Advanced applications of
APL: logic programming,
neural networks, and
hypertext

This paper reviews the work of the author on the
application of the APL and APL2 programming
languages to logic programming, emulation of
neural networks, and the programming of
hypertext applications.

he last decade has witnessed the emergence

and maturation of a whole set of new fields and
techniques in computer science, such as log-
ic programming (which actually started in the
1970s), neural networks, object-oriented program-
ming, genetic algorithms, and a few others. APL
(and its successor APL2) remains abreast of the
times as a programming language and has demon-
strated its capability for all of these exciting new
fields.

This paper summarizes the previous work of the
author in three of the indicated fields. The first
section, on logic programming, describes the design
of a logic programming auxiliary processor, capable
of performing declarative logic inferences similar to
Prolog, that can be invoked and used from an APL
workspace. This processor is now a part of the
APL2/PC IBM product.

The second section, on neural networks, describes
how APL can be used to model, teach, and imple-
ment these modern structures which, though de-
scending directly from the perceptrons of the 1960s,
have now revived with a new strength and are being
applied to new, interesting fields.
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Finally, a third section summarizes why APL2 is ex-
tremely apt for the development of object-oriented
applications and describes in some detail a hyper-
text application built on these lines.

APL and logic programming

The literature on APL shows that there has been a
long-standing discussion about the usefulness of
this language for artificial intelligence applications.
This usefulness is considered a direct consequence
of the great power of the language, the ease of
programming with high-order data structures, or
the possibility of using a “parallel” approach to
solve certain problems. Reference 1 gives more de-
tails on the latter.

In particular, the new list structures introduced in
the APL2 form of the language? provide APL with all
of the power of LISP, the classical language for ar-
tificial intelligence.>*

Several attempts have been made to build expert
systems using only the current power of the lan-
guage, either with APL or APL2.>® Building an ex-
pert system usually requires the implementation of
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Table 1 Reserved symbols for AP998

an inference machine, or some version of logic pro-
gramming, in APL. The problem here is speed.
However, some of the approaches find highly orig-
inal ways to solve this problem.

A related approach is the emulation of Prolog-like
rule-based inferences. Although such emulation
has been done more than once, " this approach is
usually too slow, for it boils down to interpreting an
interpreter.

A better solution to this problem would be the im-
plementation of a Prolog-like inference processor
in a lower-level language in such a way as to be
easily accessible from normal APL programs. In this
way, powerful hybrid systems could be imple-
mented. Applications built in APL using this “logic
auxiliary processor” would gain access to a whole
class of new possibilities (logic inferences, “natural-
like” language, nonprocedural programming) while
at the same time maintaining all of the APL numeric
calculation and symbolic manipulation capabilities.

This inference processor is already written and is a
part of the APL2/PC product. It is an auxiliary proc-
essor, called AP998, accessible from APL2 in the
usual way through shared variables, and incorpo-
rates a subset of a Prolog-like interpreter.

It has been said that this method is not really an APL
solution, since it does not use pure APL programs
but instead adds one external program (the auxil-
iary processor) written in a different language. I
think this criticism is unfair, because:

* Auxiliary processors are, and have been for a
long time, a part of APL. The fact that they are
included in the products proves this assertion.

* APL allows the construction of auxiliary proc-
essors in different languages, and this capability
is a plus, not a minus, of the language. It is a
well-known fact that APL as an interpretive lan-
guage has a certain impact on performance. The
standard solution (avoiding loops in the code) is
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not always feasible, especially when cascaded re-
sults are involved, that is, those processes where
the next value to be computed depends on pre-
viously computed values. In those cases, it is a
great advantage to be able to speed the system up
by programming the bottlenecks in a lower-level
language. If this can be done in such a way that
the resulting auxiliary processor is of general ap-
plication and can be reused in very different con-
texts, APL becomes richer and increases its power
for future applications.

The remainder of this section describes the logic
inference auxiliary processor, AP998.

