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Optimization Subroutine 
Library 

This  essay  introduces  the  IBM  Optimization 
Subroutine  Library (OSL) and  seven  OSL-related 
papers  that  appear in this  issue.  Developed  as  a 
result of a  partnership  between  several  IBM 
research  and  development  groups,  OSL  provides 
a  suite of tools for manipulating  the  models 
and  solving  the  resulting  minimization  and 
maximization  problems of  mathematical 
optimization.  The  problems  that  OSL  addresses 
include:  linear,  quadratic,  mixed-integer,  and  pure 
network  programming  problems.  OSL  includes 
solvers  based  on  the  classical  simplex  method 
and  on  newer  interior  point  methods.  Because  a 
user-supplied  driver  program  coordinates  the 
problem  solution,  and  because of  the  “mix  and 
match”  philosophy of OSL,  a  user  may,  within 
rather  wide  limits,  individually  tailor  a  technique 
to  solve  a  particular  problem. We conclude  that 
OSL  is  something  new  in  optimization  software. 

M athematical optimization is broadly appli- 
cable  to the problems of minimizing costs, 

maximizing profits,  and scheduling projects sub- 
ject  to time  and financial constraints.  Computer 
software implementing the  techniques of mathe- 
matical optimization  has  been much in demand, 
and IBM has  been  a  leader in providing such soft- 
ware. For many years, IBM’s Mathematical Pro- 
gramming System Extended/370 (MPSX/370) ’ pro- 
gram product  has  been a standard tool used by 
optimization  specialists  for  applications in a wide 
variety of business  and  government  areas.  How- 
ever,  the optimization field has grown in size, va- 
riety,  and complexity of applications.  New meth- 
ods  are  needed  to solve problems  accurately  and 
quickly. 
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The Optimization Center in the  Mathematical Sci- 
ences  Department of IBM Research  has been con- 
tinuously active in developing needed  tech- 
niques,  and  there has been  an ongoing partnership 
between  the  Mathematical  Sciences  Department 
and the Application Technology Center of the IBM 
Kingston High Performance Computing Solu- 
tions Development organization  devoted to inte- 
grating Research’s  contributions  into IBM engi- 
neering and scientific products.  This  partnership 
had already  produced  the IBM Engineering and 
Scientific Subroutine  Library (ESSL). Thus,  when 
it became  clear  that a new kind of product  was 
needed to support  use of IBM systems  for optimi- 
zation applications, it was natural to  turn  to this 
partnership,  and  the Optimization Subroutine Li- 
brary (oSL) is the  result. 

OSL was developed to provide  practitioners with 
a suite of tools  for manipulating the mathematical 
models and solving the resulting minimization 
and maximization problems of mathematical  op- 
timization. OSL is a  departure  from  the optimiza- 
tion software  products of the  past.  It has algo- 
rithmic breadth: having linear programming via 
both simplex and  interior point approaches, 
mixed-integer programming, quadratic program- 
ming, and  network  problems. It  has platform 
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breadth: being available on most IBM workstation 
and mainframe systems with most of the  operat- 
ing system  environments, including a low-end 
version running under the popular disk operating 
system from Microsoft Corporation.  It is exten- 
sible,  and it is  not  subject  to problem size limi- 
tations  other  than  those imposed by the plat- 
forms.  Finally, it  is readily adapted  to provide 
solutions  for  vendors’  products. 

In  this  issue of the IBM Systems Journal the  reader 
is introduced to the  depth  and  breadth of OSL. In 
the  remainder of this essay, we identify the prob- 
lems  that OSL addresses  and give a moderately 
technical overview of the  content of OSL. The 
papers by Forrest  and Tomlin take  the  reader 
through  the simplex and  interior point algorithms 
of OSL for solving linear programming prob- 
lems. 2,3 The  paper by Jensen  and King that  then 
follows explains  the simplex-based algorithm 
used  to  solve  quadratic programming problems. 
Next, Minkoff shows how to make the  transition 
from a symbolic representation of a mathematical 
programming problem to a functional  driver  pro- 
gram that will use OSL modules  to solve the  prob- 
lem.’ In the following paper,  Jensen  and King 
illustrate  use of the  quadratic programming algo- 
rithms of the library in portfolio optimization ap- 
plications.6 We then  turn  to  a  contribution from 
one of the  customers  who helped us as an early 
user of OSL for  their  applications. Anbil and 
Tanga of American Airlines Decision Technolo- 
gies join with Johnson of IBM to describe  their 
application of OSL to airline crew scheduling 
problems.7  Finally,  Johnson  and  Nemhauser of 
the Georgia Institute of Technology give us some 
insight into  where  the  mathematical programming 
and optimization field is headed.* 

We have claimed that OSL is something new to 
optimization. We urge the  reader,  after reading 
this  issue,  to work with the  product  and with the 
development  group to make it even  better,  thus 
maintaining OSL as something new to optimiza- 
tion. 

