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The  objective of the  APL  lL  Interpreter  Generator 
is to solve  the  problem  of  creating  APL 
interpreters  for  different  machines  at  a  minimum 
cost.  The  objective  has  been  accomplished  by 
writing  an APL  interpreter  in a speaally designed 
programming  language (lL) that  has  very  low 
semantics  but  high-level  syntax.  The  interpreter 
is  translated  to  each  target  machine  language by 
easily  built  compilers  that  produce  high- 
performance  code.  The  paper  describes  IL,  the 
APL  interpreters  written  in  IL,  and  the  final 
systems  generated  for  seven  different  target 
machines  and  operating  systems.  Some  of  these 
systems  have  been  generated  in  an  extremely 
short  time. 

A mong the many languages used to write pro- 
grams, APL and its successor, AFJL~, are very 

powerful. They support highly structured data of 
several different internal types and recognize  a 
large number of primitive functions and operators, 
some of which (for example, execute, m) are ex- 
tremely complicated for some arguments. The ex- 
istence of these primitives makes it  very  difficult for 
AFJL to be compiled  (except for subsets of the lan- 
guage or through the inclusion of an interpreter in 
the machine code). Thus full AFJL and A P L ~  systems 
have to be interpretive. These  interpreters  are very 
large programs, consisting of tens of thousands of 
instructions. 

Since interpreted programs normally run at least an 
order of magnitude slower than their compiled 
equivalents, programs written in APL or A P L ~  start 
with  a speed handicap as compared to programs 
written in, say, C. However, the designers of AFJL 
and A P L ~  and the implementers of the interpreters 
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have tried to reduce this effect  in two different 
ways: 

By extending the language with ever more pow- 
erful primitives. In a single stroke, these perform 
complex operations that, in other languages, 
would require complicated algorithms. In this 
way, the time for interpretation is minimized 
with respect to  the time for execution. The fact 
that most AFJL primitives  apply to  entire arrays 
also helps in this direction. 
By programming the interpreters in  very  low- 
level  languages that make the best  possible use of 
the resources of the machine or the operating 
system. 

As a result, APL and A P L ~  interpreters were usually 
written in  assembly  languages,  with the consequent 
loss of portability. It has been estimated several 
times that,  done in this way, the full development of 
an APL system for a  new  machine requires a total of 
about 30 person-years. 

The APL IL Interpreter  Generator  started as a proj- 
ect in the IBM Madrid Scientific Center in 1977. The 
objective of this project was to solve the problem of 
obtaining APL interpreters for different machines, 
at a  minimum  cost. The solution was to write an APL 
interpreter in  a  programming language, specially 

Wopyright 1991 by International  Business  Machines  Corpora- 
tion.  Copying  in  printed  form  for  private  use  is  permitted  with- 
out  payment  of  royalty  provided  that (1) each  reproduction  is 
done  without  alteration  and (2) the Journal reference  and IBM 
copyright  notice  are  included on the  first  page.  The title and 
abstract,  but no other  portions,  of  this  paper  may  be  copied  or 
distributed  royalty  free  without  further  permission  by  computer- 
based  and  other  information-service  systems.  Permission to re- 
publish any  other  portion of this  paper  must  be  obtained  from 
the  Editor. 

IBM  SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 



designed for the purpose, that has very  low seman- 
tics but high-level  syntax. This interpreter is trans- 
lated to each target machine by appropriate, easily 
built compilers that produce high-performance 
code. 

In the past 14  years, the programming language 
called the Madrid Scientific Center Intermediate 
Language (IL) has reached its third version; it has 
been essentially stable since  1980. The first section 
of the paper describes the language design  deci- 
sions,  which  in  many  cases are curiously parallel to 
those made in the design of the C language, al- 
though there  are important differences. The second 
section of the paper describes the different inter- 
preters  that have been written in IL since  1980. Fi- 
nally, the last section describes the procedure used 
to generate an APL system for a given target envi- 
ronment (a machine and an operating system). 

