Implementing the
simplex method for the
Optimization Subroutine
Library

In this paper we describe the simplex algorithm
and briefly discuss the interaction of the detailed
implementation of the algorithm with the changes
in computer hardware over the last 30 years.
Then we give one example of the design changes
needed to implement the method efficiently for
the IBM 3090™ vector architecture. For the later
RISC System/6000™ implementation, it was
necessary to rethink this yet again. Finally we
discuss the issue of robustness and the steps
that were taken to give maximum reliability in the
simplex algorithm in the IBM Optimization
Subroutine Library.

he linear programming (LP) problem can be
expressed in a number of canonical forms.
We express it in the very general form:

min Z CiX; (D
L

subject to:

Ax=b (2
Lj =x= Uj (3)

If the number of variables, n, were equal to the
number of constraints, m, Equation (2) would be
a set of simultaneous equations with (at most) a
single solution. There would be no possibility of
optimization. Normally, # is significantly greater
than m; a typical medium-sized LP model might
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have 20000 variables and 5000 constraints. The
matrix A is almost always very sparse, typically
with less than ten nonzero elements in each col-
umn—a very important factor in the development
of efficient algorithms. In geometric terms the
constraints describe a (convex) polyhedron in the
solution space of the x variables. Points on or
inside the polyhedron are feasible solutions.
Those outside the polyhedron are said to be in-
feasible.

One could imagine trying to solve the LP problem
by choosing a subset of m columns of A, fixing the
other variables at a bound and attempting to solve
the equations. Not all choices of m variables will
be valid, but many (perhaps very many) will, and
for each of these variables we would have a so-
lution and thus a value of the objective expressed
in (1). Each such solution corresponds to a vertex
of the polyhedron of feasible solutions, and it can
be shown that an optimum solution must occur at
a vertex. It follows that by evaluating all possible
choices we could (in theory) obtain the optimal
choice of variables—optimal in the sense that the
function of (1) is mimmized. Although such an
approach would be extremely ill-advised in prac-

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

FORREST AND TOMLIN 11




tice, an intelligent, ordered search of this set of
solutions is in fact the underpinning of the simplex
method to be discussed in this paper. Geometri-
cally, this method moves from one vertex to an
adjacent vertex with improved solution value and
continues until no such improvement is possible.

The power of the linear programming model as a
decision-making tool derives from a number of
circumstances:

» Many real-world problems can be modeled in
this way (see, e.g., Williams'), from problems
as simple as blending animal feedstuffs to those
as complex as modeling all of the flights of a
large airline. The lower and upper bounds on
the variables correspond to real constraints on
the values that a decision variable may take, the
most normal lower bound being zero. For ex-
ample, the amount of oil pumped through a pipe
may not be negative, nor may it exceed the ca-
pacity of the pipe.

» Simple extensions to the linear objective and
linear constraints to allow for some nonlinear-
ities make the technique even more powerful.

« In a competitive market a ““best” solution is
needed, and other heuristic techniques do not
guarantee finding an optimal solution.

~ Powerful algorithms exist for solving such lin-
ear programs (LPs), implemented in robust soft-
ware packages, which not only solve them but
have facilities for model manipulation and stan-
dard interfaces with model management sys-
tems.

Basic algorithmic approach

In this section we give a very simplified version of
the primal simplex algorithm. Later we will give
a version that is closer to modern implementa-
tions, but it is more important that the reader
grasp the basic concepts than the details. Inter-
ested readers are referred to Dantzig.>

For most of this paper we will work with a slightly
simpler representation of the model, where the
general bounds in (3) are replaced by simple non-
negativity constraints:

x.=0 (Ba)

J

In practice many of the constraints are often in
inequality form, e.g.,
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In such cases we introduce “slack” variables to
convert the constraints into equalities. The col-
umns corresponding to these variables are unit
vectors that have a one in row i and a zero ¢;
coefficient in the objective, or cost, function. All
other variables will be termed “‘structural.”

Following the practice hinted at in the introduc-
tion, let us divide the variables into two groups—a
set of (n — m) independent or nonbasic variables
xy and m dependent or basic variables xz. The
latter are called basic because their correspond-
ing m columns B are assumed to be linearly in-
dependent. The LP problem may be rewritten:

min ¢z xz + ¢y Xy 4)
subject to:

Bx,+ Nxy=b (5)
Xg, Xy =0 6)

where A = (B, N). If we set x to some plausibie
feasible values, we may write:

x3=B"'b— B"'Nxy ™

and in particular when we choose x, = 0, then
xz = B~'b, which results in a value of the ob-
jective of z = c; B~'b.

For simplicity, we assume that this solution is
“feasible,” i.e., that x5 is nonnegative. It is, how-
ever, unlikely to be optimal. To search for a better
solution, we see what happens if we change one
of the nonbasic (independent) variables. From (4)
and (5) we may express the objective completely
in terms of the nonbasic variables as z + (cy —
cs B 'N)xy. Now consider the “reduced costs”
for columns a ; in N:
d,=c¢;—c;B 'a (a,EN) 8
For any d; < 0 the objective will decrease as x;
is incrementally increased. If no such negative d;

exists, the solution is indeed optimal, and we are
done. Otherwise we must find out how far this
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nonbasic variable can be increased without caus-
ing a basic variable to become negative. Let the
value of the chosen x; be a parameter § = 0. We
see that:

x3=B7'b~ 6B 'a, 9)

In the event that all elements of B~'a ; are non-
positive, the objective can be decreased without
limit as 6 increases from zero. This unbounded
situation is normalily only encountered for incor-
rectly formulated models. Otherwise we increase
#until some member of x; reaches zero, move the
corresponding column of B to N, and replace it by
a ; to obtain a new basis. This process is re-
peated, possibly thousands of times, until we
reach the optimal solution.

