The foundations
of suitability of APL2
for music

APL is commonly used in scientific and
quantitative applications, such as engineering
and finance, but there has been little acceptance
so far in artistic and symbolic applications, such
as music. This paper demonstrates the suitability
of APL2, a dialect of APL, as a powerful tool for
the building of music-oriented software. The
interactive interpreter, flexible built-in primitive
functions and operators, and the independence
from the details of the hardware are attractive
features for music programmers. With APL2, a
user can interactively create and transform
complex informational structures. Thus, it is not
only a formidable language for implementing
music software, but also a valuable notation for
representing the music itself.

Today, most music software is written in tradi-
tional compiled languages, such as Pascal and
C. Applications include Musical Instrument Digital
Interface (MIDI) sequencers, patch editors, and li-
brarians as well as computer-assisted composition,
analysis, and education programs. Some may feel
that the mathematical orientation of APL2 is not
well suited for music, with music occupying a place
outside of the world of numbers. This may be con-
ditioned by previous experience in which images
are mathematical. For example, in math class, a
teacher probably illustrated an increasing continu-
ous function by drawing a curve, rather than by
singing an ascending glissando.
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A growing awareness of the mathematical nature of
music may force a rethinking of this perception. We
have found the awesome mathematical power of
APL2 to be one of its strongest suites for musical
software. Much of musical structure is based on its
quantitative features. Quantitative relationships
between parameters of sound form the basis of pat-
terns and groupings. Many of the parameters them-
selves can be ordered in perceptual scales. Berry!
even goes so far as to contend that all of the sig-
nificant parameters of music, including rhythm, tex-
ture, and tonality, work in conjunction to create
variations in intensity—lines of growth, decline,
and stasis over time. Berry claims that these vari-
ations in intensity are the primary determinants of
musical form, and intensity is the quintessential
quantitative parameter.

Like standard music notation, APL2 uses a character
set that is iconic. Since musicians are accustomed to
iconic notation systems, APL2 quickly becomes a
comfortable working environment. In fact, the
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iconic nature of the language has led some to refer
to it as “the international road-signs of program-
ming.”

Suitability of APL2 for music

Smith? asserts that APL2 appeals to the right hemi-
sphere of the human brain, which is specialized for
holistic thinking. Users of APL2 are encouraged to
think holistically, in part because operating on col-
lections of data is, in general, no more difficult than
operating on single entities.

Another feature that appeals to the right hemi-
sphere of the brain is that one often visualizes the
data structures and their transformations while
programming in APL2. The flexible structure and
syntax of APL2 conform well to the way most mu-
sicians conceptualize music. Smith also writes:

.. .users of APL2 claim that it is the most powerful
programming language in existence. Enthusiasts
claim that with only a few lines of code, they can
create what is unachievable in most other lan-
guages. Indeed, the impact of using APL is so
substantial that active users often report [that]
their entire thinking process has been trans-
formed by use of the language.

And yet critics claim the APL language is impos-
sible to learn and hard to use. Can this be true??

Lafore® addresses the question of the difficulty of
learning a less-than-English-like programming lan-
guage—in this case, C. Lafore’s comments seem
even more relevant to programming in APL2:

‘When most people first look at a C program, they
find it complicated like an algebraic equation,
packed with obscure symbols. “Uh oh,” they
think, “I’ll never be able to understand this!”
However, much of this apparent complexity is an
illusion. A program written in C is not much
more complicated than one written in any other
language, once you've gotten used to the syntax.
Learning C, as is true with any language, is
largely a matter of practice. The more you look
at C programs, the simpler they appear, until at
some point you wonder why you ever thought
they looked complicated.?

With APL2 one can easily create and manipulate
complex data structures. These data structures can
be used for an enormous variety of representations
of musical structures. APL2 comprises a powerful set
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of primitive functions and a concise syntax for using
these primitives to transform data. Transforma-
tions are an important concept in music, in that they
provide a way of relating one set of sounds to an-
other or deriving one from another in meaningful
ways. Perception itself utilizes transformations, and
with a clear representation for music, many trans-
formations that make sense mathematically or
structurally also make sense musically.

