
The foundations 
of  suitability  of APL2 
for music 

APL is commonly  used  in  scientific  and 

and  finance,  but  there  has  been little acceptance 
quantitative  applications,  such  as  engineering 

so far  in  artistic  and  symbolic  applications,  such 
as  music.  This  paper  demonstrates  the  suitability 
of  APL 2, a  dialect  of  APL,  as a powerful  tool  for 
the  building  of  music-oriented  software.  The 
interactive  interpreter,  flexible  built-in  primitive 
functions  and  operators,  and  the  independence 
from  the  details  of  the  hardware  are  attractive 
features  for  music  programmers.  With A PL 2, a 
user  can  interactively  create  and  transform 
complex  informational  structures.  Thus,  it  is  not 
only  a  formidable  language  for  implementing 
music  software,  but  also a valuable  notation  for 
representing  the  music  itself, 

T oday,  most  music software is written in tradi- 
tional compiled languages, such as Pascal and 

C. Applications include Musical Instrument Digital 
Interface (MIDI) sequencers, patch editors, and li- 
brarians as well  as computer-assisted composition, 
analysis, and education programs. Some may feel 
that  the mathematical orientation of A P L ~  is not 
well suited for music,  with  music  occupying a place 
outside of the world of numbers. This may be con- 
ditioned by previous experience in which  images 
are mathematical. For example, in math class, a 
teacher probably illustrated an increasing continu- 
ous function by drawing a curve, rather  than by 
singing an ascending glissando. 
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A growing awareness of the mathematical nature of 
music  may force a rethinking of this perception. We 
have found the awesome mathematical power of 
A P L ~  to  be  one of its strongest suites for musical 
software. Much of musical structure is based on its 
quantitative features. Quantitative relationships 
between parameters of sound form the basis of pat- 
terns and groupings.  Many of the  parameters them- 
selves  can be ordered in perceptual scales. Berry' 
even goes so far as to contend that all of the sig- 
nificant parameters of music,  including rhythm, tex- 
ture, and tonality, work  in conjunction to  create 
variations in  intensity-lines of growth, decline, 
and stasis over time. Berry  claims that these vari- 
ations in intensity are  the primary determinants of 
musical form, and intensity is the quintessential 
quantitative parameter. 

Like standard music notation, A P L ~  uses a character 
set that is  iconic.  Since  musicians are accustomed to 
iconic notation systems, A P L ~  quickly becomes a 
comfortable working environment. In fact, the 
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iconic nature of the language has led some to refer 
to it as “the  international road-signs of program- 
ming.” 

Suitability of APL2 for music 

Smith’ asserts that A P L ~  appeals to  the right hemi- 
sphere of the  human brain, which  is specialized for 
holistic thinking. Users of A P L ~  are encouraged to 
think holistically, in part because operating on col- 
lections of data is, in general, no more difficult than 
operating on single entities. 

Another  feature  that appeals to  the right hemi- 
sphere of the brain is that  one often visualizes the 
data structures and  their transformations while 
programming in APL~.  The flexible structure and 
syntax of A P L ~  conform well to  the way most  mu- 
sicians conceptualize music. Smith also writes: 

. . . users of APL2 claim that it  is the most powerful 
programming language in  existence. Enthusiasts 
claim that with  only a few lines of code, they can 
create what  is unachievable in most other lan- 
guages. Indeed,  the impact of using APL is so 
substantial that active users often report [that] 
their  entire thinking process has been trans- 
formed by use of the language. 
And yet critics claim the APL language is impos- 
sible to  learn  and hard to use. Can this be true?’ 

Lafore3 addresses the question of the difficulty of 
learning a less-than-English-like programming lan- 
guage-in this case, C. Lafore’s comments seem 
even  more relevant to programming in APL~: 

When most people first look at a C program, they 
find it complicated like an algebraic equation, 
packed with obscure symbols. “Uh oh,” they 
think, “I’ll never be  able to understand this!” 
However, much of this apparent complexity  is an 
illusion. A program written in C is not much 
more complicated than  one written in  any other 
language, once you’ve gotten used to  the syntax. 
Learning C, as is true with  any language, is 
largely a matter of practice. The more you look 
at C programs, the simpler they appear, until at 
some point you wonder why you ever thought 
they looked complicated. 

