
Parallel  expression 
in  the  APL2  language 

This paper reports  on an investigation of  parallel 
expression  and  execution in the  current APL2 
language.  The  study covers  a  historical, 
theoretical,  and  empirical  viewpoint. The parallel 
nature  of APL is traced  from its foundations in 
the  lverson  notation to current  problems in 
executing APL on  parallel  hardware.  The  paper 
discusses  features of the APL language  and its 
current  implementations  that limit taking 
advantage  of  parallel  expressions. A survey  of 
related topics from  the  work on APL compilers is 
also  included. Each APLS language construct is 
examined for  potential  parallel  expression. The 
operations  are  grouped  based  on  the  possible 
parallelism  exhibited  by  each  operation,  and  the 
possible  implementation  of  each  group is 
discussed.  Three APLS applications are  explored 
to determine  the  actual  parallelism  expressed in 
“real” APLS code.  These applications are  chosen 
from distinct areas:  graphics,  database  systems, 
and  user interactive systems.  The  actual  data 
passed  as  arguments to every  operation  are 
dynamically  examined,  and  the  information is 
collected  for  analysis. The  data  are  summarized 
and results of the  study  are  discussed. 

I n the last several years, APL has received atten- 
tion as a language that can be used to express 

parallel algorithms. The primary interest has been 
in the ability of the language to express algorithms 
on vector or array arguments directly, eliminating 
the need for a programmer to convert them into 
sequential loops. The question to be addressed in 
this paper is: Given a powerful array language, how 
much parallelism is expressed implicitly? This study 
attempts to  better understand the extent of parallel 
expression that is contained in typical A P L ~  appli- 
cations. 

The parallel nature of APL2 is investigated in two 
ways that make this paper unique from similar stud- 
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ies in the past. First, there is an emphasis on com- 
pleteness. All A P L ~  primitives are examined for pos- 
sible parallel execution. Next, there is an emphasis 
on gathering empirical information. This study 
measures real code to achieve a better understand- 
ing of the extent of parallel expression  in “real” 
A P L ~  code. 

Once the parallel nature of current A P L ~  is under- 
stood, this paper also  answers two other questions: 
From a language viewpoint  what items could be 
changed to increase the parallel expression in the 
language; and what  lessons  can be learned regard- 
ing the development of parallel interpreters for the 
current A P L ~  language? 

The  parallel  nature of APL 

APL A parallel  language. APL is a language that 
can be considered parallel since its very inception. 
Ken Iverson, in his original definition of A Pro- 
gramming Language,’ defines a language that is at 
its very roots a parallel language. The Zverson no- 
tation (the name used to describe the notation in 
Iverson’s book) was not intended to be imple- 
mented. However, APL and A P L ~  were developed 
directly from the concepts that he outlined. 

The 25 years of APL history  have been scattered 
with  work that has attempted  to extract and exploit 
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the power of the Iverson notation. Recently much 
of that work has been focused on using APL (or 
APL-like notation) on parallel machines. The ad- 
vantage of APL for parallel applications was  recog- 
nized as early as 1970 by Abrams: 

In general, APL programs contain less detail than 
corresponding programs in languages like ALGOL 
60, FORTRAN, or PLD.. . . While this aspect of APL 
often makes programs shorter  and less intricate 
than, say, ALGOL programs, it also requires that 
an evaluator of APL be more complex than one 
for ALGOL, especially if such expressions are  to 
be evaluated efficiently. On  the  other hand, a 
machine doing APL has greater freedom since its 
behavior is  specified  less  explicitly. In effect, APL 
programs can be considered as descriptions of 
their results rather than as recipes for obtaining 
them. 

The following sections explore the history of APL as 
it relates to execution on parallel machines. 

Types of parallel  expression. Parallel expression 
can be classified  in a number of  ways. The terms 
course  grain and fine grain have been used to dis- 
tinguish the size of the tasks that  are executed in 
parallel. SZMD (simple instruction stream, multiple 
data  stream) and MzMD (multiple instruction 
stream, multiple data  stream)  concentrate  on  the 
nature of the instructions that  are issued to perform 
the calculations, and vectorprocessor, array proces- 
sor, and multiprocessor tend  to emphasize the dif- 
ference in the machine architectures that  are used 
for parallel execution. All of these  terms inter- 
relate  and are often used interchangeably. 

For  the purpose of this work, four  terms will be 
introduced that focus on  the  nature of the expres- 
sion from which the parallelism is extracted. They 
are data parallelism, algorithm parallelism, data-flow 
parallelism, and task parallelism. 

The first three types of parallel expression are im- 
plicit-parallelism  is “implied” by the  operation(s) 
specified instead of being explicitly stated by the 
programmer. Task parallelism is the  one explicit 
parallel expression. 

Data parallelism in APL. Data parallelism refers to 
the application of a single conceptual operation  to 
a number of data items at  the  same time. Each of 
the  operations is completely independent from the 
rest. Hillis has coined the term data parallel to dis- 
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tinguish the difference in parallelism that comes 
from simultaneous operations across large sets of 
data,  rather  than from multiple threads of control. 
The key concept of this definition is the fact that  the 
expression of parallelism comes from the specifi- 
cation of operations across sets of data. 

Although Hillis connects the idea of threads of con- 
trol to his definition, our use of the term will not 
make this connection. There  are times that  the ex- 
ecution of a single conceptual operation  to a set of 
data items will require, or at least allow, indepen- 
dent and distinct algorithms to be run  on  the sep- 
arate  data items. Although the execution in this 
case is MIMD, instead of the SIMD implied in Hillis’s 
definition, the expression of parallelism is  still of 
the  data parallel form. 