The  Intermediate  Language 

The Madrid Scientific Center Intermediate Lan- 
guage (IL) was  designed  in the  late 1970s,  according 
to  the following criteria: on  the  one hand, a high- 
level  syntax  was desirable to assure portability be- 
tween different machines and operating systems; 
on the other hand, very  low-level semantics would 
make  it  possible to obtain highly optimized code 
with  very  simple,  easy-to-build  compilers. 

The procedure that was  followed to design the IL 
instructions was to select the most  common oper- 
ations in the assembly  languages of different IBM 
machines and to represent them with a high-level 
syntax. In this way, compilation of IL instructions 
into assembly language usually  becomes a one-to- 
one translation between one IL symbol and one as- 
sembly instruction. 

Even control instructions were subject to this pro- 
cedure. Since the only control instruction in  assem- 
bly languages  is  usually the brunch on condition, this 
instruction is the only one  that was implemented in 
IL, although it received a high-level  syntax  in the 
following way: 

+label IF condition 

Optimization, in this kind of intermediate lan- 
guage, is not a question to  be solved by the com- 
pilers,  which we want to build as quickly as possible, 
but by the IL programmers who  write the APL in- 
terpreter. Remember that this job should be done 
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only once, although there may  be as many  compil- 
ers as there  are different target machines. 

The only assumption about the machine  in  which IL 
may eventually be implemented is that its memory 
is considered to  be a vector of  fixed but undefined 
size (eight bits or more per byte; two, four, or eight 
bytes per word).  Memory units should be consec- 
utively numbered. 

The four elements of IL are now described. 

Constants. Constants can be numeric or literal. In 
actual fact, a literal constant can also be considered 
as numeric and operated  on accordingly. This 
means that an expression  such as 

A’ +1 

is  valid and (assuming ordinality in the character 
set) is equivalent to constant 

’ B ’  

The C language manages character constants in the 
same way. 

ASCII (American Standard Code for Information 
Interchange) or EBCDIC (extended binary-coded 
decimal interchange code) can be selected as the 
internal representation of the literal constants. In 
the case of the APL IL interpreters, ASCII has been 
chosen. 

Numeric constants can be either integer or floating 
point. Floating-point constants, such as 2.0,  are 
distinguished by the presence of the period from 
integer constants, such as 2 . 
Identifiers. Identifiers are names that begin  with a 
letter  other than Q (which  is reserved) and continue 
with  any  (possibly empty) combination of letters 
and figures. The maximum number of characters in 
an identifier is  five. 

What an identifier represents is controlled by its 
first letter, according to Table 1. 

A full-word variable has an implementation- 
dependent length. Depending on the machine  (in a 
ldbit  system, for instance), a full-word variable can 
be  the same as a two-byte  variable. This type  is, to 
a certain extent, similar to  the int type  in the C 
language, but IL does not distinguish  full-word  in- 
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Table 1 Identifiers  and  their  definitions 

I Identifier  Representation I 
O,R,T,U,V,W A variable  whose  value  is a vector of one-byte  integers  or  literals. 
I,J,%L,M,N A variable  whose  value  is a  vector of two-byte  integers. 
&B,C,D,G,H,P A variable  whose  value  is a  vector of full-word  integers  or  pointers. 
F A variable  whose  value is a  vector of floating-point  values. 
E An internal  label  in a program. 
S A public  label in a program. 
KY,Z A named  constant. 

tegers from pointers. Assembly languages do not 
usually make this distinction either. 

The only data  structure supported is the vector (a 
succession of values at consecutive locations). 
Higher structures (such as matrices) are not a part 
of IL, as they are not a part of assembly  languages. 
A scalar is considered to be  the same as a vector of 
one element. 

Declarations. In an IL program, declaration instruc- 
tions are located at the beginning and clearly  sep- 
arated from executable instructions. Every  variable 
used by a program must be declared, either by as- 
signing  initial  values to it, or by defining an equiv- 
alence. 

Initial values are assigned by means of instructions 
such as  the following: 

A + l  3 5 7 
BclOpO 
W+' ABC' 

The first instruction defines A as a vector of four full 
words  with initial values of one, three, five, and 
seven. The second defines B as a vector of ten full 
words  with  initial  values of zero. The third defines 
Was a vector of three bytes  with  initial  values equal 
to the ASCII representation of letters A, By and C. 