The logic language. The logic language imple-
mented by AP998 is a subset of Prolog using only
infix notation. The lexical elements of the language
are the following:

* Words—A word can be defined as any character
string not including spaces. Uppercase and low-
ercase are considered to be equivalent. Exam-
ples are:

JOHN
IS-FATHER-OF
25

* Reserved symbols—Certain symbols have spe-
cial meaning for AP998 and should not be used
outside their context. To be recognized, these
reserved symbols must be separated from adja-
cent words by at least one space. Each meaning
can be represented by two different symbols, one
of which is easier to represent with the APL key-
board, whereas the other is easier to represent
with the standard keyboard. The symbols are
shown in Table 1.

* Synonyms—Certain words can be defined as syn-
onyms for the reserved symbols. In this way,
many natural languages are recognized by AP998.
In English, the synonyms recommended for the
symbols are the words indicated in Table 1 under
the heading Meaning. Only one synonym may be
defined for each meaning at a given time.

* Variables—Any character string starting with
the “star” symbol (the asterisk, *) represents a
variable. Examples are:

*X
*CASE
*1

*
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The syntactic elements of the language are the fol-
lowing:

s Clauses—They are assertions or negations of dy-
adic predicates, written in infix notation. They con-
sist of a certain number of words or variables, with
a possible negation term in any position. They can
also include a plausibility integer. Examples are:

JOHN IS MALE

JOHN IS FATHER OF JANE
*1 IS NOT FATHER OF *2
780 WEATHER IS FINE

The plausibility integers are numbers between
zero and 100, zero corresponding to the negation
of the assertion, 100 to its certainty, and 50 to its
uncertainty. If the plausibility of an assertion is
not given, it is assumed to be absolute. If the
assertion is affirmatively worded, it is used in that
form with a plausibility of 100. If the assertion is
negatively worded, its negation is used with a
plausibility of zero.

s Rules—Basically the rules are formal logic im-
plications. A <- B is equivalent to A IF B, where
A and B are assertive or negative clauses. Rules
consist of two parts (premises and conclusion)
joined by the IF symbol or its synonym.

A special case rule is the “axiom” or “fact,” a rule
without premises, that reduces to a single clause.
Axioms may be considered as assertions or nega-
tions of dyadic predicates written in infix notation.
Examples of axioms are:

& JOHN IS MALE—equivalent to the Prolog
monadic predicate MALE(JOHN)

s JOHNIS FATHER OF JANE—equivalent to the Pro-
log dyadic predicate FATHER(JOHN, JANE)

s 780 WEATHER IS FINE—indicates an 80 percent
plausibility that the assertion is true

s * = *_an axiom that contains a variable and
defines equality to AP998

Rules with premises allow the system to deduce
new facts from the facts defined to it. Examples of
rules with premises are:

*X IS SON OF *Y IF *X IS MALE AND *Y IS
PARENT OF *X

*X IS PARENT OF *Y IF *X IS FATHER OF *Y OR
*X IS MOTHER OF *Y

270 1 WILL GO TO THE THEATER IF WEATHER IS
FINE
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As the examples show, rules are accepted by the
system in a way very similar to natural language.
The last example can be read in the following way:
“There is a 70 percent plausibility that I will go to
the theater if the weather is fine.”

When the conclusion of a rule depends on uncer-
tain premises, the following are applied:

1. The plausibility of two premises separated by
AND is the minimum of the plausibilities of the
individual premises.

. The plausibility of the conclusion of the rule is
the product of the plausibility of the rule times
the plausibility of the premises, divided by 100.

. If the plausibility of the conclusion is smaller
than a certain threshold value, and the subgoal
answered by the conclusion included a variable,
this solution is abandoned (i.e., its plausibility
becomes zero).

. If two premises separated by OR carry to the
same conclusion, both results are passed to APL
separately (as independent answers to the same
question).

