objective will decrease by 0 times the 
reduced cost,  or 200.0, so the weighted objective 
function will decrease by 0.0000002 - 0.0000001; 
thus  we  are still improving. Hence,  we  have  yet 
more flexibility to  choose larger pivots when we 
have  a numeric penalty for  the  idea of infeasibility 
rather  than an absolute  feasiblehnfeasible  switch. 
We  may still encounter  problems if w F  and dj are 
both small. Luckily, if all of the feasible dj are 
small, we are unlikely to  have  needed a small w,. 
Since  the pricing step  tries  to pick large  reduced 
costs,  the main area of danger is at  the very  end 
of the simplex method as the  best  reduced  cost 
approaches  zero. We note  that LP models that 
have  a basis in the real world seem to  behave 
better in the neighborhood of the optimum  than at 
some arbitrary point in the algorithm. 

The  approach  to stability we  have  described may 
be summarized by the following points: 

Choose  the  best  possible  factorization  process 
as  the basis for  the  implementation. 
Make sure  the algorithm knows if inaccuracies 
are likely to  occur. 
Put in layers of strategies  to  encourage good 
iterations. 
Put in multiple layers of safety  nets so that  the 
algorithm can  continue,  even if slowly for  some 
iterations, when difficulties are  encountered. 
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Never allow the possibility of the algorithm fall- 
ing into a “black  hole.” 
Use  strategies  and algorithms that reinforce one 
another. 

A final critical point in the  development of an LP 
code is exhaustive  testing. The range of test prob- 
lems available is much wider now, but with mod- 
ern computing power, OSL can be tested on more 
problems in one  day  than MPSXi370 could be tested 
on in a  month. 

Conclusion 

Perhaps  because of its rich history,  the simplex 
method offers a multitude of opportunities  for  ex- 
ploiting new computer  architectures  and numer- 
ical computing  techniques.  The size of problems 
being generated  and  presented  for solution has 
grown enormously in the  last  few  years. This 
growth  has  presented  considerable challenges, 
not only in building LP codes with the  requisite 
speed, but in robustness. With use of the  tech- 
niques  described in this  paper,  the simplex 
method,  as implemented in OSL, has had consid- 
erable  success in meeting these challenges. 
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