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neural  networks,  and 
hypertext 

by M. Alfonseca 

This  paper  reviews  the  work of the  author  on  the 
application of the  APL  and  APLP  programming 
languages  to  logic  pro  ramming,  emulation of 
neural  networks,  and t a e programming of 
hypertext  applications. 

T he last decade has witnessed the emergence 
and maturation of a whole set of  new  fields and 

techniques in computer science, such as log- 
ic programming (which  actually started in the 
1970s), neural networks, object-oriented program- 
ming, genetic algorithms, and a few others. APL 
(and its successor A P L ~ )  remains abreast of the 
times as a programming language and has demon- 
strated its capability for all of these exciting  new 
fields. 

This paper summarizes the previous work of the 
author in three of the indicated fields. The first 
section, on logic programming, describes the design 
of a logic programming auxiliary processor, capable 
of performing declarative logic inferences similar to 
Prolog, that can be invoked and used from an APL 
workspace. This processor is now a part of the 
APL~PC IBM product. 

The second section, on  neural networks, describes 
how APL can be used to model, teach, and imple- 
ment these modem  structures which, though de- 
scending directly from the  perceptrons of the 1960s, 
have  now  revived  with a new strength and are being 
applied to new, interesting fields. 

Finally, a third section summarizes why A P L ~  is  ex- 
tremely apt for the development of object-oriented 
applications and describes in some detail a hyper- 
text application built on these lines. 

APL and  logic  programming 

The  literature on APL shows that  there has been a 
long-standing discussion about the usefulness of 
this language for artificial intelligence applications. 
This usefulness is considered a direct consequence 
of the  great power of the language, the ease of 
programming with high-order data structures, or 
the possibility of using a “parallel” approach to 
solve certain problems. Reference 1 gives more de- 
tails on  the  latter. 

In particular, the new  list structures introduced in 
the A P L ~  form of the language2 provide APL with  all 
of the power of LISP, the classical language for ar- 
tificial intelligence. 3,4 

Several attempts have been made to build expert 
systems  using  only the  current power of the lan- 
guage, either with APL or APL~.~-’ Building an ex- 
pert system  usually requires the implementation of 
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Table 1 Reserved  symbols for AP998 

an inference machine, or some version of logic pro- 
gramming,  in APL. The problem here is speed. 
However, some of the approaches find  highly  orig- 
inal ways to solve this problem. 

A related approach is the emulation of Prolog-like 
rule-based inferences. Although such emulation 
has been done more than once,l0>l1 this approach is 
usually too slow, for it  boils  down to interpreting an 
interpreter. 

A better solution to this problem would be  the im- 
plementation of a Prolog-like inference processor 
in a lower-level language in  such a way as to  be 
easily  accessible from normal APL programs. In this 
way, powerful  hybrid  systems  could be imple- 
mented. Applications built  in APL using this “logic 
auxiliary processor” would  gain  access to a whole 
class of  new possibilities  (logic inferences, “natural- 
like” language, nonprocedural programming) while 
at  the same time maintaining all of the APL numeric 
calculation and symbolic manipulation capabilities. 

This inference processor is already written and is a 
part of the APL~PC product. It is an auxiliaIy proc- 
essor, called AP998, accessible from A P L ~  in the 
usual way through shared variables, and incorpo- 
rates a subset of a Prolog-like interpreter. 

It has been said that this method is not really an APL 
solution, since  it does not use pure APL programs 
but instead adds one external program (the auxil- 
iary processor) written in a different language. I 
think this criticism  is unfair, because: 

Auxiliary processors are, and have been for a 
long time, a part of APL. The fact that they are 
included  in the products proves this assertion. 
APL allows the construction of auxiliary proc- 
essors in different languages, and this capability 
is a plus, not a minus, of the language. It is a 
well-known  fact that APL as an interpretive lan- 
guage has a certain impact on performance. The 
standard solution (avoiding loops in the code) is 
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not always  feasible,  especially  when  cascaded re- 
sults are involved, that is, those processes where 
the next  value to be computed depends on pre- 
viously computed values. In those cases, it is a 
great advantage to  be able to speed the system up 
by programming the bottlenecks in a lower-level 
language. If this can be done in  such a way that 
the resulting auxiliary processor is  of general ap- 
plication and can be reused in  very different con- 
texts, APL becomes richer and increases its power 
for future applications. 

