Parallel expression
in the APL2 language

This paper reports on an investigation of parallel
expression and execution in the current APL2
language. The study covers a historical,
theoretical, and empirical viewpoint. The parallel
nature of APL is traced from its foundations in
the lverson notation to current problems in
executing APL on parallel hardware. The paper
discusses features of the APL language and its
current implementations that limit taking
advantage of parallel expressions. A survey of
related topics from the work on APL compilers is
also included. Each APL 2 language construct is
examined for potential parallel expression. The
operations are grouped based on the possible
parallelism exhibited by each operation, and the
possible implementation of each group is
discussed. Three APL2 applications are explored
to determine the actual parallelism expressed in
“real” APL2 code. These applications are chosen
from distinct areas: graphics, database systems,
and user interactive systems. The actual data
passed as arguments to every operation are
dynamically examined, and the information is
collected for analysis. The data are summarized
and results of the study are discussed.

In the last several years, APL has received atten-
tion as a language that can be used to express
parallel algorithms. The primary interest has been
in the ability of the language to express algorithms
on vector or array arguments directly, eliminating
the need for a programmer to convert them into
sequential loops. The question to be addressed in
this paper is: Given a powerful array language, how
much parallelism is expressed implicitly? This study
attempts to better understand the extent of parallel
expression that is contained in typical APL2 appli-
cations.

The parallel nature of APL2 is investigated in two
ways that make this paper unique from similar stud-
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ies in the past. First, there is an emphasis on com-
pleteness. All APL2 primitives are examined for pos-
sible parallel execution. Next, there is an emphasis
on gathering empirical information. This study
measures real code to achieve a better understand-
ing of the extent of parallel expression in “real”
APL2 code.

Once the parallel nature of current APL2 is under-
stood, this paper also answers two other questions:
From a language viewpoint what items could be
changed to increase the parallel expression in the
language; and what lessons can be learned regard-
ing the development of parallel interpreters for the
current APL2 language?

The parallel nature of APL

APL: A parallel language. APL is a language that
can be considered parallel since its very inception.
Ken Iverson, in his original definition of A Pro-
gramming Language,' defines a language that is at
its very roots a parallel language. The Iverson no-
tation (the name used to describe the notation in
Iverson’s book) was not intended to be imple-
mented. However, APL and APL2 were developed
directly from the concepts that he outlined.

The 25 years of APL history have been scattered
with work that has attempted to extract and exploit
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the power of the Iverson notation. Recently much
of that work has been focused on using APL (or
APL-like notation) on parallel machines. The ad-
vantage of APL for parallel applications was recog-
nized as early as 1970 by Abrams:

In general, APL programs contain less detail than
corresponding programs in languages like ALGOL
60, FORTRAN, or PL/I.... While this aspect of APL
often makes programs shorter and less intricate
than, say, ALGOL programs, it also requires that
an evaluator of APL be more complex than one
for ALGOL, especially if such expressions are to
be evaluated efficiently. On the other hand, a
machine doing APL has greater freedom since its
behavior is specified less explicitly. In effect, APL
programs can be considered as descriptions of
their results rather than as recipes for obtaining
them.?

The following sections explore the history of APL as
it relates to execution on parallel machines.

Types of parallel expression. Paraliel expression
can be classified in a number of ways. The terms
course grain and fine grain have been used to dis-
tinguish the size of the tasks that are executed in
parallel. sSiMp (simple instruction stream, multiple
data stream) and MIMD (multiple instruction
stream, multiple data stream) concentrate on the
nature of the instructions that are issued to perform
the calculations, and vector processor, array proces-
sor, and multiprocessor tend to emphasize the dif-
ference in the machine architectures that are used
for parallel execution. All of these terms inter-
relate and are often used interchangeably.

For the purpose of this work, four terms will be
introduced that focus on the nature of the expres-
sion from which the parallelism is extracted. They
are data parallelism, algorithm parallelism, data-flow
parallelism, and task parallelism.

The first three types of parallel expression are im-
plicit—parallelism is “implied” by the operation(s)
specified instead of being explicitly stated by the
programmer. Task parallelism is the one explicit
parallel expression.

Data parallelism in APL. Data parallelism refers to
the application of a single conceptual operation to
a number of data items at the same time. Each of
the operations is completely independent from the
rest. Hillis has coined the term data parallel to dis-
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tinguish the difference in parallelism that comes
from simultaneous operations across large sets of
data, rather than from multiple threads of control.?
The key concept of this definition is the fact that the
expression of parallelism comes from the specifi-
cation of operations across sets of data.

Although Hillis connects the idea of threads of con-
trol to his definition, our use of the term will not
make this connection. There are times that the ex-
ecution of a single conceptual operation to a set of
data items will require, or at least allow, indepen-
dent and distinct algorithms to be run on the sep-
arate data items. Although the execution in this
case is MIMD, instead of the SIMD implied in Hillis’s
definition, the expression of parallelism is still of
the data parallel form.