Structure of the knowledge base. AP998 maintains
information in two different data spaces. The first
one is a symbol table, where words are stored. The
other is the rule table. The size of each is automat-
ically chosen by AP998 to fit all of the words and
rules defined to it. Their starting (minimum) size is
2K bytes. Their maximum size is 63K bytes.

A stack is also used for logic inferences, the size of
which can be adjusted by the programmer within
the same interval. (The default size is 2K bytes.)
Therefore, the total data space for AP998 may vary
between 6K bytes and about 190K bytes. The in-
formation in the stack allows AP998 to provide in-
formation on why it came to a given conclusion.

The maximum number of rules accepted by AP998 is
about 3000. Of course, this number depends on the
rules themselves, for rules are variable-length ob-
jects, depending on the number and sizes of their
premises.

Example. As an example of the use of AP998, we will
solve the following logic problem, taken from Ref-
erence 12:

“When Alice entered the forest of forgetfulness, she
did not forget everything, only certain things. She of-
ten forgot her name, and the most likely thing for her
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Figure 1 AP998 solution to logic problem

/* Solution to the ALICE problem in AP998 */

/* Definition of YESTERDAY */
sunday is yesterday of monday
monday ig yesterday of tuesday

tuesday is yesterday of wednesday
wednesday is yesterday of thursday
thursday is yesterday of friday
friday is yesterday of saturday
saturday is yesterday of sunday
/* Data about the lion and the unicorn */
The lion lies on monday
The lion lies on tuesday
The lion lies on wednesday
The unicorn lies on thursday
The unicorn lies on friday
The unicorn lies on saturday
/* Data about the phrases they said */
The lion can say that on * if
the lion lies on *
and *Y is yesterday of *
and the lion lies not on *Y
The lion can say that on * if
the lion lies on *Y
and *Y is yesterday of *
and the lion lies not on *
The unicorn can say that on * if
the unicorn lies on *
and *Y is yesterday of *
and the unicorn lies not on *Y
The unicorn can say that on * if
the unicorn lies on *Y
and *Y is yesterday of *
and the unicorn lies not on *
/* Finally, both the lion and the unicorn */
/* have said that today, so that */
Today is ™ if
the lion can say that on *
and the unicorn can say that on *

to forget was the day of the week. Now, the lion and
the unicorn were frequent visitors to this forest. These
two are strange creatures. The lion lies on Mondays,
Tuesdays, and Wednesdays, and tells the truth on the
other days of the week. The unicorn, on the other
hand, lies on Thursdays, Fridays, and Saturdays, but
tells the truth on the other days of the week.

“One day Alice met the lion and the unicorn resting
under a tree. They made the following statements:

LION: Yesterday was one of my Tying days
UNICORN: Yesterday was one of my lying days

“From these statements, Alice, who was a bright
girl, was able to deduce the day of the week. What
was it?”
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The solution is given by the AP%98 program in Fig-
ure 1.

The APL2/PC product also includes a workspace con-
taining a set of cover functions that can be used with
the AP998 auxiliary processor. Figure 2 is a sample
of their use in solving the Alice problem.

Performance. The performance of the auxiliary
processor when compared against the use of pure
APL functions depends on the application, on the
number of rules, and on the average search depth
to solve a question. In the case of the Alice example
just detailed, the average time to solve the problem
is 18.5 milliseconds on a Personal System/2* with a
25 Mhz processor speed. The APL2 function in Fig-
ure 3 needed 38 milliseconds to get the same result.

Of course, in this simple case, where the loop can
be eliminated completely, the difference is not very
large. In a real case, with many more rules and a
true cascade of results, the use of the auxiliary
processor would provide a real performance im-
provement.

