Verification of the IBM
RISC System/6000

by a dynamic biased
pseudo-random test
program generator

Verification of a computer that implements a new
architecture is especially difficult since no
approved functional test cases are available. The
logic design of the IBM RISC System/6000™ was
verified mainly by a specially developed random
test program generator (RTPG), which was used
from the early stages of the design until its
successful completion. APL was chosen for the
RISC System/6000 RTPG implementation after
considering the suitability of this programming
language for modelin? computer architectures,
the very tight schedule, and the highly change-
able environment in which RTPG would operate.

he ultimate goal of design verification is to en-

sure equivalence between a design and its func-
tional specification. Strictly speaking, we can say
that this goal can be achieved by exhaustive simu-
lation or formal proof of correctness. The exhaus-
tive simulation, in which all possible combinations
of all inputs and memory elements of the design
should be applied, can be done only for very small
designs. Also, the state of the art of the formal
techniques and the complexity of designs and spec-
ifications, usually written in English, do not allow
utilization of the formal techniques in most indus-
trial applications.! Despite significant progress
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achieved in recent years in formal verification, it
has been pointed out that formal verification is not
intended to replace simulation completely and that
simulation is presently the major tool for the (par-
tial) validation of hardware designs.’

In practical applications only a relatively small sub-
set (as compared to the exhaustive set) of selected
test cases is simulated. The challenge, then, is to
create a subset that provides high confidence in the
correctness of the design. We discuss how biasing
techniques, combined with the dynamic approach
to random test program generation, help to solve
this problem.

This paper describes the concepts behind and the
implementation of the IBM RISC System/6000* ran-
dom test program generator (RTPG) developed to
assist in the interactive creation of the adequate
subset, as well as to automatically produce a vast
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number of test programs for the comprehensive
verification of the design.

At the moment the design was launched, no func-
tional test cases existed for RISC System/6000 ar-
chitecture. It was obvious that the traditional way of
writing test cases could not provide the required
level of confidence in the design. The design veri-
fication methodology developed at the 1BM Haifa
Research Group (HRG)* had already been suc-
cessfully applied to several smaller designs such as
floating-point units and a microcontroller. It was
decided to adopt this approach for verification of
the RISC System/6000 computer system.

APL was chosen as the programming language for
the RISC System/6000 RTPG after considering the
suitability of this language for modeling computer
architectures, the very tight design schedule, and
the highly changeable environment in which RTPG
would operate. Originally the RISC System/6000
RTPG was developed in VS APL on the virtual ma-
chine (VM) operating system. It was later “migrated”
to APL2 on the same system. It is currently being used
for verification of follow-on products and is running
mainly in batch mode on a cluster of over 30 RISC
System/6000 machines, using IBM’s APL2/6000.

The second section of the paper discusses some
aspects of processor verification and describes a
test program format suitable for this purpose. The
subsequent section presents the main RTPG con-
cepts and ways to realize them. The RTPG structure
and the basic operation modes are described in the
fourth section. Highlights, conclusions, and results
of the RTPG experience are summarized in the last
section.

The nature of processor verification

The RISC System/6000 RTPG and its predeces-
sors. Logic verification of VLSI (very large-scale in-
tegrated) designs has always been an intrinsic part
of the design process; however, the complexity of
verification grows much faster than the complexity
of designs. The problem is widely recognized in the
case of microprocessors, as they present the leading
edge of single-chip design complexity. Verification
of microprocessors is considered to be a bottleneck
of the entire design process, with crucial impact on
the schedule for delivery of new systems.® An au-
tomated approach is essential for verification of a
system that consists of several VLSI chips including
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a processor, a floating-point unit, a storage control
unit, and caches.

In most applications, a test case for a processor is
a program written in assembly language. The main

A random approach to automatic
test generation has proved to be
successful.

goal of the tool called RTPG,® which is actually a
dynamic biased pseudo-random test program gener-
ator, is to make the test program generation process
more productive, comprehensive, and efficient.