Most programming languages allow for the access
and manipulation of a single piece of data at a time,
such as a character, an integer, or a floating-point
number. This observation is further apparent in the
following text from Lafore:

This is a rather amazing capability when you
think about it: when you assign one structure to
another [structure, in this case, refers to a C
structure as opposed to a data structure in gen-
eral], all the values in the structure are actually
being assigned, all at once, to the corresponding
structure elements. Simple assignment state-
ments cannot be used this way for arrays, which
must be moved element by element.?

Unlike C and most other programming languages,
in APL2, operation on an entire structure is the rule
rather than the exception.

Parallelism. There has been much discussion re-
garding parallel hardware in the computing litera-
ture. Many see it as the wave of the future—just a
matter of time. This bodes well for music program-
mers, because music is highly parallel. The question
is; What languages can be run on a parallel ma-
chine?

Most languages in use today were written for a ma-
chine using the Von Neumann architecture,* i.e., a
single central processing unit capable of executing
only one instruction at a time. Complex problems
must be analyzed into their constituent parts in or-
der to be solved. Obviously this can be a necessary
and even essential component to problem solving.
However, analysis is only helpful to a certain point.
Beyond that, one could further granularize the
problem, but further analysis will not result in the
understanding or solution of the problem. Users of
many programming languages are required to an-
alyze a problem far beyond the level that clear hu-
man comprehension requires. For the sake of the
computer, excruciating details of the computation
must be specified. Users of most languages do not
realize how much the computer is programming
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them. Despite great advances in hardware capabil-
ities, this situation has not changed much because
most are still dealing with the limitations of a Von
Neumann machine. To a remarkable extent the
Von Neumann organization of our machinery still
influences high-level language design.’

APL was designed without the typical constraints of
the Von Neumann mind-set. It was first designed as
a short-hand notation for describing algorithms and
was only later implemented as a computer lan-
guage. With conventional programming languages,
programmers are constantly dealing sequentially
with collections of data or operations on them that
they actually think of as simultaneous. The ability
when using APL2 to extend the domain of a program
from individual elements to collections of elements
without an increase in syntactic complexity, allows
a more accurate representation of the holism that
is being conceptualized. And not only do we nat-
urally tend to group collections into gestalts, or
wholes, but also we often change our scheme of
organization at a moment’s notice. APL2 also excels
in this area.

Unconstrained environment. Whereas most pro-
gramming languages force the making of many ini-
tial decisions regarding the data and program, APL2
lets you improvise. Since APL2 is interpreted, you
can enter an expression and it will be executed im-
mediately. Without those tiresome edit, compile,
and link cycles, you are free to experiment with
ideas and variations on ideas. And because data are
in the active workspace and are always accessible,
you can inspect the results of a single expression to
make sure that it does what you intended. Satisfied,
you can move on with confidence to the next step.

In APL2 there is no need to declare variables, define
pointers, or allocate storage. You are free to
change a variable at any time to any size, structure,
or content without concern regarding where and
how it will occupy memory. The APL2 interpreter
will make these determinations by using a dynamic
memory allocation scheme.

The late binding of APL2 expressions allows refer-
ences to be made to names that do not as yet exist
when a function or operator is defined, as long as
the name exists at execution time. The workspace
concept allows for the blending of applications at
an atomic level, achieving an extensive level of in-
tegration. The result of all these features is an “ide-
al” environment consisting of arrays and a powerful
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arsenal of tools to manipulate them. This can be
quite useful to musicians who are interested in ad-
dressing a particular problem, but who may not
have the patience or interest in performing opti-
mizations of the solution.

Notational simplicity. APL2 is extremely concise. If
abused, this feature can lead to incomprehensible
programs—if used properly, it can lead to a degree
of clarity of understanding that puts APL2 in a class
by itself. Such an advantage is familiar to mathe-
maticians, who tend to simplify notation in order to
clearly express complex ideas. In carrying less “no-
tational baggage,” one can concentrate more
clearly on the concepts being represented or the
relationships between them.