Figure 2 Cover functions used to solve logic problem

ASK 'TODAY IS *'
THURSDAY
WHY
I HAVE USED RULE NUMBER 18:
TODAY IS THURSDAY IF
THE LION CAN SAY THAT ON THURSDAY
AND THE UNICORN CAN SAY THAT ON THURSDAY
I HAVE USED RULE NUMBER 15:
THE LION CAN SAY THAT ON THURSDAY IF
THE LION LIES ON WEDNESDAY
AND WEDNESDAY IS YESTERDAY OF THURSDAY
AND NOT THE LION LIES ON THURSDAY
I HAVE USED RULE NUMBER 10:
THE LION LIES ON WEDNESDAY
I HAVE USED RULE NUMBER 4:
WEDNESDAY IS YESTERDAY OF THURSDAY
HAVE USED RULE NUMBER 16:
THE UNICORN CAN SAY THAT ON THURSDAY IF
THE UNICORN LIES ON THURSDAY
AND WEDNESDAY IS YESTERDAY OF THURSDAY
AND NOT THE UNICORN LIES ON WEDNESDAY
I HAVE USED RULE NUMBER 11:
THE UNICORN LIES ON THURSDAY
HAVE USED RULE NUMBER 4:
WEDNESDAY IS YESTERDAY OF THURSDAY

tal

=
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Figure 3 APL2 function

[0] Z<ALICE;LL;UL;LC;UC;DAYS;YEST
[2]  YEST« 14DAYS

(61  Z<(LCAUC)/DAYS

{11  DAYS«'SUND' 'MOND' 'TUES' 'WEDN' 'THUR' 'FRID' 'SATUR'

[3) (LL UL)<~('MOND' 'TUES' 'WEDN')('THUR' 'FRID' 'SATUR')
(4] LC«((~DAYSeLL)A(YESTeLL)) v ((DAYSeLL)A(~DAYSeLL))
[5]  UC<((~DAYSeUL)IA(YESTeUL)) v ((DAYSeUL)A(~DAYSeUL))

APL and neural networks

A neural network (also called a “connectionist sys-
tem”) is a set of elementary units, called neurons,
mutually related by means of connections. Each
neuron has a certain number of inputs and a single
output, which can divide itself to provide connec-
tions (inputs) to many other neurons. In addition,
a certain real number is associated with each neu-
ron (its threshold) and with each connection (its
weight).

The response of a neuron is a procedure that com-
putes the output of the neuron as a function of its
inputs, the weights of its input connections, and the
threshold of the neuron. Usnally, the response of a
neuron can be expressed in the following way:

f((2 wi x;)-0) )

where x; is the set of inputs to the neuron, w; rep-
resents the respective weights of the input connec-
tions, ® is the neuron threshold, and f is the re-
sponse function.

If the response function f can only have the values
zero or one, the neuron is called digital. Otherwise,
it is called analogic.

In typical neural networks, all the neurons have the
same response function, and connections are such
that the neurons can be divided into a certain num-
ber of layers. Neurons in the first layer (the input
layer) have inputs that do not come from other
neurons, but that come from outside the neural
network (from the environment). Neurons in the
last layer (the output layer) have outputs that do
not go to other neurons, but go instead to the envi-
ronment. There may be zero to any number of in-
termediate layers (also called “hidden layers”).
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A neural network where at least one neuron sends
a connection to another neuron in a preceding layer
is a neural network with feedback. An interesting
family of neuron networks with feedback is called
“Hopfield neural networks.”*?

A neural network with just two layers (one input
layer and one output layer) and no feedback be-
tween them is called a perceptron. In an important
paper, Minsky and Papert proved that it is impos-
sible to generate the “exclusive-OR” operation with
a perceptron.’ Their paper effectively put an end
to all research in neural networks for several years.
Current research usually uses neural networks with
one intermediate layer.

Matrix representation of a neural network. In gen-
eral, any neuron in a neural network can provide an
input (a connection) to any other neuron. There-
fore, the network structure can be represented by a
square n-by-n matrix, where n is the number of
neurons in the network and the element ij in the
matrix is the weight of the connection from neuron
i to neuron j. Nonexistent connections can be rep-
resented as connections of zero weight (since Equa-
tion 1 is not affected by those null connections).