Equivalences are very  powerful and have different 
forms, such  as: 

C=AC 2 1 
V=8pF 
C1=3pP1( 4) 

The first instruction defines variable C to have the 
same address as the third element of vector A (zero 
origin  is  used). Both A and C are full-word objects 
by virtue of their initial letter. 
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The second instruction defines V as a vector of eight 
bytes, sharing the address of floating-point variable 
F. This means that V is the vector of the bytes that 
make up the floating-point value of F, assuming 
that floating-point values are represented in  eight 
bytes. 

The third instruction defines C1 as a vector of three 
full  words  whose address is the current value of 
pointer P1 plus four. Of course, if the value of P1 
changes, the address of C will change accordingly. 

Pointers are extremely  useful  in IL programs, just as 
they are in C. However, there is no restriction on 
the number of equivalences that may be defined to 
a pointer at the same time. For instance, the fol- 
lowing declarations 

A1=4pP( 0 ) 
Il=P( 0 1 
Vl=P( 0 ) 

are all  valid and define three variables that share 
the same address (the value of pointer P), but have 
a different type. A1 is a pointer or full-word integer 
vector of four elements. I1 is a two-byte scalar, and 
V 1  is a one-byte scalar. 

Executable  instructions. Executable IL statements 
are analyzed and executed  from  right to left. Func- 
tions are executed without any precedence rules in 
the  order in  which  they are found. Parentheses are 
not allowed. The main IL executable instructions 
are of two different types:  assignment instructions 
and execution control instructions. 

Assignment instructions may take four different 
forms,  according to the following  syntax: 

variable * expression 
variable A expression 
variable V expression 
pointer-variable -+ address  expression 
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where the first form corresponds to normal assign- 
ment,  the second increments the value of the vari- 
able by the right-hand expression, the third decre- 
ments that value in the same way, and the  fourth, 
only applicable to pointers, assigns to  the variable 
the address of the expression on the right side. 

Execution control statements have three different 
forms: 

-1 abel 
-+label IF condition 
-+label-list OF index 

where the first form corresponds to  the uncondi- 
tional transfer, the second to  the conditional trans- 
fer, and the  third to a computed go-to instruction. 

The operations  that can be a part of an expression 
are  the typical ones usually encountered in most 
machine languages, such as the following: addition 
(+), subtraction (-), multiplication (x), division (+), 
residue ( I ), bit shift to  the left ( t  ), bit  shift to  the 
right (r), bit-to-bit logical operations  that include 
not ( w ) ,  and (A), inclusive or (v), and exclusive or 
(o), absolute value ( I in monadic form), and an 
operation  to compute the integer part of a floating- 
point number (- in monadic form). 

The following  is an example of an executable in- 
struction in IL: 

Pl+AREF+ZEI4?4+1tDREFI 

This instruction computes the value of pointer P1 
in the following way: The value of variable DREFI 
is multiplied by two (a shift to  the left of one po- 
sition is equivalent to a multiplication by two); then, 
four is added  to  the preceding result. Next, the new 
result is shifted to  the left by as many positions as 
the value of constant ZEI4 (which depends on the 
target machine). Then  the value of variable AREF is 
added, and finally, the result is  assigned to pointer 
P1. 

Another kind of executable instruction is the sub- 
routine call. Its syntax  is  very simple, just the name 
of the subroutine. No parameters can be passed 
explicitly.  All of them must be passed through com- 
mon memory, or by means of a set of special pointer 
variables, the values of  which are automatically re- 
stored  before returning to  the calling routine. 
These variables fulfill the role of the machine reg- 
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isters, and in fact, in several of our implementations 
they are registers, but this is not necessarily so. 

Language  tradeoffs. A question that could be dis- 
cussed  is whether IL has any advantages over C for 
the implementation of machine-independent soft- 
ware. This question is really after  the fact since IL 
was designed in 1977, at a time when C was in its 
infancy and  far from being as widespread as it  is 
now. However, in our opinion, IL is superior to C in 
its memory management capabilities, which are 
much nearer to  the machine language level, and 
also  in its ability to define multiple pointer-based 
structures that can overlap freely and move around 
without any restrictions. 