The concept of arrays of data is not unique to APL. 
What sets APL apart is that arrays in APL are viewed 
as a unified  whole, rather  than a collection of 
individual data items.4 This view  is  what made 
Iverson’s  work so powerful. Iverson also defined 
operations on arrays including element-wise 
application of functions, scalar extension, selec- 
tion, reduction, and permutation operations. The 
power of these concepts has been recognized  in the 
work on new parallel languages’ and in the work to 
include parallelism in existing languages, such as 
FORT RAN.^ 

Brenner7 outlines some of the considerations and 
advantages of implementing APL on an array proc- 
essor similar to  the Connection Machine.’ Brenner 
recognized the potential of .execution of scalar 
functions, scan, and reduction on a parallel proc- 
essor. Brenner also gives a thumbnail sketch of how 
some other APL operations might be executed in 
parallel. He outlines methods for compress,  ex- 
pand,  grade  up,  reshape,  rotate,  take,  drop,  index 
of, member, and inner  product. Although this is an 
impressive  list,  it  is  only a small part of the  oper- 
ations that can be done in parallel, as will be shown 
in this paper. 

The parallel execution of APL has not only been 
shown theoretically, but also has been implemented 
in several machines. The Analogic A ~ L  Machine, 
introduced in 1980, used the APL language to drive 
a vector processor. As Del0 points out,  “One im- 
portant achievement of the project is running soft- 
ware ... that had been written in a standard  pro- 
gramming language to run on a conventional 
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computer.”’ Even today this is an achievement that 
has been matched by  few other parallel computer 
projects. 

While the APL machine was  specially designed for 
APL execution, most parallel hardware is not de- 
signed with APL in mind. However, APL seems well 
positioned to  take advantage of the new hardware. 
For example, the IBM 3090* Vector Facility  is a 
high-performance pipeline processor designed to 
significantly improve vector performance. lo APL;! 
was one of the first languages to use the Vector 
Facility for  the processing of vector (array) data. 
The close match between the expressiveness of 
APL2 and the processing of the IBM Vector Facility 
has led Brown to conclude “. . . in some senses, the 
IBM Vector Facility is a machine designed for ex- 
ecuting ML.”” 

Algorithm parallelism in APL. Algorithm parallel- 
ism refers to  operations  that can exploit the rela- 
tionships of the  data items to allow execution in 
parallel. This is in contrast to  the assumption of 
independence among the items in data parallelism. 
In this form of parallelism, it is the algorithm that 
is parallel in nature.  The  data must be viewed as one 
item. 

Examples are sorts, Fms (Fast Fourier Trans- 
forms), matrix inversions, and similar operations. 
In each of these cases there  are suboperations that 
can be executed in parallel, but these operations 
must be coordinated and supervised by an overall 
plan. 

Although this type of parallel expression can  clearly 
be replaced by algorithms written using the  other 
parallel expression methods, the power of the ex- 
pressiveness  is lost. The advantage of capturing al- 
gorithm parallelism at the language level  is that it 
allows for different architectures to execute the op- 
eration as is best suited for  the machine. 

Datu-flowparallelism in APL. Data-flow parallelism 
results from the flow  of results of one  operation to 
arguments of the next operation. Since often  there 
are multiple arguments to a given operation, each 
of those arguments can be calculated in parallel. To 
exploit  data-flow parallelism it  is  necessary to cal- 
culate the  data dependence (both argument and 
result) of each calculation. Then  the  order of cal- 
culation can be generated  and is  usually repre- 
sented graphically. This directed graph shows the 
operations  that can be executed in parallel. 
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This type of parallelism is  by far the most  difficult 
for the programmer to detect and exploit  using ex- 
plicit parallel expression. And although it  is  difficult 
for the system to detect this parallelism, the benefits 
of doing so are well worth the investment. 

Most of the work that  has  been  done in the  area of 
data flow  in APL has been in three areas. The first 
is  work that is  being done  on developing an APL 
~ o m p i l e r . ’ ~ , ~ ~  Clearly, data flow is necessary to un- 
derstand the manipulation of data in APL so that it 
can be compiled. The second area of work  is  in the 
area of functional languages.  Backus l4 understood 
the potential that APL had as a functional language. 
Many  have attempted  to exploit this potential, usu- 
ally  with the goal of being able to  create a parallel 
language based on functional constructs. 15,16 Fi- 
nally, there  are some who  have looked at  data flow 
solely as a method of execution within the APL lan- 
guage. 2~17~18 

In this section some of the methods and results of 
the work in all three  areas  are presented. The goal 
is to present the relationships between the work 
and some common ideas. 

Abrams2 and Waksh~ll’~ both explored the  area of 
lazy evaluation. In this form of evaluation, values 
for arguments are not calculated until they are 
needed by the function that references them. 
Abrams used this idea to eliminate calculation on 
data  that were later  to be discarded, a concept he 
called “drag-along.” Wakshull, while not discussing 
the benefits, gives a method by which an  entire line 
of code can be executed using  only data-flow prin- 
ciples. 

Both Wak~hull’~ and Ching13  discuss the concept 
that both the left and right arguments to a func- 
tion can be calculated at  the same time. They for- 
malize this concept by showing  how a single  dyadic 
function call  can be placed  within a pair of 
PARBEGIN and PAREND statements. 

Budd” shows the power of constructing a complete 
data-flow graph. By doing so he is able to make 
statements  about  the rank, shape, and type of data 
variables. Although this benefit is connected with 
the problems of compiling ML,  the technique is 
useful for discovering a number of properties of 
APL code without actually  executing the code. For 
example, this type of analysis  would be useful in 
determining interference between the assignments 
of two functions. 
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Task parallelism. Task parallelism expresses paral- 
lelism as  separate tasks that  are  started  and stopped 
by the application. These tasks run concurrently 
and may or may not communicate and synchronize 
with each other. All other forms of parallel expres- 
sion can be broken down into task parallelism. The 
implicit parallel expressions already discussed are 
methods of hiding these operations from the user of 
the language, and therefore freeing the user to con- 
centrate on the expression, not  the control, of par- 
allelism. 

Task parallelism concentrates on  the starting, stop- 
ping, synchronization, and communication between 
processes (tasks) at a level at which the user retains 
control over these operations. Task parallelism is 
exhibited in A P L ~  in the  area of shared variables. 