In practice the task of finding the set of j where
d; < 0is done in two parts. First we compute the
shadow prices or pi values:

7" =czB”! (10)
and then

— T
d=c,—m'a; (a;EN)
The other major computational effort is in finding
B7'a ;.

History

The simplex method was invented by George
Dantzig about 1947. Its usefulness and suitability
for the then newly invented electronic computer
was soon recognized and exploited. By 1951 the
method had been implemented on an IBM card
programmable calculator. This machine had 16 to
80 registers and used punched cards. Initially a
new copy of B~! had to be punched in cards for
each iteration, but it was seen by 1954 that the
algorithm could be adapted to suit the computer
architecture.

A crucial advance was to maintain B~ as a prod-
uct of elementary transformations, or

B'=EE,_, - EE, (1)

where the E, are m X m identity matrices with
just one column 7, modified, i.e.,
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E,= Mok (12)

- N mk ]J

These transformations are often referred to as
“column etas’ or just “‘etas,” and only one E,
need be punched out per iteration and added to
the factorization of B~!. Periodically B! was
computed from scratch to eliminate the buildup of
round-off error and reduce the length of the eta
file.

A problem with 45 constraints and 70 variables
was considered large at that time and could take
about eight hours to solve. However, the basic
concepts of simplex implementation had been set
for the next 30 years. As we have said, the model
matrix A is usually very sparse. The elementary
transformation vectors may be denser but still
only of the order of hundreds of nonzeros for a
problem with thousands of rows.

The work involved in the major tasks of each sim-
plex iteration are then:

1. Form a dense m-vector ¢; and apply a se-
quence of sparse transformation vectors cg <«
cpgE fork={l,1—-1,--+2, 1} to obtain .

2. Compute d; = ¢; — m'a ; for some columns
J. This involves taking the inner product of a
series of sparse vectors a ; with a dense
m-vector .

3. Expand the chosen (sparse) a ; into a full
m-vector and apply the sequence of elemen-
tary transformation vectors a ; < E,a ; for
k={1,2,---1-1,1.

Each of these major operations consists of se-
quentially applying sparse inner products or ad-
ditions to a dense vector of length m; so if we
have enough registers or high-speed memory to
contain m values, we can achieve a reasonable
speed. Also note that while operations 1 and 3
involve the basis inverse, step 2 could scan the
entire matrix N. If n > > m, this scan may be
time-consuming.

In 1956 an LP code for the IBM 704 computer ap-
peared. The iBM 704 had 4 to 8K 36-bit words of
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memory, plus tapes for backing storage. Tapes
were ideally suited to the algorithm as described
so far, since the original matrix could be stored on
one or more tapes, while the elementary trans-
formations could also be created on one or more
tapes. Operation 3 read the tapes forward (and
was called FTRAN, for forward transformation), a
new transformation was added to the end, and the
tapes could be read backwards for operation 1
(called BTRAN). The size of problem that could be
solved with this system was now up to 256 rows.

From 1960 to 1966, LP/90 and C-E-I-R LP/90/94 were
written for the more powerful IBM 7090 and 7094
computers, which had 32K 36-bit words, hard-
ware floating point, and tapes. These codes were
very sophisticated and could solve problems of up
to 1023 rows.* With a sufficient number of tapes
there was a good match between the floating-
point unit and the 1/0 devices. (It also made LP
visually more interesting than it is now.)

When 1BM moved to the dramatically different
System/360* and System/370* architectures, with
much larger memory and disks, the first IBM LP
code (MPs/360) did not take real advantage of
the new hardware. In the UMPIRE code for the
Univac 1108, the authors* did take advantage
of the fact that disks were random access, and
that updating therefore did not have to occur
only at the end of the file. Use of this knowl-
edge allowed elementary transformations with
fewer elements, with a corresponding increase in
speed. These ideas were subsequently incorpo-
rated in IBM's Mathematical Programming System
Extended/370 (MPSX/370).° By the mid-1980s, with
use of large real and virtual memory, the only
change in overall design was that virtual memory
became the ‘“‘slow” device taking the place of
disks, whereas the cache became the high-speed
memory.

In summary, the simplex method has evolved
with computers and has, sometimes tardily, taken
advantage of each advance in computer architec-
ture.®

Restatement of the simplex algorithm

This restatement of the algorithm is not com-
pletely general—it only deals with the case where
all variables have zero lower bounds and infinite
upper bounds. However, it is sufficient for un-
derstanding the remainder of this paper. For brev-
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ity we also omit discussions of some preliminar-
ies. These include ‘‘presolving” to remove
redundancies from the LP model and ““crashing”
an initial basis.” The steps involved often allow a
“good” basis to be chosen, which can reduce the
number of iterations needed by a substantial
amount.

