Introduction to the IBM
Optimization Subroutine
Library

This essay introduces the IBM Optimization
Subroutine Library (OSL) and seven OSL-related
papers that appear in this issue. Developed as a
result of a partnership between several IBM
research and development groups, OSL provides
a suite of tools for manipulating the models

and solving the resulting minimization and
maximization problems of mathematical
optimization. The problems that OSL addresses
include: linear, quadratic, mixed-integer, and pure
network programming problems. OSL includes
solvers based on the classical simplex method
and on newer interior point methods. Because a
user-supplied driver program coordinates the
problem solution, and because of the “mix and
match” philosophy of OSL, a user may, within
rather wide limits, individually tailor a technique
to solve a particular problem. We conclude that
OSL is something new in optimization software.

Mathematical optimization is broadly appli-
cable to the problems of minimizing costs,
maximizing profits, and scheduling projects sub-
ject to time and financial constraints. Computer
software implementing the techniques of mathe-
matical optimization has been much in demand,
and IBM has been a leader in providing such soft-
ware. For many years, IBM’s Mathematical Pro-
gramming System Extended/370 (MPSX/370)! pro-
gram product has been a standard tool used by
optimization specialists for applications in a wide
variety of business and government areas. How-
ever, the optimization field has grown in size, va-
riety, and complexity of applications. New meth-
ods are needed to solve problems accurately and
quickly.

4 WILSON AND RUDIN

by D. G. Wilson
B. D. Rudin

The Optimization Center in the Mathematical Sci-
ences Department of IBM Research has been con-
tinuously active in developing needed tech-
niques, and there has been an ongoing partnership
between the Mathematical Sciences Department
and the Application Technology Center of the IBM
Kingston High Performance Computing Solu-
tions Development organization devoted to inte-
grating Research’s contributions into IBM engi-
neering and scientific products. This partnership
had already produced the 1BM Engineering and
Scientific Subroutine Library (ESSL). Thus, when
it became clear that a new kind of product was
needed to support use of IBM systems for optimi-
zation applications, it was natural to turn to this
partnership, and the Optimization Subroutine Li-
brary (OSL) is the result.

OSL was developed to provide practitioners with
a suite of tools for manipulating the mathematical
models and solving the resulting minimization
and maximization problems of mathematical op-
timization. OSL is a departure from the optimiza-
tion software products of the past. It has algo-
rithmic breadth: having linear programming via
both simplex and interior point approaches,
mixed-integer programming, quadratic program-
ming, and network problems. It has platform

©Copyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




breadth: being available on most IBM workstation
and mainframe systems with most of the operat-
ing system environments, including a low-end
version running under the popular disk operating
system from Microsoft Corporation. It is exten-
sible, and it is not subject to problem size limi-
tations other than those imposed by the plat-
forms. Finally, it is readily adapted to provide
solutions for vendors’ products.

In this issue of the 18BM Systems Journal the reader
is introduced to the depth and breadth of OSL. In
the remainder of this essay, we identify the prob-
lems that OSL addresses and give a moderately
technical overview of the content of OSL. The
papers by Forrest and Tomlin take the reader
through the simplex and interior point algorithms
of oSL for solving linear programming prob-
lems.?* The paper by Jensen and King that then
follows explains the simplex-based algorithm
used to solve quadratic programming problems. *
Next, Minkoff shows how to make the transition
from a symbolic representation of a mathematical
programming problem to a functional driver pro-
gram that will use 0SL modules to solve the prob-
lem.’ In the following paper, Jensen and King
illustrate use of the quadratic programming algo-
rithms of the library in portfolio optimization ap-
plications.® We then turn to a contribution from
one of the customers who helped us as an early
user of OSL for their applications. Anbil and
Tanga of American Airlines Decision Technolo-
gies join with Johnson of IBM to describe their
application of OSL to airline crew scheduling
problems.” Finally, Johnson and Nemhauser of
the Georgia Institute of Technology give us some
insight into where the mathematical programming
and optimization field is headed.®

We have claimed that OSL is something new to
optimization. We urge the reader, after reading
this issue, to work with the product and with the
development group to make it even better, thus
maintaining OSL as something new to optimiza-
tion.