A random approach to automatic test generation for
software’ and hardware® verification has proved to be
successful. It was applied to the verification of se-
lected design units such as a floating-point unit® and
even a complete processor,® but very strong restric-
tions were imposed on the generated test programs.
As a result of those restrictions, many parts of the
design could not be accessed and, thus, could not be
verified.

For some designs, such as a floating-point unit, the
main part of the verification task can be fulfilled by
programs that consist of only one instruction. The
generation of such programs is relatively straight-
forward: The generator (or the user) selects an in-
struction and the required controls, generates the
operands randomly (or provides them), and then
invokes a reference model of the design to get the
expected results. The generation of multiple in-
struction test programs is much more complicated,
especially when such features as program control
instructions, interrupts, and address translation are
to be verified. There are approaches®!® that present
a way to generate multi-instruction test programs.
They are based on creating special tables of oper-
ands, and each instruction may select operands only
from the relevant tables. Although much more pro-
ductive than manual test writing, these approaches
have drawbacks. The tables used must ensure that
the generated test programs are worthwhile, that
they would create the required instruction stream,
and that they would not quickly end up with an
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interrupt. These conditions imply use of the utmost
caution in creating the tables and make this task
very cumbersome. The generated test programs are
relatively simple, and again, must obey many re-
strictions. For example:

~ Some instructions are always preceded by spe-
cially inserted instructions, e.g., for initialization
of base registers to get the allowed memory ad-
dresses. Thus, some sequences of the instruc-
tions can never be generated.

» For the same reason, a register may not be used
as a source for different types of activity, such as
an operand in an arithmetic instruction and a
base register for addressing.

» To avoid creating endless loops, only branch for-
ward instructions are generated. In branch con-
ditional instructions, where it is not known a pri-
ori whether the branch is taken or not,
instructions for both possible paths must be gen-
erated. As a result, the generation of test cases
with many branch conditional instructions is
quite difficulit.

Such an approach to test generation may be clas-
sified as a static one, since the test programs are
assembled first and executed afterwards. There is
no relation between the intermediate machine
states during execution of the test program and the
test generation process. In RTPG the test generation
is interleaved with the execution of every instruc-
tion as soon as it is generated. This dynamic nature
of RTPG allows us to overcome drawbacks of the
static approaches.

Because RTPG makes it easy to write test programs,
it encourages the logic designer to create appro-
priate test programs while the logic design is still
fresh in the designer’s mind, whether these pro-
grams can be simulated at that early stage or not.
Thus, the design verification is naturally integrated
into the design process.

There are two challenges in having a test program
generator ready at the early stages of design. The
first is simply the time required to implement the
test program generator. The second is a require-
ment for high flexibility. Frequent changes are re-
quired to the generator because the architecture
specification is often very much in flux at this time
and because implementation-specific details of the
test programs are decided as the design progresses.
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These requirements are two of the reasons that APL
was chosen for the RISC System/6000 RTPG imple-
mentation. APL provides quicker implementation
than many other languages. It is also easy to modify
to meet changing requirements as well as to handle
various designers’ requests. Another reason is the
special suitability of APL for describing and mod-
eling computer architectures. From its very begin-
ning, APL was used for this purpose. Iverson’s orig-
inal book ! contained a description of the IBM 7090
machine, and in 1964 the complete System/360*
was formally described in APL.12 All Boolean and
relational functions are supported, and these func-
tions provide very efficient bit-per-bit execution for
bit arrays of any length. The language has the ability
to individually address each bit in an array. It is
often necessary to work with bit fields and subfields
within instruction or data words, including double-
precision floating-point data which are 64 bits long
in the RISC System/6000. APL allows the needed
fields to be easily split out, whereas many languages
do not support bit operations at all (and especially
not in more than 32-bit words). Because bit oper-
ations are so common, RTPG keeps values for all of
the instruction and data words in Boolean form.
Since APL stores a Boolean value as a single bit in
the host processor storage, there is no penalty for
keeping data in this convenient form. The APL ro-
tate function together with the selection functions
(like take and drop) are natural for implementing
bit-shifting operations that are required in any com-
puter processor model and are especially powerful
in the IBM RISC System/6000 architecture. For ex-
ample, the result of a Shift Right Algebraic Imme-
diate (SRAI) instruction® is calculated by the fol-
lowing concise expression:

GPRLRA; 1<32+(SH/GPRLRS;01),GPR[RS;]
and the Carry bit (CA) is:
XER[21«GPRLRS;01Av/(-SH)*GPR[RS; ]

Here SH is the shift amount, RS and RA are the
numbers of the general-purpose registers involved
in the instruction, and the second bit of XER (fixed-
point exception register) contains CA. A description
of the same instruction in any other programming
language would be much longer and less easily un-
derstood. Note that the description of this instruc-
tion in English takes 10 lines in the architecture
document.
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Finally, although RTPG was initially planned to run
on an IBM 3090-type processor (under VM), it was
recognized early-on that it would also be necessary
to run RTPG on workstation platforms. In fact, RTPG
is now running under IBM’s APL2/6000 on the very
platform that it helped to verify. The transfer of the
RTPG APL code from APL2 on the VM operating sys-
tem to APL2/6000 on the Advanced Interactive Ex-
ecutive™ (AIX*) operating system was trivial. The
only change required was to the four file 1/0 pro-
grams and to the display screen programs. As men-
tioned earlier, RTPG is now running on a cluster of
over 30 IBM RISC System/6000 processors to do the
work of verifying new processors under develop-
ment for the RISC System/6000 family of computers.

Test programs for processor verification. The most
natural way of processor verification is to run as-
sembly programs through the design model and to
compare the simulated results with the expected
ones. Usually the test programs are written as self-
checking programs that return only a “go/no-go”
flag. This concept is simple; however, its usage faces
difficulties since:

* It can be used only when the design model is at
an advanced stage, or at least when load and
compare instructions are implemented.

* The test programs should obey the restrictions
imposed by the supervisor that runs them.

* It requires more simulation cycles (running time)
because of additional load and compare instruc-
tions that are simulated.

The RTPG approach is different. A test program
generated by RTPG consists of three parts:

1. Initial state defines the contents of all registers,
control flags, tables, caches, and memory loca-
tions (called “facilities”) that influence, explicitly
or implicitly, the execution of a test program.
The instruction pointer (IP) register provided in
this part contains the program initial address.

2. Instructions are given as the contents of caches
or memory locations or both. The instructions
part may be included in the initial state but is
separated for better readability.

3. Expected results present the final state of all fa-
cilities that were changed during the test. The
user may request that the final state of additional
facilities also be included in the expected results.
The IP register provides the test program break-
point.
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The collection of these three parts is referred to as
a test program in this paper. Such test programs are
self-contained: they include all information re-
quired for their independent and completely pre-
dictable execution. This feature enables them to
freely migrate between test libraries and to be ex-
ecuted in any order.

A small test program generated by RTPG for the IBM
RISC System/6000 processor is shown in Figure 1.
As usual, asterisk “cards” (or lines) are used for
comments. Comments may also be included in any
line after the required data. The header (H) card
contains the test number and indicates the begin-
ning of the test. The register (R) cards specify reg-
ister names and initial values. The instruction (I)
and data (D) cards provide memory addresses and
their contents. The IP values (both the initial value
and the result) are given as effective addresses, i.e.,
before any address translation is performed. All
other addresses are given as real memory ad-
dresses. The I and D cards are essentially the same
and have different tags for readability only.

In addition to the data required for the processing,
an RTPG-generated test program contains the fol-
lowing information:

* User comments to record the purpose for which
the test has been created

* Corresponding assembly code (in the I cards) for
readability

* Calculated effective address of data and target
instructions, included as comments in I cards of
load, store, and branch instructions

* The translation path of each address when a test
program is running in address translation mode
(not demonstrated here for reasons of clarity)

¢ The initial value of the Random Link (URL) used
to create the test and other control parameters
required for regeneration of the test program
(Only a few of these are shown in Figure 1.)