In contrast, C has better type-constraint capabilities 
that provide the programmer with  mechanisms to 
detect certain errors  at compile time, which IL com- 
pilers do not have.  However,  we did not find the 
lack of these capabilities frustrating in our devel- 
opment of APL interpreters. 

Finally,  IL,  being a less complicated language, can 
be translated by very simple compilers. This point 
was important in our development procedure, 
which  is described in the last section of this paper. 

The APL IL interpreters 

IL has been used for the development of several 
different interpreters. In the time from 1978 to 
1982, an APL interpreter was built at about the same 
level of the language as the  one implemented in the 
vs APL product. This interpreter was  especially ap- 
plicable to small machines with reduced data spaces 
in  memory, and to increase the amount of work- 
space available to  the user, we introduced the con- 
cept of an elastic workspace. This interpreter was 
compiled into  the System/370*  (which  we used as 
our test machine), the  Series/l*, and the IBM Per- 
sonal Computer. 

The  Series/l computers had an important limita- 
tion: the memory data space used by one applica- 
tion was restricted to 64K bytes. To increase it, we 
implemented the elastic workspace as a disk exten- 
sion of the workspace. APL objects directly  acces- 
sible to  the user (in the active workspace) could also 
reside on disk and would be copied into  the main 
memory  only when they were needed. 

When the IBM Personal Computer was announced 
in  1981,  we decided to translate our  interpreter  to 
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this machine under the Personal Computer Disk 
Operating System (PC DOs, or DOS). In this case, 
there was the same limitation in the fact that  the use 
of segment registers made only  64K  bytes  directly 
available.  But these machines  have greater flexi- 
bility  in comparison to  the Series& since the con- 
tents of the segment registers can be changed by the 
program. This flexibility made it possible for us to 
implement the elastic workspace  extension  in  main 
memory,  which made it  much faster and more ef- 
ficient. 

The workspace  was  divided into two different sec- 
tions. In  the first section, with a length of  64K bytes, 
all the objects were directly  accessible to the pro- 
grams. This section included the APL symbol table, 
the APL execution  stack, and many APL objects, all 
of them smaller than 32K  bytes. 

The second section (the elastic workspace) con- 
tained APL objects larger than 32K bytes and (pos- 
sibly) smaller APL objects that did not fit  in the 
directly  available  workspace at a given  time and 
were not currently needed. Depending on  the 
amount of space available (limited in DOS to 640K 
bytes but possibly reduced by the actual memory of 
the machine and the loading of the operating sys- 
tem extensions), the elastic workspace  could be au- 
tomatically reduced to zero. 

This organization made it possible to build the IL 
compiler for the IBM Personal Computer in such a 
way that the compiler could assume that all of the 
objects are directly  accessible and forget about seg- 
ment registers. The only module not complying 
with this restriction was the handler of the elastic 
workspace,  which  was written directly  in  assembly 
language. 

However, the indicated memory organization had 
an important disadvantage:  many of the basic APL 
structures, such as  the symbol table and the exe- 
cution stack, could not increase further than 32K 
bytes, and users soon found that this was a strict 
limitation. Therefore, during 1983-85,  we devel- 
oped a new APL interpreter with a more general 
workspace management, specially adapted for 16- 
bit addressed segmented microprocessors (such as 
the 23086). This interpreter, which from the lan- 
guage point of  view  was still at  the vs APL level,  was 
compiled into  the System/370  (which  we  always use 
as the test machine) and also into the IBM Personal 
Computer (under DOS) and the IBM Japanese Per- 
sonal Computer and JX PC (under Japanese DOS) as 
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a result of a joint project between the IBM Madrid 
and Tokyo  Scientific Centers. 

