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Verification  of a computer  that  implements a new 
architecture  is  especially  difficult  since  no 
approved  functional  test  cases  are  available.  The 
logic  design  of  the ISM RlSC  System/SOOO"  was 
verified  mainly  by a special1  developed  random 
test  program  generator  (RT PY G),  which  was used 
from  the  early  stages  of  the  design  until  its 
successful  completion.  APL was chosen  for  the 
RlSC  System/SOOO  RTPG  implementation  after 
considering  the  suitability  of  this  programming 
language  for  modelin  computer  architectures, 
the  very  tight  schedu Y e, and  the  highly  change- 
able  environment  in  which  RTPG  would  operate. 

T he ultimate goal of design verification is to  en- 
sure equivalence between a design and its func- 

tional specification. Strictly speaking, we can say 
that this goal can be achieved by exhaustive  simu- 
lation or formal proof of correctness. The exhaus- 
tive simulation, in which  all  possible combinations 
of all inputs and memory elements of the design 
should be applied, can be done only for very  small 
designs. Also, the  state of the  art of the formal 
techniques and  the complexity of designs and spec- 
ifications,  usually written in  English, do  not allow 
utilization of the formal techniques in  most indus- 
trial applications. Despite significant progress 

achieved in recent years in formal verification, it 
has been pointed out  that formal verification  is not 
intended to replace simulation completely and  that 
simulation is presently the major tool for the  (par- 
tial) validation of hardware designs. 

In practical applications only a relatively  small sub- 
set (as compared to  the exhaustive set) of selected 
test cases is simulated. The challenge, then, is to 
create a subset that provides high confidence in the 
correctness of the design.  We  discuss  how  biasing 
techniques, combined with the dynamic approach 
to random test program generation, help to solve 
this problem. 

This paper describes the concepts behind and the 
implementation of the IBM RISC System/6000* ran- 
dom test program generator (RTPG) developed to 
assist  in the interactive creation of the  adequate 
subset, as well as to automatically produce a vast 
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number of test  programs for the comprehensive 
verification of the design. 

At the moment the design  was  launched, no func- 
tional  test  cases  existed for RISC System/6000 ar- 
chitecture. It was  obvious that the traditional way  of 
writing  test  cases  could not provide the required 
level  of confidence  in the design. The design  veri- 
fication  methodology  developed  at the IBM Haifa 
Research Group (HRG)3’4 had  already been suc- 
cessfully  applied to several  smaller  designs  such  as 
floating-point  units  and  a  microcontroller. It was 
decided to adopt this approach for  verification of 
the FUSC Systed6000 computer system. 

APL was chosen as the programming  language for 
the RISC Systed6000 RTPG after considering the 
suitability of this  language  for  modeling computer 
architectures, the very tight  design  schedule,  and 
the highly changeable  environment  in which RTPG 
would operate. Originally the RISC Systed6000 
RTPG was developed  in vS APL on the virtual  ma- 
chine (VM) operating  system. It was later  “migrated” 
to mu on the same  system. It is currently  being  used 
for  verification of  follow-on  products  and  is  running 
mainly  in  batch  mode on a  cluster of over 30 RISC 
Systed6000 machines,  using IBM’s APwm. 

The second  section of the paper discusses  some 
aspects of processor  verification  and  describes  a 
test  program format suitable for this  purpose. The 
subsequent  section presents the main RTPG con- 
cepts and ways to realize  them. The RTPG structure 
and the basic operation modes are described  in the 
fourth section.  Highlights,  conclusions, and results 
of the RTPG experience are summarized  in the last 
section. 

The  nature of  processor  verification 

The RISC Systed6OOO  RTPG and its predeces- 
sors. Logic  verification of VLSI (very  large-scale  in- 
tegrated) designs  has  always been an  intrinsic part 
of the design  process;  however, the complexity  of 
verification  grows  much faster than the complexity 
of designs. The problem  is widely  recognized  in the 
case of microprocessors, as they present the leading 
edge of single-chip  design  complexity.  Verification 
of microprocessors  is  considered to be a  bottleneck 
of the entire design  process,  with  crucial  impact on 
the schedule for delivery of  new  systems.’ An au- 
tomated approach is  essential for verification of a 
system that consists of several VLSI chips  including 
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a  processor,  a  floating-point  unit,  a storage control 
unit,  and  caches. 

In most  applications,  a  test  case for a  processor  is 
a  program  written  in  assembly  language. The main 

A random  approach  to  automatic 
test  generation  has  proved to be 

successful. 

goal of the tool called R T P G , ~  which is  actually  a 
dynamic biased pseudo-random test program gener- 
ator, is to make the test  program generation process 
more productive,  comprehensive,  and  efficient. 