The remainder of this section describes the logic 
inference auxiliary processor, AP998. 

The logic  language. The logic language imple- 
mented by AP998 is a subset of Prolog  using  only 
infix notation. The lexical elements of the language 
are  the following: 

Words-A word can be defined as any character 
string not including  spaces. Uppercase and low- 
ercase are considered to be equivalent. Exam- 
ples are: 

J O H N  

2 5  
I S - F A T H E R - O F  

Reserved symbols-Certain  symbols  have spe- 
cial  meaning for AP998 and should not be used 
outside their context. To be recognized, these 
reserved  symbols  must be separated from adja- 
cent words by at least one space. Each meaning 
can be represented by two different symbols, one 
of which  is easier to represent with the APL key- 
board, whereas the other is easier to represent 
with the standard keyboard. The symbols are 
shown  in Table 1. 
Synonyms-Certain  words can be defined as syn- 
onyms for the reserved  symbols. In this way, 
many natural languages are recognized by AP998. 
In English, the synonyms recommended for the 
symbols are  the words indicated in Table 1 under 
the heading Meaning.  Only one synonym may be 
defined for each meaning at a given time. 
Variables-Any character string starting with 
the  “star” symbol (the asterisk, *) represents a 
variable. Examples are: 

* X  
* C A S E  
*1 
* 
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The syntactic elements of the language are  the fol- 
lowing: 

Clauses-They are assertions or negations of  dy- 
adic  predicates,  written  in infix notation.  They  con- 
sist  of a certain  number of words or variables,  with 
a possible  negation term in  any  position.  They  can 
also include a plausibility  integer.  Examples  are: 

J O H N   I S   M A L E  
J O H N  I S  F A T H E R   O F   J A N E  
“1 I S  N O T   F A T H E R   O F  *2  
?80 WEATHER I S   F I N E  

The plausibility integers are numbers between 
zero and 100, zero corresponding to the negation 
of the assertion, 100 to its certainty, and 50 to its 
uncertainty. If the plausibility of an assertion is 
not given,  it  is  assumed to  be absolute. If the 
assertion is  affirmatively worded, it  is  used  in that 
form with a plausibility of 100. If the assertion is 
negatively worded, its negation is  used  with a 
plausibility of zero. 

Rules-Basically the rules are formal logic  im- 
plications. A <- B is equivalent to A IF B, where 
A and B are assertive or negative  clauses. Rules 
consist of two parts (premises and conclusion) 
joined by the IF symbol or its synonym. 

A special  case rule is the %~iom” or “fact,” a rule 
without premises, that reduces to a single  clause. 
Axioms  may be considered as assertions or nega- 
tions of dyadic predicates written in infix notation. 
Examples of axioms are: 

JOHN IS MALE-equivalent to the Prolog 
monadic predicate MALE(JOHN) 

log  dyadic predicate FATHER(JOHN, JANE) 

plausibility that  the assertion is true 

defines equality to AP998 

JOHN IS FATHER OF JANE-eqUiVaht  to  the Pro- 

?80 WEATHER IS FINE-indicates an 80 percent 

* = *-an axiom that contains a variable and 

Rules with premises allow the system to deduce 
new facts from the facts defined to it. Examples of 
rules with premises are: 

* X  I S  S O N   O F  * Y  I F  * X  I S  M A L E   A N D  * Y  IS 

* X  I S  P A R E N T   O F  * Y  I F  * X  I S  F A T H E R   O F  *Y OR 

? 7 0  I WILL GO T O   T H E   T H E A T E R  I F  WEATHER IS 

P A R E N T   O F  * X  

* X  I S  M O T H E R   O F  * Y  

F I N E  
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As the examples  show, rules are accepted by the 
system  in a way  very similar to natural language. 
The last example can be read in the following way: 
“There is a 70 percent plausibility that I will  go to 
the theater if the weather is  fine.” 

When the conclusion of a rule depends on uncer- 
tain premises, the following are applied: 

1. The plausibility of two  premises separated by 
AND is the minimum of the plausibilities of the 
individual  premises. 

2. The plausibility of the conclusion of the rule is 
the product of the plausibility of the rule times 
the plausibility of the premises,  divided by 100. 