The concept of arrays of data is not unique to APL.
What sets APL apart is that arrays in APL are viewed
as a unified whole, rather than a collection of
individual data items.* This view is what made
Iverson’s work so powerful. Iverson also defined
operations on arrays including element-wise
application of functions, scalar extension, selec-
tion, reduction, and permutation operations. The
power of these concepts has been recognized in the
work on new parallel languages® and in the work to
include parallelism in existing languages, such as
FORTRAN.®

Brenner’ outlines some of the considerations and
advantages of implementing APL on an array proc-
essor similar to the Connection Machine.® Brenner
recognized the potential of .execution of scalar
functions, scan, and reduction on a parallel proc-
essor. Brenner also gives a thumbnail sketch of how
some other APL operations might be executed in
parallel. He outlines methods for compress, ex-
pand, grade up, reshape, rotate, take, drop, index
of, member, and inner product. Although this is an
impressive list, it is only a small part of the oper-
ations that can be done in parallel, as will be shown
in this paper.

The parallel execution of APL has not only been
shown theoretically, but also has been implemented
in several machines. The Analogic APL Machine,
introduced in 1980, used the APL language to drive
a vector processor. As Delo points out, “One im-
portant achievement of the project is running soft-
ware ... that had been written in a standard pro-
gramming language to run on a conventional
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computer.”® Even today this is an achievement that
has been matched by few other parallel computer
projects.

While the APL machine was specially designed for
APL execution, most paralle]l hardware is not de-
signed with APL in mind. However, APL seems well
positioned to take advantage of the new hardware.
For example, the IBM 3090* Vector Facility is a
high-performance pipeline processor designed to
significantly improve vector performance.'® APL2
was one of the first languages to use the Vector
Facility for the processing of vector (array) data.
The close match between the expressiveness of
APL2 and the processing of the 1BM Vector Facility
has led Brown to conclude “... in some senses, the
1BM Vector Facility is a machine designed for ex-
ecuting APL.”!!

Algorithm parallelism in APL. Algorithm parallel-
ism refers to operations that can exploit the rela-
tionships of the data items to allow execution in
parallel. This is in contrast to the assumption of
independence among the items in data parallelism.
In this form of parallelism, it is the algorithm that
is parallel in nature. The data must be viewed as one
item.

Examples are sorts, FFTs (Fast Fourier Trans-
forms), matrix inversions, and similar operations.
In each of these cases there are suboperations that
can be executed in parallel, but these operations
must be coordinated and supervised by an overall
plan.

Although this type of parallel expression can clearly
be replaced by algorithms written using the other
parallel expression methods, the power of the ex-
pressiveness is lost. The advantage of capturing al-
gorithm parallelism at the language level is that it
allows for different architectures to execute the op-
eration as is best suited for the machine.

Data-flow parallelism in APL. Data-flow parallelism
results from the flow of results of one operation to
arguments of the next operation. Since often there
are multiple arguments to a given operation, each
of those arguments can be calculated in parallel. To
exploit data-flow parallelism it is necessary to cal-
culate the data dependence (both argument and
result) of each calculation. Then the order of cal-
culation can be generated and is usually repre-
sented graphically. This directed graph shows the
operations that can be executed in parallel.
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This type of parallelism is by far the most difficult
for the programmer to detect and exploit using ex-
plicit parallel expression. And although it is difficult
for the system to detect this parallelism, the benefits
of doing so are well worth the investment.

Most of the work that has been done in the area of
data flow in APL has been in three areas. The first
is work that is being done on developing an APL
compiler.'? Clearly, data flow is necessary to un-
derstand the manipulation of data in APL so that it
can be compiled. The second area of work is in the
area of functional languages. Backus' understood
the potential that APL had as a functional language.
Many have attempted to exploit this potential, usu-
ally with the goal of being able to create a parallel
language based on functional constructs.’*'® Fi-
nally, there are some who have looked at data flow
solely as a method of execution within the APL lan-
guage. 2118

In this section some of the methods and results of
the work in all three areas are presented. The goal
is to present the relationships between the work
and some common ideas.

Abrams? and Wakshull'” both explored the area of
lazy evaluation. In this form of evaluation, values
for arguments are not calculated until they are
needed by the function that references them.
Abrams used this idea to eliminate calculation on
data that were later to be discarded, a concept he
called “drag-along.” Wakshull, while not discussing
the benefits, gives a method by which an entire line
of code can be executed using only data-flow prin-
ciples.

Both Wakshull'” and Ching"® discuss the concept
that both the left and right arguments to a func-
tion can be calculated at the same time. They for-
malize this concept by showing how a single dyadic
function call can be placed within a pair of
PARBEGIN and PAREND statements.

Budd'? shows the power of constructing a complete
data-flow graph. By doing so he is able to make
statements about the rank, shape, and type of data
variables. Although this benefit is connected with
the problems of compiling APL, the technique is
useful for discovering a number of properties of
APL code without actually executing the code. For
example, this type of analysis would be useful in
determining interference between the assignments
of two functions.
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Task parallelism. Task parallelism expresses paral-
Jelism as separate tasks that are started and stopped
by the application. These tasks run concurrently
and may or may not communicate and synchronize
with each other. All other forms of parallel expres-
sion can be broken down into task parallelism. The
implicit parallel expressions already discussed are
methods of hiding these operations from the user of
the language, and therefore freeing the user to con-
centrate on the expression, not the control, of par-
allelism.