The problems addressed by OSL

OSL provides the capability to solve linear, qua-
dratic, and mixed-integer programming prob-
lems. For linear programming (L.P) problems,
both the objective function to be minimized (or
maximized) and the constraints that define the
domain of the problem are linear. LP problems are

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

the simplest mathematical optimization prob-
lems, and we assume that the reader is at least
moderately well-acquainted with them. The abil-
ity to solve LP problems provides a necessary
foundation for solving other types of optimization
problems. Nonlinear problems that OSL ad-
dresses include quadratic programming (QP)
problems, characterized by quadratic terms in the
objective function, and mixed-integer program-
ming (MIP) problems, characterized by integrality
constraints on some of the variables.

In problems related to stock trading, both the
trend of a stock price and its volatility are con-
sidered. Modeling volatility introduces quadratic
terms into the objective function, and hence, QP
problems arise when volatility is taken into ac-
count. In general, QP problems may include qua-
dratic terms in the constraints as well as in the
objective function, but in its present form, OSL
only handles QP problems with linear constraints.
MIP problems may arise in applications in which
the variables represent indivisible units, such as
railroad cars, aircraft, etc. However, in many MIP
problems, the integer variables represent deci-
sion alternatives whose possible values are lim-
ited to zero and one. For example, assigning a
value of one to such a variable might correspond
to making a decision to assign a particular crew
member to a particular flight, or to build a facility
at a particular location, whereas assigning a value
of zero to the variable would correspond to the
decision not to assign that crew member to that
flight, or not to build the facility at that location.
Such decision variables can only be “true” or
“false.” Fractional values for the corresponding
problem variables are not meaningful, and round-
ing a solution in which such a variable did not
have a value of either one or zero might give a
nonoptimal answer or even one that failed to sat-
isfy some constraint.

Network programming problems are a special
subclass of LP problems that can represent flows
through a network or a schedule of events. These
problems can be represented pictorially by di-
rected graphs with the nodes representing cities,
reservoirs, etc., and the interconnecting arcs rep-
resenting roads, canals, etc. The values of the
variables correspond to flows along the arcs. Ca-
pacities of the arcs define bounds on these vari-
ables, and unit costs of moving items along an arc
give the coefficients of the objective function. Ma-
terial balance conditions at the nodes, including

WILSON AND RUDIN §




sources and sinks, define the constraints of the
problem.

For pure network programming problems, a strict
conservation principle is imposed that greatly re-
stricts the form of the linear constraints, and thus
greatly affects the implementation of a solution

The user must supply a main
program that coordinates the
problem solution using
subroutines from OSL.

technique. This principle implies that there be no
addition to or diminution of a quantity along an
arc. If, for example, a truck travels from one city
to another, and it departs with 120 chickens, the
conservation principle requires that it arrive with
120 chickens. Similar but somewhat less-re-
stricted problems, called generalized network
programming problems, allow for possible linear
changes in variable values along arcs, such as
changes of units on the variables or fixed per-
centage losses en route. For example, 2 percent
of the chickens may escape along the road.

OSL includes solvers for LP, QP, MIP, and pure
network programming problems. For LP prob-
lems (other than MIP and pure network program-
ming problems), OSL provides solvers based on
the classical simplex method and on newer inte-
rior point methods. Any of the interior point solv-
ers can also be run on the initial relaxed version
of a MIP problem, without its integrality con-
straints, to get an initial bound on the value of the
objective function for the integer solution.

The content of OSL

Organization and philosophy. The 0OSL develop-
ment philosophy was to provide a set of building
blocks that a user could assemble as required to
solve different kinds of optimization problems.
OSL includes user-callable subroutines in the fol-
lowing seven categories: (1) solvers for LP, QP,
MIP, and pure network programming problems,

B WILSON AND RUDIN

(2) initialization and setup, (3) input and output,
(4) matrix manipulation, (5) message handling, (6)
control variable querying and setting, and (7) sen-
sitivity and parametric analyses. In addition,
there is a full complement of user exit routines,
which the user may accept or replace. (Control
variables and user exits are discussed in a later
subsection within this section.) The OSL subrou-
tines use state-of-the-art algorithms that have
been implemented in codes that take advantage of
the architectures of the IBM platforms on which
they execute. They are written primarily in por-
table FORTRAN, with a few assembler language or
(on platforms running Advanced Interactive Ex-
ecutive*®, or AIX*) C language routines included.

The user must supply a main program that coor-
dinates the problem solution using subroutines
from OSL. To solve a particular problem, a user
may develop a new program or adapt one of the
sample programs supplied with OSL. The main
program may be written in FORTRAN, C, PL/, or
APL2. It may be as simple as four subroutine calls,
or as complicated as an expert user may care to
make it. Various OSL subroutines may be in-
cluded or omitted, and they may be called in var-
ious orders. The user may also include in the main
program calls to subroutines written to supple-
ment or even replace certain OSL modules. Thus,
within rather wide limits the user may tailor the
technique used to solve a particular problem.