3. If the plausibility of the conclusion  is smaller 
than a certain threshold value, and the subgoal 
answered by the conclusion included a variable, 
this solution is abandoned (i.e., its plausibility 
becomes zero). 

4. If two premises separated by OR carry to  the 
same conclusion, both results are passed to APL 
separately (as independent answers to  the same 
question). 

Structure of the  knowledge  base. AP998 maintains 
information in  two different data spaces. The first 
one is a symbol table, where words are stored. The 
other is the rule table. The size of each is automat- 
ically chosen by AP998 to fit  all of the words and 
rules defined to it. Their starting (minimum)  size  is 
2K bytes. Their maximum  size  is 63K bytes. 

A stack is also  used for logic inferences, the size of 
which can be adjusted by the programmer within 
the same interval. (The default size  is 2K bytes.) 
Therefore, the total data space for AP998 may  vary 
between 6K bytes and about 190K bytes. The in- 
formation in the stack allows AP998 to provide  in- 
formation on why it came to a given  conclusion. 

The maximum number of rules accepted by AP998 is 
about 3000. Of course, this number depends on  the 
rules themselves, for rules are variable-length ob- 
jects, depending on  the number and sizes of their 
premises. 

Example. As an  example of the use Of ~ ~ 9 9 8 ,  we  will 
solve the following  logic problem, taken from Ref- 
erence 12: 

“When  Alice entered the forest of forgetfulness, she 
did  not  forget  everything,  only  certain  things.  She of- 
ten  forgot her name,  and the most  likely  thing  for her 
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Figure 1 AP998 solution to logic  problem 

/ *  Solution  to  the  ALICE  problem  in  AP998 * /  
/ *  Definition  of  YESTERDAY * /  
sunday  is  yesterday of monday 
monday  is  yesterday  of  tuesday 

Wednesday is  yesterday of  thursday 
tuesday is yesterday of  Wednesday 

thursday  is  yesterday  of  friday 
friday  is  yesterday  of  Saturday 
Saturday  is  yesterday  of  sunday 
/ *  Data  about  the  lion  and  the  unicorn * /  
The lion  lies  on  monday 
The  lion  lies  on  tuesday 
The  lion  lies on Wednesday 
The  unicorn  lies on thursday 
The  unicorn  lies  on  friday 
The  unicorn  lies on Saturday 
/’ Data  about  the  phrases  they  said * /  
The  lion  can  say  that  on * if 

the  lion  lies  on * 
and *Y is  yesterday  of * 
and  the  lion  lies  not on *Y 

the  lion  lies  on  ‘Y 
and *Y is  yesterday  of * 
and the  lion  lies  not  on * 

The  unicorn  can  say  that  on * if 
the  unicorn  lies  on * 
and  ‘Y  is  yesterday of * 

The  unicorn  can  say  that  on * if 
and  the  unicorn  lies  not  on  “Y 

the  unicorn  lies  on  ‘Y 
and *Y is  yesterday of * 
and  the  unicorn  lies  not  on * 

The  lion  can  say  that  on * if 

/ *  Finally.  both  the  lion  and  the  unicorn * /  
/ *  have  said  that  today, so that * /  
Today  is if 

the  lion  can  say  that  on * 
and  the  unicorn  can  say  that  on ‘ 

to forget was the day  of the week.  Now, the lion  and 
the unicorn  were frequent visitors to this  forest.  These 
two are strange creatures. The lion  lies on Mondays, 
Tuesdays,  and  Wednesdays,  and  tells the truth on the 
other days  of the week. The unicorn, on the other 
hand, lies on Thursdays,  Fridays,  and  Saturdays,  but 
tells the truth on the other days  of the week. 

“One day  Alice met the lion and  the unicorn resting 
under a tree. They made the following statements: 

LION: Yesterday  was  one o f  my lying days 
U N I C O R N :  Yesterday  was  one o f  my lying days 

“From these statements, Alice, who  was  a bright 
girl,  was able to deduce the day of the week. What 
was it?” 

The solution is  given by the AP998 program in Fig- 
ure 1. 

The APLZPC product also includes a workspace con- 
taining a set of cover functions that can be used  with 
the AP998 auxiliary processor. Figure 2 is  a sample 
of their use in solving the Alice problem. 