More verbose notations, such as those using key-
words to represent built-in functions, are appropri-
ate for concepts that are less often used. Keywords
are helpful because of their associations to common
words or concepts making them easier to remem-
ber. But for frequently-used concepts, people have
a tendency to abbreviate—to choose shorter sym-
bols. This is especially apparent in representing
music. The fundamental concepts of APL2 are so
repeatedly useful that they merit symbolic repre-
sentation. We feel that history has in fact confirmed
this. Despite ongoing language development and
conflicts over standards, the core of the APL lan-
guage has remained remarkably stable. The ulti-
mate proof of the clear organization of the lan-
guage is the ease with which it has been general-
ized. '

We believe that the symbols of APL2 were carefully
chosen for their mnemonic value, making them sur-
prisingly easy to remember. The conciseness of the
notation seems to make it possible to view an
expression and simultaneously see the “forest” and
the “trees.” User-defined terms in programs, which
by nature are more variable, are represented by
keywords, while the stable APL2 primitives remain
symbolic. APL2 symbols also provide the additional
benefit of avoiding name conflicts with user-defined
terms. However, if one insists on using keywords,
simple user-defined “cover functions” may be de-
fined that call the primitives. This raises an impor-
tant distinction that novices are not always aware
of, namely, APL2’s primitive functions and operators
are independent of the symbols that represent
them. Typically, a single symbol can call either of
two functions depending on syntax.
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Applicability to music

Having discussed the character of the language, we
now discuss some examples of APL2 in the context
of music software. The examples are simple, and
they do not pretend to represent all the parameters
of real music, but they are meant to serve as a guide
to what is possible.

Pitch. Pitch is the psychological correlate of fre-
quency, which most people conceptualize as a one-
dimensional quality; however, our perception of
pitch is actually two-dimensional. Research has
shown that there are two psychological attributes of
pitch, tone height and tone chroma.”

Tone height is simply the sensation of “highness” or
“lowness.” Tone chroma is the perception of note
color regardless of octave. Babbitt coined the term
pitch-class to refer to sets of octave-related pitches,
where class refers to our sensation of equivalence
of pitches so related.®

Tone height is particularly important in the per-
ception of melodic contour—the shape of a melody
as its ascending and descending patterns unfold.
Tone chroma is especially important in harmony.
When the voicing of a chord is changed by disposing
its notes into new octave ranges, there is often a
sense that its character has changed more texturally
than harmonically.

To represent pitch in APL2, two values may be
used—octave and pitch-class—so as to have sepa-
rate control of these two psychological variables.
On the other hand, the use of a single value often
makes calculation easier. Thus it can be advanta-
geous to use a single value for an internal repre-
sentation, and two values for an external represen-
tation to the user for display and entry purposes.

The following examples describe a few methods for
representing pitch in APL2:

1. One value—a frequency number expressed in
cycles per second

FREQUENCY<220 155.57 92.5
2. One value—a MIDI note number
PITCH«57 51 u2

3. Two values (pitch-class and octave) as a char-
acter vector
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PITCH«'A3' '"Eb3' 'F#2'

4. Two values (pitch-class and octave) as a mixed
vector

PITCH«('A'" 3)('Eb' 3)('F#' 2)

5. Two values (pitch-class and octave) as a numeric
vector

PITCH«(S 3)(3 3)(6 2)

Example 5 indicates a common method for indi-
cating pitch-class, using an integer in the range 0-11
as follows:

Integer Pitch-Class

C

C# or Db
D

D# or Eb
E
F

F# or G}
G

G# or Ab
A

A# or Bb
B

POOO~NOOTFWNEFPO

[ENTEN

This system, first introduced by Babbitt,® uses mod-
ulo-12 arithmetic to reflect the cyclic nature of
pitch-class relations. By using the MIDI conventions,
one can express pitch in a convenient method. MIDI
is a communications protocol that electronic
musical instruments such as synthesizers and com-
puters can use to send and receive real-time per-
formance information. A MIDI note number® is a
single integer (0-127) representing a key on a MIDI
keyboard. This system assigns to middle-C the
value “60.” The “C#,” a semitone higher, corre-
sponds to the value “61.” Thus, MIDI represents
pitches indirectly—not as soundwave frequencies,
but as key numbers on a very long keyboard (about
ten octaves).

MIDI note numbers are convenient because they
simplify calculation. For example, to transpose an
array of pitches up a perfect fifth (seven semitones)
one could simply enter:

PITCH«PITCH+7

Monophonic scores. A musical score is a notated
representation of music, or a precise set of instruc-
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tions to a performer. In this latter view, the com-
parisons to a computer program should be obvious.
The musical vocabulary of today is so vast, and so
varied, that composers often find that the tradi-
tional “common practice notation”'® cannot always
express what they have in mind. They have been
forced to invent new notation systems that may take
the form of written instructions to the performers
or some new visual representation. In the field of
electronic music, composers have an unprece-
dented degree of precision in the control of pa-
rameters of sound, such as timbre or tone color.
How does one notate this? The answers may vary
considerably, but many composers agree that the
whole idea of notation, or more generally repre-
sentation, has become a field of study in itself. The
computer has been recognized as having the po-
tential to bridge this gap, for it has the power, as
Papert has pointed out, “to concretize the for-
mal.”"! Anyone who has used a modern MIDI se-
quencer with a graphical interface can attest to this
fact. But while most MIDI software on the market
provides fixed representations that have proved
useful and easy to learn for most people, there re-
main some who would like the power to create new
representations, without committing to any one un-
til it has proven its usefulness. Furthermore, al-
though most good sequencers allow global editing
and some degree of algorithmic generation, this
generally takes the form of supplying parameters to
fixed routines. Serious computer musicians require
a programming language that extends easily from
individual notes to higher-level descriptions. This is
appropriate because composers typically think in
high-level terms—often the exact notes are just the
details. If a composer can specify structures at an
appropriately high level, then the system becomes
a much more useful tool of thought. We have found
APL2 to be an excellent language for prototyping
representations for music. Arrays in APL2 may be
viewed as visual structures that can be formed and
transformed with ease.

The discussion that follows illustrates some simple
score representations and a few techniques for
manipulating them. Many functions that apply to
single pitches also apply to structured collections of
pitches with little or no change in the syntax.

A monophonic score or melody can be represented
by a simple numeric vector:

SCORE<B0 62 64 65 67 69 71 72
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Since this collection can be conceptualized as an
individual entry, it can be described using APL2’s
vector notation and assigned a name in one step.
The variable SCORE can represent either a semantic
or syntactic musical structure. If the structure is
regarded outside of time, then the vector—a se-
mantic structure—may represent a collection of or-
dered pitches. The pitches do not have to be played
at any particular starting time or tempo. On the
other hand, if the vector is a syntactic structure,
then it represents a series of ordered pitches with
a temporal attribute. More detail can be found in
Reference 12.

There are numerous ways to represent timings, ei-
ther implicitly or explicitly. A critical question is
whether some general assumptions can be made
regarding timing, or whether to represent a time
value for each note. At this point it is perhaps de-
sirable to implement the latter approach since the
timing information is varied and unpredictable,
whereas the former approach is preferred when
timings are more likely to be regular and predict-
able. At any rate, any decisions about definite tim-
ings are postponed until later, so we notate only an
ordered collection of pitches.

An implied tempo can be defined such that each
position in the array represents a beat, such as a
quarter note or eighth note. Thus, there is a map-
ping between the index position in the vector and
the order position in the pitch succession. If de-
sired, an APL2 variable can hold a value for the
duration of time represented by one step in the
index position. Even varying tempos may be de-
fined—i.e., the first four positions of the array rep-
resent quarter notes, or the next four positions
represent eighth notes. But for this simple illustration,
let us assume a constant time per index position.

Rests can be indicated by pairs of single quotes
(with no spaces in between), to be used as “place
holders” indicating empty elements. Figure 1 is an
example of a score with three rests, the second one
occupying two time periods.

Thus, if a constant time period is assumed, it is
fairly easy to verify the timing simply by visually
inspecting the score array. All manner of rhythms
can be created in this way. If each index position
corresponds to a much shorter duration, e.g., 64th
notes, this representation has a much higher reso-
lution, i.e., there is finer control of timing, but the
rhythms will become less intuitively obvious. The
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Figure 1 A simple representation of a score

SCORE<60 62 64 '' 65 '' '' 67 89 71 '' 72

DISPLAY SCORE

[606264@65@@676971@72
€

A ! |

[’ J i 1 - 1 I
| L L. & 1 P - A
1 & ¥
T N

J 4" [

result is a score that will occupy more space, both
on the printed page and in computer memory. Such
arepresentation will quickly become wasteful to the
extent that the music is sparse, i.e., there is a high
ratio of rests to notes. In this case, it is more eco-
nomical to specify an explicit time value for each
note, so as to make it unnecessary to account for the
time periods between notes.