Shared variables, and the concept of auxiliary 
processors, are  the oldest parallel facilities in APL. 
The auxiliary processor in APL can be a process 
running in parallel with the  current workspace eval- 
uation. The processing in the auxiliary processor is 
asynchronous to the workspace processing. The 
synchronization of the workspace with a given  aux- 
iliary processor is done with the  shared variable. 
The shared variable is  also  used to pass commands 
to  the auxiliary processor and to receive results 
from that unit. 

A P L ~  has expanded the power and use of shared 
variables in several ways. Most importantly APL;! 
now  allows variables to  be  shared between individ- 
ual A P L ~  workspaces. In addition, several new 
shared variable system functions have been intro- 
duced that allow for more flexible methods of poll- 
ing and using the shared variables. It has been 
noted by Gerth19 that  shared variables allow par- 
allel structures without adopting artificial con- 
structs in the language. 

Hindrances to parallelism. There  are some hin- 
drances to parallelism in APL. These items must 
either  be eliminated from the language or their ef- 
fects must be minimized. 

Assignments and side efsects. One of the major prob- 
lems in trying to execute code in parallel is that side 
effects may be produced. A side effect is  any change 
in the  state of the machine during the execution of 
a function that can be observed outside the func- 
tion. Typical examples are assignments, 1/0, and im- 
plicit results (such as the change to ORL made dur- 
ing the roll and deal functions). Side effects hinder 
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parallelism because the total behavior of the pro- 
gram must create  the same side effects in the same 
order  to  be a proper parallel implementation. Tu 
and Perlis16 eliminate assignment in their func- 
tional language based on APL. 

Dynamic binding. Dynamic binding causes the 
names in APL programs to be bound to values based 
on  the environment in  which the function is called. 
Dynamic binding makes it difficult to  determine, 
before actual execution, many of the particulars of 
a program’s activities. This complicates the  areas of 
determining parallelism and avoiding interference. 
The alternative to dynamic binding is static binding. 
Static or lexical binding causes the values to  be 
bound to  the names based on the environment in 
which the object is defined. This solves  many of the 
problems of program analysis and is therefore  re- 
quired by much of the data-flow work.12,15,16 

Branching. The danger of GOTOS (branches in APL) 
have  long been known by programmers. Specifi- 
cally,  in the  area of parallel execution, branching 
makes it  difficult to determine  the exact execution 
of a program. At least two methods have been  pre- 
sented to deal with this problem. Some simply do 
not allow branching.I6 Others allow branching but 
only evaluate parallelism inside basic  blocks (the 
areas between branches). l3 

Lack of declarations. Finally, the lack  of declara- 
tions in APL deprives the  interpreter  (or compiler) 
of knowledge that is often known to  the program- 
mer. Some have  suggested  including (optional) 
declarations. l2 

APL2 as a  parallel  language 

A P L ~  is an inherently parallel language because al- 
most  all  primitive operations are defined on arrays 
of objects. The following sections classify and dis- 
cuss these primitive operations. Akl defines paral- 
lelism as follows: 

Given a problem to be solved,  it  is broken into a 
number of sub-problems. All of these sub-prob- 
lems are now  solved simultaneously, each on a 
different processor. The results are  then com- 
bined to produce an answer to  the original prob- 
lem. 2o 

The key to exploiting parallelism is  finding inde- 
pendent subproblems to be solved. The following 
discussion of each of the classes establishes how 
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Figure 3 Right  scalar  function 
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independent subproblems can be defined. This 
then gives the key to implementation of these op- 
erations  on a broad spectrum of parallel machines. 
For example, these  operations could be  done  one 
per processor on a SIMD machine, or assigned in 
groups (based on  data location) on a MIMD ma- 
chine. 

Scalar  functions. Scalar functions can be most eas- 
ily defined as the ability of a function to  operate  on 
individual elements of an array in  exactly the same 
way that they are applied to  the  entire array. In 
other words, the calculation of every  individual data 
element is independent of the  other. 

The following paragraphs define in turn monadic 
and dyadic scalar functions. The discussion of dy- 
adic scalar functions includes the concepts of scalar 
extension, and also introduces two new terms, right 
scalar function and left scalar function. The func- 
tions that fit each of these categories are listed. 
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Finally, there  are functions that  are closely related 
to scalar functions but  do  not fit the strict definition. 
These are also presented. 

Monadic  scalarfinctions. The formal definition of 
a monadic scalar function21 is  any function that 
meets the following requirement: 

( F  R)CII ++ F RCIl 

The  heart of this definition is the fact that  the cal- 
culation of each element is independent of  any 
other  and  that  the definition of the  operation  on  the 
whole array is defined in terms of the operation of 
the function on the individual elements. The func- 
tions in Figure 1 are defined in A P L ~  as being 
monadic scalar functions. 

Dyadic scalarfinctions. The definition of a dyadic 
scalar functionz3 is  very  similar to  the definition of 
the monadic case. A dyadic scalar function is  any 
function that meets the following requirement: 

( L  F R)CII +-, LC11 F RCIl 

Again the independence of the individual  calcula- 
tions can be seen. Figure 2 illustrates the dyadic 
scalar functions. 

Scalar extension. Scalar extension in APL2 is defined 
as “If one argument is a scalar or a one-item vector, 
pair the scalar or one-item vector with each item.”% 
This allows A P L ~  to express the concept implicitly 
that most parallel languages define explicitly as a 
“data broadcast.” The advantage in A P L ~  is that  the 
programmer does not need to express the broadcast 
as a separate  operation. 