Performance. The performance of the auxiliary 
processor when compared against the use of pure 
APL functions depends on  the application, on the 
number of rules, and on  the average search depth 
to solve  a question. In  the case of the Alice example 
just detailed, the average time to solve the problem 
is  18.5  milliseconds on a Personal System/2*  with  a 
25 Mhz processor speed. The APLZ function in  Fig- 
ure 3 needed 38 milliseconds to get the same result. 

Of course, in this simple case, where the  loop can 
be eliminated completely, the difference is not very 
large. In a real case,  with  many more rules and a 
true cascade of results, the use of the auxiliary 
processor would provide a real performance im- 
provement. 

Figure 2 Cover  functions  used to solve  logic  problem 

THURSDAY 

I  HAVE  USED  RULE  NUMBER 18: 

ASK  ‘TODAY  IS *’ 

WHY 

TODAY  IS  THURSDAY  IF 
THE  LION  CAN  SAY  THAT  ON  THURSDAY 
AND  THE  UNICORN  CAN  SAY THAT ON  THURSDAY 

I  HAVE  USED  RULE  NUMBER 15: 
THE  LION  CAN  SAY  THAT ON THURSDAY IF 

AND  WEDNESDAY  IS YESTERDAY  OF  THURSDAY 
THE  LION  LIES ON WEDNESDAY 

AND  NOT  THE  LION LIES  ON  THURSDAY 
I HAVE  USED  RULE  NUMBER 10: 

I  HAVE  USED  RULE  NUMBER 4 :  

I  HAVE  USED  RULE  NUMBER 16:  

THE  LION  LIES  ON  WEDNESDAY 

WEDNESDAY  IS  YESTERDAY  OF  THURSDAY 

THE  UNICORN  CAN  SAY  THAT  ON  THURSDAY  IF 
THE  UNICORN  LIES  ON  THURSDAY 
AND  WEDNESDAY  IS  YESTERDAY OF THURSDAY 
AND  NOT  THE  UNICORN  LIES  ON  WEDNESDAY 

I  HAVE  USED  RULE  NUMBER 11: 

I  HAVE  USED  RULE  NUMBER 4 :  
THE  UNICORN  LIES  ON  THURSDAY 

WEDNESDAY  IS  YESTERDAY OF THURSDAY 
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Figure 3 APLP function 

APL and  neural  networks 

A neural network (also called a “connectionist sys- 
tem”) is a set of elementary units,  called neurons, 
mutually related by means of connections. Each 
neuron has a certain number of inputs and a single 
output, which  can  divide  itself to provide connec- 
tions (inputs) to many other neurons. In addition, 
a certain real number is associated with each neu- 
ron (its threshold) and with each connection (its 
weight). 

The response of a neuron is a procedure that com- 
putes the  output of the neuron as a function of its 
inputs, the weights of its input connections, and the 
threshold of the neuron. Usually, the response of a 
neuron can be expressed  in the following way: 

f((Z w i x J - 0 )  (1) 

where xi is the set of inputs to the neuron, wi rep- 
resents the respective  weights of the input connec- 
tions, 0 is the neuron threshold, and f is the re- 
sponse function. 

If the response function f can only  have the values 
zero  or  one,  the neuron is  called  digital. Otherwise, 
it is  called  analogic. 

In typical neural networks,  all the neurons have the 
same response function, and connections are such 
that  the neurons can be divided into a certain num- 
ber of layers. Neurons in the first  layer (the input 
layer) have inputs that  do not come from other 
neurons, but that come from outside the neural 
network (from the environment). Neurons in the 
last layer (the output layer) have outputs  that  do 
not go to other neurons, but go instead to  the envi- 
ronment. There may be zero to any number of in- 
termediate layers (also called “hidden layers”). 
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A neural network where at least one neuron sends 
a connection to  another neuron in a preceding layer 
is a neural network  with  feedback. An interesting 
family  of neuron networks  with feedback is  called 
“Hopfield neural networks.” l3 

A neural network  with just two  layers (one input 
layer and one  output layer) and no feedback be- 
tween them is called aperceptron. In an important 
paper, Minsky and Papert proved that it is  impos- 
sible to generate the  “exclusive-OR operation with 
a perceptron.I4 Their paper effectively put an end 
to all research in neural networks for several  years. 
Current research usually  uses neural networks  with 
one intermediate layer. 