Suppose we wish to represent the melodic line
shown in Figure 2. Pitches and start times can be
assigned in two separate steps as shown in the fig-
ure, and can be put together into a single structure
as follows:

SCORE«®>PITCHES TIMES
DISPLAY SCORE

SO
+60

pu
69
71
72
67
65 16
62 17
ou 18
65 19
74 22
72 28
71 29
69 30
71 31
72 32

La——

DOWNEPO

The variable SCORE contains a matrix where each
row represents a single note. The first column of the
matrix represents pitch and the second column rep-
resents starting time. We decide on eighth notes as
the unit for timing. Thus in 4/4 time, there would be
eight eighth-note time intervals per measure.

Now if we wish to add another parameter, loudness,
we can define seven levels as variables using vector
assignment

(pop po p mf £ ff fff)«17

where 17 is shorthand for the series

0123456

and where [0I0 has been set to zero.

Figure 2 An example of pitch and time points

A A "
-7 A Y 1 I -\
O TY N ] II' ?__p_F_'_F.—..
. ! 1 1 1
% R, 1 PR

PITCHES«60+0 4 © 11 12 7 5 2 4 5 14 12 11 9 11 12
TIMES«0 1 2 3 6 8 16 17 18 18 22 28 29 30 31 32
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These numbers are arbitrary. They are not intended
as actual measurements of loudness intensity, but
are used here to distinguish among seven graduated
levels.

Initially, a third column is appended to the matrix,
and each element in this column is set to the value
“4.” Now using the variable £ assigned to value 4:

SCORE<SCORE, £
DISPLAY SCORE

4160
oy
69
71
72
67
65 16
62 17
6y 18
Bb 19
74 22
72 28
71 29
69 30
71 31
72 32

DO WNRO

FEFFFEFFFEFFEFEFEEr

L

If we now want to retain the current timings, but re-
verse the order of the pitches from last to first—called
a retrograde—this is very easy to specify in APL2:

SCORE[;01«0SCOREL ;0]

The columns (and the rows) of the matrix are in-
dexed starting from zero. Figure 3 shows the actual
staff notation for this example:

DISPLAY SCORE

‘[72 0
71 1
69 2
71 3
72 6
74 8
65 16
oy 17
62 18
65 18
b7 22
72 28
71 28
69 30
bu4 31
60 32

FFrFrFFrFrFEFFEFFEREEFEFEEE

L.
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Figure 3 Reversing the order of the pitches
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Now, suppose we want to edit the score in order to
accomplish a specialized task—to find each note
that occurs on a downbeat and make it one unit
louder. The next section discusses the evaluation of
the APL2 expression that accomplishes this task.

How the expression is evaluated. Following is a
step-by-step explanation of how the APL2 expres-
sion

SCORE[ ;21«SCORE[ ;21+0=8|5CORE[ ;11
is evaluated:

1. Since APL2 evaluates an expression from right to
left, the subexpression “8 | SCORE[ ;11" is eval-
uated first. The result of this subexpression is the
eight-residue (or the “modulo-eight” in tradi-
tional mathematical terms) of the starting time
values, shown in the second column in previous
displays of the SCORE matrix. The argument
“eight” for the residue function was chosen be-
cause each measure is eight time units long. See
Figure 4A.

2. The next subexpression to be evaluated is O=w
where w represents the result of 8| SCORE[;11.
The result of this subexpression is a Boolean
vector whose corresponding elements are set
where zeros occur in w, which happen to fall on
the downbeats. The “=” in APL2 is not an assign-
ment, it is a test, returning a “1” when elements
are equal in value, and a “0” otherwise. Figure
4B shows the resulting Boolean vector.

3. Next, the vector in Figure 4B is added to the
loudness values (shown in the third column of
previous displays) resulting in another interme-
diate value. Boolean values are numeric values
and can be treated as such, illustrating a com-
mon use in APL2 programming, as well as the
conciseness of the language. Figure 4C displays
the result.

4. Finally, the result replaces the contents of the
loudness values of the SCORE matrix and can be
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Figure 4 Evaluation of APL2 expressions

Al DISPLAY 8|SCOREL;11
\91236001236u567ﬂ

B DISPLAY 0=8|SCORE[;1]
[100001100000000411

a DISPLAY SCORE[;21+0=8|SCORE[ ;11

[5uuuus5uuuuuuuu5}

D DISPLAY SCORE

[¢)]

]

[

@
NFEFFFFFFFFOOFEFEFFEO

seen in Figure 4D. A graphic representation of
the parse tree for the same APL2 expression fol-
lows:

+
SCOREL;2 ]/ \2

/N

o
AN
§ SCORE[;1]