The steps of the simplex method (and their asso-
ciated jargon) may be described as follows:

0. (INVERT and Initialization) Choose (or read in)
a basis B from the columns of A and define x,
and x, the vectors of basic and nonbasic var-
iables. Set x5 = 0. Compute the product form
inverse of B. In practice we factorize (some
permutation of) B as LU where L is lower tri-
angular and U is upper triangular. The product
form of their inverses may be written trivially
as:

B'=vu'uy' - UL LY

where each of the L' and U ' are elementary
transformation vectors, of the same type as
E., constructed from the columns of L and U.
For convenience we will usually continue to
write:

B'=EE_, - E,E,

After completing this factorization, histori-
cally known as INVERT, we may compute:

xz=B=B""b

1. (FORMC) If the solution is feasible (x; non-
negative), we wish to minimize the true objec-
tive ¢ "x and form a vector containing the cost
of each basic variable: ¢ " = ¢ . If the solution
is not feasible, in order to move toward feasi-
bility we try to minimize the “sum of infeasi-
bilities.” To accomplish this we try to increase
all basic variables below zero by giving them
“costs” of —1.0 and by giving feasible varia-
bles a cost of zero. We then define g7 using
these costs instead of cj .

2. (BTRAN) Apply the transformations in reverse
order:

7= —qTEl' -+ E,E,
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Note that these are the negative of the values
described earlier.

3. (PRICE) Compute the reduced costs for some

or all of the nonbasic variables:

— T

d=c+ma,; (a;EN)
where a ; denotes column j of the matrix. If the
problem is infeasible, we omit the c; term.
Choose one j, say g, among those with nega-
tive reduced costs. If there are no negative
reduced costs, we have finished, with an op-
timal solution if the problem is feasible, or we

have proved that there is no feasible solution
otherwise.

4. (FTRAN) Apply the transformations in forward
order:

a=Bla,=E,- - EEa,

S. (CHUZR) Choose which variable will leave the
basis because it reaches zero first. When the
solution is feasible, we may describe this in
terms of a ratio test of finding:

0=B =min&

4
A, a0 @

where p becomes the pivot row and x , leaves
the basis. If there is no such row, the problem
is unbounded. When infeasible, the test is sim-
ilar but somewhat more complicated.

6. (UPDATE) The factorization of B ™! is modified.

In the product form of the simplex algorithm,
this involves creating a new eta E,;,, so that

B =E.E " EE,

where (letting p,.; = p) the nonunit column of
E, , is defined by

—a,
nH=— (i #p)

R
~

| =

+1 _
np -

R

14

The new values of the basic variables are then:
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X = Ez E.B

More sophisticated implementations of the
simplex method may directly update the tri-
angular factors L and U.

We then repeat from step 1. Periodically we must
INVERT (refactorize), or repeat from step 0, for
speed (since the representation of B! is becom-
ing longer and longer) and to avoid the buildup of
round-off error.

Exploiting the 3090 Vector Facility

Up until the late 1980s, the way to a fast simplex
implementation was to reduce the amount of data
moved into high-speed memory and get the data
there as fast as possible by minimizing disk /O
times or cache misses. Once the data were in
high-speed memory, the time for the floating-
point operations dominated the algorithm, so re-
ducing the number of such operations was of par-
amount concern. This situation changed with the
introduction of the 1BM 3090* Vector Facility, as
some floating-point operations became more im-
portant than others. This comparison is particu-
larly apparent when we consider the pricing op-
eration.

There are many ways to choose a variable with a
negative reduced cost. Variants (termed pricing
strategies) include:

1. Passing through the entire matrix N, comput-
ing d;, and choosing the column with the most
profitable reduced cost (called ““full pricing’’)

2. Only scanning part of the matrix to obtain
some reasonably profitable reduced costs
(““partial pricing”)

3. As above for 1 or 2 but selecting several col-
umns at a time (“multiple pricing’). All of
these could then be updated simultaneously,
which involved only one pass through the
transformation data.

4. Using the Devex method (from the Latin
“steepest”) due to Harris,® which uses full
pricing but requires additional work to com-
pute weights w; and to select the column on the
basis of the best weighted reduced cost d;/w;

Method 3 was preferred from the mid-1950s to the
mid-1980s, as it allowed several iterations for a
partial pass through the matrix and one pass
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Table 1 Sparse inner product speedup

Nonze ""Elements o Vector/Scafar )

S22
T
s
(| R

‘ ;1QQ‘ : ;

through the transformation data. Method 4 typi-
cally took fewer iterations but more time on most
models, as the iterations were considerably more
expensive. With changes in computer architec-
ture, the advantage of being able to make several
updates in one pass through the transformation
data declined. For a single update better use
could be made of the registers, and the balance
between cache overhead and floating-point oper-
ations was reasonable.

Let us re-examine work involved in pricing in
more detail, writing the core computational step
in full as:

E ma; (@a;EN) (13)

In general, nearly all of the a ; are zero—normally
less than ten in any column will be nonzero—and
only the nonzero elements are stored in a data
structure consisting of the following arrays:

» Elements—a 64-bit array of floating-point num-
bers giving the nonzero elements. The size of
this structure is the total number of nonzeros in
the matrix.