Short descriptions of the solver modules. OSL in-
cludes several solvers based on the well-known
simplex method for solving LP problems. In this
method, a computationally efficient, systematic
search for the optimal value of the linear objective
function is performed among the vertices of the
feasible region determined by the linear con-
straints of the problem. (For an LP problem, if
there is a nonempty subset of the solution space
where all constraint relations can be satisfied, this
subset must be a simply connected, convex, poly-
hedral region, called the feasible region. Further-
more, if there exists an optimal solution of an LP
problem, the set of variable values where the op-
timal solution is attained must include at least one
of the vertices of this polyhedral region.)

In any implementation of the simplex method,
considerable execution time is spent ‘“‘pricing,”
i.e., selecting a particular variable (based on its
current importance in the objective function)
whose value is to be changed in determining the

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




next candidate vertex in the systematic search for
the optimum. Thus, a good pricing strategy can
significantly improve the performance of the
solver. In all solvers of OSL that are based on the
simplex method, special provision has been made
to allow a knowledgeable user to influence the
pricing strategy to enhance performance.

In textbook explanations of the simplex method,
the work is divided into two phases. In phase one
an auxiliary objective function is minimized to
obtain a feasible solution, and in phase two the
true objective function is minimized (or maxi-
mized) starting from this feasible solution. In the
state-of-the-art variant of the method imple-
mented as the standard LP solver in OSL, the work
is not divided into two phases, but instead a com-
posite objective function is used throughout. This
composite objective function is a linear combina-
tion of the phase one and phase two objective
functions. Thus, the variables are simultaneously
moved toward their optimum values as feasibility
is approached. A detailed explanation of the im-
plementation of the simplex method for OSL is
presented by Forrest and Tomlin elsewhere in
this issue.?

Over the last twenty years, numerous algorithms
for solving LP problems have been developed that
produce a sequence of points that converge to the
optimum along a trajectory through the interior of
the feasible region instead of skirting its periph-
ery, as the simplex method does. Methods that
use this approach have come to be known as in-
terior point methods. Three new algorithms of
this type are included in OSL. All three are based
on the “logarithmic barrier’” method, which min-
imizes a sequence of functions, each of which is
a linear objective function augmented by a sum of
logarithmic terms multiplied by a barrier param-
eter. The additional terms form a barrier that
keeps successive approximations to the solution
inside the feasible region because they grow very
large in magnitude as the values of the variables
approach their upper and lower bounds. As the
minimization progresses, the barrier parameter is
progressively reduced, and a sequence of succes-
sive approximations to the optimal point is gen-
erated.

The three interior point algorithms included in
OSL are a primal barrier method and two primal-
dual barrier methods, one with a predictor-cor-
rector scheme and one without. In the primal bar-

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

rier method, the linear part of the objective
function is the primal objective function, and suc-
cessive step directions are the projections of the
direction of steepest descent of the augmented
objective function onto the space in which all of
the constraints of the problem are satisfied. In the
two primal-dual barrier methods, solution of the
primal and dual problems are addressed simulta-
neously. Differences in the two methods arise
from the techniques used to solve the mildly non-
linear system of equations defined by the neces-
sary conditions for both problems to have a so-
lution. The predictor-corrector method uses an
inner-outer iteration to solve the system directly,
whereas the other method uses a Newton itera-
tion scheme. All the interior point solvers provide
the option to switch over to the simplex method
solver at (or near) the completion of the interior
point iterations. As an initialization tactic, the pri-
mal algorithm may first solve a phase one problem
to locate a feasible point as described above. A
much more comprehensive explanation of these
algorithms is presented by Forrest and Tomlin in
a second paper elsewhere in this issue.?

The pure network solver included in OSL is an
implementation of the simplex method that takes
great advantage of the form and content of the
coefficient matrix of the set of linear constraint
relations, called the constraint matrix of the prob-
lem. Constraint matrices for pure network pro-
gramming problems take a particularly simple
form because of the conservation principle men-
tioned earlier. Each column has only two nonzero
entries, and the values of these entries are plus
one and minus one. As a result, many of the in-
termediate computations of the simplex method,
such as matrix multiplications and factoring of
certain coefficient matrices, can be performed im-
plicitly or avoided altogether. In addition, storage
requirements are significantly reduced. There-
fore, an implementation of the simplex method
that is specialized for pure network programming
problems can execute much faster than an imple-
mentation that is not so specialized.