Our task description in natural language is trans-
lated into a one-line APL2 expression. Most other
computer languages would have required many
more lines of code and may have involved writing
a program, compiling it, and linking it. This par-
ticular APL2 expression is not difficult to under-
stand. In most other languages the solution would
have been more complicated, simply because the
extra lines of code and the loops would not con-
tribute to the conceptualization of the process.
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Polyphonic scores. So far we have only represented
monophonic scores—that is, one voice, or “one
note at a time.” A polyphonic score represents
more than one voice playing simultaneously. To
represent a polyphonic score the monophonic
model can be expanded by the introduction of rank
or depth. In the previous section we started with a
monophonic score represented as a numeric vector.
A vector in APL2 has a rank of one, whereas a rank-
two array is called a matrix. A matrix can be used to
model a polyphonic score, such that each row or
column of the matrix is the equivalent of a mono-
phonic score. Since a matrix in APL2 must be rect-
angular and its rows and columns are parallel along
each axis, the same ordinal and temporal attributes
that formed the basis of the monophonic vector
model also hold true for the polyphonic matrix
model.

Figure 5 contains an example of a 3 X 8 matrix,
which represents a polyphonic score. If we assume
that each column in the matrix represents a quar-
ter-note beat, this score represents eight major tri-
ads at quarter-note intervals, as expressed by the
SCORE expression.

Notes in the same column are to be played simul-
taneously, and notes in the same row are to be
played sequentially. Thus, we define a mapping be-
tween matrix dimensions and musical dimensions,
such that each column is a time period, and each
row is a voice. Of course the roles of the dimensions
could be reversed. It is just a question of how we
wish to visualize the structure. Changing the actual
matrix to reflect this new mapping of parameters is
simply a matter of applying the APL2 transpose
function (not the musical transpose) to the array.

SCORE<8SCORE
DISPLAY ®SCORE

560 B4 67
62 66 69
B4 68 71
65 69 72
67 71 74
69 73 76
71 75 78
L72 76 79

It is possible to imagine many mappings of this
kind, all having different characteristics, and all be-
ing useful for different purposes. This reveals one
of the reasons why the computer is such a powerful
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tool for music: It provides the ability to create new
kinds of musical representations as well as the free-
dom to explore the representations themselves as
fields of interest.

A PLAY function. The potentials of computer mu-
sic go beyond just representation. When linked to
appropriate audio signal generating hardware, the
computer can become a musical instrument with
exciting capabilities. The discussion that follows il-
lustrates the capabilities of a PLAY function that
could be created in APL2. Define PLAY such that:

1. It accepts a score as a right argument.

2. The duration of each note will, unless otherwise
specified, default to a set value, e.g., a quarter
note.

3. An optional left argument may be accepted that
specifies a common duration for all the notes, or
a list of durations—one for each note.

The elements of the score are MIDI note numbers,
The PLAY function sends performance instructions
to an attached external device, such as a musical
synthesizer.

As was previously illustrated, the following vector
can represent a C-major scale:

SCALE<60+0 2 4 5 7 9 11 12
DISPLAY SCALE

L 60 62 6l 65 57 69 71 72
[

This expression will play the C-major scale starting
at middle-C in ascending order:

PLAY SCALE

Since APL2 notation can be easily adapted for par-
allel processing models, it is interesting to examine
the musical possibilities of a truly parallel version of
the language.

For example, the each operator (**) provides a for-
midable vehicle for exploring the parallel potentials
of ApL2. The each operator applies a specified func-
tion to each element of its arguments. Assuming a
truly parallel each operator, when it is executed,
envision a set of n independent processes running
on a parallel multiprocessor, where # is the number
of elements at the first level of depth in the array
arguments.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 5 A polyphonic score

SCORE<«>60 64 67+c0 2 4 5 7 9 11 12

DISPLAY SCORE
\‘60 62 64 65 67 69 71 72

64 66 68 69 71 73 75 76
67 69 71 72 74 76 78 79

b atit—

A chord, which is a simultaneity of pitches, could
then be played as follows:

MAJOR<O 4 7
PLAY "60+MAJOR

Again, imagine three independent processes, each
of which plays a single pitch for a set duration:
PROCESS 3

PROCESS 1 PROCESS 2

PLAY 60 PLAY b4 PLAY 67

Depth can play an important role in the modeling
of a musical score. For example, an increase in
depth can signify that grouped notes are to be per-
formed simultaneously.