* Hooks for handling the program in test libraries

When requested, intermediate results of each in-
struction are included as comments in the instruc-
tions part of a test (the debug mode described in the
fourth section).

Realization of the RTPG principles

RTPG realizes the dynamic approach to test gener-
ation in the following way. A test program is built
step by step (instruction by instruction). Each step
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Figure 1 An RTPG-generated test program for the RISC System/6000

»

RISC System/6000 RTPG

H 10000;

» Created by: UserId Mar 28 12:38:17 1990
» Title A gimple test program for RTPG paper

“» Comment: Add, Load, Branch,and Store instructions

» Number of tests: 1; Instructions in test: 4;

% Ingtructions: a 1x b sth

* Seed: 228656141; FN: example; Instr. order: f: New_Reg: y;

I e Initialization =---------------------o-on
»

R IP 00010000

R R1 03642998

R R8 0000000F

R R10 1E12115F

R R22 0129DFFF

R R30 800000BA

R MSR 00008000

R CR 8CC048C8

R XER 2000CD45

D O129DFFC 4E74570E

D 03640B90 7D280411

»

I R b Assembly Program =-----------------------
*

I 00010000 7C48F415 ao R2,R8,R30

I 00010004 7CEOBO2E 1x R7,R0,R22 * E/A 0129DFFF

I 00010008 49BBB904 b *+29079812 * T/A 01BCB90C

I 01BCBS0OC B141E1F8 sth R10,X'E1F8' (R1) » E/A 03640B90
»

A b Expected Results -----~-----------------
L

R IP 01BCB910

R R2 800000C9

R R7 4E74570E

R MSR 00008000

R CR 8CC048C8

R XER 0000CD45

D 0129DFFC 4E74570E

D 03640B90 115F0411

END

consists of two main stages: a generation stage and
an execution stage. At the generation stage a new
instruction is chosen, and the required facilities are
initialized. The execution stage is then invoked to
execute the instruction and to update the affected
facilities.

Dynamic test generation. The generation stage
starts by inserting the operation code into the in-
struction word and establishing the rest of the in-
struction fields. At any point in the process each
facility may be either free, which means that no
value has been assigned to it yet, or have a value, in
which case one is assigned to it by the initialization
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part of the process or by the execution of previous
instructions. All facilities that influence the execu-
tion of the generated instruction are inspected, and
those that are free are initialized. This principle
works regardless of the complexity of a generated
instruction and the initialization that it requires.
For example, a single store instruction, besides ini-
tialization of data, base, and offset registers, may
require initialization of an entire address transla-
tion path.

As soon as the instruction and all of the associated

facilities are defined, the instruction is executed
and all facilities that are changed during the exe-
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cution are updated. Therefore, at the beginning of
the generation of the next instruction, RTPG has the
exact information about the current state of all fa-
cilities in the system. This information allows RTPG
to:

* Select an instruction and its fields to gain the best
effect from the execution (various biasing strat-
egies help to achieve this goal)

* Bias data and operands, depending on the in-
struction being generated

* Reject the instruction if its execution would ren-
der the test program invalid

* Include any number of branch instructions in the
test

* Control eventual interrupts

* Protect the required areas of memory and cer-
tain registers from being used by the generated
test

* Define, on the fly, all required entries in the sys-
tem tables (such as the page frame table)

A trace of the most recently updated facilities is
also available and is used for implementation of
some useful RTPG options.