Right scalarfinctions-Consider now the case that 
the left-hand argument is not a single item, so that 
scalar extension would take place, but  rather a data 
structure that is needed by each application of the 
function to items in the right argument. Therefore 
what we desire is not a scalar broadcast, but  rather 
an array broadcast. This concept is captured in the 
following definition. A function will be called a 
right scalar function if the following  is true: 

( L  F R)CII e+ L F RCII 

Although the  term and definition is  new, the con- 
cept is already used in APL2 in the function shown 
in Figure 3. 
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Left  scalarfinctions-In a similar  way,  any function 
that meets the following requirement will be called 
a left scalar function: 

( L  F R)CII ++ LC11 F R 

Again, this concept is also already used in A P L ~  in 
the function shown  in Figure 4. 

Each. The operator each accepts a single function 
as  an  operand, and the resulting derived function is 
monadic or dyadic based on  the valence of that 
function. Each changes the operation of the func- 
tion such that  the function, instead of being applied 
to  the  entire argument(s), is rather applied to each 
item of the argument(s). The combination of all  of 
these applications is the result of the derived func- 
tion. Each, when applied to any function, produces 
a derived function that is  by definition a scalar func- 
tion (see Figure 5) .  

However, to  be applied in parallel, one additional 
criterion must be satisfied; each application of the 
function must be  independent of the others. The 
practical implication of this is that  the function that 
is  used must be  free of side effects. This is true of 
all primitive functions in APLZ except for roll and 
deal. But this is not true of user-defined functions 
in A P L ~  in general. 

Scalar related finctions. There  are a number of 
functions in A P L ~  that, although not strictly scalar 
functions, still exhibit  many of the characteristics of 
scalar functions. These are listed in Figure 6, and 
the following paragraphs provide a brief descrip- 
tion of  how they are related to scalar functions. 

Find-Find can be defined in terms of the left sca- 
lar function member. Each item of the left argu- 
ment is searched for in the right argument using the 
member. After each search the partial result is 
shifted to  another processor, based on  the  shape of 
the left argument, and  the next search done. Clearly 
this is a highly parallel operation. 

Format-In  all three  format functions-default, 
format by example, and format by specification- 
there is a right scalar operation.  In  format by  ex- 
ample  and  format by specification the formatting of 
each item in the right argument can be carried on 
completely independently of the  other. Only when 
all of the items are  formatted must the result be 
compiled to form a new  matrix.  However, even this 
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Figure 4 Left  scalar  function 
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Figure 5 Scalar  derived  functions 

Each (monadic) Each (dyadic) 

Figure 6 Approximately  scalar  functions 

Find Index with axis 
Format (default) Interval 
Format by example Without 

operation is an operation  that is performed along 
axes and can be  done in parallel. 

In the case of default formatting, there is an addi- 
tional step of determining the format parameters 
for each column. This also can be  done in parallel 
with each processor determining on its own the  re- 
quired size for its item. These can then  be combined 
together in a process very  similar to reduction along 
the first dimension. 

Indexing-Indexing, both in its functional form and 
as bracket indexing,  would be difficult, but reward- 
ing, to implement in a parallel form. Index would  be 
considered a result scalar function, that is, each 
item in the result can be determined using an in- 
dependent calculation based on  the arguments. 
First, several sequential steps would be completed. 
The  shape of the result would  have to be deter- 
mined and  the locations allocated. Next, each lo- 
cation in parallel could obtain the correct indices; 
then, based on  the  shape of the array being indexed, 
it could determine positions and finally get the 
value from that position. 

Interval-Interval  is  also a result scalar function. 
Interval would be very  easy to implement on any 
machine in which each processor could determine 
a unique ID (identification), and all the IDS are se- 
quential. Interval could then  be simply imple- 



Figure 7 Reduction  functions 
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mented as laying out  the  shape of the result and 
telling each processor to  generate a number based 
on its ID. 

Without-Without is definedx as follows: 

3;-R ++ ( “ L E R ) / L  

The member and not part of the definition (most 
likely combined as a single operation) can be con- 
sidered to be a left scalar function as defined above. 
The parallel nature of replicate will be dealt with 
later. 

Reduction  and scan.  Scan and reduce operations 
(Figures 7 and 8), like scalar functions, have been 
at  the  heart of APL since its inception. Their im- 
portance to parallel processing has also been clearly 
established. Steele has called them primitive par- 
allel operations.’ Reduce can be considered a sub- 
set of the scan operation where only the final  value 
is considered to be important. 

When defined on vectors, these operations  are par- 
allel  only when the function that is being applied is 
associative,26 so only the associative case will be 
dealt with here. Brenner, along with  many others, 
has outlined a method of doing the scan (and there- 
fore reduce) in 2@pX passes. This means, for ex- 
ample, that a million element vector can be scanned 
in 20 operations  on a sufficiently parallel machine. 
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The placement of these operations in this classifi- 
cation is  very  difficult. They are placed here so that 
we can deal with their primary definition, that is, on 
vectors.  However, they are  often used on higher 
order arrays (for example, on matrices). When ap- 
plied to matrices these operations exhibit two levels 
of parallelism. First is the parallelism outlined 
above.  Second  is the parallelism that is  involved  in 
the application of the  operation along an axis, as 
outlined in the next section. These two levels of 
parallelism can be handled separately, or combined 
to  generate a highly parallel construct. 

Product  functions. The final set of functions that 
must be considered before we leave the  area of 
scalar functions is the product functions (Figure 9). 
These functions are based on the dot operator. 

Decode and encode are included with the product 
functions because they can be expressed in terms of 
the product functions. 

The product functions are also result scalar func- 
tions, with each item in the result being calculated 
from a separate calculation. In the case of outer 
product this is the simple application of a function 
to two data items. In the case of inner product this 
result is more complex,  consisting of the application 
of a function on two vectors and applying reduce to 
the resulting vector. 

Axis functions. Moving from the  area of scalar 
functions, the next  logical step would be functions 
that  are applied to subarrays of the arguments. 
These will be called axis functions. However, before 
presenting the individual functions, it would be 
helpful to formalize the concept of an operation 
along an axis and  the concept of subarrays. 

Subarray. A subarray is a subset of the  data con- 
tained in an array that is selected by using zero or 
more elided axes.  All nonelided axes  must  have a 
scalar value. 