Task parallelism concentrates on the starting, stop-
ping, synchronization, and communication between
processes (tasks) at a level at which the user retains
control over these operations. Task parallelism is
exhibited in APL2 in the area of shared variables.

Shared variables, and the concept of auxiliary
processors, are the oldest parallel facilities in APL.
The auxiliary processor in APL can be a process
running in parallel with the current workspace eval-
uation. The processing in the auxiliary processor is
asynchronous to the workspace processing. The
synchronization of the workspace with a given aux-
iliary processor is done with the shared variable.
The shared variable is also used to pass commands
to the auxiliary processor and to receive results
from that unit.

APL2 has expanded the power and use of shared
variables in several ways. Most importantly APL2
now allows variables to be shared between individ-
ual APL2 workspaces. In addition, several new
shared variable system functions have been intro-
duced that allow for more flexible methods of poll-
ing and using the shared variables. It has been
noted by Gerth® that shared variables allow par-
allel structures without adopting artificial con-
structs in the language.

Hindrances to parallelism. There are some hin-
drances to parallelism in APL. These items must
either be eliminated from the language or their ef-
fects must be minimized.

Assignments and side effects. One of the major prob-
lems in trying to execute code in parallel is that side
effects may be produced. A side effect is any change
in the state of the machine during the execution of
a function that can be observed outside the func-
tion. Typical examples are assignments, 1/O, and im-
plicit results (such as the change to (RL made dur-
ing the roll and deal functions). Side effects hinder
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parallelism because the total behavior of the pro-
gram must create the same side effects in the same
order to be a proper parallel implementation. Tu
and Perlis'® eliminate assignment in their func-
tional language based on APL.

Dynamic binding. Dynamic binding causes the
names in APL programs to be bound to values based
on the environment in which the function is called.
Dynamic binding makes it difficult to determine,
before actual execution, many of the particulars of
a program’s activities. This complicates the areas of
determining parallelism and avoiding interference.
The alternative to dynamic binding is static binding,
Static or lexical binding causes the values to be
bound to the names based on the environment in
which the object is defined. This solves many of the
problems of program analysis and is therefore re-
quired by much of the data-flow work. 21316

Branching. The danger of GOTOs (branches in APL)
have long been known by programmers. Specifi-
cally, in the area of parallel execution, branching
makes it difficult to determine the exact execution
of a program. At least two methods have been pre-
sented to deal with this problem. Some simply do
not allow branching.'® Others allow branching but
only evaluate parallelism inside basic blocks (the
areas between branches)."

Lack of declarations. Finally, the lack of declara-
tions in APL deprives the interpreter (or compiler)
of knowledge that is often known to the program-
mer. Some have suggested including (optional)
declarations.

APL2 as a parallel language

APL2 is an inherently parallel language because al-
most all primitive operations are defined on arrays
of objects. The following sections classify and dis-
cuss these primitive operations. Akl defines paral-
lelism as follows:

Given a problem to be solved, it is broken into a
number of sub-problems. All of these sub-prob-
lems are now solved simultaneously, each on a
different processor. The results are then com-
bineczl0 to produce an answer to the original prob-
lem.

The key to exploiting parallelism is finding inde-
pendent subproblems to be solved. The following
discussion of each of the classes establishes how
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Figure 1 Monadic scalar functions

Ceiling Floor Pi-times
Conjugate Magnitude Reciprocal
Direction Natural logarithm Roll*
Exponential Negative
Factorial Not

* See Reference 22.

Figure 2 Dyadic scalar functions
Add Greater than Nand

or equal
And Less than Nor
Binomial Less than or equal Not equal
Circular Logarithm Or
functions

Divide Maximum Power
Equal Minimum Residue
Greater than Multiply Subtract

Figure 3 Right scalar function

Index of

independent subproblems can be defined. This
then gives the key to implementation of these op-
erations on a broad spectrum of parallel machines.
For example, these operations could be done one
per processor on a SIMD machine, or assigned in
groups (based on data location) on a MIMD ma-
chine.

Scalar functions. Scalar functions can be most eas-
ily defined as the ability of a function to operate on
individual elements of an array in exactly the same
way that they are applied to the entire array. In
other words, the calculation of every individual data
element is independent of the other.

The following paragraphs define in turn monadic
and dyadic scalar functions. The discussion of dy-
adic scalar functions includes the concepts of scalar
extension, and also introduces two new terms, right
scalar function and left scalar function. The func-
tions that fit each of these categories are listed.
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Finally, there are functions that are closely related
to scalar functions but do not fit the strict definition.
These are also presented.

Monadic scalar functions. The formal definition of
a monadic scalar function® is any function that
meets the following requirement:

(F R)II1 «» F RII]

The heart of this definition is the fact that the cal-
culation of each element is independent of any
other and that the definition of the operation on the
whole array is defined in terms of the operation of
the function on the individual elements. The func-
tions in Figure 1 are defined in APL2 as being
monadic scalar functions.