¢ Indices—an integer array of similar size giving
the row of the matrix on which the correspond-
ing element lies

» Start—an integer array giving the position in the
above two arrays of the first element and row
index for each column

s Number—an integer array giving the number of
nonzero elements in each column

The double loop that can be defined for comput-
ing (13), and then using d; for several columns,
can be translated into FORTRAN as:

16 FORREST AND TOMLIN

DO Column = Start,End
C only do if not basic
IF(...... ) THEN
Inner_Product=0.0D®
DO I = Start(Column),Start(Column) +
Number(Column) —1
Row_index = Indices(I)
Inner_Product = Inner_Product +
Pi (Row_index)*Elements (I)
ENDDO
C use Inner_Product

The FORTRAN compiler for the 3090 can vectorize
the inner loop as:

C load number of nonzero elements
L R1,Number_of_Nonzeros

C enter smaller of section size and number

C remaining to be done

LOOP VLVCU R1

C row numbers where there are nonzero elements
VL V1,Indices

C load corresponding values from dense PI
VLID V2,VL1,Pi

C multiply and accumulate inner product

C using the nonzero elements of column
YMCD V4,V2,Elements

C back to loop if any more elements
BP LooP

The speed of this vectorization is approximately
four cycles per element as compared to approx-
imately 18 cycles per element for the correspond-
ing scalar coding. This comparison looks prom-
ising until we find that there is a fixed overhead of
approximately 180 cycles for the vector loop as
compared to 15 cycles for the scalar loop. For
different numbers of nonzero elements we obtain
the results in Table 1.

A speedup of two is not seen until a column has
more than 30 elements, which is not common.
The break-even point is between 11 and 12.

Let us examine a medium-sized, fairly dense LP
which, after “reduction” to remove redundan-
cies, has 3526 rows, 9625 variables, and 70560
elements, giving an average of 7.33 nonzero ele-
ments per column (the “slack™ variables are not
included in the statistics). No column has more
than 25 entries, and we can expect no significant
increase in speed if we vectorize the inner loops.

The 3090 Vector Facility has a relatively large
startup time, and so we need to use it for large
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numbers of homogeneous operations. There are
no large numbers in the first column of Table 2,
but there are plenty of large numbers. For exam-
ple, there are 588 columns with exactly seven el-
ements.

The solution to using the Vector Facility effi-
ciently is to reorder the matrix so that all columns
with the same number of entries are grouped to-
gether and then vectorize the outer loop of the
inner product loop, rather than the inner loop. If
we have T columns with exactly K nonzero ele-
ments, we can store this as two dense blocks—Z,
fork=1, -+ ,K,t=1, -+, Tforthe elements
and a similar one, /,,, for the corresponding row
indices.

With this scheme the FORTRAN loop above can be
restructured for each such block as:

DOk =1,K
pot=1,T
Row_index = I(t,k)
Inner_Product(t) = Inner_Product(t) +
Pi (Row_index)*Elements (t,k)
ENDDO
ENDDO

the inner loop of which the FORTRAN compiler can
vectorize (for the kth nonzero in each of the col-
umns) as:
1. LoAD the vector of indices
VL V1,Indices
to get (ixrs o> " " bxp)
2. Use the LOAD INDIRECT vector instruction
VLID V2,V1,Pi
toget P = (---m )
3. Denoting the kth row of Z (in memory) as

ZROW={a, ,a

i @i "7 ‘Zikr>
use the MULTIPLY AND ADD instruction
VMAD V4,V2,Elements

to add the element-by-element product of this
vector with PI to update the reduced costs:
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Table 2 Frequency of nonzeros per column

Number of
Structural Columns

, Number of
Nonzeros in Column

569

1,438
938

84

520

124

- 588
2,656
S 84
188

P U B e

Che 21T 00 N2 O

... Vectot Break Even . ..

100
56
156
204
80
84
8

12
5B
14
15
16

DJ <« DJ+ PI « Z ROW

To use stride one and avoid cache misses, these
two blocks of data are stored row-wise. We also
sort the blocks so that all of the nonbasic columns
are at the beginning. This ordering means that we
need not look at the basic columns. The only
drawback is that for each iteration we may have
to modify two blocks of the matrix, one to adjust
the block for the incoming column and one for the
outgoing. For problems of any size this overhead
is trivial.

One obvious question is whether we can do this
sorting for every matrix. If we decide to sort only
for columns with less than a certain number of
nonzero entries, as problems become larger we
can achieve a success rate approaching 100 per-
cent. All columns with enough nonzeros vector-
ize in the normal (unblocked) way; hence, if we
arbitrarily set 30 as an acceptable number for a
vector length, the number of columns that fall in
a block with too few columns must be less than
30 x 30. In practice we find that this reordering of
the matrix for vectorization is worthwhile for all
matrices with more than a few hundred columns.
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Table 3 Example with scalar PRICE

£ Non-PRICE - Number of .
r . Work perlterations

With this reordering, we achieve a performance
improvement of a factor of four, which is close to
the asymptotic improvement 18/4. This improve-
ment only applies to PRICE. For the other time-
consuming operations, we are unable to do much
reordering, partly because of the order depen-
dency of the operations and partly because these
structures are continually changing (but see
Eldersveld and Saunders’® for a quite different ap-
proach).

Now we must consider the effect of being able to
improve this particular portion of the code by a
significant amount. As we mentioned, the con-
ventional wisdom (based on tests when IBM's
MPSX/370 was being developed in the early 1970s)
was that partial pricing was preferable, even
though it might take more iterations. To see why,
consider the effect of two different pricing strat-
egies (in Table 3) on a hypothetical problem, us-
ing an arbitrary unit of work (very approximately
one million floating-point operations). The econ-
omy of the Devex method in number of iterations
is clear even though the time is longer.