In A P L ~  the axis specification can be used to apply 
the function to  independent subarrays within an 
array. The axis specified indicates the axis that is to 
be elided. We  shall demonstrate this principle by 
discussing enclose with axis and disclose with axis. 
These functions were chosen because they can be 
used to describe all other  operations  that take an 
axis specification (see Table 1). 
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Table 1 Decomposition  of  axis  specifications.  The  columns in  this  table show a  decomposition  of  each of the  lines 
of  code  that  can be used  to  replace  the  most  general  case  for  each  of  the  functions  with  axis  specification. 

Function  Result  Disclose  Enclose Operation  Enclose 
Operation  Operation Operation 

for  Left for  Right 
Argument Argument 

Catenate Z+ = CAI ( . [AIL)  c [ A I R  
Expand Z+ =CAI  L\ .. CLAIR 
Partition Z+ = C A I   ( C L )  C CLAIR 
Reduce Z+ 3 O/” .[AIR 
N-wise  reduce Z+ = CAI L O/” c C A l R  
Replicate Z+ = [AI O/” CLAIR 
Reverse Z+ = CAI @* * c CAI R 
Rotate Z+ =CAI L @.. CLAIR 
Scan Z+ = [AI  o\ .. c [ A I R  
Drop Z+ = C A I   ( C L )  c [ A I R  
Index Z+ 3 [ A I *   ( C L )  c [ A I R  
Laminate Z+ 3 C [AI  ( c ” L )  , c”R 
Ravel Z+ . [?AI c [ A I R  
Scalar Z+ = CAI ( . [AIL)  
Scalar Z+ ’CAI ( C L )  0” c [ A I R  
Take Z+ 3 CAI ( C L )  t ”  c [ A I R  

+:: 
>. c R  

* See Reference 32. 

The enclose with axis function takes subarrays 
along the axes  specified and makes them a single 
data item in the result. Therefore,  the resulting ma- 
trix has the  shape of the argument with the specified 
axes removed, and each item has the  shape of the 
axes removed. For example: 

A+2 3 4~124 
B-cCl 31A 
PB 

3 

p1.B 
2 4  

DISPLAY B 

L 9  10  11  12 

The disclose with axis function is  very  similar to this 
except the elements are disclosed and placed back 
in the subarrays as specified. For example: 
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C+.Cl 21B 
PC 

2 4 3  
C 

1 5 9  
2 6 10 
3 7 11 
4 8 12 

13 17 21 
14 18 22 
15 19 23 
16 20 24 

For each of the axis functions listed  in Figure 10, 
the application of the function results (conceptu- 
ally)  in the enclosing of the array along the given 
axis, applying the function to each item of the re- 
sult, and then disclosing the result along the same 
axes. In light of parallel operation, it  can be con- 
sidered that each of the operations on  the subarrays 
is an independent operation,  and  therefore can be 
done in parallel. 

Scalarfunctions with axis. In addition to  the above 
operations that  take  an axis specification, all of the 
scalar functions can take an axis  specification. The 
concept is also based on subarrays and can be ex- 
pressed in terms of enclose and disclose (see Table 
1). The axis specification on scalar functions causes 
the items in one argument to  be broadcast (scalar 
extension) to subarrays in the  other argument. 
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Figure 10 Axis  functions 

Catenate 
Catenate  with axis 
Disclose 
Disclose with axis 
Drop  with axis 
Enclose with axis 
Expand 
Expand  with axis 
Laminate 
Partition 
Partition with axis 

Ravel  with axis 
Replicate 
Replicate with axis 
Reverse 
Reverse along  first axis 
Reverse  with axis 
Rotate 
Rotate  with axis 
Rotate  along  first axis 
Take  with axis 

Figure 11 Recursive  functions 

Depth Enlist Match 

Figure  12  Matrix  inversion  functions 

Matrix  divide  Matrix  inverse 

Axis operators. BerneckyZ7 and Gfeller2* have both 
described a language enhancement called axis op- 
erator. Although their descriptions are different in 
syntax, they both carry the same fundamental idea. 
The axis operator has the effect of dividing the  ar- 
guments into smaller matrices and applying the 
function to these smaller items. This type of oper- 
ator would  allow functions to  be considered as axis 
functions, independent of their original type, much 
as  the each operator forces its operand  to  be con- 
sidered as a scalar function. 

Recursive  functions. Some functions in A P L ~  can be 
defined in the form of the following recursive def- 
inition: 

f(x) = g(f applied to each item in x) 

Where: f(x)  is a function that is defined at some 
level in the  tree (usually simple 
scalars) 

g(x)  is a combining function 

The characteristic nature of these functions is that 
their execution results in a  tree structure. The cal- 
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culation in each of the branches of the  tree is in- 
dependent of the  others and therefore can be  done 
in parallel. The functions are shown  in Figure 11. 

Depth. The function depth, which returns  the  depth 
of the  deepest item in a nested array, can be ex- 
pressed in terms of a recursive definition: 

r R  ++ l+r/=*'R 

Where: = simple  scalar ++ 0 

Enlist. Enlist converts a nested array into  a simple 
vector using a depth first method. The recursive 
definition of this routine is: 

ER +-+ 3 ,/E"R 

Where: E simple  scalar ++ one item vector 

Match. Match returns  a 1 if the two structures are 
identical at all  levels, and a 0 otherwise. The  re- 
cursive definition of this routine is: 

L r R  ++ AJLz"R 

Where: LzR  ++ 0 if L and R have different 
shapes 

scalars with different values 

scalars with the same value 

In general, the execution speed of match can be 
improved if,  when  any nonmatching condition is 
detected, all the execution in the  tree is terminated 
and the 0 result returned. This makes the execution 
of the branches nonindependent, but they still  can 
be executed in parallel. 

Whole  array functions. Moving from scalar to sub- 
arrays, the next  logical step would be operations 
that manipulate entire arrays and therefore  do not 
contain simple independent operations. However, 
both of these operations (see Figure 12) have been 
studied as classic parallel programming problems 
with  many already published solutions. 