The connection matrix represents the structure of
the network. To include all of the available infor-
mation we need an additional vector with the
thresholds of all of the neurons in the network,
given, of course, in the same order as in the matrix
rows and columns.

However, if the response of all of the neurons in a
network is of the form indicated by Equation 1, the
network will be equivalent to another network. In
that other network, all of the neurons in the original
network are present, with the same connections and
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weights, but with zero threshold, and an additional
input neuron, whose output is always one, has been
added. The additional input neuron is connected to
every neuron in the network by means of a con-
nection whose weight is equal to minus the thresh-
old of the target neuron in the original network.
The proof of this assertion is obvious from Equa-
tion 1.

Thus, a neural network with n neurons and arbi-
trary thresholds can be considered equivalent to
another neural network with n + 1 neurons, all of
them with zero threshold. Therefore, the behavior
of any neural network can be represented by a sin-
gle matrix if the response of its neurons corre-
sponds to Equation 1.

We will represent the inputs as a vector of values
which we will extend to the same length as the num-
ber of neurons in the network. This extension is
easy. It is enough to assume that all of the neurons
have exactly one input, and assign zero as the input
value of those neurons that in actual fact did not
have any input.

The output of the network can be computed by
means of the following simple APL2 function:

(0] Z<«CONEC COMPUTE1 INPUT;A
(1] Z«INPUT

(2] L:A<Z

[3] Z«(INPUT+A+.xCONEC )>0
(41 +(~A=7)/L

The left argument is the connectivity matrix that
defines the network. The right argument is the in-
put vector. Note that the response function, applied
to the whole neural network, is digital, and reduces
in this case to an inner product and a comparison.

The preceding function has a loop because each
inner product propagates the effect of the input to
the next accessible layer. The loop, which proceeds
until the network stabilizes, will eliminate the tran-
sient stages and provide us with the steady-state
result. In a neural network without feedback, the
loop will be executed at most 7 times, where 7 is the
number of layers in the network, usually equal to
three.

Analogic neurons. The neurons described in the
previous subsection were digital, since their output
can only be zero or one. Analogic neurons can pro-
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duce other outputs, such as any number in the
[0, 1] interval. For example, a commonly used re-
sponse function for neural networks is:

1/(1+e~3wix) 2

with appropriate corrections when the value ob-
tained is too near one or zero. The following APL2
function computes the result of a neural network
composed of neurons with this response function.
The neural network is assumed to be represented
by a single connectivity matrix.

[0] Z<«CONEC COMPUTE2 INPUT;A
(1] Z<INPUT

(2] L:A<Z

[3] Z++1+x-INPUT+A+.xCONEC
(4] Z{(72<0.2)/1pZ]1<0

(5] Z[(Z>0.8)/1pZ]<1

(6] -(~A=Z)/L

Learning. We say that a neural network “learns”
when it modifies its behavior in such a way that its
response to a certain set of inputs adapts to another
set of predefined “desired outputs.”

Different learning procedures modify the weights
of the connections of the neural network in such a
way that the outputs get closer and closer to the
desired values. These techniques require a teaching
period during which the following steps happen:

1. One or several inputs are applied to the network.

2. The corresponding outputs are computed.

3. The outputs are compared to the desired out-
puts.

4, The weights of the connections are modified so
that the outputs become more like the desired
outputs.

The above process is repeated until the network
behavior is acceptable.

One of the learning procedures most used in neural
networks is called “back propagation” because the
weight corrections are applied to those output neu-
rons in the last layer that differ from the desired
value, and then the correction is propagated to the
preceding layers. The APL2 program in Figure 4
executes a version of back propagation.