The  problems  addressed  by OSL 

OSL provides the capability to solve linear, qua- 
dratic,  and mixed-integer programming prob- 
lems. For linear programming (LP) problems, 
both  the  objective  function  to be minimized (or 
maximized) and  the  constraints  that define the 
domain of the problem are linear. LP problems are 
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the simplest mathematical  optimization  prob- 
lems,  and  we  assume  that  the  reader is at  least 
moderately well-acquainted with them.  The abil- 
ity to solve LP problems  provides a necessary 
foundation  for solving other  types of optimization 
problems. Nonlinear problems  that OSL ad- 
dresses include quadratic programming (QP) 
problems,  characterized by quadratic  terms in the 
objective function,  and mixed-integer program- 
ming (MIP) problems,  characterized by integrality 
constraints  on  some of the  variables. 

In problems related  to  stock  trading,  both  the 
trend of a  stock price and  its volatility are con- 
sidered. Modeling volatility introduces  quadratic 
terms  into  the  objective  function,  and  hence, QP 
problems arise when volatility is taken  into  ac- 
count.  In  general, QP problems may include qua- 
dratic  terms in the  constraints as well as in the 
objective function,  but in its present  form, OSL 
only handles QP problems with linear  constraints. 
MIP problems may arise in applications in which 
the variables represent indivisible units,  such  as 
railroad cars,  aircraft,  etc.  However, in many MIP 
problems,  the integer variables represent deci- 
sion alternatives  whose  possible  values  are lim- 
ited to  zero  and  one.  For  example, assigning a 
value of one  to  such a variable might correspond 
to making a decision to assign a particular  crew 
member to  a  particular flight, or  to build a facility 
at a  particular  location,  whereas assigning a  value 
of zero  to  the variable would correspond  to  the 
decision not to assign that  crew  member  to  that 
flight, or not to build the facility at  that location. 
Such decision variables can only be  “true”  or 
“false.”  Fractional  values  for  the  corresponding 
problem variables are not meaningful, and  round- 
ing a solution in which such  a variable did not 
have  a value of either  one or  zero might give a 
nonoptimal answer  or  even  one  that failed to  sat- 
isfy some constraint. 

Network programming problems are a  special 
subclass of LP problems that  can  represent flows 
through a  network  or a schedule of events.  These 
problems can be represented pictorially by di- 
rected  graphs with the  nodes  representing  cities, 
reservoirs, etc., and  the  interconnecting  arcs  rep- 
resenting roads,  canals,  etc.  The  values of the 
variables correspond  to flows along the  arcs. Ca- 
pacities of the  arcs define bounds  on  these vari- 
ables,  and unit costs of moving items along an  arc 
give the coefficients of the  objective  function. Ma- 
terial balance  conditions  at  the  nodes, including 
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sources  and  sinks, define the  constraints of the 
problem. 

For  pure network programming problems,  a  strict 
conservation principle is imposed that greatly re- 
stricts  the  form of the  linear  constraints,  and  thus 
greatly affects the implementation of a solution 

The  user  must supply  a main 
program  that  coordinates  the 

problem  solution using 
subroutines  from OSL. 

technique.  This principle implies that  there be no 
addition  to or diminution of a  quantity along an 
arc.  If,  for example, a truck  travels from one city 
to  another,  and it departs with 120 chickens,  the 
conservation principle requires  that it arrive with 
120 chickens. Similar but  somewhat  less-re- 
stricted  problems , called generalized network 
programming problems, allow for possible linear 
changes in variable values along arcs, such as 
changes of units  on the variables or fixed per- 
centage  losses en  route.  For example, 2 percent 
of the chickens may escape along the  road. 