The sorting functions in A P L ~  (see Figure 13) take 
an array as an argument and  return  a vector of 
indices as a result. 

Rearrangement functions. The last  class of opera- 
tions that can be executed in parallel are those that 

L-R ++ 0 if L and R are simple 

L-R +-+ 1 if L and R are simple 
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deal with data rearrangement. The characteristic of Figure 13 Sorting functions 
each of these functions is that  the  operation is done 
on addresses and  not  on  data. The operations are 
shown  in Figure 14. 

The method of execution for each of these opera- 
Grade  down (w/collating sequence) 
Grade up 

tions is  basically the same: Grade up (whollating sequence) 

1. Calculate the  shape of the result. 
2. Create  an array of processors that match this 

shape. 
3. Broadcast the control information to each proc- 

essor. 
4. Each processor calculates the  current position of 

the  data  that  are needed at that processor. 
5. Each processor gets the data. 

Not parallel. Some operations in M L ~  cannot be 
executed in parallel. The primary reason for this is 
that they are defined on single objects or they do 
only a single operation. These operations are 
shown in Figure 15. 

For example, deal is  only defined on scalars. En- 
close, first, pick, and shape all do a single operation 
on  an  entire array. Execute executes only one vector 
at a time. However, that line could be a parallel 
operation. 

Other  possible  parallelism. There  are  other  areas 
of possible parallelism in APL2. These  are  not dis- 
cussed  in this paper  but  are mentioned here for 
completeness. 

Vector notation. Vector notation, or strand nota- 
tion, allows a vector to be created by placement of 
objects next to each other. When these objects are 
simple constants, then creation of the vector is  very 
straightforward. However, if the objects are expres- 
sions involving calculations, then this very  simple 
construct allows for expression of a fork and join 
parallel structure. 

Data-flow analysis. Data  dependence is  key to  de- 
tecting parallelism in programs. 29 Several authors '' 
have explored some of the  areas of data-flow eval- 
uation in ML. Most of this work has been related 
to the work being done  on APL compilers. 

Measurement of parallelism  in APL2 code 

For  the measurements on  the degree of parallelism, 
three applications were selected. These were se- 
lected to cover a broad spectrum of applications 
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Figure 14 Rearrangement  functions 

Drop 
Reshape 
Take 

Figure 15 Functions  that  cannot  be  executed in 
parallel 

Deal  First Ravel 
Enclose Pick Shape 
Execute 

from the commercial data processing  field. Each of 
the applications studied represents real code either 
available as a product or running in a manufactur- 
ing support area. Each of the applications is de- 
scribed briefly  below, along with an explanation of 
the distinctions of that application. 

Database  application. The first application studied 
was a database verification process. In this process 
approximately 5000 database records are  read and 
all of the  data in those records are verified. The 
information is  verified by checking for consistency 
against lookup tables and checking for conform- 
ance to established input formats. The  database is 
also conditioned to conform to  the requirements 
for later processing. 

This application was selected to show A P L ~  working 
in a non-numeric processing intensive process. The 
processing  involves a large number of searches, 
sorts, justifications, and merges. 

Interactive  application. An education catalog and 
enrollment system  was selected as an example of an 
interactive application. This system  was  highly user 
interactive, being  completely  full screen and menu 
driven. Within the application all user input is 



checked for  errors. During the session studied, the 
users searched the catalog using two different 
methods, viewed two course descriptions, enrolled 
in a course, scheduled time in a learning center, and 
reviewed their  current enrollments. 

This program contains a large amount of control 
flow  logic code, which decodes user commands and 
performs complex error checking. Also, since  it  is a 
full-screen design, it must create  and refresh 
screens and windows. The application also does a 
significant amount of formatting of data  to display 
in “nice” formats to  the user. This application 
would be considered by most to  be a highly sequen- 
tial system. 

Graphics  application. The last of the  three appli- 
cations that was studied is the GRAPHPAK work- 
space that is distributed with APL2. This workspace 
does a variety of presentation, business, and scien- 
tifidengineering graphics. The DEMO program 
within this workspace was used for the measure- 
ments on this application. This code represents 
fairly old APL code  (late 1970s) that was written 
long before any emphasis on parallel processing. 

The GRAPHPAK workspace uses APL functions to 
manipulate vector represented images and display 
them using GDDM (graphical data display  manag- 
er).  It uses homogeneous coordinates to perform a 
number of scaling and rotation calculations on 
graphical images. It is a concentrated use of the 
numeric capabilities of APL~.  

Description of  method. To measure the  data  par- 
allelism  in A P L ~  it  was  necessary to collect statistics 
regarding the  data passed as arguments and oper- 
ands during actual A P L ~  operation. The method 
chosen for this was to replace every primitive func- 
tion and  operator call  with a call to a function or 
operator  that would produce the same results but 
would collect information regarding the  data 
passed to  the operation. This method is outlined 
below. 30 

Workspace  conversion. The workspace conversion 
consisted of replacing each primitive function and 
operator call, and all  uses of brackets with  calls to 
user defined functions. Each of these replacement 
functions had to fulfill two distinct purposes. First, 
it had to  do exactly the same data manipulation as 
the primitive function. Second, it had to collect data 
and save the data for future use (see the next  sec- 
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tion on data collection). The two actions must be 
totally isolated from each other. 

The first part of the replacement operation is  easy 
in most  cases.  Most of the time it  is  possible  simply 
to call the function that is being replaced. However, 
there  are some cases that present problems. The 

The workspace  conversion 
consisted of replacing each 

primitive function  and 
operator  call. 

replacement functions must  explicitly handle fill 
and identity functions for empty arguments. Also 
bracket indexing and bracket axis must be imple- 
mented using the syntax of normal functions and 
operators. Finally, the outer  product must be im- 
plemented as a monadic operator. 