Dyadic scalar functions. The definition of a dyadic
scalar function® is very similar to the definition of
the monadic case. A dyadic scalar function is any
function that meets the following requirement:

(L F R)II] «» LLI] F RLI]

Again the independence of the individual calcula-
tions can be seen. Figure 2 illustrates the dyadic
scalar functions.

Scalar extension. Scalar extension in APL2 is defined
as “If one argument is a scalar or a one-item vector,
pair the scalar or one-item vector with each item.”
This allows APL2 to express the concept implicitly
that most parallel languages define explicitly as a
“data broadcast.” The advantage in APL2 is that the
programmer does not need to express the broadcast
as a separate operation.

Right scalar functions—Consider now the case that
the left-hand argument is not a single item, so that
scalar extension would take place, but rather a data
structure that is needed by each application of the
function to items in the right argument. Therefore
what we desire is not a scalar broadcast, but rather
an array broadcast. This concept is captured in the
following definition. A function will be called a
right scalar function if the following is true:

(L F RII] «» L F RII]

Althbugh the term and definition is new, the con-
cept is already used in APL2 in the function shown
in Figure 3.
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Left scalar functions—In a similar way, any function
that meets the following requirement will be called
a left scalar function:

(L F R)UI] « LII1 F R

Again, this concept is also already used in APL2 in
the function shown in Figure 4.

Each. The operator each accepts a single function
as an operand, and the resulting derived function is
monadic or dyadic based on the valence of that
function. Each changes the operation of the func-
tion such that the function, instead of being applied
to the entire argument(s), is rather applied to each
item of the argument(s). The combination of all of
these applications is the result of the derived func-
tion. Each, when applied to any function, produces
a derived function that is by definition a scalar func-
tion (see Figure 5).

However, to be applied in parallel, one additional
criterion must be satisfied; each application of the
function must be independent of the others. The
practical implication of this is that the function that
is used must be free of side effects. This is true of
all primitive functions in APL2 except for roll and
deal. But this is not true of user-defined functions
in APL2 in general.

Scalar related functions. There are a number of
functions in APL2 that, although not strictly scalar
functions, still exhibit many of the characteristics of
scalar functions. These are listed in Figure 6, and
the following paragraphs provide a brief descrip-
tion of how they are related to scalar functions.

Find—Find can be defined in terms of the left sca-
lar function member. Each item of the left argu-
ment is searched for in the right argument using the
member. After each search the partial result is
shifted to another processor, based on the shape of
the left argument, and the next search done. Clearly
this is a highly parallel operation.

Format—In all three format functions—default,
format by example, and format by specification—
there is a right scalar operation. In format by ex-
ample and format by specification the formatting of
each item in the right argument can be carried on
completely independently of the other. Only when
all of the items are formatted must the result be
compiled to form a new matrix. However, even this
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Figure 4 Left scalar function

Member

Figure 5 Scalar derived functions

Each (monadic) Each (dyadic)

Figure 6 Approximately scalar functions

Bracket indexing Index

Find Index with axis
Format (default) Interval
Format by example Without
Format by specification

operation is an operation that is performed along
axes and can be done in parallel.

In the case of default formatting, there is an addi-
tional step of determining the format parameters
for each column. This also can be done in parallel
with each processor determining on its own the re-
quired size for its item. These can then be combined
together in a process very similar to reduction along
the first dimension.

Indexing—Indexing, both in its functional form and
as bracket indexing, would be difficult, but reward-
ing, to implement in a parallel form. Index would be
considered a result scalar function, that is, each
item in the result can be determined using an in-
dependent calculation based on the arguments.
First, several sequential steps would be completed.
The shape of the result would have to be deter-
mined and the locations allocated. Next, each lo-
cation in parallel could obtain the correct indices;
then, based on the shape of the array being indexed,
it could determine positions and finally get the
value from that position.

Interval—Interval is also a result scalar function.
Interval would be very easy to implement on any
machine in which each processor could determine
a unique ID (identification), and all the IDs are se-
quential. Interval could then be simply imple-
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Figure 7 Reduction functions

Reduce N-wise
Reduce N-wise with axis

Reduce
Reduce with axis

Figure 8 Scan functions

Scan Scan with axis

Figure @ Product functions

Decode
Encode

Inner product
Outer product

mented as laying out the shape of the result and
telling each processor to generate a number based
on its ID.

Without—Without is defined® as follows:
I~F <> (~LeR)/L

The member and not part of the definition (most
likely combined as a single operation) can be con-
sidered to be a left scalar function as defined above.
The parallel nature of replicate will be dealt with
later.

Reduction and scan. Scan and reduce operations
(Figures 7 and 8), like scalar functions, have been
at the heart of APL since its inception. Their im-
portance to parallel processing has also been clearly
established. Steele has called them primitive par-
allel operations.’ Reduce can be considered a sub-
set of the scan operation where only the final value
is considered to be important.

When defined on vectors, these operations are par-
allel only when the function that is being applied is
associative,”® so only the associative case will be
dealt with here. Brenner,” along with many others,
has outlined a method of doing the scan (and there-
fore reduce) in 2®pX passes. This means, for ex-
ample, that a million element vector can be scanned
in 20 operations on a sufficiently parallel machine.
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The placement of these operations in this classifi-
cation is very difficult. They are placed here so that
we can deal with their primary definition, that is, on
vectors. However, they are often used on higher
order arrays (for example, on matrices). When ap-
plied to matrices these operations exhibit two levels
of parallelism. First is the parallelism outlined
above. Second is the parallelism that is involved in
the application of the operation along an axis, as
outlined in the next section. These two levels of
parallelism can be handled separately, or combined
to generate a highly parallel construct.