The elastic workspace concept was abandoned, or 
(as it may be preferred) extended to  the whole 
workspace. In actual fact, what happened is that 
this system incorporated a single  workspace area 
containing all of the APL objects,  including the sym- 

This  organization  made it possible 
to  build  the  IL  compiler for the 
IBM  Personal  Computer so that 

the  compiler  could  assume all of 
the  objects  are  directly  accessible. 

bo1 table and the execution stack, regardless of their 
sizes. The lower part of the workspace,  however, 
always  directly  accessible through the base segment 
registers, includes all of the  interpreter  data and 
work areas plus four “operand areas.’’ 

An operand area is a section of the workspace lo- 
cated in the lower  64K  bytes of the total workspace, 
where the system can copy APL objects, either com- 
pletely or partially. A set of special subroutines 
manages the transfer of the  data from the operand 
areas to  the workspace proper and vice  versa. The 
remainder of the  interpreter works  only  with the 
operand areas and can thus forget about the seg- 
ment registers. Only a few modules in the whole 
interpreter (less than 10 percent) must  work di- 
rectly on the workspace, and thus they  must be 
hand-modified  in  assembly language to introduce 
the required modifications to  the segment registers. 

In 1985 we started a joint project between the 
Madrid and United Kingdom  Scientific Centers to 
build an A P L ~  interpreter written in IL. This inter- 
preter has been compiled, as usual, into the Sys- 
ted370, and also to the following target machines 
and operating systems: the IBM Personal Computer 
(IBM PC), Personal Computer AT*, and Personal 
System/2* (under DOS and Operating System/2*, or 
Os/2*), the IBM Japanese Personal Computer (un- 
der Japanese DOS), the Intel 80386**-based ma- 
chines in  32-bit addressing mode (under DoS), the 
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able 2 Previously  available  interpreters 

1. IBM  Personal  Computer APL, version  1.0, Program  Number  6024077, 1983. 
2. IBM  Personal  Computer APL, version 2.0, Program  Number  6391329, 1985. 
3. 5550 NiHonGo (Japanese) APL, version  1.0, Program  Number  56OO-JPL,  1984, developed in collaboration  with  the Tokyo 

4. 5550 NiHonGo (Japanese) APL, version 2.0, Program  Number 5600-JPN,  1985,  developed  in  collaboration  with  the Tokyo 

5. JX NiHonGo (Japanese) APL, Program  Number  5601-JPL,  1985, developed in collaboration  with  the Tokyo Scientific 

6. APL2 for  the IBM  Personal  Computer, version 1.0, Program  Number 5799-PGG  (PRPQ  RJ0411, Part No. 6242936),  1988. 
7. APL2 for  the IBM  Personal  Computer, version LOE,  Program  Number 5604-260 (Part No. 38F1753), and  Program  Number 

8. APL2  for the IBM RISC  System/6000,  Program  Number  5765-012,  1991, developed in collaboration  with  the  APL2/6000 

Scientific  Center. 

Scientific  Center. 

Center. 

5775-RCA (Part No. 38F1754),  1988. 

Development  Group  from  the IBM  Kingston  Laboratory. 

IBM 6150 RT PC* (under Advanced Interactive Ex- 
ecutive*, or AIX*), and  the IBM  RISC System/6000* 
(under AIX). 

There  are two versions of this interpreter.  The first 
one, used to generate the PC-like 16-bit  systems, 
still uses the memory management described for 
the second APL interpreter. However, in the second 
A P L ~  interpreter used to generate  the 32-bit  sys- 
tems, where memory management is not a problem, 
some of the modules  have been replaced by others 
that work  directly on the workspace,  skipping the 
copy to the operand areas, to improve  performance. 

An additional improvement in the A P L ~  interpret- 
ers is the presence of a reference table, functionally 
intermediate between the symbol table and the ac- 
tual APL objects. This improvement means that 
most of the time the  interpreter may refer to a given 
object by its  reference  number,  regardless of the ac- 
tual position  where the object  is  located  in the work- 
space. There are several important consequences of 
this  organization that are now described. 

On the  one  hand, a given A P L ~  piece of data may be 
pointed to by more than  one APL object. Since A P L ~  
supports general arrays, this capability is important 
to prevent memory duplication. The reference ta- 
ble keeps information that indicates whether an  ob- 
ject is multipointed, which will be used in case of 
modification to decide whether the value should be 
copied somewhere else before the changes are  per- 
formed. 