B0 62 B4 (B5 69 72) 67 69 71 72

The above vector is a polyphonic score representing
three individual notes, followed by a chord inside of
the parentheses, followed by four individual notes,
all at a quarter-note tempo.

A further increase in depth could signify a set of
virtual tracks to be played simultaneously, or sets of
MIDI events on different MIDI channels. An increase
in depth again could be used to model a set of
multitrack tape decks or a set of MIDI cables.
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Figure 6 An example of 12 major chords

EA] DISPLAY CHORDS

[60 Bl 67‘ [Fi 65 68{ L62 66 69! [63 67 76] [§u 68 71’ {65 69 72’ [66 70 73[ [67 71 7u’

T ————————— e — —

E@ DISPLAY eMAJOR+60+112
{60 64 67 61 65 68 62 66 63 63 67 70 64 68 71 B85 69 72 66 70 73 67 71 T4

Figure 7 MIDI pitches with duplicates removed and sequential ordering

DISPLAY ((ViV)=1pV)/V

Lso B4 67 61 65 68 62 66 69 63 70 71 72 73 74 75 76 77 78

EB-‘] DISPLAY V<«V[4AV]
LBO 61 62 63 64 B4 65 65 66 66 67 67 67 68 68 68 69 69 69 70 70 70 71 71 71 72 72 73

Utilizing depth, a sequence of 12 chromatically as- The introduction of a second each will result in the
cending major chords can be represented by: playing of a chord constructed of the pitches rep-
resented by the MIDI note numbers 60 through 79:
CHORDS«60+( <MAJOR)+112
PLAY" "'CHORDS
and expanded as shown in Figure 6A. The following

expression will play a sequence of 12 major chords: which is equivalent to

PLAY CHORDS PLAY'eCHORDS

while application of the each operator yields a se- and

quence of three 12-note chords (each chord will

sound quite complex): PLAY<eCHORDS

PLAY"CHORDS Whereas the following expression will result in the
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68 72 75| |69 73 76 L70 7 77\ L71 75 7?‘

68 72 75 69 73 76 70 T4 77 71 75 78 ’

73 74 74 75 75 76 77 78

arpeggiation of the 12 chords:
PLAYeCHORDS

Figure 6B displays the values of the generated
pitches.

Note that some of the pitches represented in the
resulting vector in Figure 6B have multiple occur-
rences, i.e., the same pitches occur in different ar-

peggios.

One extension that can be made to this model is to
specify that a pitch can be played at different vol-
ume levels, determined by the number of its occur-
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rences. A pitch that has no occurrences in the vec-
tor will not be played, or can be thought of as being
played at a volume level of zero.

For example:
PLAY'60 60
or

PLAY <60 60

will sound one unit louder or perhaps twice the
intensity of:

PLAY 60

If only unique pitches are to be selected from Fig-
ure 6B, then application of the following APL2 id-
iom to the vector of MIDI note numbers will filter
any duplicates:

((wrw)=10w)/w
Therefore, when this idiom is applied to:
V<+eCHORDS

the unique pitches are evaluated and shown in
Figure 7A.

Or the pitches can be sorted by MIDI note number
and can then be played sequentially at their relative
volumes:

V<VIAV]

Figure 7B shows the ordered note numbers and can
be played with the following:

PLAY VV<V<cV
resulting in the groups shown in Figure 8A.

The relative volume of each pitch can be obtained
by using:

ep’VV
displayed in Figure 8B.

Finally, the following vector represents the number
of distinct pitch-classes present in V:

oVV
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Figure 8 Pitch and volume for ordered groups of note numbers

A DISPLAY VV

[ Eo] B4 6l {65 65 [66 66] [97 67 67[ [fss 68 68' Leg 69 69§ 70 70 70| [71 71 71
&

[?] DISPLAY ep™'VV
[1111222333332222111'

where

B

As can be seen, the power of APL2 to represent the
music score in terms of pitch and volume is only the
beginning of the use of computers in music appli-
cations.

DISPLAY pVV

The Smoliar model. We now describe another mu-
sical application of APL2. This work is inspired by
Stephen Smoliar, who described a system for au-
tomated musical analysis.'> Smoliar was himself in-
spired by Heinrich Schenker (1868-1935), who is
widely regarded as the most influential music the-
orist of the 20th century.'* Smoliar has designed a
computational model loosely based on Schenker’s
theory of tonality. To enhance the understanding of
the application, we first present some background
in Schenkerian theory.