Matrix representation of a  neural  network. In gen- 
eral, any neuron in a neural network can provide an 
input (a connection) to any other neuron. There- 
fore, the network structure can be represented by a 
square n-by-n  matrix, where n is the number of 
neurons in the network and the element i,j in the 
matrix  is the weight of the connection from neuron 
i to neuron j .  Nonexistent connections can be rep- 
resented as connections of zero weight  (since Equa- 
tion l is not affected by those null connections). 

The connection matrix represents the structure of 
the network. To include all of the available infor- 
mation we need an additional vector  with the 
thresholds of all of the neurons in the network, 
given, of course, in the same order as in the matrix 
rows and columns. 

However, if the response of all of the neurons in a 
network  is of the form indicated by Equation 1, the 
network will be equivalent to  another network. In 
that  other network, all of the neurons in the original 
network are present, with the same connections and 
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weights, but with zero threshold, and an additional 
input neuron, whose output is  always one, has been 
added.  The additional input neuron is connected to 
every neuron in the network by means of a con- 
nection whose  weight  is equal  to minus the thresh- 
old of the target  neuron in the original network. 
The proof of this assertion is  obvious from Equa- 
tion l. 

Thus, a neural network with n neurons and arbi- 
trary thresholds can be considered equivalent to 
another  neural network with n + 1 neurons, all of 
them with zero threshold. Therefore,  the behavior 
of  any neural network can be  represented by a sin- 
gle matrix if the response of its neurons corre- 
sponds to  Equation 1. 

We will represent  the inputs as a vector of values 
which  we  will extend to  the same length as the num- 
ber of neurons in the network. This extension is 
easy. It is enough to assume that all of the neurons 
have exactly one input, and assign zero as the input 
value of those neurons that in actual fact did not 
have  any input. 

The  output of the network can  be computed by 
means of the following simple A P L ~  function: 

COl Z+CONEC COMPUTE1 INPU7’;A c 11 Z+-INPUT 
C21 L:A+Z 
C 31 Z+( INPUT+A+. xCONEC )>O 
C41 +( -A=Z ) / L  

The left argument is the connectivity matrix that 
defines the network. The right argument is the in- 
put vector. Note  that  the response function, applied 
to  the whole neural network, is  digital, and reduces 
in this case to  an  inner  product  and a comparison. 

The preceding function has a loop because each 
inner product propagates the effect of the input to 
the next  accessible  layer. The loop, which proceeds 
until the network stabilizes, will eliminate the  tran- 
sient stages and provide us  with the steady-state 
result. In a neural network without feedback, the 
loop will be executed at most n times, where n is the 
number of layers in the network, usually equal to 
three. 

Analogic  neurons. The  neurons described in the 
previous subsection were digital, since their  output 
can only be zero or one. Analogic neurons can pro- 
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duce other outputs, such as any number in the 
[0, 11 interval. For example, a commonly  used re- 
sponse function for neural networks is: 

with appropriate corrections when the value ob- 
tained is too  near  one or zero. The following A P L ~  
function computes the result of a neural network 
composed of neurons with this response function. 
The neural network is  assumed to  be  represented 
by a single  connectivity  matrix. 

LO1 Z+CONEC COMPUTE2 1NPUT’;A 
I1 1 Z+INPUT 
c21 L:A+Z 
f 3 1 Z-+l+*-INPUT+A+ . xCONEC 
C41 ZC(Z<0.2)/1pZ1+0 
C51 ZC(Z>0.8)/1pZl+l 

Learning. We say that a neural network “learns” 
when  it  modifies its behavior in such a way that its 
response to a certain set of inputs adapts to another 
set of predefined “desired outputs.” 

Different learning procedures modify the weights 
of the connections of the neural network in such a 
way that  the  outputs get closer and closer to  the 
desired values. These techniques require a teaching 
period during which the following steps happen: 

1. One  or several inputs are applied to  the network. 
2. The corresponding outputs  are computed. 
3. The  outputs  are compared to  the desired out- 

puts. 
4. The weights of the connections are modified so 

that  the  outputs become more like the desired 
outputs. 

The above process is repeated until the network 
behavior is acceptable. 

One of the learning procedures most  used  in neural 
networks is called “back propagation” because the 
weight corrections are applied to those output neu- 
rons in the last layer that differ from the desired 
value, and then  the correction is propagated to  the 
preceding layers. The A P L ~  program in Figure 4 
executes a version of back propagation. 