This program makes use of several global variables:

CONEC is the matrix defining the neural network.
LAYERS is a vector that contains the number of
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Figure 4 Back propagation program

[1] E<0.02

[2] NT«1++/N«LAYERS

[31 L:'Input value: ',sIN[I;]

(4] INPUT«1,IN[I;1,(N[2]+NL[3])p0
[5] '"Output value: ',s0U[I;]

[6] OUTPUT<QULI;]

(8] ER<Q.5x+/(E1<0-QUTPUT )*2
[9] -(ER<1E"10)/0

[10] d<ExQUTe.xE1

[11] NO«1+N[11+N[21+N[3]
[12] d«dxCONEC[;NO1#£0

[13] CONEC[;NO]«CONEC[;NO1-d
(141 E1<(-NT)+E1

(151 NO<(v/d#0)/1tpd

(161 d<ExQUTo .x(CONEC+.xE1)[NO]
[17) d<d=xCONEC[;NO1Z0

[18]1 CONECL[;NO]«CONEC[;NOl-d
(481 -I1

(01 BKPROP1 I;INPUT;QUTPUT;0;0UT;E;d;NT;NO;ER;N;EL

[7]1 L1:0«(-N[3])+0UT<CONEC COMPUTE INPUT

neurons in each layer. IN is a matrix of possible
inputs. Finally, OU is the set of desired output val-
ues.

The program assumes that the number of layers in
the network is three (the usual number). A few
modifications would have to be done to apply a
similar procedure to a perceptron or to a network
with four or more layers.

Performance. In evaluating the performance of
neural networks, there are two different consider-
ations.

Performance of the learning process is one item.
From the analysis of the back-propagation algo-
rithm, it will be seen that the function contains an
unavoidable loop. Therefore, the use of an inter-
preter (such as APL) will introduce a certain deg-
radation. However, it must be remembered that the
learning process is usually executed only once. Af-
ter the neural network has learned successfully, it
can be used many times without any further exe-
cution of the back-propagation algorithm or what-
ever else has been used. This means that the bot-
tleneck is not so important unless the number of
neurons is very large, and then APL may also have
problems due to lack of space. But even this space
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problem can be solved, as the network connectivity
matrices contain many zeros, and an implementa-
tion of sparse matrices can be used to make them
fit in a given workspace.

Once the neural network has been trained, it will be
applied to special cases, and this means that only
the COMPUTE functions will be needed. It is easy to
see that these functions also have a loop, but of a
very different kind, since the number of times it is
executed is equal to the number of layers in the
network, which is usually equal to three. Therefore,
interpretation time is negligible in this case as com-
pared to the execution time of the inner product,
where APL has no disadvantage as compared to a
compilative program, since the inner product algo-
rithm is a precompiled section of the interpreter.

APL and hypertext

The classical way of obtaining and presenting in-
formation is linear. In a book, or a written paper,
or on the screen of a computer, the information is
displayed as a succession of pages, each consisting
of a number of lines, each line made of a succession
of words. The reader will usually reach the desired
information in a sequential process, by reading a
word at a time, line by line, and page by page.

ALFONSECA 549




However, the use of certain “fast-reading” tech-
niques allows the reader to browse the information
in an extended way, overreaching the limits of the
linear presentation. In an extreme case, rarely at-
tained, we can consider that an ideally fast reader
would be able to look at a page of text as a single
unit, scanning it in a block and thus gaining a two-
dimensional access to the information it contains.

What is hypertext? The term hypertext™ has been
applied to a recent means of information presen-
tation that tries to transcend the limitations of the

All kinds of information can be
combined to make up a hypertext
application.

purely sequential display, allowing the reader a
greater freedom in using scanning and retrieval
procedures. The term was first applied in 1965 by
Ted Nelson, who defined it as a hypothetical non-
sequential writing tool.

We can define hypertext as a nonlinear form of
information presentation, where the units of infor-
mation are the members of a hierarchy, linked in a
certain way that makes it possible to attain very fast
information retrieval. The search for an appropri-
ate piece of data follows a nonlinear sequence di-
rected by the train of thought of a reader, who is
able to perform an associative navigation through-
out the mass of information within reach. In this way,
since it transcends the limitations of the written page,
it can be said that hypertext provides the reader with
a three-dimensional access to information.