Biasing, The generation of test programs is biased
in order to increase the probable occurrence of
events that otherwise have very low chances of be-
ing created. Biasing is both the strong point and the
vulnerable point of RTPG. Strong, because it allows
the generation of test programs with the required
features. Vulnerable, because the selection of biasing
strategies cannot be completely formalized and de-
pends on the experience of the RTPG developer and
that person’s knowledge of the design. The goal of the
biasing is not the creation of unique or very rare sit-
uations, but rather is to direct the generation process
toward selected design areas so that most of the
events in these areas are tested when the number of
generated test programs is reasonably large.

The biasing functions are employed in the process
of selecting instructions, instruction fields, regis-
ters, addresses, data, and other components that
construct the test program. The starting set of the
RTPG biasing strategies is derived from the archi-
tecture. Each instruction or process (such as inter-
rupt action or address translation) specified in the
architecture is represented by a block diagram com-
posed of decision and execution blocks. In every
decision block the data affecting the decision are
selected in such a way that the subsequent blocks
are entered with user-specified or RTPG-controlled
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probability. However, in multi-instruction test pro-
grams it is not always possible to get the required
data. Let us say that the user asked for a 10 percent
probability of floating-point overflow, and in the
current instruction the decision was made to create
it. If all floating-point registers already have values
assigned by previous instructions, it may happen
that no pair of registers will produce an overflow.
Thus, in the generated test cases the actual prob-
ability of overflow might be less than the requested
one.

To some extent RTPG is a system that gathers into

its biasing strategies all of the experience gained
during the verification of several processor designs.

RTPG gathers into its biasing
strategies all of the experience
gained during verification of
several processor designs.

As an example, consider the strategy of register
selection, which is very important, especially for a
RISC-type architecture where a large number of
general-purpose registers is available and as many
as three or four registers may be used in one in-
struction. The RISC System/6000 RTPG allows the se-
lection of any one of the following three strategies:

1. Selection of free registers only. Here RTPG has
complete freedom in biasing the instruction op-
erands. Also, the result of each instruction will
never be overwritten by the actions of subse-
quent instructions. Only relatively short test pro-
grams can be generated when this option is cho-
sen.

. Random selection (the default strategy). A reg-
ister is selected randomly with biasing toward:
* Increasing the probability to use the same reg-

ister more than once in an instruction.

* Preventing usage of a register as a target if it
has been a target during its previous usage.
This feature increases the test program ob-
servability, i.e., the probability to propagate
any intermediate errors to the observable ex-
pected results.

[\
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Figure 2 The RTPG environment

RTPG
MENU

INTERACTIVE

INTERFACE

BATCH

BIASING
SELECTION

REFERENCE
MODEL

ARCHITECTURE

TEST IMPLEMENTATION
TEST [———>! PROGRAMS
PROGRAMS EVALUATION
\___/

BIASING

3. High probability to select the target register of
the previous instruction as a source or target of
the current instruction. This option is useful in
the verification of the register bypass logic as
well as in the verification of synchronization be-
tween instructions when multiple instructions
are issued and executed concurrently.

The starting set of biasing strategies is revised based
on test coverage analysis of the generated test pro-
grams on both the RTPG reference model and the
design models.* Coverage evaluation helps to de-
tect and remove “holes” in the biasing. The final set
of strategies ensures that there is a generation proc-
ess with a reasonable probability of covering every
architectural feature and every design block.

RTPG supports two biasing levels: local and global.
The local biasing is involved in selecting immediate
fields of instructions and selecting data for the op-
erands. Many local biasing functions, specific for
every class of instruction, are implemented in RTPG.
For example, the generation of operands for add
class instructions ensures a high probability of get-
ting long chains of carries. In a “count leading
zeros” instruction the biasing ensures the creation
of operands with equal probabilities for any num-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

ber of leading zeros. Some more sophisticated local
biasing functions are implemented in more com-
plicated cases, e.g., floating-point instructions.

Examples of global biasing control parameters that
have a primary effect on the generation process are:

* Instruction selection strategy

% Initial value of the machine state register (MSR)

* Strategy for selecting general-purpose registers

* Memory areas that the test program is allowed to
use

Each global and most of the local biasing strategies
may be specified by the user. They are selected
randomly by RTPG if not provided.