This program makes use of several global  variables: 
C O N K  is the matrix defining the neural network. 
LAYERS is a vector that contains the number of 
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Figure 4 Back propagation program 

E01 
c11 
[21 
C31 
C41 
C51 
C61 
C71 
C81 

BKPROPl I;INPUT;OUTPUT;O;OUT;E;d;NT;NO;ER;N;El 
E+O.  02 
NT+l++/N-LAYERS 
L: 'Input value: ' ,mINCI; 1 
INPUT+l,IN[I;I  ,(NC21+NC31 )PO 
'Output value: ',mOUCI;I 
OUTPUT+OUCI;l 
Ll:Ot(-N[31)rOUTcCONEC COMPUTE INPUT 
ER+O. 5x+/( El-0-OUTPUT )*2 

neurons in each layer. IN is a matrix of possible 
inputs. Finally, ou is the  set of desired output val- 
ues. 

The program assumes that  the number of layers  in 
the network  is three  (the usual number). A few 
modifications  would  have to be done to apply a 
similar procedure to a perceptron or to a network 
with four or more layers. 

Performance. In evaluating the performance of 
neural networks, there  are two different consider- 
ations. 

Performance of the learning process is one item. 
From the analysis of the back-propagation algo- 
rithm, it will be seen that  the function contains an 
unavoidable loop. Therefore, the use of an inter- 
preter (such as APL) will introduce a certain deg- 
radation. However, it must be remembered that  the 
learning process is  usually  executed  only once. Af- 
ter  the neural network has learned successfully, it 
can be used  many times without any further exe- 
cution of the back-propagation algorithm or what- 
ever else has been used. This means that the bot- 
tleneck is not so important unless the number of 
neurons is  very large, and then APL may also  have 
problems due to lack of space.  But  even this space 
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problem can be solved, as the network  connectivity 
matrices contain many zeros, and an implementa- 
tion of sparse matrices can be used to make them 
fit  in a given  workspace. 

Once the neural network  has been trained, it  will be 
applied to special  cases, and this means that only 
the COMPUTE functions will be needed. It is  easy to 
see that these functions also  have a loop, but of a 
very different kind, since the number of times it is 
executed  is equal to  the number of layers  in the 
network,  which is  usually equal to three. Therefore, 
interpretation time is  negligible  in this case as com- 
pared to the execution time of the inner product, 
where APL has no disadvantage as compared to a 
compilative program, since the inner product algo- 
rithm is a precompiled section of the interpreter. 

APL and hypertext 

The classical way of obtaining and presenting in- 
formation is linear. In a book, or a written paper, 
or  on  the screen of a computer, the information is 
displayed as a succession of pages, each consisting 
of a number of lines, each line made of a succession 
of words. The  reader will  usually reach the desired 
information in a sequential process, by reading a 
word at a time, line by line, and page by page. 
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However, the use of certain “fast-reading’’ tech- 
niques allows the  reader  to browse the information 
in an extended way, overreaching the limits of the 
linear presentation. In an extreme case, rarely at- 
tained, we can consider that an ideally  fast reader 
would be able to look at a page of text as a single 
unit, scanning  it  in a block and thus gaining a two- 
dimensional access to  the information it contains. 

What is hypertext? The term hypertext’’ has been 
applied to a recent means of information presen- 
tation that tries to transcend the limitations of the 

All kinds of information  can  be 
combined to make  up a  hypertext 

application. 

purely sequential display,  allowing the  reader a 
greater freedom in  using  scanning and retrieval 
procedures. The term was first applied in 1965 by 
Ted Nelson,  who  defined  it as a hypothetical non- 
sequential writing tool. 

We can define hypertext as a nonlinear form of 
information presentation, where the units of infor- 
mation are  the members of a hierarchy, linked in a 
certain way that makes  it  possible to attain very  fast 
information retrieval. The search for an appropri- 
ate piece of data follows a nonlinear sequence di- 
rected by the train of thought of a reader, who  is 
able to perform an associative  navigation through- 
out the mass  of information  within  reach. In this way, 
since  it  transcends the limitations of the written  page, 
it  can be said that hypertext  provides the reader with 
a three-dimensional  access to information. 