A  random  approach to automatic  test  generation  for 
software7  and  hardware’  verification  has  proved to be 
successful.  It  was  applied to the verification of se- 
lected  design  units  such as a  floating-point unitg and 
even a  complete  processor,’  but  very  strong  restric- 
tions  were  imposed on the generated  test  programs. 
As a  result of those  restrictions, many parts of the 
design  could  not  be  accessed  and,  thus,  could  not  be 
verified. 

For some  designs,  such  as  a  floating-point  unit, the 
main part of the verification  task  can  be  fulfilled by 
programs that consist of  only one instruction. The 
generation of such  programs  is  relatively  straight- 
forward: The generator (or the user) selects an in- 
struction  and the required controls, generates the 
operands randomly (or provides them), and then 
invokes  a  reference  model of the design to get the 
expected  results. The generation of multiple  in- 
struction test programs  is  much more complicated, 
especially  when  such features as  program  control 
instructions, interrupts, and  address  translation are 
to be verified. There are approaches’.’’ that present 
a way to generate multi-instruction  test  programs. 
They are based on creating special  tables of oper- 
ands,  and  each  instruction may select operands only 
from the relevant  tables.  Although  much  more pro- 
ductive than manual test writing, these approaches 
have  drawbacks. The tables  used  must ensure that 
the generated test  programs are worthwhile, that 
they  would create the required instruction stream, 
and that they  would not quickly end up  with  an 
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interrupt.  These  conditions imply  use  of the utmost 
caution  in  creating the tables  and  make  this  task 
very  cumbersome.  The  generated  test  programs are 
relatively  simple,  and  again,  must  obey  many  re- 
strictions.  For  example: 

Some  instructions are always preceded by spe- 
cially inserted  instructions,  e.g.,  for  initialization 
of base  registers to get the allowed  memory ad- 
dresses.  Thus,  some  sequences of the instruc- 
tions  can  never  be  generated. 
For the same  reason,  a  register may not  be  used 
as  a  source  for  different  types of  activity,  such  as 
an operand in  an arithmetic  instruction  and  a 
base  register  for  addressing. 
To avoid creating  endless  loops, only  branch  for- 
ward  instructions are generated.  In  branch  con- 
ditional  instructions,  where  it  is  not known a p i -  
on' whether  the  branch  is  taken  or  not, 
instructions  for  both  possible  paths  must  be  gen- 
erated. As a  result, the generation of test  cases 
with  many  branch  conditional  instructions  is 
quite  difficult. 

Such  an  approach  to  test  generation may  be  clas- 
sified  as  a  static  one,  since the test  programs are 
assembled  first  and  executed  afterwards. There is 

I no  relation  between the intermediate  machine 

test  generation  process.  In RTPG the test  generation 
is  interleaved  with the execution of  every instruc- 
tion  as soon as  it  is  generated.  This  dynamic nature 
of RTPG allows  us to overcome  drawbacks  of the 
static  approaches. 

Because RTPG makes  it  easy to write  test  programs, 
it  encourages the logic  designer  to create appro- 
priate test  programs  while the logic  design  is  still 
fresh  in the designer's  mind,  whether  these  pro- 
grams  can  be  simulated at that early  stage or not. 
Thus, the design  verification  is  naturally  integrated 
into the design  process. 

~ states  during  execution of the test  program  and the 

There are two  challenges  in  having  a  test  program 
generator  ready  at the early  stages of  design. The 
first  is  simply the time  required to implement the 
test  program  generator.  The  second  is  a  require- 
ment  for  high  flexibility. Frequent changes are re- 
quired to the generator  because the architecture 
specification  is  often  very  much  in flux at  this  time 
and  because  implementation-specific  details of the 
test  programs are decided  as the design  progresses. 
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These  requirements are two  of the reasons that APL 
was chosen  for the RISC Systed6000 RTPG imple- 
mentation. APL provides  quicker  implementation 
than many other languages.  It  is  also  easy  to  modify 
to meet  changing  requirements  as  well  as  to  handle 
various  designers'  requests.  Another  reason  is the 
special  suitability  of APL for  describing  and  mod- 
eling  computer  architectures.  From  its  very  begin- 
ning, APL was  used  for  this  purpose.  Iverson's  orig- 
inal  book"  contained  a  description of the IBM 7090 
machine,  and  in  1964 the complete Systed360* 
was  formally  described  in A P L . ~ ~  All  Boolean  and 
relational  functions are supported,  and  these  func- 
tions  provide  very  efficient  bit-per-bit  execution  for 
bit  arrays of  any length.  The  language  has the ability 
to individually  address  each  bit  in  an  array. It is 
often  necessary to work  with  bit  fields  and  subfields 
within  instruction or data words,  including  double- 
precision  floating-point data which are 64 bits  long 
in the RISC Systed6000. APL allows the needed 
fields  to  be  easily  split out, whereas many languages 
do  not  support  bit  operations  at  all  (and  especially 
not  in  more  than  32-bit  words).  Because  bit  oper- 
ations are so common, RTPG keeps  values  for  all of 
the instruction  and data words  in  Boolean  form. 
Since APL stores  a  Boolean  value  as  a  single  bit in 
the host  processor  storage, there is no penalty  for 
keeping data in  this  convenient  form. The APL ro- 
tate function  together with the selection  functions 
(like take and drop) are natural  for  implementing 
bit-shifting  operations that are required in  any  com- 
puter  processor  model  and are especially  powerful 
in the IBM RISC Systed6000 architecture.  For ex- 
ample, the result of a  Shift  Right  Algebraic  Imme- 
diate (SRAI) in~truction'~ is  calculated by the fol- 
lowing  concise  expression: 