The units of information in a hypertext system are
usually the nodes of a hierarchical organization.
The links that make up the hierarchy, which should
be independent of the physical sequence of nodes,
may be implicitly or explicitly defined by means of
preprogrammed tags.

The benefits of hypertext are obvious. Besides the
greater freedom provided to the reader by its three-
dimensional access to information and its user
friendliness, it is also quite easy to develop.
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Hypertext media. All kinds of information can be
combined to make up a hypertext application. We
find:

» Visual information. This form is the most fre-
quently used type in current computers. It con-
sists of text, graphics, images, animation, video
recordings, etc.

~ Auditory information. This type includes speech
and audio recordings.

~ Other sensory data. At present, olfactory and
tactile data are not usually found in computer
applications, but perhaps in the future they will
also be integrated into hypertext systems.

~ Computer programs.

All of these kinds of information are kept in the
ordinary physical storage media, such as fixed disks,
diskettes, tapes, and compact discs.

Applications of hypertext. Hypertext methods can
be applied wherever there is a need to manage large
masses of information that can be divided into
many chunks and accessed in a random way. For
example:

~ On-line documentation (help systems, reference
works)

~ Publishing (on-line dictionaries, computer-based
encyclopedias)

~ Computer-aided instruction (training manuals,
tutorials, user guides)

~ Expert systems, which require a highly developed
interface to make use of the system so that it is
friendly to a professional user who is not oriented
to computer science (a physician, a lawyer, etc.)

Object-oriented programming and hypertext. Ob-
ject-oriented programming (OOP)'**® is a program-
ming method that is almost the exact opposite of
classical procedural programming. In OOP, it is the
data that are organized in a basic control hierarchy.
One piece of data may be linked to another through
a relation of descendancy, and this fact gives rise to
a network (usually a tree) similar to the hierarchy
of programs in procedural programming. There are
also programs done in OOP, but they are append-
ages to the data (in the same way as in classical
programming in which data are appendages of pro-
grams). It is possible to build global programs (ac-
cessible to all of the data in the hierarchy) and local
programs (accessible from certain objects and their
descendants).
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In OOP, the execution of a program is fired by
means of a message that somebody (the user, an-
other program, or an object) sends to a given object.
The recipient of the message decides which pro-
gram should be executed. (It may be a local pro-
gram or a global program which must be located
through the network that defines the structure of
the objects.)

Object-oriented programming is the appropriate way
to program a hypertext application. In fact, the hier-
archical data structure of OOP is the exact counterpart
of the hierarchy of information units (the nodes) in
hypertext. Hypertext links become the relations be-
tween objects in OOP. Hierarchical relations corre-
spond to the links defining the hierarchy. Semantical
relations provide the possibility of implementing
other links that transcend the hierarchy.

The most generally used way to represent objects in
object-oriented programming systems is by means
of frames, a powerful data structure proposed by
Minsky in 1975.” A frame system is a graph in
which the nodes (frames) have a name and contain
all of the information available about a given ob-
ject. For example:

Frame TABLE
Is_a: FURNITURE
Files: 0,1,2
Drawers: 0,1
Legs: 4
Light: 0,1

Object-oriented programming and APL2. In APL2,
the existence of the general array makes it very easy
to define and implement frames, which can be con-
sidered as general matrices of two columns, where
the first element in each row contains a name and
the second a (possibly multiple) value. For exam-
ple, the frame mentioned above is a general matrix
of five rows and two columns; it can be represented
in APL2 in the following way:

TABLE « 5 2 o
'IS_A' 'FURNITURE'
'FILES' (0 1 2)
"DRAWERS' (0 1)
'LEGS' 4
'"LIGHT' (0 1)