Heinrich Schenker’s influence on music essentially
corresponded to Noam Chomsky’s transforma-
tional grammar® in the field of linguistics, although
Schenker’s work predated Chomsky’s by a number
of years. The similarities are striking. In both
Schenkerian analysis and transformational gram-
mar, a stream of symbols is scanned and recursively
parsed into groups, yielding a hierarchical struc-
ture. Thus, a tree representation of a composition
can be created where each level summarizes the
events in the level below, from a higher-level per-
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spective. The theory includes a suite of transfor-
mations, or rewrite rules, that can be used to alter
the material without essentially changing its “mean-
ing.” Syntax is modeled by trees, and it is the rewrite
rules that assert relations between trees, the most
notable relation being similarity of meaning.

Smoliar writes, “Schenker viewed every well-com-
posed tonal piece as being reducible to one of es-
sentially three patterns, all based on the tonic scale
and triad.”® Before Schenker, much of harmonic
analysis consisted of labeling chords as they pro-
gressed. This can lead to a concise harmonic de-
scription of the surface structure of a piece of mu-
sic, but it does not adequately deal with the range
of tonal functions each chord actually serves in con-
text, or the range of structural levels at which it may
function. Schenker asserted that the same kinds of
voice-leading relations that exist from note to note,
or from phrase to phrase, also hold true in the
large-scale form of a composition, where entire sec-
tions or movements combine into a unified whole.
A theory that is independent of structural level
leads to a very elegant and organic view of musical
structure.

Smoliar showed that many rewrite rules can be pre-
cisely formalized, so that a formal programming
language of transformations can be developed. One
can imagine computer-assisted analysis and com-
puter-assisted composition programs that could
provide new insights into the nature of tonal struc-
ture, perception, and the creative process itself.
Smoliar’s model was designed to assist music the-
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orists in tonal analysis by representing music in a
hierarchical structure and by effecting transforma-
tions that explicitly deal with this structure. A mu-
sical event is modeled as a tree structure, which can
be entered or displayed at a computer terminal or
internally stored as a list.

There are three types of events:
* A single note

* A sequence (SEQ) of events occurring in a des-
ignated order

s A simultaneity (SIM) of events

The structure is recursive because an element of an
event can itself be an event.

Figure 9 shows a representation of a simple score
using the Smoliar model, and implemented in APL2.

One fundamental limitation of this model is that
there is no way to explicitly indicate precise dura-
tions of time—only order relations between events
are expressed. Nonetheless, it is a powerful abstrac-
tion for modeling harmonic and tonal structure. By
creating a hierarchy with these kinds of nestings at
many levels, one can model an entire composition,
yet have access to its parts at all levels of the struc-
ture. The hierarchies are musically significant be-
cause they model how we actually parse real mu-
sical events, and how these events group into larger
events.

Conclusion

The ideal of a shared notation that can be read by
both humans and machines can only be realized if
the notation is close enough to human thought to
be practical. Our minds must rise above the ancil-
lary details of computation and even implementa-
tion, so we can be free to contemplate complex
concepts more clearly. Music in particular requires
this freedom because musical structure itself is so
complex. Even simple-sounding passages can re-

Figure 9 A Smoliar model score

SCORE<'SEQ' 60 62 64 ('SIM' 65 69 72) 67 69

DISPLAY SCORE

71

60 6. 6L 67 69 71
STM| 65 69 72

€

€

[

%-’—"E“‘
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veal surprising complexity when analyzed. The ex-
amples in this paper can attest to this—so many
numbers to describe such simple fragments of mu-
sic. One can imagine what would be required to
describe a symphony.

APL2 provides a solid conceptual foundation for in-
formation processing. Suddenly we have control by
attributes. We can specify parts or aspects of the
music that we wish to examine or modify. And most
important of all, we can create new schemes for
classifying these structures, so that the foundation,
though solid, remains flexible enough to follow in
any direction.

Composers have long employed complex notation
systems, attempting to capture the essence of what
they wish to express. Theorists seek to understand
how we hear music, and attempt to make maps of
possible musical spaces. Both require a language in
which new languages can be easily defined. In the
computer age, APL2 seems to be an important ev-
olutionary step along this path.
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