The units of information in a hypertext  system are 
usually the nodes of a hierarchical organization. 
The links that make up the hierarchy, which should 
be independent of the physical sequence of nodes, 
may be implicitly or explicitly  defined by means of 
preprogrammed tags. 

The benefits of  hypertext are obvious.  Besides the 
greater freedom provided to the  reader by its three- 
dimensional access to information and its user 
friendliness, it  is  also quite easy to develop. 

Hypertext  media. All kinds of information can be 
combined to make up a hypertext application. We 
find: 

Visual information. This form  is the most fre- 
quently used  type  in current computers. It con- 
sists of text,  graphics,  images, animation, video 
recordings, etc. 
Auditory information. This type  includes speech 
and audio recordings. 
Other sensory data. At present, olfactory and 
tactile data  are not usually found in computer 
applications, but perhaps in the  future they will 
also be integrated into hypertext  systems. 
Computer programs. 

All of these kinds of information are kept in the 
ordinary physical storage media, such as fixed  disks, 
diskettes, tapes, and compact discs. 

Applications of hypertext. Hypertext methods can 
be applied wherever there is a need to manage large 
masses of information that can be divided into 
many chunks and accessed  in a random way. For 
example: 

On-line documentation (help systems, reference 
works) 
Publishing (on-line dictionaries, computer-based 
encyclopedias) 
Computer-aided instruction (training manuals, 
tutorials, user guides) 
Expert systems,  which require a highly developed 
interface to make use of the system so that it  is 
friendly to a professional  user  who  is not oriented 
to computer  science (a physician, a lawyer, etc.) 

Object-oriented  programming  and  hypertext. Ob- 
ject-oriented programming (OOP) ”’* is a program- 
ming method that is almost the exact opposite of 
classical procedural programming. In OOP, it  is the 
datu that  are organized in a basic control hierarchy. 
One piece of data may be linked to another through 
a relation of descendancy, and this fact gives  rise to 
a network  (usually a tree) similar to the hierarchy 
of programs in procedural programming. There  are 
also programs done in OOP, but they are append- 
ages to  the  data (in the same way as in  classical 
programming  in  which data  are appendages of pro- 
grams). It is possible to build  global programs (ac- 
cessible to all of the  data in the hierarchy) and local 
programs (accessible from certain objects and their 
descendants). 
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In OOP, the execution of a program is  fired by 
means of a message that somebody (the user, an- 
other program, or an object) sends to a  given  object. 
The recipient of the message decides which pro- 
gram should be executed. (It may be a  local pro- 
gram or a  global program which  must be located 
through the network that defines the structure of 
the objects.) 

Object-oriented  programming is the appropriate way 
to program  a  hypertext  application. In fact,  the  hier- 
archical data structure of OOP is the exact counterpart 
of the hierarchy of information  units (the nodes) in 
hypertext.  Hypertext  links  become the relations  be- 
tween  objects in OOP. Hierarchical  relations  corre- 
spond to the  links  defining  the  hierarchy.  Semantical 
relations  provide the possibility of implementing 
other links that transcend the hierarchy. 

The most  generally  used way to represent objects in 
object-oriented programming systems  is  by means 
of frames, a  powerful data structure proposed by 
Minsky  in  1975.19 A frame system  is  a graph in 
which the nodes (frames) have  a name and contain 
all of the information available about a  given ob- 
ject. For example: 

Frame  TABLE 
I s -a :  FURNITURE 
F i l e s :  0 , 1 , 2  
D r a w e r s :  0,l 
Legs :  4 
L i g h t :  0 . 1  

Object-oriented  programming  and APL2. In APL2, 
the existence of the general array makes  it  very  easy 
to define and implement frames, which can be con- 
sidered as general matrices of  two columns, where 
the first element in each row contains a name and 
the second a  (possibly multiple) value. For exam- 
ple, the frame mentioned above is a general matrix 
of  five rows and two columns; it can be represented 
in A P L ~  in the following way: 

TABLE + 5 2 o 
7 IS-A' 1 FURNITURE 7 

'FILES' (0 1 2) 
'DRAWERS' (0 1) 
'LEGS' 4 
'LIGHT' (0 1) 

With the use of frames, it is quite easy to build an 
object-oriented programming paradigm in APL~. 
Each object is represented as  a frame, linked to 
other objects to form  a  hierarchy. The root of the 

hierarchy  is  called OBJECT and is initially  defined as 
follows: 