A set of conversion routines was created  that re- 
placed  all the primitive operations, as listed  above, 
to  the replacement routines. Often this was a sim- 
ple replacement, but sometimes it  involved  syntac- 
tic changes to  the code. For example,  all bracket 
indexing were converted to  the index function. 

The converted workspace was  shown to be the  func- 
tional equivalent of the original workspace through 
a variety of verification methods. This converted 
workspace could then  be  run and the  data collected 
automatically during operation. 

Datu collection. Each replacement function also 
must  collect data. Each function evaluates its ar- 
guments, summarizes the information based on  the 
operation type, and passes the information to the 
A ACOLLZCT function. The A ACOLLECT function is 
responsible for compiling the information using 
several global variables. It is important  that  the  data 
collection function interfere as little as  possible 
with the application workspace. 

The  data were collected using a tabular method. A 
three-dimensional array was created with each 
plane being the information for one of the primitive 
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Table 2 Database  application  parallelism 

Group  Name  Total  Primary  Parallel  Dimension  Secondary  Parallel  Dimension 
Calls  to Parallel Average Maximum Parallel Average Maximum 

Operation Operations Data  Items Data  Items Operations Data  Items Data  Items 

ASCALAR 
AXIS-A 
AXIS-v 
DERSCAL 
DSCALAR 
MSCALAR 
NOTPAR 
PRODUCT 
REARRANGE 
RECURSE 
REDUCE 
SCAN 
SORT 

4,371 
10 

6,005 
12 

2,781 
206 

1,751 
1,137 
3,786 

10 
174 
70 
0 

3,763 
10 

3,121 
0 

343 
63 

1,470 
1,133 
1,096 

10 
157 
70 
0 

353 
2 

105 

181 
60 
3 

37 
7,064 

9 
61 
44 

16,384 
2 

16,384 

8,192 
128 

1,024 
8,192 

524,288 
16 

2,048 
64 

3,904 14  4,096 
10 8  8 

2,222 32  2,048 
0 
0 
0 

20 31 256 
1,061 1,310 524,288 
3,303 3,048 524,288 

0 
65  82  2,048 
1 8 8 
0 

Table 3 Interactive  application  parallelism 

Group  Name  Total  Primary  Parallel  Dimension  Secondary  Parallel  Dimension 
Calls  to Parallel Average Maximum Parallel Average Maximum 