Product functions. The final set of functions that
must be considered before we leave the area of
scalar functions is the product functions (Figure 9).
These functions are based on the dot operator.

Decode and encode are included with the product
functions because they can be expressed in terms of
the product functions.

The product functions are also result scalar func-
tions, with each item in the result being calculated
from a separate calculation. In the case of outer
product this is the simple application of a function
to two data items. In the case of inner product this
result is more complex, consisting of the application
of a function on two vectors and applying reduce to
the resulting vector.

Axis functions. Moving from the area of scalar
functions, the next logical step would be functions
that are applied to subarrays of the arguments.
These will be called axis functions. However, before
presenting the individual functions, it would be
helpful to formalize the concept of an operation
along an axis and the concept of subarrays.

Subarray. A subarray is a subset of the data con-
tained in an array that is selected by using zero or
more elided axes. All nonelided axes must have a
scalar value.

In APL2 the axis specification can be used to apply
the function to independent subarrays within an
array. The axis specified indicates the axis that is to
be elided. We shall demonstrate this principle by
discussing enclose with axis and disclose with axis.
These functions were chosen because they can be
used to describe all other operations that take an
axis specification (see Table 1).
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Table 1 Decomposition of axis specifications. The columns in this table show a decomposition of each of the lines
of code that can be used to replace the most general case for each of the functions with axis specification.

Function Result Disclose Enclose Operation Enclose
Operation Operation Operation
for Left for Right
Argument Argument
Catenate Z« >[A] (<[AID) ) <[AIR
Expand Z« >[4l INT c[AIR
Partition A s [A] (<L) <’ <[AIR
Reduce Z< > o/ <[AIR
N-wise reduce Z« s[4] L o/ <[AIR
Replicate Z« >[A] (7 c[AIR
Reverse Z« >[A] 0" <[AIR
Rotate Z« >[A] L o <[4]R
Scan Z« >[4] O\" <[AIR
Drop Z« >[A] (<L) 4 <[AIR
Index Z« >[A* (<L) = <[AlR
Laminate Z< >[ 4] (<L) ) <R
Ravel Z« > [14] o <[AIR
Scalar Z« >[4l (<[AIL) o <R
Scalar Z« >[A] (<L) 0 <[4IR
Take Z« >[4] (<L) 2" <[AJR
* See Reference 32.
The enclose with axis function takes subarrays C+>[1 21B
along the axes specified and makes them a single pC
data item in the result. Therefore, the resulting ma- 243
trix has the shape of the argument with the specified 5 ¢
axes removed, and each item has the shape of the % 5 g 0
axes removed. For example: 37 11
4 8 12
A<2 3 Up12y
B<c[1 3]A 13 17 21
pB 14 18 22
3 15 19 23
16 20 24
p1-B
2k For each of the axis functions listed in Figure 10,
DISPLAY B the application of the function results (conceptu-
ally) in the enclosing of the array along the given
axis, applying the function to each item of the re-
r r sult, and then disclosing the result along the same
v1 2 3 4 +y5 6 7 8 In lieht of 16l S b
L13 14 15 16 L17 18 19 20 a?(es. n g to paralie opergtlon, 1t can be con-
sidered that each of the operations on the subarrays
€ is an independent operation, and therefore can be

—
v 910 11 12
Lz 22 23 24

The disclose with axis function is very similar to this
except the elements are disclosed and placed back
in the subarrays as specified. For example:
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done in parallel.

Scalar functions with axis. In addition to the above
operations that take an axis specification, all of the
scalar functions can take an axis specification. The
concept is also based on subarrays and can be ex-
pressed in terms of enclose and disclose (see Table
1). The axis specification on scalar functions causes
the items in one argument to be broadcast (scalar
extension) to subarrays in the other argument.
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Figure 10 Axis functions

Catenate Ravel with axis
Catenate with axis Replicate

Disclose Replicate with axis
Disclose with axis Reverse

Drop with axis
Enclose with axis

Reverse along first axis
Reverse with axis

Expand Rotate

Expand with axis Rotate with axis
Laminate Rotate along first axis
Partition Take with axis

Partition with axis

Figure 11 Recursive functions

Depth Enlist Match

Figure 12 Matrix inversion functions

Matrix divide Matrix inverse

Axis operators. Bernecky” and Gfeller® have both
described a language enhancement called axis op-
erator. Although their descriptions are different in
syntax, they both carry the same fundamental idea.
The axis operator has the effect of dividing the ar-
guments into smaller matrices and applying the
function to these smaller items. This type of oper-
ator would allow functions to be considered as axis
functions, independent of their original type, much
as the each operator forces its operand to be con-
sidered as a scalar function.