As in the implementation of the simplex method
for LP problems, the pure network solver uses a
composite objective function throughout the cal-
culation. Thus, as before, the variables are moved
toward their optimum values as feasibility is ap-
proached without a division of the work into sep-
arate phases. Most of the execution time in the
network solver is spent pricing, that is, selecting

WILSON AND RUDIN 7




a variable whose value is to be changed in deter-
mining the next vertex in the systematic search of
the simplex method. Thus, a good pricing strategy
can significantly improve the performance of the
network solver, and special provision has been
made to allow a knowledgeable user to select a
pricing strategy that is best suited for a particular
application.

For a QP problem with linear constraints, as for an
LP problem, if there is a nonempty subset of the
solution space where all of the linear constraint
relations can be satisfied, this subset must be a
simply connected, convex, polyhedral region.
However, for the QP problem, in contrast to an LP
problem, an optimum, if one exists, need not oc-
cur at a vertex or even on the boundary of the
feasible region. Thus, the simplex method alone
cannot be used to solve such problems. The al-
gorithm implemented in OSL for QP problems is a
hybrid of two methods, both based on the simplex
method. The process is begun by using the sim-
plex method to solve the LP problem obtained by
deleting the quadratic terms from the objective
function. The optimal solution of this initial lin-
earization of the problem is taken as the initial
approximation to the solution of the QP problem.

The first part of the compound algorithm pro-
ceeds iteratively with the following steps. The
tangent hyperplane to the quadratic objective
function at the last previous approximation to the
optimal point is generated, and the simplex
method is used to solve a new LP problem that has
the original constraints and this hyperplane as its
objective function. Then, the quadratic objective
function is minimized over a multidimensional
polyhedral region defined by the optimal points
and possible directions of unboundedness for all
previously considered LP problems. This multi-
dimensional minimization is a QP problem, but it
has a particularly simple form, and it is easily
solved. The point where this minimum is attained
is taken as the next approximation to the optimal.

When successive approximations are sufficiently
close together, the second part of the compound
algorithm is used. This subalgorithm is a modifi-
cation of the simplex method that permits a qua-
dratic objective function, and it converges very
rapidly when given a good initial estimate of the
solution. This hybrid approach to solving QP
problems yields an algorithm that is both fast and

8 wiLSON AND RUDIN

robust. The algorithm is explained in more detail
by Jensen and King elsewhere in this issue.*

For MIP problems, the solution strategy imple-
mented in OSL includes a branch and bound tech-
nique and an optional preprocessor that does ex-
tensive “probing’’ of the MIP problem. Briefly, the
branch and bound strategy proceeds as follows.
As a first approximation, the solution of the LP
problem obtained from the original problem by
removing the integrality constraints is found. The
solution of this problem gives a bound for the
optimal value for the MIP problem because the
integer solution cannot be better than the solution
of the problem without integrality constraints. If
the values of all of the variables in the solution of
this unrestricted problem that are required to be
integers in the MIP problem are indeed integers,
this solution is optimal for the original problem. If
not, an initial branching of the problem is per-
formed as follows.

A candidate variable with a noninteger value, say
X1, is selected as the branching variable, and two
new subsidiary problems are considered. This ap-
proach is described as “adding two nodes to a
branch and bound tree.”” One subsidiary problem,
or branch of the tree, corresponds to a MIP prob-
lem in which X1 is constrained to be less than or
equal to the largest integer less than X1, and the
other branch corresponds to a MIP problem in
which X1 is constrained to be greater than or
equal to the next higher integer. Each subsidiary
problem is a new MIP problem with one strength-
ened constraint. Ignoring the integrality con-
straints again gives new LP problems that can be
analyzed. If, for any subsidiary problem, all of the
solution variables that are required to have inte-
ger values do have integer values, this solution is
a candidate for the optimum of the original prob-
lem, and its optimal value is a bound for all other
possible solutions. If not, another candidate vari-
able with a noninteger value, say X2, is selected
as the new branching variable, and two new
nodes are added to the branch and bound tree.
These two nodes (or subsidiary problems) can be
solved and recursively split into more nodes until
the best integer solution is found. New bounds for
the solution are obtained as new integer solutions
are found.