Owration Operations Data  Items Data  Items Operations Data  Items Data  Items 
~~~~ 

ASCALAR 
AXIS-A 
AXIS-v 
DERSCAL 
DSCALAR 
MSCALAR 
NOTPAR 
PRODUCT 
REARRANGE 
RECURSE 
REDUCE 
SCAN 
SORT 

10,370 
218 

30,428 
1,879 

18,022 
3,355 

17,360 
1,627 

15,465 
3,122 
1,475 

307 
14 

5,156 
218 

13,027 
1,650 
2,906 
1,214 
4,944 
1,515 

14,246 
2,690 
1,221 

282 
14 

239 
2 

17 
4 

21 
10 
55 
8 

331 
248 

17 
22 
8 

16,384 
16 

4,096 
32 

1,024 
32 

16,384 
64 

16,384 
16,384 

64 
64 
16 

4,770 
71 

2,125 
0 

140 
0 

3,611 
276 

11,493 
371 
161 

3 
13 

operations. The arguments to  the function are tab- 
ulated according to their primary and secondary 
parallel dimensions as in the table. The  data  are 
then tabulated in the array in groups; 0-8 have their 
own group and after 8 they are grouped by powers 
of 2. 

The data collection routine also collects data on 
routines that  either  do  not fit the above method or 
require  more information to be saved. These are 
called exception data. All of these data  are gathered 
during the operation of the application and  then 
saved when the program is done. 

Datu analysis. The  data  are summarized by groups 
of operations. For each group, the following data 
are calculated: 

27 
6 

45 

2 

25 
247 
406 

2 
183 

9 
12 

256 
64 

1,024 

2 

4,096 
2,048 

16,384 
3 

512 
16 
32 

Total calls to operation-The total number of 
times that  the  operations in the group were 
called during running the application 

For both the primary and secondary parallel di- 
mensions: 

Parallel operations-The number of times the 
given operation(s) were called  with two or more 
data items 
Average data items-The average number of 
data items for all parallel calls 
Maximum data items-The  maximum number 
of data items presented to this operation by any 
single execution 
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Table 4 Graphics  application  parallelism 

Group  Name  Total  Primary  Parallel  Dimension  Secondary  Parallel  Dimension 
Calls  to  Parallel  Average  Maximum  Parallel 

Operation  Operations  Data  Items  Data  Items  Operations  Data  Items  Data  Items 
Average  Maximum 

ASCALAR  27,393  13,957  16  2,048  10,541  63  512 
AXIS-A  65 1 65 1 2  2 637  52  1,024 
AXIS-v 27,587  20,905  22  2,048  4,914  19  1,024 
DERSCAL 0 0 0 
DSCALAR  80,584  15,416  16  2,048  0 
MSCALAR  3,663  1,275  47  2,048 0 
NOTPAR 9,484  4,764 2 1,024 5 28  128 
PRODUCT 3,026  2,912  14  1,024  1,387  39 
REARRANGE 21,620 

2,048 
13,195  47  2,048  13,142  40 

RECURSE 0 0 
2,048 

REDUCE 6,235  5,899 10 512  1,276  16 
SCAN  205  172 9  128  135  6  16 

1,024 

SORT 284 0 284  48 5  12 

0 

Table 5 Overall  application  parallelism 

Group  Name  Total  Primary Parallel  Dimension 
Calls  to  Parallel 

Operation Operations  Data  Items  Data  Items  Operations  Data  Items  Data  Items 
Average  Maximum  Parallel  Average  Maximum 

ASCALAR 
AXIS-A 
AXIS-v 
DERSCAL 
DSCALAR 
MSCAIAR 
NOTPAR 
PRODUCT 
REARRAN 
RECURSE 
REDUCE 
SCAN 
SORT 

42,134 
879 

64,020 
1,891 

101,387 
7,224 

28,595 
5,790 

GE 40,871 
3,132 
7,884 

582 
298 

22,876 
879 

37,053 
1,650 

18,665 
2,552 

11,178 
5,560 

28,537 
2,700 
7,277 

524 
14 

122 
2 

27 
4 

20 
30 
26 
17 

458 
247 

12 
21 
8 

16,384 
16 

16,384 
32 

8,192 
2,048 

16,384 
8,192 

524,288 
16,384 
2,048 

128 
16 

19,215 
718 

9,261 
0 

140 
0 

3,636 
2,724 

27,938 
371 

1,502 
139 
297 

44 
47 
28 

2 

25 
555 
546 

2 
37 
6 

47 

4,096 
1,024 
2,048 

2 

4,096 
524,288 
524,288 

3 
2,048 

16 
512 

Since the information for some operator calls  was 
included in the exception data, this information is 
also  summarized. 

Results. The results for each of the applications 
above are summarized in the following  tables: 
Table 2, database application; Table 3, interactive 
application; and Table 4, graphics application. 
Table 5 shows the combined results.31 

General  observations. The percentage of parallel 
operations (approximately 45 percent of the 
300K+ operations) is  high. The average number of 
data items is moderate, 10-100. 

It is interesting to  note  that  the array operations 
force the user to write array code, hence there is a 

very  high percentage of parallel operations. How- 
ever, the scalar operations, especially  dyadic scalar 
functions, which  allow the user to write  scalar code, 
have a much  lower parallel operations count. 

Application-specific observations. The database ap- 
plication  exhibits the highest percentage of parallel 
operations (56 percent) and the highest average 
parallel operations (as high as 7K). The graphics 
application has lower  average parallel operations 
than might be expected. This might be  due to  the 
fact that when this system  was written, machines 
were smaller, and looping solutions were often used 
where array solutions would be used  today. The 
interactive solution exhibited a higher than ex- 
pected degree of parallelism. 
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Conclusions 

In  the introduction to this paper,  the question of 
how  much parallelism is expressed implicitly in 
A P L ~  was presented. This study  shows  clearly that 
A P L ~  exhibits a high degree of parallelism in its 
structure. A P L ~  is a parallel language due  to a his- 
torical perspective that placed a high emphasis on 
array operations. The  paper establishes that 94  of 
the 101 primitive A P L ~  operations can be imple- 
mented in parallel. We demonstrate also that typ- 
ically 40-50 percent of A P L ~  code in “real” appli- 
cations is parallel code. In light of these statistics, 
it  is clear that APL is already a powerful parallel 
language. 

Language  recommendations. There  are some fea- 
tures of the language that reduce the available par- 
allelism. The following recommendations address 
specific areas in the A P L ~  language that increase the 
potential for parallel operation. 

Side-eflect-free functions. It has been shown that 
each is a highly parallel construct that can be used 
as a fork-join construct. However, for defined func- 
tions this construct cannot  be executed in parallel. 
This is the result of the lack of side-effect-free func- 
tions in APL~.  It is  necessary for the programmer in 
A P L ~  to  be able to declare, or have the system de- 
tect, that a given function has no side effects. Once 
this is done, it  will be possible to parallelize expres- 
sions involving each (and  other  operators) without 
worrying about  data interference. 

Axis speciJcation on  more operations. Only a subset 
of the A P L ~  operations currently accept an axis 
specification. Because of this it is  necessary for the 
programmer to manipulate the  data before and af- 
ter  the  operation  to make the  data conform to  the 
required axes. Often  the programmer will  use an 
explicit enclose-disclose pair, use transpose, or 
(worse still) write a looping solution. This problem 
could be solved in two different ways. A P L ~  could be 
modified so that all, or  at least most, operations 
accept an axis specification. Or, as has been  pro- 
posed by others,  an axis operator could be intro- 
duced. 

Controlflow operators introduced. Each is the first of 
several necessary control flow operators, essentially 
implementing a FORALL construct. Other  opera- 
tions need to  be introduced to perform other struc- 
tured processing constructs. For example, looping, 
recursion, if-then-else, case, and  the WHERE con- 
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struct from FORTRAN 8X need to  be included. In 
addition to  the obvious data-flow simplification, the 
A P L ~  language with these constructs (given a proper 
implementation) would be a much easier language 
to read. 

Parallelization of APLZ. In addition to  the lan- 
guage considerations, this study leads to some con- 
clusions in the area of execution of current A P L ~  on 
parallel machines. 

Emphasis on arrayfunctions. Much of the emphasis 
in parallelizing A P L ~  has been with the scalar func- 
tions. This study points out  that  the array functions 
also provide a rich resource for parallelization. By 
considering the rearrangement functions as parallel 
operations on  the addresses of data,  rather  than  the 
data themselves, a large pool of parallel operation 
is  available. 

Importance of data-flow analysis. Finally,  it  is im- 
portant  to  note  that although 45 percent of the calls 
in this study could be executed in parallel, there is 
still a large body of code that is sequential in nature. 
Data-flow  analysis  is the key to unlocking the  par- 
allelism in this code. Much emphasis must be 
placed on this area of research if A P L ~  is to prove 
a successful parallel programming language. 
* Trademark or registered trademark of International Business 
Machines Corporation. 
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The problem  with roll is that it is  a  function  with  side  effects, 
so the order of calculation  is important. In most  cases, the 
above  can  be  ignored  because  in  each  case five random 
numbers are generated, independent of the order of calcu- 
lation. Although  this  effect  can  usually  be  ignored on se- 
quential machines, the introduction of parallel calculation 
of random numbers is a  much more complex  problem.  (See 
Reference 33.) 

23. See Reference 21, p. 55. 
2 4 .  Bid., p. 58. 

26. This  is not strictly true. For example: 
2 5 .  Bid., p. 250. 

-/x *+ + / X x ( p X ) p l  -1 
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