With A P L ~  one can easily create  and manipulate 
complex data structures. These  data  structures can 
be used for an  enormous variety of representations 
of musical structures. A P L ~  comprises a powerful set 
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of primitive functions and a concise  syntax for using 
these primitives to transform data. Transforma- 
tions are  an important concept in  music, in that they 
provide a way  of relating one set of sounds to  an- 
other  or deriving one from another in meaningful 
ways. Perception itself utilizes transformations, and 
with a clear representation for music,  many trans- 
formations that make sense mathematically or 
structurally also make sense musically. 

Most programming languages allow for  the access 
and manipulation of a single piece of data  at a time, 
such as a character, an integer, or a floating-point 
number. This observation is further  apparent in the 
following  text from Lafore: 

This is a rather amazing capability  when  you 
think about it: when  you  assign one  structure to 
another [structure, in this case, refers to a C 
structure as opposed to a data  structure in gen- 
eral], all the values in the  structure  are actually 
being assigned,  all at once, to  the corresponding 
structure elements. Simple assignment state- 
ments cannot be used this way for arrays, which 
must be moved element by element.3 

Unlike C and most other programming languages, 
in APL~,  operation  on an entire  structure is the rule 
rather  than  the exception. 

Parallelism. There has been much  discussion re- 
garding parallel hardware in the computing litera- 
ture. Many see it as the wave  of the future-just a 
matter of time. This bodes well for music program- 
mers, because music  is  highly parallel. The question 
is: What languages can be run  on a parallel ma- 
chine? 

Most languages in use today were written for a ma- 
chine using the Von Neumann architect~re,~ i.e., a 
single central processing unit capable of executing 
only one instruction at a time. Complex problems 
must be analyzed into  their constituent parts in or- 
der  to  be solved.  Obviously this can be a necessary 
and even essential component to problem solving. 
However,  analysis  is  only helpful to a certain point. 
Beyond that,  one could further granularize the 
problem, but  further analysis will not result in the 
understanding or solution of the problem. Users of 
many programming languages are required to an- 
alyze a problem far beyond the level that clear hu- 
man comprehension requires. For  the sake of the 
computer, excruciating details of the computation 
must be specified. Users of most languages do not 
realize how  much the computer is programming 
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them. Despite great advances in hardware capabil- 
ities, this situation has not changed much because 
most are still dealing with the limitations of a Von 
Neumann machine. To a remarkable extent the 
Von Neumann organization of our machinery still 
influences high-level language design. 

APL was designed without the typical constraints of 
the Von Neumann mind-set. It was  first designed as 
a short-hand notation for describing algorithms and 
was  only later implemented as a computer lan- 
guage. With conventional programming languages, 
programmers are constantly dealing sequentially 
with collections of data or operations  on  them  that 
they actually think of as simultaneous. The ability 
when using A F J L ~  to extend the domain of a program 
from individual elements to collections of elements 
without an increase in syntactic complexity,  allows 
a more accurate representation of the holism that 
is being conceptualized. And not only do we nat- 
urally tend  to group collections into gestalts, or 
wholes, but also we often change our scheme of 
organization at a moment’s notice. A P L ~  also  excels 
in this area. 

Unconstrained  environment. Whereas most pro- 
gramming languages force the making of  many ini- 
tial decisions regarding the  data  and program, A P L ~  
lets you  improvise.  Since A P L ~  is interpreted, you 
can enter  an expression and it will be executed im- 
mediately. Without those tiresome edit, compile, 
and link  cycles,  you are  free  to experiment with 
ideas and variations on ideas. And because data  are 
in the active workspace and are always  accessible, 
you can inspect the results of a single expression to 
make sure  that it does what  you intended. Satisfied, 
you can move on with confidence to  the next step. 

In A P L ~  there is no need to declare variables, define 
pointers, or allocate storage. You are  free  to 
change a variable at any time to any  size, structure, 
or content without concern regarding where and 
how  it  will  occupy memory. The APL;! interpreter 
will make these determinations by using a dynamic 
memory allocation scheme. 

The late binding of A P L ~  expressions allows refer- 
ences to  be made to names that  do  not as yet exist 
when a function or  operator is defined, as long as 
the  name exists at execution time. The workspace 
concept allows for the blending of applications at 
an atomic level,  achieving an extensive  level of in- 
tegration. The result of  all these features is an “ide- 
al” environment consisting of arrays and a powerful 
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arsenal of tools to manipulate them. This can be 
quite useful to musicians  who are interested in ad- 
dressing a particular problem, but who  may not 
have the patience or interest in performing opti- 
mizations of the solution. 