OSL includes  solvers  for LP, QP, MIP, and  pure 
network programming problems. For LP prob- 
lems  (other  than MIP and  pure  network program- 
ming problems), OSL provides  solvers  based  on 
the classical simplex method  and  on  newer inte- 
rior point methods. Any of the interior point solv- 
ers can  also be run  on  the initial relaxed version 
of a MIP problem,  without  its integrality con- 
straints,  to get an initial bound on  the value of the 
objective  function  for the integer solution. 

The  content of OSL 

Organization  and  philosophy. The OSL develop- 
ment philosophy was to provide  a  set of building 
blocks  that a user could assemble as required to 
solve different kinds of optimization problems. 
OSL includes  user-callable  subroutines in the fol- 
lowing seven  categories: (1) solvers  for LP, QP, 
MIP, and  pure  network programming problems, 
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(2) initialization and  setup, (3) input  and  output, 
(4) matrix manipulation, (5 )  message handling, (6) 
control variable querying and  setting,  and (7) sen- 
sitivity and  parametric  analyses.  In  addition, 
there is a full complement of user  exit  routines, 
which the  user may accept  or replace.  (Control 
variables and  user  exits are discussed in a later 
subsection within this  section.) The OSL subrou- 
tines  use  state-of-the-art  algorithms  that  have 
been implemented in codes  that  take  advantage of 
the  architectures of the IBM platforms  on which 
they execute.  They  are  written primarily in por- 
table FORTRAN, with a  few  assembler language or 
(on platforms running Advanced  Interactive  Ex- 
ecutive*, or AIX*) C language routines  included. 

The  user  must supply a main program  that  coor- 
dinates  the problem solution using subroutines 
from OSL. To  solve a particular  problem, a user 
may develop a new program or  adapt one of the 
sample programs supplied with OSL. The main 
program may be  written in FORTRAN, C, PL/I, or 
APL2. It may be  as simple as  four  subroutine  calls, 
or  as complicated as an  expert  user may care  to 
make it. Various OSL subroutines may be in- 
cluded or omitted,  and  they may be called in var- 
ious  orders.  The  user may also  include in the main 
program calls to  subroutines  written to supple- 
ment or even  replace  certain OSL modules. Thus, 
within rather wide limits the  user may tailor the 
technique used to solve a particular  problem. 

Short  descriptions of the  solver  modules. OSL in- 
cludes  several  solvers  based  on  the well-known 
simplex method  for solving LP problems.  In  this 
method, a computationally efficient, systematic 
search  for  the optimal value of the linear  objective 
function is performed among the  vertices of the 
feasible region determined  by  the  linear  con- 
straints of the problem. (For  an LP problem, if 
there is a  nonempty  subset of the  solution  space 
where all constraint  relations  can  be satisfied, this 
subset  must be a simply connected,  convex, poly- 
hedral region, called the feasible  region.  Further- 
more, if there  exists an optimal solution of an LP 
problem,  the  set of variable values  where  the  op- 
timal solution is attained must include  at  least  one 
of the  vertices of this polyhedral  region.) 

In  any implementation of the simplex method, 
considerable  execution  time is spent  “pricing,” 
i.e., selecting a  particular variable (based on its 
current  importance in the  objective  function) 
whose value is to be changed in determining the 
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next  candidate  vertex in the  systematic  search  for 
the optimum. Thus, a good pricing strategy  can 
significantly improve the  performance of the 
solver.  In all solvers of OSL that are based  on  the 
simplex method, special provision has been made 
to allow a knowledgeable user  to influence the 
pricing strategy  to  enhance  performance. 

In  textbook  explanations of the simplex method, 
the  work is divided into  two  phases.  In  phase  one 
an auxiliary objective  function is minimized to 
obtain a feasible  solution,  and in phase  two  the 
true  objective  function is minimized (or maxi- 
mized) starting from this  feasible  solution. In the 
state-of-the-art  variant of the method imple- 
mented as  the  standard LP solver in OSL, the work 
is not divided into  two  phases,  but  instead  a com- 
posite  objective  function is used throughout.  This 
composite  objective  function is a linear combina- 
tion of the phase  one  and  phase  two objective 
functions. Thus, the variables are simultaneously 
moved toward  their  optimum values as feasibility 
is approached.  A detailed explanation of the im- 
plementation of the simplex method for OSL is 
presented by Forrest  and Tomlin elsewhere in 
this  issue. 