OBJECT + 8'2'~ 
' PARENT 
' CREATE ' 'METHOD' ' ERASE ' ' METHOD ' 
' PARENTS ' ' METHOD ' 
'CHILDREN' 'METHOD' 
'PROPERTIES' 'METHOD' ' VALUE ' ' METHOD ' 
' METHODS ' 'METHOD' 

Each object in the hierarchy automatically inherits 
the properties  and the methods  defined by its  ances- 
tors  (its parent and the ancestors of its parent), unless 
some  property or method  has  been  redefined, either 
by the same  object or by a  lower-level  ancestor. The 
inheritance of methods  and the ability to send  mes- 
sages to any object are easily implemented by means 
of the APL2 function MESSAGE, with the syntax: 

MESSAGE  'Object'  'Method' 
[additional  information1 

and the implementation shown  in Figure 5. 

References 20 and 21  explain  in more detail the 
applicability of A P L ~  for object-oriented program- 
ming. Thus, we can deduce that object-oriented 
programming  in A P L ~  is  a  good way to program a 
hypertext application. 

An on-line dictionary  written  in APL2 (OOP). A 
part of a Spanish on-line dictionary for the high- 
school  level  has been implemented in APL~/PC using 
object-oriented programming techniques. The dic- 
tionary currently contains the definitions of  2130 
words  in  science and technology, distributed in the 
following  fields: 

Biographies (123) 
Computer science  (18) 
Technology  (338) 

Electronics (71) 
Materials (59) 
Vehicles (54) 
Instruments (78) 
Miscellaneous  (76) 

Medicine (409) 
Biology  (1100) 

Anatomy (244) 
Physiology  (120) 
Cytology and histology (38) 
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Figure 5 Implementation of MESSAGE 

101 AR-MESSAGE AX;AOB;AMET;ASRCH;AA;AI;AB 
C11 AOB+’ ’ ELMrAX 
C21 AMET+’ ’ ELM 23AX 
C31 AX-2LAX 
C41 +AEl IF-EXIST AOB 
C 5 1 ASRCH-BOB 
C61 Ai:AA+t(A%-GET  ASRCH)C;ll 
C71 +ALl IF( pAA)>AI+AAlcAMET 
C81 -AE2 IF O=pASRCH->ABCAA~c’PARENT’;21 
C91 -AL 
ClOl ALl:AX+( cAOB!,AX 
E111 ” UEA  ‘AR+  ,ASRCH,’-’,AMET,’ AX’ 
[121 -+o 
C131 AE1:AMSG  ‘THE  OBJECT’ AOB ‘DOES NOT EXIST. METHOD = ’  AMET 
L141 -0 
C151 AE2:AMSG  ‘UNKNOWN  METHOD’ AMET ‘FOR  OBJECT’ AOB 

Genetics  (14) 
Biochemistry (78) 
Ecology  (23) 
Paleontology  (40) 
Microbiology  (28) 
Zoology  (incomplete)  (302) 
Botany  (incomplete)  (140) 
Miscellaneous  (73) 

Others (142) 

The OOP application  consists of a total of 2133 ob- 
jects, three of which (the root of the hierarchy) are 
in the A P L ~ P C  workspace,  whereas the others (the 
words  in the dictionary) are included  in 44  files, 
created and  used by means of the ~ ~ 2 1 1  auxiliary 
processor.”~23 The total size  of these  files is 
1 372  216  bytes,  which  makes  an  average of 644 
bytes per word  definition,  31  187  bytes  and 48  words 
per file.  Words are distributed in the files themat- 
ically to reduce the overhead,  since  it  can  be  as- 
sumed that groups of words  searched in the dictio- 
nary will  usually  be related  in  this way. Therefore, 
not  all  files are equal  in  size, the largest one con- 
sisting of  142  words and 93K  bytes, and the smallest 
one consisting of 8 words  and 4K  bytes. 

Summary 
This paper  and  others in the  references  show the use- 
fulness of APL and APU for  the  most  modem  pro- 
gramming  techniques  and  applications.  Among  these 
applications  are  artificial  intelligence,  neural  net- 
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works, object-oriented  programming,  and  hypertext, 
which  have been  described  in  some  detail. 
*Trademark or registered trademark of International Business 
Machines Corporation. 
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