Now let us see what is the effect of being able to
do some floating-point operations (especially in
PRICE) four times as fast. The new times are
shown in Table 4. They represent a significant
gain.

The point to be made is that the gain came about
after a multistage process of examining what a
new architecture has to offer:
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. Identify which parts of the current implemen-
tation of the algorithm could expect a gain.

. Identify which parts of the algorithm could
gain if the data structures were modified.

. Identify any modifications to the algorithm, or
even totally different algorithms, which are
more suited to the new architecture.

. Balance the last three points to obtain the max-
imum improvement.

Much the same general approach is advocated by
Zenios and Mulvey.'® This discussion has con-
cerned the simplex algorithm and its modifica-
tions, but interior point algorithms currently seem
able to make more extensive use of many of these
architectural changes. "

The initial work on vectorizing PRICE was done
for MPSX/370. On easy problems (where the scalar
code had given satisfactory performance) there
was little speedup, whereas the best result
achieved reduced the running time on one prob-
lem from 574 minutes to 150 minutes, a factor of
3.8. An experimental IBM Yorktown code gave us
the opportunity to repeat the steps outlined above
with a new design so that every aspect could be
considered and every opportunity taken to vec-
torize the code. This code evolved into the sim-
plex component of the IBM Optimization Subrou-
tine Library (0SL). Table 5 (part of Table 1 of
Forrest and Tomlin'') summarizes some of the
resulting improvements compared to scalar MPSX
code (times are given in minutes on a 3090).

The last entry in Table 5 is the problem we used
as our earlier example but showing the unreduced
dimensions. Also note that the speedup ratios are
better for larger, denser problems. These results
were obtained in 1987 and 1988; since then the
OSL simplex algorithm has been further im-
proved.

Another opportunity afforded by improved
PRICE-type calculations is in the implementation
of another variant of the simplex algorithm that is
even more expensive on scalar machines—the
dual simplex algorithm. This algorithm makes
even more extensive use of pricing calculations
and is well-suited to many problems. Using the
new data structures, we obtain the results in
Table 6 for the 4422 (original) rowed problem. (All
times are scaled to 3090E minutes, except for the
RISC System/6000* time.)

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




Table 5 Speed improvement of vectorized research code over scalar MPSX/370

. Rows Columns - Nonzeros lterations " Time Speedup
© 147 2,655 14,005 - 976 - 010 1.6
1,152 2,763 10,941 1,045 - 0.05 1.0
4,981 6,221 34,895 5,988 1.30 2.9

930 3,523 14,173 1,562 - 0.12 1.3
398 2,750 11,334 1,753 o 0.17 1.5
3,829 8,216 108,968 7,418 . 3.51 3.3
822 1,571 11,127 2,699 0.40 3.1
3,526 9,625 74,090 13273 792 4.0
1,442 3,652 43,220 6,002 3T 5.0

5,564 6,181 46,578 10,018 490 28
2,357 11,004 128,286 21,5230 1183 4.0

© 2,942 11,717 99,121 16,679 - . ° 965 3.7
4,422 6,711 110,342 42,580 4721 12,2

RISC and the RISC System/6000

After several years spent writing a code from
scratch to take advantage of the 3090 vector ar-
chitecture, we were then faced with the new RISC
architecture in the RISC System/6000. To under-
stand the consequences of this architecture for
the simplex method, we need to look at the com-
parative characteristics of some important
classes of operations in terms of machine cycles:

» Dense processing for simple (one-dimensional)
arrays. The critical (composite) operation here
is LOAD — MULTIPLY - ADD. The relevant sta-
tistics are:

» 3090 scalar—14 cycles
% 3090 vector—2 cycles (asymptotic)
& RISC System/6000—2 cycles

» Sparse processing for simple sparse/dense ar-
ray operations. The critical sequence of instruc-
tions here is LOAD (an index) — LOAD (a value)
— MULTIPLY — ADD. The statistics are:

» 3090 scalar—18 cycles
& 3090 vector—4 cycles (asymptotic)
% RISC System/6000—4 cycles

» For sparse work the floating operations can be
free. The bottleneck is in getting the numbers to
and from registers. This situation suggests that
extra work should be done once the numbers
are in the registers.

» There is no special advantage to restructuring
the matrix, in contrast to the Vector Facility.

» Cache misses are considerably more expensive.

In an earlier paper, we stated that “One lesson
from this (vectorization) exercise is that it may be
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Table 6 Solution times for 4422 row problem

' sYstem R Time  lterations
MPSX Version 1 . 517 302,357
MPSX Version 2 83 48,858
OSL Primal 25 )

OSL Dual .. n

On RISC System/6000 520
OSLDual . - - 32

advantageous to search for other column selec-
tion schemes which are better than Devex even if
they need more computation, including schemes
which were considered and rejected some years
ago.”"