GPRCRA; 1+32f(SH/GPRCRS;OI ),GPRCRS; 1 

and the Carry  bit  (CA)  is: 

XBRC~I~GPRCRS;O~~V/(-SH)~GPRCRS;I 

Here SH is the shift  amount, RS and RA are the 
numbers of the general-purpose  registers involved 
in the instruction,  and the second  bit  of XBR (ked- 
point  exception  register)  contains CA. A description 
of the same  instruction  in any other programming 
language  would  be  much  longer  and  less  easily  un- 
derstood.  Note that the description of this  instruc- 
tion  in  English  takes  10  lines  in the architecture 
document. 
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Finally, although RTPG was  initially planned to run 
on an IBM 3090-type processor (under VM), it was 
recognized  early-on that it  would  also be necessary 
to  run RTPG on workstation platforms. In fact, RTPG 
is  now running under IBMS APL2/6000 on  the very 
platform that it helped to verify. The transfer of the 
RTPG APL code from APL2 on  the V M  operating sys- 
tem to APL2/6000 on  the Advanced Interactive Ex- 
ecutive* (AIX*) operating system  was  trivial. The 
only change required was to  the four file I/O pro- 
grams and to  the display screen programs. As men- 
tioned earlier, R P G  is  now running on a cluster of 
over 30 IBM RISC System/6000 processors to do  the 
work of verifying  new processors under develop- 
ment for the RISC Systerd6000 family  of computers. 

Test programs for processor  verification. The most 
natural way  of processor verification is to run as- 
sembly programs through the design model and to 
compare the simulated results with the expected 
ones.  Usually the test programs are written as self- 
checking programs that  return only a “go/no-go” 
flag. This concept is simple; however, its usage  faces 
difficulties  since: 

It can be used only  when the design model is at 
an advanced stage, or at least when  load and 
compare instructions are implemented. 
The test programs should obey the restrictions 
imposed by the supervisor that runs them. 
It requires more simulation cycles (running time) 
because of additional load and compare instruc- 
tions that  are simulated. 

The RTPG approach is different. A test program 
generated by RTPG consists of three parts: 

1. Initial  state defines the contents of all registers, 
control flags, tables, caches, and memory loca- 
tions (called “facilities”) that influence,  explicitly 
or implicitly, the execution of a test program. 
The instruction pointer (IP) register provided  in 
this part contains the program initial address. 

2. Instructions are given as the contents of caches 
or memory locations or both. The instructions 
part may be included in the initial state but is 
separated for better readability. 

3. Expected results present the final state of all fa- 
cilities that were changed during the test. The 
user may request that  the final state of additional 
facilities  also be included in the expected  results. 
The IP register provides the test program break- 
point. 
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The collection of these three  parts is referred to as 
a testprogrum in this paper. Such test programs are 
self-contained: they include all information re- 
quired for their independent and completely pre- 
dictable execution. This feature enables them to 
freely migrate between test libraries and to  be ex- 
ecuted in  any order. 

A small test program generated by RTPG for the IBM 
RISC System/6000 processor is  shown  in Figure 1. 
As usual,  asterisk “cards” (or lines) are used for 
comments. Comments may also be included in  any 
line after the required data. The  header (H) card 
contains the test number and indicates the begin- 
ning of the test. The register (R) cards specify  reg- 
ister names and initial  values. The instruction (I) 
and data (D) cards provide  memory addresses and 
their contents. The IP values (both the initial  value 
and the result) are given as effective addresses, i.e., 
before any address translation is performed. All 
other addresses are given as real memory ad- 
dresses. The I and D cards are essentially the same 
and have different tags for readability only. 