Notational  simplicity. A P L ~  is  extremely  concise. If 
abused, this feature can lead to incomprehensible 
programs-if  used properly, it  can lead to a degree 
of clarity of understanding that puts A P L ~  in a class 
by itself.  Such an advantage is familiar to mathe- 
maticians, who tend  to simplify notation in order to 
clearly express complex ideas. In carrying less “no- 
tational baggage,” one can concentrate more 
clearly on  the concepts being represented or  the 
relationships between them. 

More verbose notations, such as those using  key- 
words to  represent built-in functions, are appropri- 
ate for concepts that  are less often used. Keywords 
are helpful because of their associations to common 
words or concepts making them easier to remem- 
ber. But for frequently-used concepts, people have 
a tendency to abbreviate-to choose shorter sym- 
bols. This is  especially apparent in representing 
music. The fundamental concepts of A P L ~  are so 
repeatedly useful that they merit symbolic repre- 
sentation. We feel that history has in fact confirmed 
this. Despite ongoing language development and 
conflicts over standards, the core of the APL lan- 
guage has remained remarkably stable. The ulti- 
mate proof of the clear organization of the lan- 
guage is the ease with  which  it has been general- 
ized. 

We believe that  the symbols of A P L ~  were carefully 
chosen for their mnemonic value,  making them sur- 
prisingly  easy to remember. The conciseness of the 
notation seems to make it  possible to view an 
expression and simultaneously see  the “forest” and 
the  “trees.” User-defined terms in programs, which 
by nature  are  more variable, are represented by 
keywords,  while the stable A P L ~  primitives remain 
symbolic. A P L ~  symbols  also provide the additional 
benefit of avoiding name conflicts  with user-defined 
terms. However, if one insists on using  keywords, 
simple user-defined “cover functions” may be de- 
fined that call the primitives. This raises an impor- 
tant distinction that novices are  not always aware 
of, namely, APLTS primitive functions and operators 
are independent of the symbols that  represent 
them.  Typically, a single  symbol can call either of 
two functions depending on syntax. 
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Applicability to music 

Having  discussed the  character of the language, we 
now  discuss some examples of A P L ~  in the context 
of music software. The examples are simple, and 
they do not pretend  to  represent all the  parameters 
of real music, but they are meant to serve as a guide 
to what  is  possible. 

Pitch. Pitch is the psychological correlate of fre- 
quency,  which  most people conceptualize as a one- 
dimensional quality; however, our perception of 
pitch is  actually two-dimensional. Research has 
shown that  there  are two  psychological attributes of 
pitch, tone  height and tone chroma. 

Tone height is  simply the sensation of “highness” or 
“lowness.” Tone chroma is the perception of note 
color regardless of octave. Babbitt coined the term 
pitch-class to refer to sets of octave-related pitches, 
where class refers to  our sensation of equivalence 
of pitches so related.’ 

Tone height is particularly important in the per- 
ception of melodic contour-the shape of a melody 
as its ascending and descending patterns unfold. 
Tone chroma is  especially important in harmony. 
When the voicing of a chord is changed by disposing 
its notes into new octave ranges, there is often a 
sense that its character has changed more texturally 
than harmonically. 

To  represent pitch in APL~, two values may be 
used-octave and pitch-class-so  as to have sepa- 
rate control of these two  psychological  variables. 
On  the  other hand, the use of a single value often 
makes calculation easier.  Thus it can be advanta- 
geous to use a single value for an internal repre- 
sentation, and two values for  an external represen- 
tation to  the user for display and entry purposes. 