Over  the  last  twenty  years,  numerous algorithms 
for solving LP problems  have been developed  that 
produce a sequence of points  that  converge  to  the 
optimum along a trajectory through the  interior of 
the  feasible region instead of skirting its periph- 
ery,  as  the simplex method  does.  Methods  that 
use this approach  have  come  to be known as in- 
terior  point  methods.  Three new algorithms of 
this type  are included in OSL. All three  are based 
on  the “logarithmic barrier”  method, which min- 
imizes a sequence of functions,  each of which is 
a linear  objective  function  augmented by a sum of 
logarithmic terms multiplied by a  barrier param- 
eter.  The additional terms form a  barrier  that 
keeps  successive  approximations  to  the solution 
inside the feasible region because  they grow very 
large in magnitude as  the values of the variables 
approach  their  upper  and lower bounds. As the 
minimization progresses,  the  barrier  parameter is 
progressively reduced,  and a sequence of succes- 
sive  approximations to  the optimal point is gen- 
erated. 

The  three  interior point algorithms included in 
OSL are a primal barrier method and  two primal- 
dual  barrier  methods,  one with a predictor-cor- 
rector  scheme  and  one  without.  In  the primal bar- 
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rier method,  the  linear  part of the  objective 
function is the primal objective  function,  and  suc- 
cessive  step  directions are  the  projections of the 
direction of steepest  descent of the  augmented 
objective function  onto the  space in which all of 
the  constraints of the problem are satisfied. In  the 
two primal-dual barrier  methods,  solution of the 
primal and dual problems are addressed simulta- 
neously. Differences in the  two methods  arise 
from the  techniques used to solve the mildly non- 
linear system of equations defined by  the  neces- 
sary conditions  for  both  problems to have  a so- 
lution.  The  predictor-corrector  method  uses an 
inner-outer  iteration to solve the system  directly, 
whereas the  other  method  uses a Newton  itera- 
tion scheme. All the interior point solvers  provide 
the  option  to switch over  to  the simplex method 
solver at (or near) the  completion of the  interior 
point iterations. As an initialization tactic,  the pri- 
mal algorithm may first solve  a  phase one problem 
to  locate a feasible point as described  above.  A 
much more comprehensive  explanation of these 
algorithms is presented by Forrest  and Tomlin in 
a second paper  elsewhere in this  issue.3 

The  pure  network  solver included in OSL is an 
implementation of the simplex method  that  takes 
great  advantage of the  form  and  content of the 
coefficient matrix of the  set of linear  constraint 
relations, called the  constraint matrix of the  prob- 
lem. Constraint  matrices  for  pure  network pro- 
gramming problems  take a particularly simple 
form because of the conservation principle men- 
tioned earlier.  Each column has only two  nonzero 
entries,  and  the values of these  entries  are plus 
one and minus one. As a  result, many of the in- 
termediate  computations of the simplex method, 
such as matrix multiplications and  factoring of 
certain coefficient matrices,  can  be  performed im- 
plicitly or avoided  altogether. In addition,  storage 
requirements are significantly reduced.  There- 
fore,  an implementation of the simplex method 
that is specialized for  pure  network programming 
problems can  execute  much  faster  than  an imple- 
mentation that is not so specialized. 

As  in the implementation of the simplex method 
for LP problems,  the  pure  network  solver  uses a 
composite  objective  function  throughout the cal- 
culation. Thus,  as before, the variables  are moved 
toward  their optimum values as feasibility is ap- 
proached  without a division of the  work  into  sep- 
arate  phases. Most of the  execution time in the 
network solver is spent pricing, that  is, selecting 
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a variable whose value is to be changed in deter- 
mining the  next  vertex in the  systematic  search of 
the simplex method. Thus, a good pricing strategy 
can significantly improve  the  performance of the 
network  solver,  and  special provision has been 
made  to allow a knowledgeable user to select a 
pricing strategy  that is best  suited  for  a  particular 
application. 

For a QP problem with linear  constraints,  as  for  an 
LP problem, if there is a nonempty subset of the 
solution  space  where all of the linear constraint 
relations  can be satisfied, this  subset must be a 
simply connected,  convex, polyhedral region. 
However,  for  the QP problem, in contrast  to  an LP 
problem, an optimum, if one  exists, need not oc- 
cur  at a  vertex or even on the  boundary of the 
feasible region. Thus,  the simplex method alone 
cannot be used to solve such  problems.  The al- 
gorithm implemented in 0% for QP problems is a 
hybrid of two  methods,  both based on  the simplex 
method.  The  process is begun by using the sim- 
plex method to solve the LP problem obtained by 
deleting the quadratic  terms from the objective 
function.  The optimal solution of this initial lin- 
earization of the problem is taken  as  the initial 
approximation  to  the solution of the QP problem. 