In addition to  the  data required for the processing, 
an RTPG-generated test program contains the fol- 
lowing information: 

User comments to record the purpose for which 
the test has been created 
Corresponding assembly code (in the I cards) for 
readability 
Calculated effective address of data and target 
instructions, included as comments in I cards of 
load, store, and branch instructions 
The translation path of each address when a test 
program is running in address translation mode 
(not demonstrated here for reasons of clarity) 
The initial value of the Random Link (ORL) used 
to create  the test and other control parameters 
required for regeneration of the test program 
(Only a few  of these are shown  in Figure 1.) 
Hooks for handling the program in test libraries 

When requested, intermediate results of each in- 
struction are included as comments in the instruc- 
tions part of a test (the debug  mode described in the 
fourth section). 

Realization of the RTPG principles 

RTPG realizes the dynamic approach to test gener- 
ation in the following way. A test program is built 
step by step (instruction by instruction). Each step 
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Figure 1 An  RTPG-generated  test  program  for the RISC System16000 
I 

t 

H 10000: 
Created  by:  UserId  Mar  28  12:38:17  1990 
Title : A simple  test  program  for  RTPG  paper 
Comment: Add, Load, Branch.and  Store  instructions 
Number of tests: 1; Instructions in test:  4: 
Instructions:  a lx b  sth 

* Seed:  228656141: FN: example:  Instr.  order: f; New-Reg: y: 

""""""""""- Initialization """"""""""""- 

R  IP 00010000 
R  R1  03642998 
R  R8  OOOOOOOF 
R R10 
R R22 

1E12115F 
0 129DFFF 

R R30 800000BA 
R MSR 00008000 
R  CR  8CCO48C8 
R XER  2000CD45 
D 0129DPFC  4E74570E 
D  03640B90  7D280411 

t """""""""" RISC  System/6000  RTPG - - - - - * - - * - - - - - - - - - -  

t 

""""""""""- Assembly  program _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ - - - - - -  
* 
I 00010000 7C48F415 a o .  R2.RB.R30 
I  00010004 7CEOB02E lx R7  .RO,R22 * E/A  0129DFFF 
I  00010008 49BBB904 b  *+29079812 * T/A 01BCB90C 
I 01BCB90C B141ElF8 sth  RlO.X'ElF8'  (R1) E/A  03640B90 

t """"""""""- Expected  Results . . . . . . . . . . . . . . . . . . . . . . .  

R R2 
R  IP  01BCB910 

R R7 
800000C9 
4E74570E 

R  MSR 
R  CR 

00008000 

R  XER 
8CCO48C8 
0000CD45 

D  0129DFFC  4E74570E 
D 03640B90  115F0411 
END 

0 

t 
consists of two main  stages: a generation stage  and 
an  execution  stage.  At the generation stage a new 
instruction is chosen,  and the required  facilities are 
initialized. The execution  stage  is then invoked to 
execute the instruction  and to update the affected 
facilities. 

Dynamic test generation. The generation stage 
starts by inserting the operation code into the in- 
struction word  and  establishing the rest of the in- 
struction fields.  At  any  point  in the process  each 
facility  may be either free, which means that no 
value  has been assigned to it yet, or have a value,  in 
which case one is  assigned to it by the initialization 

part of the process or by the execution of previous 
instructions.  All  facilities that influence the execu- 
tion of the generated instruction are inspected,  and 
those that are free are initialized.  This  principle 
works  regardless of the complexity  of a generated 
instruction  and the initialization that it  requires. 
For example, a single store instruction,  besides  ini- 
tialization of data, base,  and  offset  registers, may 
require initialization of an entire address transla- 
tion  path. 

As  soon as the instruction  and  all of the associated 
facilities are defined, the instruction  is  executed 
and  all  facilities that are changed  during the exe- 
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cution are updated.  Therefore,  at the beginning of 
the generation of the next instruction, RTPG has the 
exact  information  about the current state of  all fa- 
cilities  in the system.  This  information  allows RTPG 
to: 

Select  an  instruction  and  its  fields to gain the best 
effect  from the execution  (various  biasing strat- 
egies  help to achieve  this  goal) 
Bias data and  operands,  depending on the in- 
struction  being  generated 
Reject the instruction if its  execution  would  ren- 
der the test program  invalid 
Include  any  number of branch  instructions in the 
test 
Control  eventual interrupts 
Protect the required areas of  memory and  cer- 
tain  registers  from  being  used by the generated 
test 
Define,  on the fly,  all required  entries in the sys- 
tem  tables  (such  as the page  frame  table) 

A trace of the most  recently  updated  facilities  is 
also  available  and  is  used  for  implementation  of 
some  useful RTPG options. 