The following examples describe a few methods for 
representing pitch in APL~: 

1. One value-a frequency number expressed in 
cycles per second 

FREQUENCY+220 155.57 92.5 

2. One value-a MIDI note number 

PITCH+57 51 42 

3. Two values (pitch-class and octave) as a char- 
acter vector 
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PITCHt’A3’  ‘Eb3’  ‘F#2’ 

4. Two values (pitch-class and octave) as a mixed 
vector 

PITCH4 ‘A’ 3 ) (  ‘Eb’ 3 )( IF#’ 2 )  

5. TWO values (pitch-class and octave) as a numeric 
vector 

PITCH49 3)(3  3)(6 2 )  

Example 5 indicates a common method for indi- 
cating pitch-class,  using an integer in the range 0-11 
as follows: 

Integer Pitch-Class 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

C 
C #  or Db 

D 
D# or Eb 

E 
F 

F# or Gb 
G 

G# or Ab 
A 

A# or Bb 
B 

This system,  first introduced by Babbitt,’ uses mod- 
ulo-12 arithmetic to reflect the cyclic nature of 
pitch-class relations. By using the MIDI conventions, 
one can express pitch in a convenient method. MIDI 
is a communications protocol that electronic 
musical instruments such as synthesizers and com- 
puters can use to send and receive real-time per- 
formance information. A MIDI note numberg is a 
single integer (0-127) representing a key on a MIDI 
keyboard. This system  assigns to middle-C the 
value “60.” The  “C#,” a semitone higher, corre- 
sponds to  the value “61.” Thus, MIDI represents 
pitches indirectly-not as soundwave frequencies, 
but as key numbers on a very long keyboard (about 
ten octaves). 

MIDI note numbers are convenient because they 
simplify calculation. For example, to transpose an 
array of pitches up a perfect fifth (seven semitones) 
one could simply enter: 

Monophonic  scores. A musical score is a notated 
representation of  music, or a precise set of instruc- 
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tions to a performer. In this latter view, the com- 
parisons to a computer program should be obvious. 
The musical  vocabulary of today is so vast, and so 
varied, that composers often find that  the tradi- 
tional “common practice notation”” cannot always 
express what they have  in  mind. They have been 
forced to invent new notation systems that may take 
the form of written instructions to  the performers 
or some new  visual representation. In the field  of 
electronic music, composers have an unprece- 
dented  degree of precision in the control of pa- 
rameters of sound, such as timbre or  tone color. 
How does one notate this? The answers may  vary 
considerably, but many composers agree that  the 
whole idea of notation, or  more generally repre- 
sentation, has become a field of study  in  itself. The 
computer has been recognized as having the po- 
tential to bridge this gap, for it has the power, as 
Papert has pointed out,  “to concretize the for- 
mal.”” Anyone who has used a modern MIDI se- 
quencer with a graphical interface can attest to this 
fact. But while  most MIDI software on the market 
provides fixed representations that have proved 
useful and easy to  learn  for most people, there  re- 
main some who  would like the power to  create new 
representations, without committing to any one un- 
til it has proven its  usefulness. Furthermore, al- 
though most good sequencers allow global editing 
and some degree of algorithmic generation, this 
generally takes the form of supplying parameters  to 
fixed routines. Serious computer musicians require 
a programming language that extends easily from 
individual notes  to higher-level descriptions. This is 
appropriate because composers typically think in 
high-level  terms-often the exact notes are just the 
details. If a composer can specify structures  at  an 
appropriately high  level, then  the system becomes 
a much more useful tool of thought. We have found 
A P L ~  to be an excellent language for prototyping 
representations for music. Arrays in A P L ~  may be 
viewed as visual structures that can be formed and 
transformed with ease. 

The discussion that follows illustrates some simple 
score representations and a few techniques for 
manipulating them. Many functions that apply to 
single pitches also apply to structured collections of 
pitches with little or  no change in the syntax. 

A monophonic score or melody can be represented 
by a simple numeric vector: 

SCORE40 62 64 65 67 69 71 72 
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Since this collection can be conceptualized as an 
individual entry, it can be described using APLTS 
vector notation and assigned a name in one step. 
The variable SCORE can represent  either a semantic 
or syntactic  musical structure. If the structure is 
regarded outside of time, then  the vector-a se- 
mantic structure-may represent a collection of  or- 
dered pitches. The pitches do  not have to be played 
at any particular starting time or tempo. On  the 
other hand, if the vector is a syntactic structure, 
then it represents a series of ordered pitches with 
a temporal attribute.  More detail can be found in 
Reference 12. 

There  are numerous ways to  represent timings, ei- 
ther implicitly or explicitly. A critical question is 
whether some general assumptions can be made 
regarding timing, or whether to represent a time 
value for each note. At this point it  is perhaps  de- 
sirable to implement the  latter approach since the 
timing information is varied and unpredictable, 
whereas the former approach is preferred when 
timings are more likely to be regular and predict- 
able. At any rate, any decisions about definite tim- 
ings are postponed until later, so we notate only an 
ordered collection of pitches. 