On the RISC System/6000, it is possible to do extra
floating-point operations at small (or sometimes
no) extra cost, and some of these ideas looked
even more promising. In particular, taking two
inner products simultaneously turns out to be
only 20 percent more expensive than one. At the
suggestion of Don Goldfarb, we experimented
with the steepest-edge pricing, to which Devex
pricing can be regarded as an approximation. '
Although this approach did not lead to universal
success, it did lead to a substantial reduction in
iterations for many problems. Tables 7-9 show
the results, on a set of nontrivial test problems, of
using the steepest-edge method in comparison to
several other strategies on the mainframe com-
puter and in comparison to the standard Harris
Devex method on a RISC machine (all times ex-
clude input).
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Table 7 Test problem characteristics

‘Model 25FVA7T PILOTS DFLGOii
Original - S
Rows 821 1441 6071
Columns - R 111 3,652 R0

- Nonzeros -  ' 10,400 - 43,167 35632
Reduced o R o
- 715 1,374 4,840 ¢

1484 3361 10,999

9994 40757 33,146

Table 8 Times (in seconds) on a 3090S with Vector

Facility
" Model  25FV47 PILOTS  DFLOOT
3681 8432 600,000
s B8 >540000
OSL—— uil pncmg s

[ Tterations - C ',2917 C L1650 964893
~ Solution ume R 12 6 3389 3 580 4
OSL——-Hams Devex ' f, o R
' 2,183 5483 “5,0;;327
B3 17640 0 - 1,3424
1361 3376 2,117
RS 74090

Table 9 Times (m seconds) for a RISC System/6000
Model 540

" Model  25Fvar

PILOTS  DFLOO1
OSL-— ams Devex ‘ k '

2,191 5211 43,012

“jis ution ume 26.1 2732 3,8299
08L-Steepest edge. ‘ :
 Iterations 1,184 3,297 17,343
. Solutlon time 6.6 . 201.8 1,514.6

Returning to the 4422-row problem, and applying
these steepest-edge ideas to the dual algorithm,
we obtained a new ‘‘best time”’ of 7.5 minutes to
solve it in 4827 iterations on the RISC System/6000
Model 540 (see Table 6).
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Stability

One of the objectives of the IBM Research simplex
code which became part of OSL was to be as fast
as possible. The other main objective was to solve
all problems presented to the code. With finite
precision arithmetic this last objective is impos-
sible to achieve, but it remains a worthy target.
This section describes the steps taken to ap-
proach this target as closely as possible and, if the
target is unreachable for any reason, to fail in as
controlled a manner as possible.

First let us discuss some of the ways in which the
simplex algorithm can fail, bearing in mind that in
every case the worst possibility is that the algo-
rithm does not recognize that it is failing and
never terminates. One well-known possibility is
that the algorithm ““cycles.” This outcome is pos-
sible if the # computed in step 5 is zero for several
iterations, because then we are not making any
progress in the objective, and it is possible to
bring in and throw out the same sets of variables
from the basis ad infinitum. Zero moves occur
very frequently, and in such cases the problem is
termed ‘‘degenerate.” When this happens, the
simplex algorithm is likely to take more iterations
than usual, but luckily there are ways to avoid
actual cycling in these cases. It turns out that
some of the ideas discussed below, as well as the
Devex method discussed earlier, help to reduce
the number of iterations.

A more serious problem is oscillation. At step 0
the simplex algorithm first finds a factorization.
The steps in finding LU such that B = LU are
similar to those involved in solving simultaneous
equations by Gaussian elimination, and we may
find that one equation is a linear combination of
others. In this case we find ourselves attempting
to divide by a zero pivot, which is illegal. Other
forms of ill-conditioning may also lead to unac-
ceptable pivots (“singularity”) in INVERT. In this
case the normal practice (as in MPSX/370) is to dis-
card the offending column, replacing it by the
“slack” column for that constraint, or an “arti-
ficial” variable if the constraint was an equality.
This may change the objective value or make the
solution infeasible when it had been feasible. The
danger is that at one refactorization the problem
is feasible so that the algorithm is in “‘phase 2”°;
then steps 1 to 6 are repeated several times. At
each iteration the accuracy of the factorization
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will decrease. This decrease will not be recog-
nized, and some bad iterations may occur. At the
next refactorization the basis is discovered to be
““singular,” a column is replaced, and the problem
becomes infeasible so that we are back in ““phase
1.” The algorithm now tries to become feasible,
succeeds, but may or may not have a solution that
is as good as the one it had before. On numerically
difficult problems such a situation could and did
happen with MPsX/370. Even if the new basis is not
singular, the solution (8) used in step 5 may have
become inaccurate, so that after refactorization
the problem is slightly infeasible.

What can be done about such situations? The an-
swer is many things, each of which helps, but
where the cumulative effect is important, as the
ideas often work better together than in isolation.

First let us look at the accuracy problem in iso-
lation. Prevention being the best cure, we seek to
make the operations as accurate as possible and
then check their accuracy. The first step is to have
the most accurate factorization that is possible, as
this will be the keystone of all our efforts. The
“numerically correct’ approach to simultaneous
equations will attempt to do two things:

1. Look for ways to implicitly reorder the rows to
obtain a near triangular form, reduce the amount
of work, and minimize the number of nonzeros.
For the LP factorization this approach reduces
the number of floating-point operations needed
to transform B into U—which helps reduce the
buildup of error.