Biasing. The  generation of test  programs  is  biased 
in order to increase the probable  occurrence of 
events that otherwise  have  very low chances of be- 
ing  created.  Biasing is both the strong  point  and the 
vulnerable  point of R P G .  Strong,  because  it  allows 
the generation of test programs  with the required 
features.  Vulnerable,  because  the  selection of  biasing 
strategies  cannot  be  completely  formalized  and  de- 
pends on the  experience of the RTPG developer  and 
that person’s  knowledge  of the design. The goal of the 
biasing  is  not  the  creation of unique or very rare  sit- 
uations,  but  rather  is  to  direct  the  generation  process 
toward  selected  design  areas so that  most  of the 
events  in  these  areas are  tested when the  number of 
generated  test  programs  is  reasonably  large. 

The  biasing  functions are employed  in the process 
of selecting  instructions,  instruction  fields,  regis- 
ters,  addresses, data, and other components  that 
construct the test  program. The starting  set of the 
R P G  biasing  strategies  is  derived  from the archi- 
tecture.  Each  instruction or process  (such  as inter- 
rupt  action or address  translation)  specified  in the 
architecture is represented by a block  diagram  com- 
posed of decision  and  execution  blocks. In every 
decision  block the data affecting the decision are 
selected in  such a way that the subsequent  blocks 
are entered with  user-specified or RTPG-controlled 
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probability.  However,  in  multi-instruction  test  pro- 
grams  it  is  not  always  possible to  get the required 
data.  Let us say that the user  asked  for  a 10 percent 
probability  of  floating-point  overflow,  and  in the 
current  instruction the decision  was  made to create 
it. If  all floating-point  registers  already  have  values 
assigned by previous  instructions,  it may happen 
that no  pair of registers  will  produce  an  overflow. 
Thus,  in the generated  test  cases the actual  prob- 
ability  of  overflow  might  be  less than the requested 
one. 

To some  extent RPG is a system that gathers into 
its  biasing  strategies  all of the experience  gained 
during the verification  of  several  processor  designs. 

RTPG gathers  into  its  biasing 
strategies  all of the  experience 

gained  during  verification  of 
several  processor  designs. 

As an  example,  consider the strategy of register 
selection,  which  is  very  important,  especially  for  a 
RISC-type architecture  where  a  large  number of 
general-purpose  registers is  available  and  as  many 
as three or four  registers may be  used  in one in- 
struction.  The RISC Systend6OOO RTPG allows the  se- 
lection of  any one of the following three  strategies: 

1. Selection of free registers  only. Here RTPG has 
complete  freedom  in  biasing the instruction  op- 
erands. Also, the result of each  instruction will 
never  be  overwritten by the  actions of subse- 
quent  instructions.  Only  relatively  short  test  pro- 
grams  can  be  generated  when  this  option  is  cho- 
sen. 

2. Random  selection (the default  strategy). A reg- 
ister is  selected  randomly  with  biasing  toward: 

Increasing the probability to use the same  reg- 
ister  more  than  once  in  an  instruction. 
Preventing  usage of a  register  as  a  target if it 
has  been  a  target  during  its  previous  usage. 
This feature increases the test  program  ob- 
servability,  i.e., the probability to propagate 
any intermediate errors to the observable  ex- 
pected  results. 
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Figure 2 The RTPG environment 

I RTPO .... - 
MENU 

INTERACTIVE 

INTERFACE 

I BIASINQ 
SELECTION 

I BATCH 

3. High  probability to select the target register of 
the previous  instruction  as  a  source or target of 
the current instruction.  This option is  useful  in 
the verification of the register  bypass  logic  as 
well as in the verification of synchronization  be- 
tween  instructions  when  multiple  instructions 
are issued  and  executed  concurrently. 

The starting set of biasing strategies is  revised  based 
on test  coverage  analysis of the generated test pro- 
grams on both the RTPG reference model  and the 
design  model^.^ Coverage  evaluation  helps to de- 
tect and  remove  “holes”  in the biasing. The final set 
of strategies ensures that there is a generation proc- 
ess  with  a  reasonable  probability of covering  every 
architectural feature and  every  design  block. 

RTPG supports two biasing  levels:  local  and  global. 
The local  biasing  is  involved  in  selecting  immediate 
fields of instructions and selecting data for the op- 
erands. Many  local  biasing  functions,  specific for 
every  class  of instruction, are implemented  in R P G .  
For example, the generation of operands for  add 
class  instructions ensures a  high  probability of get- 
ting  long  chains of carries. In a “count leading 
zeros” instruction the biasing ensures the creation 
of operands with equal probabilities for any  num- 

1 

ber of leading  zeros.  Some more sophisticated  local 
biasing  functions are implemented  in  more  com- 
plicated  cases, e.g., floating-point  instructions. 