An implied tempo can be defined such that each 
position in the array represents a beat, such as a 
quarter  note  or eighth note. Thus, there is a map- 
ping between the index position in the vector and 
the  order position in the pitch succession. If de- 
sired, an A P L ~  variable can hold a value for  the 
duration of time represented by one  step in the 
index position. Even varying tempos may be  de- 
fined-i.e., the first four positions of the array rep- 
resent quarter notes, or  the next four positions 
represent eighth  notes.  But  for  this  simple  illustration, 
let us assume a constant  time per index  position. 

Rests can be indicated by pairs of single quotes 
(with no spaces in between), to  be used as “place 
holders” indicating empty elements. Figure 1 is an 
example of a score with three rests, the second one 
occupying two time periods. 

Thus, if a constant time period is assumed, it is 
fairly  easy to verify the timing  simply by visually 
inspecting the score array. All manner of rhythms 
can be  created in this way.  If each index position 
corresponds to a much shorter  duration, e.g.,  64th 
notes, this representation has a much higher reso- 
lution, i.e., there is finer control of timing, but the 
rhythms  will become less  intuitively  obvious. The 
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Figure 1 A simple  representation of a score 

SCORE+60  62  64  65  67  69  71 ' I  72 

DISPLAY SCORE 

I 60 62  64  65 0 67 69  71 0 72 I 

SCORE+Q~PITCHES TIMES 
DISPLAY SCORE 

65 19 
74 22 

71  72 311 32 

result is  a score that will  occupy more space, both 
on  the printed page and in computer memory.  Such 
a representation will  quickly become wasteful to the 
extent that  the music  is sparse, i.e., there is a  high 
ratio of rests to notes. In this case, it is more eco- 
nomical to specify an explicit time value for each 
note, so as to make it unnecessary to account for the 
time periods between notes. 

Suppose we  wish to represent the melodic line 
shown  in Figure 2. Pitches and start times can be 
assigned  in  two separate steps as shown  in the fig- 
ure, and  can  be  put together into a  single structure 
as follows: 

The variable SCORE contains a  matrix where each 
row represents a  single note. The first  column  of the 
matrix represents pitch and the second column rep- 
resents starting time.  We decide on eighth notes as 
the unit for timing. Thus in 4/4 time, there would be 
eight eighth-note time intervals per measure. 

Now if  we  wish to add another parameter, loudness, 
we can define  seven  levels as variables using  vector 
assignment 

(PPP PP P m f  f  ff  fff)+I7 

where 17 is shorthand for the series 

0 1 2 3 4 5 6  

and where OIO has been set to zero. 

Figure 2 An example of pitch and time points 

PITCHES+60+0 4 9 11  12 7 5 2 4 5 14  12  11 9 11  12 

TIMES+O 1 2 3 6 8 16  17  18  19  22  28  29 30 31 32 , 
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These numbers are arbitrary. They are  not intended 
as actual measurements of loudness intensity, but 
are used here  to distinguish among seven graduated 
levels. 

Initially, a third column is appended to  the matrix, 
and each element in this column is set to  the value 
“4.” Now using the variable f assigned to value 4: 

SCORE+SCORE,f 
DISPLAY SCORE 

60 0 4 
64 1 4 
69 2 4 
71 3 4 
72 6 4 
67 8 4 
65 16 4 
62 17 4 
64 18 4 
65 19 4 
74 22 4 
72 28 4 
71 29 4 
69 30 4 
71 31 4 
72 32 4 

If we  now want to retain the current timings,  but  re- 
verse the order of the pitches  from  last to  first-called 
a remgrade-this  is  very  easy to specify in ApL2: 

SCORE C ; 0 1 +@SCORE C ; 0 1 
The columns (and the rows) of the matrix are in- 
dexed starting from zero. Figure 3 shows the actual 
staff notation  for this example: 

DISPLAY SCORE 

72 0 4 
71 1 4 
69 2 4 
71 3 4 
72 6 4 
74 8 4 
65 16 4 
64 17 4 
62 18 4 
65 19 4 
67 22 4 
72 28 4 
71 29 4 
69 30 4 
64 31 4 
60 32 4 
.-u 

Figure 3 Reversing the order of the pitches 

Now, suppose we want to edit the score in order  to 
accomplish a specialized task-to  find each note 
that occurs on a downbeat and make it one unit 
louder. The next section discusses the evaluation of 
the A P L ~  expression that accomplishes this task. 