Recursive functions. Some functions in APL2 can be

defined in the form of the following recursive def-

inition:

f(x) = g(f applied to each item in x)

Where: f(x) is a function that is defined at some
level in the tree (usually simple

scalars)
g(x) is a combining function

The characteristic nature of these functions is that
their execution results in a tree structure. The cal-
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culation in each of the branches of the tree is in-
dependent of the others and therefore can be done
in parallel. The functions are shown in Figure 11.

Depth. The function depth, which returns the depth
of the deepest item in a nested array, can be ex-
pressed in terms of a recursive definition:

=R <> 1+[/="R

Where: = simple scalar <~ 0

Enlist. Enlist converts a nested array into a simple
vector using a depth first method. The recursive
definition of this routine is:

€R <> >,/e'R

Where: < simple scalar <~ one item vector

Match. Match returns a 1 if the two structures are
identical at all levels, and a 0 otherwise. The re-
cursive definition of this routine is:

L=R <> A/L="R

Where: L=R «- 0 if L and R have different
shapes
=R «» 0 if L and R are simple
scalars with different values
L-R «» 1 if L and R are simple
scalars with the same value

In general, the execution speed of match can be
improved if, when any nonmatching condition is
detected, all the execution in the tree is terminated
and the 0 result returned. This makes the execution
of the branches nonindependent, but they still can
be executed in parallel.

Whole array functions. Moving from scalar to sub-
arrays, the next logical step would be operations
that manipulate entire arrays and therefore do not
contain simple independent operations. However,
both of these operations (see Figure 12) have been
studied as classic parallel programming problems
with many already published solutions.

The sorting functions in APL2 (see Figure 13) take
an array as an argument and return a vector of
indices as a resulit.

Rearrangement functions. The last class of opera-
tions that can be executed in parallel are those that
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deal with data rearrangement. The characteristic of
each of these functions is that the operation is done
on addresses and not on data. The operations are
shown in Figure 14.

The method of execution for each of these opera-
tions is basically the same:

1. Calculate the shape of the result.

2. Create an array of processors that match this
shape.

3. Broadcast the control information to each proc-
€SSOT.

4. Each processor calculates the current position of
the data that are needed at that processor.

5. Each processor gets the data.

Not parallel. Some operations in APL2 cannot be
executed in parallel. The primary reason for this is
that they are defined on single objects or they do
only a single operation. These operations are
shown in Figure 15.

For example, deal is only defined on scalars. En-
close, first, pick, and shape all do a single operation
on an entire array. Execute executes only one vector
at a time. However, that line could be a parallel
operation.

Other possible parallelism. There are other areas
of possible parallelism in APL2. These are not dis-
cussed in this paper but are mentioned here for
completeness.

Vector notation. Vector notation, or strand nota-
tion, allows a vector to be created by placement of
objects next to each other. When these objects are
simple constants, then creation of the vector is very
straightforward. However, if the objects are expres-
sions involving calculations, then this very simple
construct allows for expression of a fork and join
parallel structure.

Data-flow analysis. Data dependence is key to de-
tecting parallelism in programs.? Several authors'?
have explored some of the areas of data-flow eval-
uation in APL. Most of this work has been related
to the work being done on APL compilers.

Measurement of parallelism in APL2 code

For the measurements on the degree of parallelism,
three applications were selected. These were se-
lected to cover a broad spectrum of applications
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Figure 13 Sorting functions

Grade down

Grade down (w/collating sequence)
Grade up

Grade up (w/collating sequence)

Figure 14 Rearrangement functions

Drop Transpose (general)
Reshape Transpose (reversed axes)
Take

Figure 15 Functions that cannot be executed in
parallel

Deal First Ravel
Enclose Pick Shape
Execute

from the commercial data processing field. Each of
the applications studied represents real code either
available as a product or running in a manufactur-
ing support area. Each of the applications is de-
scribed briefly below, along with an explanation of
the distinctions of that application.

Database application. The first application studied
was a database verification process. In this process
approximately S000 database records are read and
all of the data in those records are verified. The
information is verified by checking for consistency
against lookup tables and checking for conform-
ance to established input formats. The database is
also conditioned to conform to the requirements
for later processing.

This application was selected to show APL2 working
in a non-numeric processing intensive process. The
processing involves a large number of searches,
sorts, justifications, and merges.

Interactive application. An education catalog and
enrollment system was selected as an example of an
interactive application. This system was highly user
interactive, being completely full screen and menu
driven. Within the application all user input is
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checked for errors. During the session studied, the
users searched the catalog using two different
methods, viewed two course descriptions, enrolled
in a course, scheduled time in a learning center, and
reviewed their current enrollments.

This program contains a large amount of control
flow logic code, which decodes user commands and
performs complex error checking. Also, since it is a
full-screen design, it must create and refresh
screens and windows. The application also does a
significant amount of formatting of data to display
in “nice” formats to the user. This application
would be considered by most to be a highly sequen-
tial system.

Graphics application. The last of the three appli-
cations that was studied is the GRAPHPAK work-
space that is distributed with APL2. This workspace
does a variety of presentation, business, and scien-
tific’engineering graphics. The DEMO program
within this workspace was used for the measure-
ments on this application. This code represents
fairly old APL code (late 1970s) that was written
long before any emphasis on parallel processing.