RTPG structure and basic operation modes

Environment. The RTPG design verification envi-
ronment is shown in Figure 2. The interface and
biasing blocks are actually parts of RTPG but are
shown separately because of their connections to
the external world. RTPG includes a reference model,
a high-level architectural model of the processor to
be tested. The lighter-shaded lines indicate flow of
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Figure 3 The main RTPG menu

AVP FN =)
X _ Init FN ==}
FldList FN ==
Inglist FN ==>

Instr.: =) g
==> b}
b4

Number of tests ==>
Instr. per test ==> 4

example Regs. New ? (y/n)

- ' ¢ RISC System/6000 RTPG Menu
Mar 28 12:38:15 1990 '
Hedder >>> A gimple test program for RTPG paper
Comment >>> Add, Load, Branch, and Store instructions

Menu name: Demo . Test-number:

Biasing Controls

Regs. Last? (y/n)
Instr. Last? (y/n)
Memory Last? (y/n)
Instr. Order (f/s/r)
=) 1x
==> sth
— Seed

Debug Options

-—>

- Debug mode? (y/n)

-—>

- Model trace? (y/n)

_KTPG megsages

Instr. pntr. ==> x'00010000
Memory size ==> 64M

Hardware run? ==> n Loop mode? ==> r.

e 3%Quit. 4=Init 5-SCU  6=Run

information with manual work involved in the proc-
ess, and the darker lines indicate automatic flow of
data between the units.

The architecture specification document is the pri-
mary source of information for the RTPG develop-
ers, and most of its features are embodied in RTPG.
RTPG has to know all of the instruction format, and
for each instruction, all of the parameters that in-
fluence its execution. This information is required
for generating the instruction fields and for check-
ing that all necessary facilities were defined before
the execution of the instruction. RTPG has to keep
a record of all facilities changed during instruction
execution. The final state of all of the changed fa-
cilities provides the expected results.

The architecture may leave the handling of certain
situations to the implementation. For example, un-
aligned storage access may cause an alignment in-
terrupt in some implementations and may be han-
dled by hardware in others. All such situations are
handled in RTPG so that the test program that is
created is correct for the implementation being
tested.
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User interface. The RTPG user interface includes
several screens that allow the user to define the
initial state of the processor and to control the test
program generation process. The main screen used
to generate the test program of Figure 1 is shown
in Figure 3.

All screen parameters are optional, and if not spec-
ified, the default values are used (e.g., the default
for InsList contains all instructions). The interface
provides a way for documenting the generated test
programs, selecting biasing strategies, initializing
instruction fields, registers, and memory, and exe-
cuting existing test programs.

The user may initialize any of the required facilities
within an X_Init file. The file has the usual test
program format. Thus, a prototype of a test pro-
gram may first be created by RTPG and thereafter
used for initialization and generation of many new
test programs on top of the prototype. The X_Init
file may also contain blocks of instructions and data
that become parts of the test program. This feature
is useful for including interrupt handler routines in
the generated test programs.
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The Debug Mode is a powerful by-product of the
dynamic nature of RTPG. Including it in RTPG is
almost free since RTPG already scans all changed
facilities after every executed instruction. When

RTPG offers two modes of
operation.

this option is employed, the expected results of
each intermediate instruction are included in the
generated test program. This option is very useful
in locating problems when a test fails. However, it
requires much more space for storing the test pro-
grams.

RTPG offers two modes of operation: the generation
mode (Gen) and the execution mode (Run). In the
first mode, RTPG is used to generate one test file per
invocation. The file contains the requested number
of test programs, each program generated accord-
ing to the control parameters specified on the
screens. The batch version of the Gen mode is used
for mass production where a large number of test
programs is created for predefined sets of initial
conditions. Such generation is performed as over-
night runs or during weekends. Since the “porting”
of RTPG to the IBM RISC System/6000 platform,
RTPG runs as a background process concurrently on
many RISC System/6000 machines connected in a
local area network. The programs generated on the
workstations as well as the programs generated on
the VM host machines are submitted automatically
to various simulators connected to the same local
area network. Tests that do not expose any design
problems are discarded.