How the  expression is evaluated. Following  is a 
step-by-step explanation of how the A P L ~  expres- 
sion 

is evaluated: 

1. Since A P L ~  evaluates an expression from right to 
left, the subexpression “8 I SCORE C ; 11 ” is  eval- 
uated first. The result of this subexpression is the 
eight-residue (or  the “modulo-eight” in tradi- 
tional mathematical terms) of the starting time 
values,  shown in the second column in previous 
displays of the SCORE matrix. The argument 
“eight” for the residue function was chosen be- 
cause each measure is eight time units long. See 
Figure 4A. 

2. The next subexpression to be evaluated is O=w 
where w represents the result of 8 I SCORE C ; 11. 
The result of this subexpression is a Boolean 
vector whose corresponding elements are set 
where zeros occur in w, which happen to fall on 
the downbeats. The “=” in A P L ~  is not  an assign- 
ment, it  is a test, returning a “1” when elements 
are equal in value, and a “0” otherwise. Figure 
4B  shows the resulting Boolean vector. 

3. Next, the vector in Figure 4B is added  to  the 
loudness values (shown  in the third column of 
previous displays) resulting in another interme- 
diate value. Boolean values are numeric values 
and can be treated as such, illustrating a com- 
mon use in A P L ~  programming, as well as the 
conciseness of the language. Figure 4C displays 
the result. 

4. Finally, the result replaces the contents of the 
loudness values of the SCORE matrix and can be 
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~ ~ 

Figure 4 Evaluation of APL2 expressions 

I !  DISPLAY 8 I SCOREC ; 11 
1 0 1 2 3 6 0 0 1 2 3 6 4 5 6 7 0 )  

I DrspLAy 0=8 I SCOREC ; 11 
1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1  

I D r s P L A y  SCORE[;~I+O=~ISCORE[;~I 

[ 5 4 4 4 4 5 5 4 4 4 4 4 4 4 4 5 1  

DISPLAY SCORE 
”-- 

71 1  4 
72 0 5 

69 2 4 
71 3 4 
72 6  4 
74 8 5 
65 16 5 
64 17 4 
62 18 4 
65 19 4 
67 22 4 
72 28 4 
71 29 4 
69 30 4 

60 32 5 
64 31 4 

seen  in  Figure 4D. A graphic representation of 
the parse tree for the same A P L ~  expression  fol- 
lows: 

/ \  
8 SCOREC ; 11 

Our task  description  in natural language  is trans- 
lated into a one-line A P L ~  expression.  Most other 
computer languages  would  have required many 
more lines of code  and may  have  involved  writing 
a program,  compiling it, and  linking it. This par- 
ticular A P L ~  expression  is not difficult to under- 
stand. In most other languages the solution  would 
have been more complicated, simply because the 
extra  lines of code and the loops  would not con- 
tribute to the conceptualization of the process. 

Polyphonic  scores. So far we  have  only represented 
monophonic  scores-that  is, one voice, or “one 
note at a time.” A polyphonic  score represents 
more than one voice  playing  simultaneously. To 
represent a polyphonic  score the monophonic 
model  can be expanded by the introduction of rank 
or depth. In the previous  section we started with a 
monophonic  score represented as a numeric  vector. 
A vector  in APL2 has a rank of one, whereas a rank- 
two array  is  called a matrix. A matrix  can  be  used to 
model a polyphonic  score,  such that each row or 
column of the matrix  is the equivalent of a mono- 
phonic  score.  Since a matrix  in APL~ must be rect- 
angular  and  its rows and  columns are parallel  along 
each axis, the same  ordinal  and  temporal attributes 
that formed the basis of the monophonic  vector 
model  also  hold true for the polyphonic  matrix 
model. 

Figure 5 contains  an  example of a 3 x 8 matrix, 
which represents a polyphonic  score. If we assume 
that each  column  in the matrix represents a quar- 
ter-note beat, this  score represents eight  major tri- 
ads  at quarter-note intervals,  as  expressed by the 
SCORE expression. 