After solving some node, K, in the tree, it may be

found that the objective value for the LP problem
at K, without integrality constraints, is not as

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




good as the current bound given by the best ob-
jective value from among all other known feasible
integer solutions. If this occurs, node K can be
pruned from the tree, and the time that would
have been spent solving children nodes of K can
be saved. OSL provides expert users with the ca-
pabilities of selecting the next branching variable,
selecting the next node to be solved, adding con-
straints to a node, and fixing the way in which
nodes are solved or pruned.

In the probing mentioned earlier, each of the zero-
one variables is fixed first to zero and then to one,
and the logical consequences of all these assign-
ments are investigated. The effect of this preproc-
essing is similar to branching in the branch and
bound strategy, but the logical analysis does not
require the resulting LP problems to be solved.
The preprocessor may fix variables, modify co-
efficients in constraints, add new constraints, de-
termine infeasibility, or even determine an opti-
mal solution. If the number of zero-one variables
in the MIP problem is significant, this preprocess-
ing can greatly reduce the solution time required.

Customizing the solver algorithms. OSL includes
control variables and calls to user exits that will
allow expert users to develop custom solution
strategies for particular problems. At the same
time, the default control paths allow all users to
solve most problems with exemplary speed.
Moreover, as typical users gain experience with
solving problems of the type in which they are
most interested, they will become more able and
willing to take advantage of the available options.

User-settable control variables affect many as-
pects of the execution of the algorithms. These
multiposition switches permit defining, among
many other things: the number of simplex itera-
tions to be done with one pricing strategy before
changing to another, the tolerances for detecting
zero values and certain error conditions, the al-
lowed amounts of primal and dual infeasibilities,
the initial weight for the phase one part (or fea-
sibility component) of the composite objective
function used by the simplex method LP solver,
the rate at which the barrier parameter of the in-
terior point solvers is reduced, the maximum
number of steps of the simplex method to be done
before a matrix refactorization is done, and the
maximum number of nodes allowed in the branch
and bound tree for the MIP solver. Of course, de-
fault values that were determined by running the

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992

solvers against a suite of representative test prob-
lems are supplied for all such variables.

Embedded calls by each solver to certain ‘“user

exit” subroutines make possible even more com-
prehensive customization of OSL. A suite of

OSL provides a collection of

tools for solving LP, QP, and

mixed-integer programming
problems.

(mostly dummy) user exit routines is distributed
with OSL. To take advantage of the user exits, the
user must write one or more replacement routines
(in FORTRAN), compile them, and load them with
the main program and the OSL subroutines. At
load time, the user’s routines will supersede the
user exits distributed with OSL, and at run time,
the user’s routines will gain control in the midst
of the execution of the OSL solver routines. This
suite provides a very powerful means for the user
to monitor and control the execution of the algo-
rithms. For example, a novice user could print out
intermediate information as the solution of a
problem progressed, or an expert user could
change solution tactics in major ways whenever it
seemed advantageous to do so.

Summary

OSL, a new IBM product for manipulating and an-
alyzing optimization problems, was developed in
response to customer requirements for more
powerful and more flexible software. OSL pro-
vides a collection of tools for solving lin-
ear programming, quadratic programming, and
mixed-integer programming problems. Individual
OSL components implement state-of-the-art algo-
rithms in code that takes special advantage of
characteristics of the IBM platforms on which they
run. These algorithms include both interior point
algorithms and algorithms based on the simplex
method. Collectively, the OSL components pro-
vide a versatile array of tools for solving optimi-
zation problems. These components can be com-

WILSON AND RUDIN 9




bined into applications as simple as “‘input, call
solver, output” sequences or into complicated,
individualized algorithms that have been highly
customized by knowledgeable users.

OSL was developed as a result of a partnership
between IBM research and development groups in
Yorktown Heights and Kingston, New York, and
Almaden, California. Members of these groups
are authors or coauthors of several papers in this
issue of the 1BM Systems Journal. We have given
brief descriptions of the classes of problems that
OSL addresses and a technical overview of the
content of OSL. In doing so, we have introduced
the contents of several papers in this issue. For
more detailed discussions of OSL, and the algo-
rithms implemented therein, the reader is referred
to these papers and to the OSL Guide and Refer-
ence.’

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references

1. Mathematical Programming System Extended/370 Gen-
eral Information Manual, GH19-6549, IBM Corporation;
available through IBM branch offices.

2. J.J. H. Forrest and J. A. Tomlin, “Implementing the Sim-
plex Method for the Optimization Subroutine Library,”
IBM Systems Journal 31, No. 1, 11-25 (1992, this issue).