In Run mode RTPG executes an existing file of test
programs and returns it, including correct expected
results. The original file may or may not include
expected results. If they are provided, they are com-
pared with the expected results created by RTPG,
and any discrepancies are reported. Run mode is
used to define the expected results for manually
written test programs. In case of changes in the
architecture, it is used to confirm or update the
expected results of programs imported from other
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sources or generated previously by RTPG. Another
use of Run mode is to rerun an existing test pro-
gram in Debug Mode. This use is done frequently
when a test fails and when it was originally gener-
ated with the Debug Mode turned off.

Test coverage evaluation on the architecture level.
The quality of verification is improved significantly
when there is a means to estimate test coverage on
both architecture and implementation levels. In re-
gard to RTPG, the results of coverage analysis pro-
vide feedback for improving the biasing functions.
Also, the coverage analysis on the architecture level
is used in the preparation of a relatively small sub-
set of tests that include test programs for every
architectural feature. In the RISC System/6000 RTPG
the high-level reference model was implemented
within RTPG. The interpretive nature of APL con-
siderably facilitated the implementation of some
coverage analysis techniques, including techniques
that require fault injection.

One of the simplest coverage techniques is ensuring
that each line of the code has been executed at least
once. A special function analyzes the character rep-
resentation of an APL function and splits each la-
beled line into two lines. The first one contains the
label and an assignment statement that sets the cor-
responding bit in a trace vector associated with this
function. The second line created by the split con-
tains the APL statement that was on the line before
the split (but without the label). Assignments of the
bits of the trace vector are also inserted after each
statement with an APL right arrow (bramch). A
bucket of test programs is then executed (using the
Run mode) on the “trace-modified” RTPG. Zero
values in the trace vector indicate blocks that were
not reached.

Another coverage technique called “skip muta-
tion,”™ which requires injection of faults into the
code and thus provides much higher confidence in
the generated test programs, may also be easily im-
plemented. Skip mutation means that one line of
the analyzed function is not executed. To make this
technique more sensitive, an original ApL function
may be replaced by its more detailed version. Skip
mutation is performed by another function that
takes the character representation of an APL func-
tion to be checked and precedes the required line
by the comment symbol “s”. The information from
the previous step (line coverage) is used to select
only those test programs that pass through the
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skipped line. The procedure is repeated for each
line in the function.

The coverage analysis is done automatically as soon
as both the function to be analyzed and the test file
are specified. However, because of performance
considerations, only functions for which a low cov-
erage is suspected are analyzed. In the RISC Sys-
tem/6000 RTPG environment, only functions that
implement the floating-point unit were analyzed by
both techniques.

RTPG implementation. The RISC System/6000
RTPG is implemented as a single workspace which
is able to create test programs of up to several thou-
sand instructions on a six- to eight-megabyte virtual
machine. The user interface was written in REXX to
simplify some Conversational Monitor System
(cMms) file-related checking that was not so easy to
implement in VS APL. The RTPG functions may be
grouped into:

~ Utility and service functions

~ Functions for instruction execution
~ Biasing functions

» Simulation of interrupts

~ Address translation

The service functions prepare the initial machine
state, manage instruction selection, prevent the cre-
ation of endless loops in the generated test pro-
grams, and mask undefined results. These functions
also handle the Run option, including comparing
the actual results with the expected ones that are
provided in the original test program.