Examples of global  biasing  control parameters that 
have  a  primary  effect on the generation process are: 

Instruction  selection  strategy 
Initial  value of the machine state register (MSR) 
Strategy  for  selecting general-purpose registers 
Memory areas that the test program  is  allowed to 
use 

Each  global  and  most of the local  biasing  strategies 
may be  specified by the user.  They are selected 
randomly by RPG if not provided. 

RTPG  structure  and  basic  operation  modes 

Environment. The RTPG design  verification  envi- 
ronment is  shown  in  Figure 2. The integuce and 
biasing blocks are actually parts of RTPG but are 
shown  separately  because of their connections to 
the external  world. RTPG includes  a reference model, 
a  high-level architectural model of the processor to 
be tested. The lighter-shaded  lines  indicate flow  of 
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Figure 3 The  main RTPG menu 

~ .F . ~ ~ .  . ~" 

i j  RISC Systed6000  RTPG  Menu 
\ /  Mar 28 12:J8:15 1990 Menu name: Demo Teat  number: tBDd 1- 1 Reader >>> A  simple  test  program  for  RTPG  paper 
t Comment >>> Add. Load.  Branch.  and  Store  instructions 

Number  of  tests -> 1 
Instr. per test "> 4 

AVP  FN -> example 
X-Init FN -> 
FldList FN "> 
InsList FN "> 

Instr. : --> a -> lx 
--> b -> 6th 
"> - "> __ 
"> - "> - 
--> __ --> - 

Instr.  pntr. -> x'00010000' 

Biasing  Controls 

Regs.  New ? (y/n)  y 
Regs.  Last? (y/n) n 

Memory  Last? (yln)  n 
Instr. Last? (y/n)  n 

Instr.  Order (f/s/r)  f 

Debug  Options 
Seed 
Debug  mode7  (y/n)  n 
Model  trace?  (y/n)  n 

information with manual work  involved  in the proc- 
ess, and  the  darker lines indicate automatic flow  of 
data between the units. 

The architecture specification document is the pri- 
mary source of information for  the R P G  develop- 
ers, and most of its features  are embodied in RTPG. 
RTPG has to know  all of the instruction format, and 
for each instruction, all  of the  parameters  that in- 
fluence its execution. This information is required 
for generating the instruction fields and  for check- 
ing that all  necessary facilities were defined before 
the execution of the instruction. R P G  has to keep 
a record of  all facilities changed during instruction 
execution. The final state of all of the changed fa- 
cilities provides the expected results. 

The architecture may leave the handling of certain 
situations to  the implementation. For example, un- 
aligned storage access  may cause an alignment in- 
terrupt in some implementations and may be han- 
dled by hardware in others. All such situations are 
handled in RPG so that  the test program that is 
created is correct for the implementation being 
tested. 
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User interface. The RTPG user intefluce includes 
several screens that allow the user to define the 
initial state of the processor and to control the test 
program generation process. The main screen used 
to  generate  the test program of Figure 1 is  shown 
in Figure 3. 

All screen parameters  are optional, and if not spec- 
ified, the default values are used  (e.g., the default 
for InsList contains all instructions). The interface 
provides a way for documenting the  generated test 
programs, selecting biasing strategies, initializing 
instruction fields, registers, and memory, and exe- 
cuting existing test programs. 

The user may initialize any of the required facilities 
within an X-Init  file. The file has the usual test 
program format. Thus, a prototype of a test pro- 
gram may first be created by RPG and  thereafter 
used for initialization and generation of many  new 
test programs on  top of the prototype. The X-Init 
file  may also contain blocks of instructions and data 
that become parts  of  the test program. This feature 
is  useful for including interrupt handler routines in 
the  generated test programs. 
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The Debug Mode is a powerful by-product of the 
dynamic nature of R P G .  Including it in RTPG is 
almost free since RTPG already scans all changed 
facilities after every executed instruction. When 

RTPG offers two  modes of 
operation. 

this option is employed, the expected results of 
each intermediate instruction are included in the 
generated test program. This option is  very  useful 
in locating problems when a test fails.  However,  it 
requires much more space for storing the test pro- 
grams. 