3. J.J. H. Forrest and J. A. Tomlin, “Implementing Interior
Point Linear Programming Methods in the Optimization
Subroutine Library,” IBM Systems Journal 31, No. 1,
26-38 (1992, this issue).

4. D. L. Jensen and A. J. King, *“A Decomposition Method
for Quadratic Programming,” IBM Systems Journal 31,
No. 1, 39-48 (1992, this issue).

5. A. S. Minkoff, “A Systematic Approach to OSL Applica-
tion Programming,”” IBM Systems Journal 31, No. 1, 49-61
(1992, this issue).

6. D. L. Jensen and A. J. King, “Frontier: Graphical Inter-
face for Portfolio Optimization in a Piecewise Linear-
Quadratic Risk Framework™ IBM Systems Journal 31, No.
1, 62-70 (1992, this issue).

7. R. Anbil, R. Tanga, and E. L. Johnson, “A Global Ap-
proach to Crew-Pairing Optimization,”” IBM Systems Jour-
nal 31, No. 1, 71-78 (1992, this issue).

8. E. L. Johnson and G. L. Nemhauser, ‘“Recent Develop-
ments and Future Directions in Mathematical Program-
ming,” IBM Systems Journal 31, No. 1, 79-93 (1992, this
issue).

9. Optimization Subroutine Library Guide and Reference,
SC23-0519, IBM Corporation; available through IBM
branch offices.

Accepted for publication September 13, 1991.

D. George Wilson IBM Application Solutions Division, P.O.
Box 100, Kingston, New York 12401 . Dr. Wilson rejoined IBM

10 WILSON AND RUDIN

in 1990 after an absence of nearly 22 years. He first joined IBM
in 1962 as an associate programmer in the Federal Systems
Division. While there, he worked at various code develop-
ment assignments for the military and the Federal Aviation
Agency until 1968, when he left IBM to complete his graduate
education. In the years 1970-1972, he was an assistant pro-
fessor of mathematics at Virginia Commonwealth University.
In 1972 he joined the research staff of the mathematics and
statistics research group at Oak Ridge National Laboratory
and worked there until 1990 as a researcher and, ultimately,
group leader, developing and analyzing progressively more
complicated mathematical and computational models of phys-
ical systems. His specialty became the formulation of models
representing heat transfer processes involving change of
phase, and the numerical solution of the resulting system of
mildly nonlinear partial differential equations using high-per-
formance vector computing facilities. From 1974 to 1989, he
was also an adjunct professor of mathematics at the Univer-
sity of Tennessee at Knoxville. Since January of 1990, Dr.
Wilson has been a member of the Optimization Subroutine
Library development team in the Application Technology
Center at the Kingston Center for High Performance Com-
puting Solutions Development. He holds a B.S. in chemistry
from the University of Oklahoma, an M.S. in physics from
Iowa State University, and a Ph.D. in mathematics from the
University of Maryland.

Bernard D. Rudin IBM Advanced Workstations Division,
11400 Burnet Road, Austin, Texas 78758. Dr. Rudin recently
accepted a new assignment in Austin. Since 1987, he had been
manager of the Application Technology Center at the IBM
Kingston Center for High Performance Computing Solutions
Development. There he was responsible for enablement of
strategic applications for all IBM engineering and scientific
computing platforms, development of application building
block products, e.g., the Engineering and Scientific Subrou-
tine Library and the Optimization Subroutine Library, and
provision of application impetus and development partnership
to product divisions to aid in improvement of product designs
for engineering and scientific application performance. Dr.
Rudin joined IBM in 1966, after holding various positions in
management, research, and engineering at the Lockheed Mis-
sile and Space Company, the Lockheed California Company,
and the Marquardt Aircraft Corporation. In the years 1966~
1977, he held managerial and senior technical positions with
IBM’s Federal Systems Division, Systems Development Di-
vision, and Data Processing Product Group. From 1978 to
1983, he was manager of the Los Angeles Scientific Center,
where he was responsible for the development and execution
of the Scientific Center Systems and Software advanced tech-
nology missions and complementary market support activi-
ties. From 1983 to 1986, he worked as a senior engineer and
manager in Scientific and Engineering Processor Products,
Data Systems Division, analyzing applications in support of
new product design, and enabling applications for vector and
parallel processors. Dr. Rudin holds a B.S. in astronomy from
the California Institute of Technology, an M.S. in mathemat-
ics from the University of Southern California, and a Ph.D. in
mathematics from Stanford University.

Reprint Order No. G321-5456.

IBM SYSTEMS JOURNAL, VOL 31, NO 1, 1992