The GRAPHPAK workspace uses APL functions to
manipulate vector represented images and display
them using GDDM (graphical data display manag-
er). It uses homogeneous coordinates to perform a
number of scaling and rotation calculations on
graphical images. It is a concentrated use of the
numeric capabilities of APL2.

Description of method. To measure the data par-
allelism in APL2 it was necessary to collect statistics
regarding the data passed as arguments and oper-
ands during actual APL2 operation. The method
chosen for this was to replace every primitive func-
tion and operator call with a call to a function or
operator that would produce the same results but
would collect information regarding the data
passed to the operation. This method is outlined
below.*

Workspace conversion. The workspace conversion
consisted of replacing each primitive function and
operator call, and all uses of brackets with calls to
user defined functions. Each of these replacement
functions had to fulfill two distinct purposes. First,
it had to do exactly the same data manipulation as
the primitive function. Second, it had to collect data
and save the data for future use (see the next sec-
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tion on data collection). The two actions must be
totally isolated from each other.

The first part of the replacement operation is easy
in most cases. Most of the time it is possible simply
to call the function that is being replaced. However,
there are some cases that present problems. The

The workspace conversion
consisted of replacing each
primitive function and
operator call.

replacement functions must explicitly handle fill
and identity functions for empty arguments. Also
bracket indexing and bracket axis must be imple-
mented using the syntax of normal functions and
operators. Finally, the outer product must be im-
plemented as a monadic operator.

A set of conversion routines was created that re-
placed all the primitive operations, as listed above,
to the replacement routines. Often this was a sim-
ple replacement, but sometimes it involved syntac-
tic changes to the code. For example, all bracket
indexing were converted to the index function.

The converted workspace was shown to be the func-
tional equivalent of the original workspace through
a variety of verification methods. This converted
workspace could then be run and the data collected
automatically during operation.

Data collection. Each replacement function also
must collect data. Each function evaluates its ar-
guments, summarizes the information based on the
operation type, and passes the information to the
A ACOLLECT function. The A ACOLLECT function is
responsible for compiling the information using
several global variables. It is important that the data
collection function interfere as little as possible
with the application workspace.

The data were collected using a tabular method. A
three-dimensional array was created with each
plane being the information for one of the primitive
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Table 2 Database application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to Parallel Average Maximum Parallel Average Maximum

Operation  gnerations  Dataltems Data ltems Operations Data ltems  Data ltems

ASCALAR 4,371 3,763 353 16,384 3,904 14 4,096

AXIS-A 10 10 2 2 10 8 8

AXIS-V 6,005 3,121 105 16,384 2,222 32 2,048

DERSCAL 12 0 0

DSCALAR 2,781 343 181 8,192 0

MSCALAR 206 63 60 128 0

NOTPAR 1,751 1,470 3 1,024 20 31 256

PRODUCT 1,137 1,133 37 8,192 1,061 1,310 524,288

REARRANGE 3,786 1,096 7,064 524,288 3,303 3,048 524,288

RECURSE 10 10 9 16 0

REDUCE 174 157 61 2,048 65 82 2,048

SCAN 70 70 44 64 1 8 8

SORT 0 0 0

Table 3 Interactive application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to Parallel Average Maximum Parallel Average Maximum
Operation  gperations  Data ltems  Dataltems  Operations  Data ltems  Data ltems
ASCALAR 10,370 5,156 239 16,384 4,770 27 256
AXIS-A 218 218 2 16 71 6 64
AXIS-V 30,428 13,027 17 4,096 2,125 45 1,024
DERSCAL 1,879 1,650 4 32 0
DSCALAR 18,022 2,906 21 1,024 140 2 2
MSCALAR 3,355 1,214 10 32 0
NOTPAR . 17,360 4,944 55 16,384 3,611 25 4,096
PRODUCT 1,627 1,515 8 64 276 247 2,048
REARRANGE 15,465 14,246 331 16,384 11,493 406 16,384
RECURSE 3,122 2,690 248 16,384 3N 2 3
REDUCE 1,475 1,221 17 64 161 183 512
SCAN 307 282 22 64 3 9 16
SORT 14 14 8 16 13 12 32

operations. The arguments to the function are tab-
ulated according to their primary and secondary
parallel dimensions as in the table. The data are
then tabulated in the array in groups; 0-8 have their
own group and after 8 they are grouped by powers
of 2.

The data collection routine also collects data on
routines that either do not fit the above method or
require more information to be saved. These are
called exception data. All of these data are gathered
during the operation of the application and then
saved when the program is done.