R P G  offers two modes of operation: the generation 
mode (Gen)  and the execution mode (Run).  In  the 
first mode, RTPG is  used to  generate  one test file per 
invocation. The file contains the requested number 
of test programs, each program generated accord- 
ing to  the control parameters specified on  the 
screens. The batch version of the  Gen  mode is used 
for mass production where a large number of test 
programs is created for predefined sets of initial 
conditions. Such generation is performed as over- 
night runs or during weekends. Since the “porting” 
of RTPG to  the IBM RISC System/6000 platform, 
RTPG runs as a background process concurrently on 
many RISC System/6000 machines connected in a 
local area network. The programs generated  on  the 
workstations as well as the programs generated  on 
the VM host machines are submitted automatically 
to various simulators connected to  the same local 
area network. Tests that  do  not expose any  design 
problems are discarded. 

In Run  mode RTPG executes an existing  file of test 
programs and returns it, including correct expected 
results. The original file  may or may not include 
expected results. If they are provided, they are com- 
pared with the expected results created by  RPG, 
and any discrepancies are  reported.  Run mode is 
used to define the expected results for manually 
written test programs. In case of changes in the 
architecture, it is  used to confirm or update  the 
expected results of programs imported from other 
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sources or generated previously by RPG. Another 
use of Run mode is to  rerun  an existing test pro- 
gram in Debug Mode. This use  is done frequently 
when a test fails and when  it  was  originally gener- 
ated with the Debug Mode  turned off. 

Test coverage evaluation  on  the  architecture  level. 
The quality of verification is improved significantly 
when there is a means to estimate test coverage on 
both architecture and implementation levels. In  re- 
gard to RTPG, the results of coverage analysis pro- 
vide feedback for improving the biasing functions. 
Also, the coverage analysis on  the architecture level 
is  used  in the  preparation of a relatively  small sub- 
set of tests that include test programs for every 
architectural feature.  In  the RISC System/6000 RTPG 
the high-level reference model was implemented 
within RTPG. The interpretive nature of APL con- 
siderably facilitated the implementation of some 
coverage analysis techniques, including techniques 
that  require fault injection. 

One of the simplest coverage techniques is ensuring 
that each line of the code has been executed at least 
once. A special function analyzes the character rep- 
resentation of an APL function and splits each la- 
beled line into two  lines. The first one contains the 
label and an assignment statement  that sets the cor- 
responding bit  in a trace vector associated with this 
function. The second line created by the split con- 
tains the APL statement  that was on  the line before 
the split (but without the label). Assignments of the 
bits of the trace vector are also inserted after each 
statement with an APL right arrow (branch). A 
bucket of test programs is then executed (using the 
Run mode) on the “trace-modified” RPG. Zero 
values in the trace vector indicate blocks that were 
not reached. 

Another coverage technique called “skip muta- 
tion,”14  which requires injection of faults into  the 
code and  thus provides much higher confidence in 
the  generated test programs, may also be easily  im- 
plemented. Skip mutation means that  one line of 
the analyzed function is not executed. To make this 
technique more sensitive, an original APL function 
may be replaced by its more detailed version.  Skip 
mutation is performed by another function that 
takes the  character representation of an APL func- 
tion to be checked and precedes the required line 
by the comment symbol “R”. The information from 
the previous step (line coverage) is  used to select 
only those test programs that pass through the 
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skipped  line. The procedure is repeated for each 
line  in the function. 

The coverage  analysis  is done automatically  as  soon 
as both the function to be analyzed  and the test file 
are specified.  However,  because of performance 
considerations,  only  functions for which  a  low  cov- 
erage is  suspected are analyzed. In the RISC Sys- 
tem/6000 RTPG environment,  only  functions that 
implement the floating-point  unit  were  analyzed by 
both techniques. 

RTPG implementation. The RISC Systed6000 
RTPG is  implemented as a  single  workspace  which 
is  able to create test programs of up to several thou- 
sand  instructions on a six- to eight-megabyte  virtual 
machine. The user interface was written  in REXX to 
simplify  some  Conversational Monitor System 
(CMS) file-related  checking that was not so easy to 
implement in VS APL. The RTPG functions may be 
grouped  into: 

Utility  and  service functions 
Functions  for  instruction  execution 
Biasing  functions 
Simulation of interrupts 
Address translation 

The service  functions prepare the initial  machine 
state, manage  instruction  selection,  prevent the cre- 
ation of endless  loops in the generated test pro- 
grams,  and  mask  undefined  results. These functions 
also  handle the Run option, including  comparing 
the actual  results  with the expected ones that are 
provided  in the original  test  program. 

Each FUSC Systed6000 instruction  has  a corre- 
sponding APL function  with the same name that 
operates on the architectural facilities  (defined  as 
global  variables) to perform the behavior of the 
instruction.  Each  “instruction function” is parti- 
tioned into a  biasing  section  and  an  execution  sec- 
tion which are used  as required for  biasing  and 
setup or reference model operation. As  soon  as the 
instruction to be generated is selected, the required 
APL function  is  invoked by “executing” the charac- 
ter representation of the instruction  mnemonic. 
Thus,  when  a new instruction  is added to the sys- 
tem, or in case of a  change  in the instruction  mne- 
monic or behavior,  only one function  must  be 
added or changed.  A  rich set of utility  functions that 
perform  many of the required common  tasks,  such 
as  incrementing the instruction pointer or adding 
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two register  values,  facilitates  writing of the “in- 
struction” functions. 