Each RISC System/6000 instruction has a corre-
sponding APL function with the same name that
operates on the architectural facilities (defined as
global variables) to perform the behavior of the
instruction. Each “instruction function” is parti-
tioned into a biasing section and an execution sec-
tion which are used as required for biasing and
setup or reference model operation. As soon as the
instruction to be generated is selected, the required
APL function is invoked by “executing” the charac-
ter representation of the instruction mnemonic.
Thus, when a new instruction is added to the sys-
tem, or in case of a change in the instruction mne-
monic or behavior, only one function must be
added or changed. A rich set of utility functions that
perform many of the required common tasks, such
as incrementing the instruction pointer or adding
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two register values, facilitates writing of the “in-
struction” functions.

The register arrays of the processor are modeled as
APL Boolean matrices. The memory is modeled as

The RISC System/6000 RTPG is
implemented as a single
workspace.

another Boolean matrix with a companion address
vector that maps processor memory addresses to
APL matrix indices.

When the project was started, very little reusable
RTPG software existed from previous projects (al-
though the concepts were well understood). At any
moment no more than four persons were working
on RTPG. One of them was dedicated to the user
interface written in REXX, and one was involved
only part time in RTPG development. In less than
four months the first version of RTPG, which sup-
ported almost all branch and fixed-point instruc-
tions, was given to the designers. Floating-point in-
structions were delivered a month later. From that
time only two people on average were involved in
RTPG development, working on the storage control
unit, on cache modeling, on imbedding architecture
changes, and on implementation-dependent fea-
tures. They also supported RTPG in the field, re-
sponding to numerous designers’ requests. This ac-
tivity was completed exactly one year after starting
the project, and since then, only one person is in-
volved in RTPG support and enhancements. This
person’s responsibility includes porting RTPG to
APL2/6000 and upgrading it to support follow-on de-
signs.

Concluding remarks

We described a comprehensive procedure for bi-
ased random test program generation and the RTPG
implementation of the approach. This approach
has been adopted as a main technique in the design
verification process of several IBM designs. The de-
signs varied from floating-point coprocessors to the
complete complex of the IBM RISC System/6000
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computer. In all cases the corresponding VLSI prod-
ucts came out fully functional on the first pass. In
the case of the RISC System/6000, once the final
design was completed, no new bugs were found.

RTPG accompanies the design process from its very
early stages through its successful completion. At
the beginning of the process, RTPG is used by the
designers to generate simple test programs directed
toward recently developed logic. This use results in
a significantly lower error detection rate at the ad-
vanced stages of the design. At the system level,
RTPG is used mainly in batch mode, where a sig-
nificant volume of test programs, some of them
consisting of up to several thousand instructions,
is generated and simulated on the design model.
The employed biasing strategies have evolved,
based on requests coming from the designers and
the feedback from the coverage analysis.

The RTPG development effort is not considered to
be negligible. However, it is incomparable with the
amount of resources required to achieve similar
verification quality with manually written or purely
randomly generated test programs. At the moment,
RTPG is notably tailored to the architecture it
serves. Nevertheless, existing RTPGs provide a good
groundwork for the development of new ones, even
when the architectures are different.

Choosing APL for the implementation of RTPG al-
lowed us to provide this tool to the designers on a
timely basis, and it also allowed us to keep up with
many changes and modifications to RTPG necessi-
tated by the novelty of the approach and also by
frequent changes in the architecture at that time.
Shoulder-to-shoulder work with the designers con-
tributed to the success of the tool but required in-
stant response to their requests. Again, APL, with no
compilation and linkage overhead, allowed us to
quickly respond to these requests. The interpretive
nature of APL was used to implement some test
coverage evaluation techniques that work on the
architecture level directly in RTPG.

In the beginning, RTPG was used mainly in the in-
teractive mode. With a capability to generate 20 to
30 instructions per second, it provided fairly good
response time to the users. The design model sim-
ulator running on the VM host machine was slower.
Porting of the simulator to the RISC System/6000
platform and the use of hardware assist for the sim-
ulation required more and more test programs to
feed all available simulators. Moving RTPG to

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

APL2/6000 solved the problem of limited available
computer time, and now RTPG, running on a cluster
of RISC System/6000 machines, is able to produce
the required number of test programs.
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