Notes in the same  column are to  be played  simul- 
taneously,  and notes in the same row are to be 
played  sequentially.  Thus, we define a mapping be- 
tween  matrix  dimensions  and  musical  dimensions, 
such that each  column is a time period, and  each 
row  is a voice. Of course the roles of the dimensions 
could be reversed. It is  just a question of  how  we 
wish to visualize the structure. Changing the actual 
matrix to reflect  this new mapping of parameters is 
simply a matter of  applying the A P L ~  transpose 
function (not the musical  transpose) to the array. . SCOREcQSCORE 

DISPLAY $SCORE 

60 64 67 
62 66 69 
64 68 71 
65 69 72 
67 71 74 

69 71  75  73  761  78 
72  76  791 

It is  possible to imagine  many  mappings  of this 
kind,  all  having  different  characteristics,  and  all  be- 
ing  useful  for  different  purposes.  This  reveals one 
of the reasons why the computer is such a powerful 
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tool  for music: It provides the ability to create new 
kinds of musical  representations as  well  as the free- 
dom to explore the representations themselves  as 
fields of interest. 

A PLAY function. The potentials of computer  mu- 
sic  go  beyond  just  representation.  When  linked to 
appropriate audio  signal  generating  hardware, the 
computer  can  become  a  musical  instrument with 
exciting  capabilities. The discussion that follows  il- 
lustrates the capabilities of a PLAY function that 
could  be created in APL~.  Define PLAY such  that: 

1. It accepts  a  score  as  a  right  argument. 
2. The duration of each note will, unless  otherwise 

specified,  default to a  set  value,  e.g.,  a quarter 
note. 

3. An optional  left  argument may be  accepted that 
specifies  a  common duration for  all the notes, or 
a  list of durations-one for  each  note. 

The elements of the  score are MIDI note  numbers. 
The PLAY function  sends  performance  instructions 
to an attached external  device,  such  as  a  musical 
synthesizer. 

As  was  previously illustrated, the following  vector 
can represent a  C-major  scale: 

SCALE+6O+O 2 4 5 7  9  11  12 

DISPLAY SCALE 

[E 60  62  64  65 67 69  71  72 

This  expression will  play the C-major  scale  starting 
at middle-C  in  ascending order: 

PLAY SCALE 

Since A P L ~  notation  can  be  easily adapted for par- 
allel  processing  models,  it is interesting to examine 
the musical  possibilities of a  truly  parallel  version of 
the language. 

For example, the each operator (*') provides  a for- 
midable  vehicle for exploring the parallel  potentials 
of APL~. The each operator applies  a  specified  func- 
tion to each  element of its  arguments.  Assuming  a 
truly  parallel each operator, when it is executed, 
envision  a  set  of n independent  processes  running 
on  a  parallel  multiprocessor,  where n is the number 
of elements at the first  level of depth in the array 
arguments. 
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Figure 5 A polyphonic  score 

SCORE+.60 64 67+cO 2 4 5 7  9 11 1 2  

DISPLAY SCORE 

60 62 64 65 67  69 7 1  72 
64 66 60 69 7 1  7 3  75  76 
67  69 7 1  72 74 76  70 79 

A chord, which  is a  simultaneity of pitches,  could 
then  be  played as  follows: 

MAJORcO 4 7 

PLAY"6O+MAJOR 

Again,  imagine three independent  processes,  each 
of  which  plays a  single  pitch  for  a  set  duration: 

PROCESS 1 PROCESS 2 P R O C E S S  3 

Depth can  play  an important  role  in the modeling 
of a  musical  score.  For  example,  an  increase  in 
depth can  signify that grouped notes are to  be per- 
formed  simultaneously. 

60 62  64  (65  69  72)  67  69  71  72 

The above  vector is a  polyphonic  score  representing 
three individual  notes,  followed by a  chord  inside of 
the parentheses,  followed by four  individual  notes, 
all at a quarter-note tempo. 

A further increase in depth could  signify a  set of 
virtual  tracks to be  played  simultaneously, or sets of 
MIDI events on different MIDI channels. An increase 
in depth again  could  be  used to model  a  set of 
multitrack tape decks  or  a  set of MIDI cables. 
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rences. A pitch that has no occurrences in the vec- 
tor will not  be played, or can be thought of as being 
played at a volume level of zero. 