The register  arrays of the processor are modeled  as 
APL Boolean  matrices. The memory  is  modeled as 

The RlSC System16000 RTPG is 
implemented as a single 

workspace. 

another Boolean  matrix  with  a  companion  address 
vector that maps  processor  memory  addresses to 
APL matrix  indices. 

When the project was started, very little reusable 
RTPG software  existed  from  previous  projects (ah 
though the concepts  were well understood). At  any 
moment no more than four persons  were  working 
on RPG. One of them was dedicated to the user 
interface written  in REXX, and one was  involved 
only part time  in R P G  development. In less than 
four months the first version of RTPG,  which sup- 
ported almost  all  branch  and  fixed-point  instruc- 
tions,  was  given to the designers.  Floating-point  in- 
structions  were  delivered  a  month later. From that 
time  only two people on average  were  involved  in 
RTPG development,  working on the storage control 
unit, on cache  modeling, on imbedding architecture 
changes,  and on implementation-dependent fea- 
tures.  They  also supported RTPG in the field, re- 
sponding to numerous designers’  requests.  This  ac- 
tivity  was completed  exactly one year after starting 
the project,  and  since then, only one person is in- 
volved in RTPG support and  enhancements.  This 
person’s  responsibility  includes  porting RTPG to 
APL2/6000 and  upgrading it to support follow-on de- 
signs. 

Concluding remarks 

We described  a  comprehensive procedure for  bi- 
ased  random test program generation and the RTPG 
implementation of the approach.  This approach 
has been adopted as a  main technique in the design 
verification  process of several IBM designs. The de- 
signs  varied  from  floating-point  coprocessors to the 
complete  complex of the IBM RISC Systed6000 
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computer. In all  cases the corresponding VLSI prod- 
ucts  came out fully  functional  on the first  pass. In 
the case of the RISC Systend6000, once the final 
design  was  completed, no new  bugs were  found. 

RTPG accompanies the design  process  from  its very 
early  stages  through its successful  completion.  At 
the beginning of the process, RTPG is  used by the 
designers to generate simple  test  programs directed 
toward  recently  developed  logic.  This  use  results  in 
a  significantly  lower error detection rate at the ad- 
vanced  stages of the design.  At the system  level, 
RTPG is  used  mainly  in  batch  mode,  where  a  sig- 
nificant  volume of test programs,  some of them 
consisting of up to several  thousand  instructions, 
is generated and  simulated on the design  model. 
The employed  biasing  strategies  have  evolved, 
based on requests coming  from the designers  and 
the feedback  from the coverage  analysis. 

The RTPG development  effort  is not considered to 
be negligible.  However, it is incomparable  with the 
amount of resources required to achieve  similar 
verification  quality  with  manually  written or purely 
randomly generated test programs.  At the moment, 
RTPG is  notably tailored to the architecture it 
serves.  Nevertheless,  existing RTPG provide  a  good 
groundwork for the development of  new ones,  even 
when the architectures are different. 

Choosing APL for the implementation of RTPG al- 
lowed  us to provide  this tool to the designers on a 
timely  basis,  and it also  allowed  us to keep up  with 
many  changes  and  modifications to RTPG necessi- 
tated by the novelty  of the approach and  also by 
frequent changes in the architecture at that time. 
Shoulder-to-shoulder  work  with the designers  con- 
tributed to  the success of the tool but required  in- 
stant response to their requests.  Again, APL, with no 
compilation and linkage  overhead,  allowed  us to 
quickly  respond to these requests. The interpretive 
nature of APL was  used to implement  some  test 
coverage  evaluation  techniques that work on the 
architecture level  directly  in RTPG. 

In the beginning, RTPG was  used  mainly  in the in- 
teractive  mode.  With  a  capability to generate 20 to 
30 instructions per second, it provided  fairly  good 
response time to the users. The design  model  sim- 
ulator running on the VM host  machine was  slower. 
Porting of the simulator to the RISC System/6000 
platform  and the use of hardware  assist  for the sim- 
ulation required more and more test programs to 
feed  all  available  simulators.  Moving RTPG to 
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APL2/6000 solved the problem of limited  available 
computer  time,  and now RTPG, running on a  cluster 
of RISC System/6000  machines,  is  able to produce 
the required number of test  programs. 
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