The first part of the compound algorithm pro- 
ceeds  iteratively with the following steps.  The 
tangent hyperplane  to  the  quadratic objective 
function  at  the  last  previous  approximation  to  the 
optimal point is generated,  and  the simplex 
method is used to  solve a new LP problem that  has 
the original constraints  and  this  hyperplane  as its 
objective  function. Then,  the quadratic  objective 
function is minimized over  a multidimensional 
polyhedral region defined by the optimal points 
and  possible  directions of unboundedness  for all 
previously  considered LP problems.  This multi- 
dimensional minimization is a QP problem,  but it 
has a particularly simple form,  and it  is easily 
solved.  The  point  where this minimum is attained 
is taken  as  the  next  approximation to the  optimal. 

When successive  approximations are sufficiently 
close  together,  the  second  part of the compound 
algorithm is used.  This subalgorithm is a modifi- 
cation of the simplex method  that  permits  a qua- 
dratic  objective  function,  and it converges  very 
rapidly when given a good initial estimate of the 
solution.  This hybrid approach to solving QP 
problems yields an algorithm that is both  fast  and 
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robust.  The algorithm is explained in more detail 
by Jensen  and King elsewhere in this issue.4 

For MIP problems, the solution  strategy imple- 
mented in OSL includes a branch  and  bound  tech- 
nique and  an  optional  preprocessor  that  does  ex- 
tensive  “probing” of the  problem. Briefly, the 
branch  and bound strategy  proceeds as follows. 
As a first approximation,  the  solution of the LP 
problem obtained  from the original problem by 
removing the integrality constraints  is  found.  The 
solution of this problem gives a bound for  the 
optimal value for  the MIP problem because  the 
integer solution cannot  be  better  than  the solution 
of the problem without integrality constraints. If 
the values of all of the variables in the solution of 
this  unrestricted problem that  are required to  be 
integers in the MIP problem are indeed  integers, 
this solution is optimal for  the original problem. If 
not,  an initial branching of the problem is per- 
formed as follows. 

A  candidate variable with a  noninteger  value,  say 
X1, is selected  as  the  branching  variable,  and  two 
new subsidiary problems are considered.  This  ap- 
proach is described as “adding  two  nodes to a 
branch and bound tree.” One  subsidiary  problem, 
or branch of the  tree,  corresponds  to a MIP prob- 
lem in which X1 is constrained  to be less  than or 
equal  to  the largest integer less  than X1, and  the 
other  branch  corresponds  to a MIP problem in 
which X1 is constrained to  be greater  than or 
equal  to  the next higher integer.  Each  subsidiary 
problem is a new MIP problem with one strength- 
ened  constraint. Ignoring the integrality con- 
straints again gives new LP problems  that  can  be 
analyzed.  If,  for  any  subsidiary  problem, all of the 
solution variables that  are  required  to  have  inte- 
ger values do  have  integer  values,  this solution is 
a  candidate  for  the  optimum of the original prob- 
lem, and its optimal value is a  bound  for all other 
possible solutions. If not,  another  candidate vari- 
able with a noninteger value,  say X2, is selected 
as  the new branching variable,  and  two new 
nodes are added to  the  branch and bound tree. 
These  two  nodes  (or  subsidiary  problems)  can  be 
solved and  recursively split into  more  nodes until 
the  best integer solution is found.  New  bounds  for 
the solution are obtained as new integer  solutions 
are found. 

After solving some  node, K, in the  tree, it  may be 
found that  the  objective value for  the LP problem 
at K, without integrality constraints, is not as 
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good as  the  current bound given by the  best ob- 
jective value from among all other known feasible 
integer solutions. If this  occurs,  node K can be 
pruned from the  tree, and  the  time  that would 
have  been  spent solving children nodes of K can 
be  saved. OSL provides  expert  users with the  ca- 
pabilities of selecting the  next branching variable, 
selecting the next node to be solved, adding con- 
straints  to  a  node,  and fixing the way in which 
nodes are solved or  pruned. 