2. Choose large elements as pivots to use in elim-
inating others in that row or column.

The best-known method to achieve these goals is
called the “dynamic Markowitz'® method”— dy-
namic because we are continually looking at the
sizes of the elements. MPSX/370 and many other
systems were designed for smaller memories and
used a bit map representation of the basis (a 1
where there was an element and 0 where there
was not) or some other symbolic representation.
This allowed them to attempt to reduce the num-
ber of operations, but gave no control over the
size of the pivots. If these pivots were subse-
quently found to be too small, it was necessary to
resort to a fairly primitive method to continue.
With current large memories and work done by
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Reid** we can implement the full dynamic Mar-
kowitz method. It is essentially identical to the
one now in ESSL—the Engineering and Scientific
Subroutine Library.

Given a stable factorization, then in the worst
case we could refactorize every iteration, assum-
ing that we can recognize the buildup of inaccu-
racy. However, the update described in step 6 is
known to be unstable. The most stable update is
due to Bartels and Golub. !¢ This method was not
practicable before the days of large memories,
and the authors implemented a more practicable
method.* The latter lacks a priori theoretical sta-
bility but has greater stability in practice than the
product form update and allows for a check on
stability. If the check fails, there is no recovery
except for a refactorization, but as it is more
suited to most computer architectures than the
Bartels-Golub method, it is used in OSL. We can
accept the occasional premature refactorization;
it is the average time on which we must judge
performance. In OSL the stability checks were
made considerably tighter than in MPSX/370.

After tolerably accurate basis factors have been
obtained, the next step is modifying the algorithm
itself to improve overall accuracy. Previously we
mentioned the improvement in performance due
to using the Devex ideas from Harris,® and col-
umns chosen using this form of pricing do seem to
be “better” for an accurate sequence of itera-
tions. But the same paper contained ideas on
pivot choice that were widely ignored. Pursuing
some of them, we see that in the textbook non-
degenerate case we only have a single pivot
choice in step 5. However, most loss of accuracy
in iterating comes from pivots where B, is close
to zero. To see why this should be so let us ex-
amine the following case:

Row Alpha Beta
1 1.0 0.0
2 0.0000001 0.0

Here the minimum value of #is achieved for both
rows, and we may choose the larger pivot on row
1, which will tend to give a more stable pivot in
the UPDATE step than using the smaller value on
row 2. But in practice B values are rarely exactly
0, sometimes because of buildup of rounding
error and often because the data have been given
with limited accuracy. For example, a value of 1/3
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will normally be given as 0.333333. Thus, it is
common to have g values of 1072 to 1071,

Now in the following case:

Row Alpha Beta
1 1.0 1.0
2 0.0000001 0.000000099

the situation is not as clear. The minimum is
achieved for row 2 with 8 at 0.99, but this choice
of pivot would be bad. Alternatively, we could
simply reject all values no greater than 1077, but
that would lead to even worse problems. Some
re-examination is required. So far, we have de-
fined a variable as “infeasible™ if it is less than
zero. However, since in practice we are working
to fixed accuracy, there must always be a feasi-
bility tolerance (the default value in OSL is 107%),
and “‘infeasible” is defined as below minus this
value. Some tolerance is necessary from an ele-
mentary numerical standpoint, but the slightly
higher values used in LP are due to the inherent
inaccuracy of the data referred to above.

Luckily, the solution to our pivoting problem lies
in using the feasibility tolerance constructively.
Suppose we pivot on row 2, then B8, becomes
0.01, which is feasible, but if we pivot on row 1,
then B, becomes 0.000000099-0.0000001, or
—107°, which is also feasible, given our definition
of feasibility. Thus, row 1 gives an acceptable and
stable pivot. The problem normally arises when
all of @, B, and @ are small, so it is likely that
B — 6a would not be very negative. In general
then, we have a set of pivot choices with different
6 all valid with respect to the user-defined feasi-
bility tolerance. This set gives us more flexibility
and allows us to choose larger pivots. Having
larger pivots tends in turn to make the Devex
weights for column selection more accurate. It
can also allow the algorithm to escape degeneracy
more quickly.

Unhappily, while these ideas help, we can still
construct situations where difficulties occur.
Having allowed small negative 8 values, we must
expect them actually to occur. Most of them will
not cause any problems, but from time to time we
will have a situation similar to the following:

Row Alpha Beta
1 1.0 0.005
2 0.0001 ~—0.000000001
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If we now pivot on row 1, B, becomes
—0.000005001. This condition causes us to de-
clare the problem to be back in an infeasible state.
If we pivot on row 2, our 8 will be negative, and
the objective function will move in the wrong di-
rection. In both cases we are allowing the state of
the problem to get worse, thus bringing back the
threat of oscillation.

The solution here was suggested by Gill et al.,"”
although we have not followed all of their ideas.
The value of the variable pivoting on row 2 is
currently —107°, and for this situation to occur
the variable will normally be within the feasibility
tolerance of zero. To overcome our problem we
will leave it at that value and take it out of the
basis, but instead of setting it to zero, we will
leave it at its current nonzero value. Such a vari-
able is called superbasic and naturally occurs in
nonlinear programming. Now we make a move
taking 6 = 0. It is still possible to make such a
move for a very small a, but our changes to in-
feasibility are becoming smaller and smaller.

We have reduced the stability problem by these
techniques, but not eliminated it. We still have
the possibility of oscillating between feasibility
and infeasibility and making no overall progress.
The basic problem can be posed as a question—
how would we rank the state of the solutions at
three consecutive iterations, where the objective
and sum of infeasibilities are as follows?