Data analysis. The data are summarized by groups
of operations. For each group, the following data
are calculated:
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¢ Total calls to operation—The total number of
times that the operations in the group were
called during running the application

For both the primary and secondary parallel di-
mensions:

¢ Parallel operations—The number of times the
given operation(s) were called with two or more
data items

¢ Average data items—The average number of
data items for all parallel calls

¢ Maximum data items—The maximum number
of data items presented to this operation by any
single execution
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Table 4 Graphics application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to Parallel Average Maximum Parallel Average Maximum
Operation  gperations  Data ltems  Dataltems  Operations  Data ltems  Data ltems
ASCALAR 27,393 13,957 16 2,048 10,541 63 512
AXIS-A 651 651 2 2 637 52 1,024
AXIS-V 27,587 20,905 22 2,048 4,914 19 1,024
DERSCAL 0 0 0
DSCALAR 80,584 15,416 16 2,048 0
MSCALAR 3,663 1,275 47 2,048 0
NOTPAR 9,484 4,764 2 1,024 5 28 128
PRODUCT 3,026 2,912 14 1,024 1,387 39 2,048
REARRANGE 21,620 13,195 47 2,048 13,142 40 2,048
RECURSE 0 0 0
REDUCE 6,235 5,899 10 512 1,276 16 1,024
SCAN 205 172 9 128 135 6 16
SORT 284 0 284 48 512

Table 5 Overall application parallelism

Group Name Total Primary Parallel Dimension Secondary Parallel Dimension
Calls to Parallel Average Maximum Parallel Average Maximum
Operation  gperations  Datatems Dataltems Operations Data ltems  Data ltems
ASCALAR 42,134 22,876 122 16,384 19,215 44 4,096
AXIS-A 879 879 2 16 718 47 1,024
AXIS-V 64,020 37,053 27 16,384 9,261 28 2,048
DERSCAL 1,891 1,650 4 32 0
DSCALAR 101,387 18,665 20 8,192 140 2 2
MSCALAR 7,224 2,552 30 2,048 0
NOTPAR 28,595 11,178 26 16,384 3,636 25 4,096
PRODUCT 5,790 5,560 17 8,192 2,724 555 524,288
REARRANGE 40,871 28,537 458 524,288 27,938 546 524,288
RECURSE 3,132 2,700 247 16,384 371 2 3
REDUCE 7,884 7,277 12 2,048 1,502 37 2,048
SCAN 582 524 21 128 139 6 16
SORT 298 14 8 16 297 47 512

Since the information for some operator calls was
included in the exception data, this information is
also summarized.

Results. The results for each of the applications
above are summarized in the following tables:
Table 2, database application; Table 3, interactive
application; and Table 4, graphics application.
Table 5 shows the combined results.*

General observations. The percentage of parallel
operations (approximately 45 percent of the
300K+ operations) is high. The average number of
data items is moderate, 10-100.

It is interesting to note that the array operations
force the user to write array code, hence there is a
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very high percentage of parallel operations. How-
ever, the scalar operations, especially dyadic scalar
functions, which allow the user to write scalar code,
have a much lower parallel operations count.

Application-specific observations. The database ap-
plication exhibits the highest percentage of parallel
operations (56 percent) and the highest average
parallel operations (as high as 7K). The graphics
application has lower average parallel operations
than might be expected. This might be due to the
fact that when this system was written, machines
were smaller, and looping solutions were often used
where array solutions would be used today. The
interactive solution exhibited a higher than ex-
pected degree of parallelism.
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struct from FORTRAN 8X need to be included. In
addition to the obvious data-flow simplification, the
APIL2 language with these constructs (given a proper
implementation) would be a much easier language
to read.

Conclusions

In the introduction to this paper, the question of
how much parallelism is expressed implicitly in
APL2 was presented. This study shows clearly that
APL2 exhibits a high degree of parallelism in its
structure. APL2 is a parallel language due to a his-
torical perspective that placed a high emphasis on
array operations. The paper establishes that 94 of
the 101 primitive APL2 operations can be imple-
mented in parallel. We demonstrate also that typ-
ically 40-50 percent of APL2 code in “real” appli-
cations is parallel code. In light of these statistics,
it is clear that APL is already a powerful paraliel
language.

Parallelization of APL2. In addition to the lan-
guage considerations, this study leads to some con-
clusions in the area of execution of current APL2 on
parallel machines.

Emphasis on array functions. Much of the emphasis
in parallelizing APL2 has been with the scalar func-
tions. This study points out that the array functions
also provide a rich resource for parallelization. By
considering the rearrangement functions as parallel
operations on the addresses of data, rather than the
data themselves, a large pool of parallel operation

Language recommendations. There are some fea-
tures of the language that reduce the available par-

allelism. The following recommendations address
specific areas in the APL2 language that increase the
potential for parallel operation.

Side-effect-free functions. It has been shown that
each is a highly parallel construct that can be used
as a fork-join construct. However, for defined func-
tions this construct cannot be executed in parallel.
This is the result of the lack of side-effect-free func-
tions in APL2. It is necessary for the programmer in
APL2 to be able to declare, or have the system de-
tect, that a given function has no side effects. Once
this is done, it will be possible to parallelize expres-
sions involving each (and other operators) without
worrying about data interference.

Axis specification on more operations. Only a subset
of the APL2 operations currently accept an axis

is

available.

Importance of data-flow analysis. Finally, it is im-
portant to note that although 45 percent of the calls

in

this study could be executed in parallel, there is

still a large body of code that is sequential in nature.

D

ata-flow analysis is the key to unlocking the par-

allelism in this code. Much emphasis must be

pl
a

aced on this area of research if APL2 is to prove
successful parallel programming language.

* Trademark or registered trademark of International Business
Machines Corporation.
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