For example: 

PLAY"60 6 0  

or 

PLAY c 6 0   6 0  

will sound one unit louder or  perhaps twice the 
intensity of 

PLAY 6 0  

If only unique pitches are to be selected from Fig- 
ure 6B, then application of the following APL~ id- 
iom to  the vector of MIDI note numbers will filter 
any duplicates: 

((w1w>=zpw>/w 

Therefore, when this idiom  is applied to: 

V+cCHORDS 

the unique pitches are evaluated and shown  in 
Figure 7A. 

Or  the pitches can be sorted by MIDI note number 
and can then be  played sequentially at their relative 
volumes: 

Figure 7B shows the  ordered  note numbers and can 
be played  with the following: 

PLAY VVtVcV 

resulting in the groups shown in Figure 8A. 

The relative volume of each pitch can be obtained 
by using: 

EP"VV 

displayed  in Figure 8B. 

Finally, the following vector represents  the number 
of distinct pitch-classes present in V:  
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where 

El 
DISPLAY pvv 

As can be seen, the power of A P L ~  to represent the 
music score in terms of pitch and volume  is  only the 
beginning of the use of computers in  music appli- 
cations. 

The  Smoliar  model. We now describe another mu- 
sical application of M L ~ .  This work  is inspired by 
Stephen Smoliar, who described a  system for au- 
tomated musical  analysis. l3 Smoliar  was  himself  in- 
spired by Heinrich Schenker (186&1935), who  is 
widely regarded as the most influential music the- 
orist of the 20th century.I4 Smoliar has designed  a 
computational model loosely  based on Schenker's 
theory of tonality. To enhance the understanding of 
the application, we  first present some background 
in Schenkerian theory. 

Heinrich Schenker's influence on music  essentially 
corresponded to Noam  Chomsky's transforma- 
tional grammari5 in the field of linguistics, although 
Schenker's  work predated Chomsky's by a number 
of years. The similarities are striking. In both 
Schenkerian analysis and transformational gram- 
mar, a stream of symbols  is scanned and recursively 
parsed into groups, yielding  a hierarchical struc- 
ture. Thus, a tree representation of a composition 
can be created where each level summarizes the 
events in the level  below, from a  higher-level per- 

524 JORDAN AND FRllS 



A simultaneity (SIM) of events 

The structure is  recursive because an element of an 
event can itself be an event. 

Figure 9 shows  a representation of a  simple score 
using the Smoliar  model, and implemented in APE. 

One fundamental limitation of this model is that 
there is no way to explicitly indicate precise dura- 
tions of time-only order relations between events 
are expressed. Nonetheless, it is a  powerful abstrac- 
tion for modeling harmonic and tonal structure. By 
creating a  hierarchy  with these kinds of nestings at 
many  levels, one can model an entire composition, 
yet  have  access to its parts  at all  levels of the struc- 
ture.  The hierarchies are musically  significant be- 
cause  they model how  we actually parse real mu- 
sical events, and how these events group into larger 
events. 

Conclusion 

The ideal of a shared notation that can be read by 
both humans and machines can only be realized if 
the notation is close enough to human thought to 
be practical. Our minds  must  rise above the ancil- 
lary details of computation and even implementa- 
tion, so we can be free to contemplate complex 
concepts more clearly.  Music  in particular requires 
this freedom because musical structure itself  is so 
complex.  Even  simple-sounding  passages can re- 

SCORE+'SEQ' 60  62  64 ( ' S I M '  65  69  72)  67  69  71 

DISPLAY SCORE 

I 

I I -  
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veal surprising complexity when analyzed. The ex- 
amples in this paper can attest  to this-so many 
numbers to describe such simple fragments of mu- 
sic. One can imagine what would be required to 
describe a symphony. 

A P L ~  provides a solid conceptual foundation for in- 
formation processing. Suddenly we  have control by 
attributes. We can specify parts or aspects of the 
music that we  wish to examine or modify. And most 
important of all,  we can create new schemes for 
classifying these structures, so that the foundation, 
though solid, remains flexible enough to follow in 
any direction. 

Composers have long employed complex notation 
systems, attempting to  capture  the essence of what 
they wish to express. Theorists seek to understand 
how  we hear music, and  attempt to make maps of 
possible musical  spaces. Both require a language in 
which  new languages can be easily defined. In  the 
computer age, A P L ~  seems to  be  an  important ev- 
olutionary step along this path. 
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