With the use of frames, it is quite easy to build an
object-oriented programming paradigm in APL2.
Each object is represented as a frame, linked to
other objects to form a hierarchy. The root of the
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hierarchy is called OBJECT and is initially defined as
follows:

OBJECT « 8 2 p

'"PARENT' "'

'CREATE' '"METHOD'
'"ERASE! 'METHOD'
'PARENTS' "METHOD'
'"CHILDREN' "METHOD'
'"PROPERTIES' 'METHOD'
'VALUE' '"METHOD'
'METHODS' 'METHOD'

Each object in the hierarchy automatically inherits
the properties and the methods defined by its ances-
tors (its parent and the ancestors of its parent), unless
some property or method has been redefined, either
by the same object or by a lower-level ancestor. The
inheritance of methods and the ability to send mes-
sages to any object are easily implemented by means
of the APL2 function MESSAGE, with the syntax:

MESSAGE 'Object'

'Method'
[additional information]

and the implementation shown in Figure 5.

References 20 and 21 explain in more detail the
applicability of APL2 for object-oriented program-
ming. Thus, we can deduce that object-oriented
programming in APL2 is a good way to program a
hypertext application.

An on-line dictionary written in APL2 (OOP). A
part of a Spanish on-line dictionary for the high-
school level has been implemented in APL2/PC using
object-oriented programming techniques. The dic-
tionary currently contains the definitions of 2130
words in science and technology, distributed in the
following fields:

Biographies (123)
Computer science (18)
Technology (338)

+ Electronics (71)

+ Materials (59)
Vehicles (54)

* Instruments (78)
 Miscellaneous (76)
Medicine (409)
Biology (1100)

* Anatomy (244)

« Physiology (120)

» Cytology and histology (38)
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Figure 5 Implementation of MESSAGE

[1]  AOB«' ' ELMtAX

[2]  AMET<' ' ELM 204X

[3]  AX<2+AX

4]  -AE1 IF~EXIST AOB

[5]1  ASRCH<AOB

(61 AL:AA«(AB«GET ASRCH)(;1]
(71 ALl IF(pAA)>AT«AAV<AMET

[l AL

[10] AL1:AX«(<A0B),0X

Eii% ‘' OFEA 'AR<',ASRCH,'_',AMET,' AX'
12

[14]

(ol AR<MESSAGE AX;AOB;AMET; ASRCH; AA;AL;AB

[8] »AE2 IF O=pASRCH<>ABLAAvc'PARENT';2]

-0

(13] AE1:AMSG 'THE OBJECT' AOB 'DOES NOT EXIST. METHOD =' AMET
-0

[151 AE2:AMSG 'UNKNOWN METHOD' AMET 'FOR OBJECT' 40B

* Genetics (14)
* Biochemistry (78)
 Ecology (23)
+ Paleontology (40)
» Microbiology (28)
» Zoology (incomplete) (302)
* Botany (incomplete) (140)
» Miscellaneous (73)

¢ Others (142)

The OOP application consists of a total of 2133 ob-
jects, three of which (the root of the hierarchy) are
in the APL2/PC workspace, whereas the others (the
words in the dictionary) are included in 44 files,
created and used by means of the Ap211 auxiliary
processor.”>” The total size of these files is
1372216 bytes, which makes an average of 644
bytes per word definition, 31 187 bytes and 48 words
per file. Words are distributed in the files themat-
ically to reduce the overhead, since it can be as-
sumed that groups of words searched in the dictio-
nary will usually be related in this way. Therefore,
not all files are equal in size, the largest one con-
sisting of 142 words and 93K bytes, and the smallest
one consisting of 8 words and 4K bytes.

Summary

This paper and others in the references show the use-
fulness of APL and APL2 for the most modern pro-
gramming techniques and applications. Among these
applications are artificial intelligence, neural net-
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works, object-oriented programming, and hypertext,
which have been described in some detail.

*Trademark or registered trademark of International Business
Machines Corporation.
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