Objective Sum of infeasibilities
1 1000000.0 0.0
2 999999.0 0.00001
3 1000001.0 0.0

Since we are minimizing the objective, then ob-
viously 3 is worse than 1, but is it the step from
1 to 2 or the one from 2 to 3 that is bad? The
problem is that we have been differentiating be-
tween “phase 1 when the problem is infeasible
and ““‘phase 2" when it is feasible, but not giving
any weights to the two phases. This situation
brings us to the idea of a composite objective
function.’”® This function exists (but is rarely
used) in MPSX/370 and has been used in some other
commercial codes. The initial idea was to work
toward optimality while still infeasible. The only
difference between the phase 1 and 2 algorithm is
in the creation of a pricing vector, and we can use
some combination of the two. If we use w, as a
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weight for the feasible objective and w; for the
infeasible objective, it is only the ratio that mat-
ters.

When the problem is feasible there is no differ-
ence in algorithms, as the infeasible objective is
empty. When the problem is infeasible there is the
possibility that the algorithm may incorrectly ter-
minate, because too much weight has been given
to the feasible objective. It is easy to check for,
and then the weights may be adjusted and the
algorithm continued. However, it is considerably
more efficient to use some heuristic ideas to mod-
ify the weights before this happens. OSL period-
ically adjusts the weights (so that w decreases if
it changes at all) in an attempt to keep the best
balance. Normally the weight given to the infea-
sible objective is several orders of magnitude
greater than the weight given to the feasible one.

Returning to our example, we can now answer the
question if we know the weights. If wg/w, is
greater than 107", then 1 to 2 was good (and bad
otherwise), whereas if wg/w, is less than 5 X
1072, then 2 to 3 was good. If weights have been
changed between 1 and 2, we would use the final
weights for the test, and similarly for 2 and 3.

With given weights we now also know whether a
refactorization is “worse’’ than the previous one.
One simple idea implemented in OSL is a “his-
tory” array. This small array keeps a history of
each iteration—which variables entered and left
the basis. Unlike MPSX/370, which always contin-
ues iterating, OSL always tries to go in the correct
direction, so if it appears that a refactorization is
worse (or if the basis was singular), it strips off a
certain number of iterations, using the history re-
gion, and tries again. This is repeated if neces-
sary. There are two final possibilities:

1. The new basis is not the same as the original
one. In this case we are making progress, and
we continue, refactorizing more frequently
than before, as it looks as if we were being too
ambitious.

2. The first iteration was bad, so we are back to
the original basis. In this case we mark the
variable that entered on the first iteration as
“dangerous” and carry on with great caution.
Eventually we must make one good iteration,
or all variables will have been rejected. In this
case the code declares semifailure and returns
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a status of “‘optimal,”” but with some variables
excluded from consideration.

We may use the idea of a composite objéctive
function in a more constructive way to avoid
problems, rather than just to detect them. If we
deliberately allow a problem to become infeasible
after being feasible, we can extend the Devex
ideas to give us more flexibility and stability. The
ideas we have just discussed would still force us
to pivot on row 2 in the following case:

Row Alpha Beta
1 1.0 1.0
2 0.0000001 —0.000000001

and we know that we would prefer to pivot on row
1. But now suppose we are feasible, w, is 107°,
wy is 1, and the gradient or reduced cost of the
incoming variable is —200.0. Now pivoting on
row 1 will give us a new infeasibility of
0.000000101. (To be absolutely accurate it will be
107* [the infeasibility tolerance] less than this.)
But the objective will decrease by 6 times the
reduced cost, or 200.0, so the weighted objective
function will decrease by 0.0000002 — 0.0000001;
thus we are still improving. Hence, we have yet
more flexibility to choose larger pivots when we
have a numeric penalty for the idea of infeasibility
rather than an absolute feasible/infeasible switch.
We may still encounter problems if w and d; are
both small. Luckily, if all of the feasible d; are
small, we are unlikely to have needed a small w.
Since the pricing step tries to pick large reduced
costs, the main area of danger is at the very end
of the simplex method as the best reduced cost
approaches zero. We note that LP models that
have a basis in the real world seem to behave
better in the neighborhood of the optimum than at
some arbitrary point in the algorithm.

The approach to stability we have described may
be summarized by the following points:

* Choose the best possible factorization process
as the basis for the implementation.

e Make sure the algorithm knows if inaccuracies
are likely to occur.

* Put in layers of strategies to encourage good
iterations.

 Put in multiple layers of safety nets so that the
algorithm can continue, even if slowly for some
iterations, when difficulties are encountered.
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Never allow the possibility of the algorithm fall-
ing into a “‘black hole.”

* Use strategies and algorithms that reinforce one
another.

A final critical point in the development of an LP
code is exhaustive testing. The range of test prob-
Iems available is much wider now, but with mod-
ern computing power, OSL can be tested on more
problems in one day than MPSX/370 could be tested
on in a month.

Conclusion

Perhaps because of its rich history, the simplex
method offers a multitude of opportunities for ex-
ploiting new computer architectures and numer-
ical computing techniques. The size of problems
being generated and presented for solution has
grown enormously in the last few years. This
growth has presented considerable challenges,
not only in building LP codes with the requisite
speed, but in robustness. With use of the tech-
niques described in this paper, the simplex
method, as implemented in OSL, has had consid-
erable success in meeting these challenges.
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