In the probing mentioned earlier, each of the zero- 
one variables is fixed first to  zero  and  then  to one, 
and  the logical consequences of all these assign- 
ments are investigated.  The effect of this preproc- 
essing is similar to branching in the  branch and 
bound strategy, but the logical analysis  does  not 
require  the resulting LP problems to  be solved. 
The  preprocessor may  fix variables, modify co- 
efficients in constraints,  add new constraints,  de- 
termine infeasibility, or even  determine  an opti- 
mal solution. If the  number of zero-one variables 
in the MIP problem is significant, this  preprocess- 
ing can  greatly  reduce  the solution time required. 

Customizing  the  solver  algorithms. OSL includes 
control  variables  and calls to user  exits  that will 
allow expert  users  to develop  custom solution 
strategies  for  particular  problems. At the  same 
time,  the default control  paths allow all users  to 
solve most problems with exemplary  speed. 
Moreover,  as typical users gain experience with 
solving problems of the  type in which they  are 
most  interested, they will become more able  and 
willing to  take advantage of the available options. 

User-settable  control variables affect many as- 
pects of the  execution of the algorithms. These 
multiposition switches permit defining, among 
many other things: the  number of simplex itera- 
tions to be done with one pricing strategy before 
changing to  another,  the tolerances  for  detecting 
zero values and  certain  error  conditions,  the al- 
lowed amounts of primal and dual infeasibilities, 
the initial weight for  the  phase  one  part  (or  fea- 
sibility component) of the  composite objective 
function used by the simplex method LP solver, 
the  rate  at which the  barrier  parameter of the in- 
terior point solvers is reduced,  the maximum 
number of steps of the simplex method to be done 
before a matrix  refactorization is done,  and  the 
maximum number of nodes allowed in the  branch 
and bound tree  for  the MIP solver. Of course, de- 
fault values that  were  determined by running the 
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solvers against a  suite of representative  test  prob- 
lems are supplied for all such  variables. 

Embedded calls by each  solver  to  certain “user 
exit”  subroutines make possible  even more com- 
prehensive  customization of OSL. A suite of 

OSL provides  a  collection of 
tools for solving LP, QP, and 
mixed-integer  programming 

problems. 

(mostly dummy)  user  exit  routines is distributed 
with OSL. To  take  advantage of the  user  exits,  the 
user must write  one or more  replacement  routines 
(in FORTRAN), compile them,  and  load  them with 
the main program and  the OSL subroutines. At 
load time,  the  user’s  routines will supersede  the 
user  exits  distributed with OSL, and  at  run  time, 
the user’s routines will gain control in the midst 
of the  execution of the OSL solver  routines.  This 
suite provides a  very powerful means  for the user 
to monitor and  control  the  execution of the algo- 
rithms. For example, a novice user  could print out 
intermediate information as  the solution of a 
problem progressed, or an  expert  user could 
change solution tactics in major ways  whenever it 
seemed  advantageous to  do so. 

Summary 

OSL, a new IBM product  for manipulating and  an- 
alyzing optimization problems,  was  developed in 
response  to  customer  requirements  for more 
powerful and more flexible software. OSL pro- 
vides a collection of tools  for solving lin- 
ear programming, quadratic programming, and 
mixed-integer programming problems. Individual 
OSL components implement state-of-the-art algo- 
rithms in code  that  takes special advantage of 
characteristics of the IBM platforms  on which they 
run.  These algorithms include both  interior  point 
algorithms and algorithms based  on  the simplex 
method.  Collectively, the OSL components  pro- 
vide a  versatile  array of tools  for solving optimi- 
zation problems.  These  components  can be com- 
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bined into  applications as simple as  “input, call 
solver, output”  sequences  or  into  complicated, 
individualized algorithms that  have  been highly 
customized by knowledgeable users. 

OSL was developed as a result of a  partnership 
between IBM research  and  development  groups in 
Yorktown Heights and  Kingston,  New  York,  and 
Almaden, California. Members of these  groups 
are  authors or coauthors of several  papers in this 
issue of the IBM Systems Journal. We have given 
brief descriptions of the classes of problems that 
OSL addresses  and a technical  overview of the 
content of OSL. In doing so, we have  introduced 
the  contents of several  papers in this  issue. For 
more  detailed  discussions of OSL, and  the algo- 
rithms implemented therein,  the  reader is referred 
to  these  papers  and  to  the OSL Guide  and Refer- 
ence. 

*Trademark or registered trademark of International  Business 
Machines  Corporation. 
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