On  the  other hand, garbage collection is  much  sim- 
plified and  made extremely fast. This has always 
been  the case with APL, but it  is even more dramatic 
now that extremely large workspace sizes  can be 
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attained. With our 32-bit interpreter, workspace 
sizes can reach many  megabytes, but even so, gar- 
bage  collection  never  takes  longer than a few  seconds. 
This speed contrasts  with other interpretive  lan- 
guages,  such as LISP and  Smalltalk,  where  garbage 
collection  was  traditionally a very  expensive  proce- 
dure, sometimes  taking  several  minutes to complete. 

Table 2 lists some of the previous interpreters  that 
have become international IBM products. 

Generating  an APL interpreter 

The  procedure  to  generate an A P L ~  system for each 
environment (machine and operating system) can 
be summarized as follows. First, a compiler that 
translates IL code into  the target machine code is 
built. Next, the A P L ~  IL interpreter is compiled into 
the target machine code. This produces an incom- 
plete system,  with a few loose ends (subroutines) 
that  depend  on  the operating system and that have 
not been written in IL. These subroutines are  then 
written, usually  in  assembly language, and added to 
the compiled interpreter. Finally,  some  auxiliary  proc- 
essors are written to perform  special vo operations. 

This procedure has proved its usefulness in the fast 
and effective generation of A P L ~  interpreters for 
different machines. The outstanding example was 
the 230386 interpreter, where we could get rid of the 
fourth step (since  we took care  that all  auxiliary 
processors written for  the IBM Personal Computer 
and Personal System/2 [PS/~*]  interpreter would be 
compatible). The  total effort required to execute 
the  other  three steps and produce and debug a full 
A P L ~  system for these machines was 13 person- 
weeks. The system  was announced and shipped just 
six months after  the work started. 



Another outstanding example was the porting of 
the APL2 IL interpreter  to  the IBM RISC System/6000 
machine under  the AIX operating system. It was 
done in about  ten person-weeks by two people who 
did not have previous knowledge of either IL or the 
RISC System/6000 machine code. 

IL compilers. The IL compilers are usually written 
in APL or APL~,  which makes them very  easy to 
adapt  to new target machines. They are somewhat 

When an APL system  must  be 
generated, it is usually  not 

necessary to build  a  full 
IL compiler. 

slow since they are being interpreted, but this is not 
a problem since, in principle, they need only be 
executed once. 

When an APL system  must be  generated  for a new 
machine or operating system, it is  usually not nec- 
essary to build a full IL compiler. Since the source 
language is the same, the lexical and syntax  analysis 
sections of any of the preceding compilers are au- 
tomatically usable. Only the code generator section 
must be rewritten, and even there, many subpro- 
grams and program structures can be reused. 

The exception is the  1~-to-System/370 compiler, 
since we are using the System/370 as a test machine 
and many changes and trials are performed on it. 
Therefore,  the  1~-to-System/370 compiler was writ- 
ten in IL and is  much faster than all of the  other IL 
compilers. 

At this point, we  have IL compilers available for the 
System/370, the Series& the i8086 and i80286 ma- 
chines (which include the IBM Personal Computer, 
the P S / ~  Models 25,30,50,  and 60 and the  Japanese 
IBM PC), the i80386 machines (such as PS/2 Models 
70, 80, 90, and 55SX), the IBM 6150, and  the IBM 
RISC System/6000. The last three compilers are 
written in APLZ. 
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Operating-system-dependent  code. Operating-sys- 
tem-dependent code performs those functions that 
depend closely upon the operating system and are 
not easily made machine-independent. They in- 
clude system initiation and disconnection, machine 
check  recovery, console I/O, sequential file I/O, and 
the timer routines. This code, as compared to  the 
size of the APL interpreter, amounts to about 5 per- 
cent of the total code. 

In the case of the Series& we  also implemented a 
time-sharing system able to support the simulta- 
neous use of the machine by several users. This 
system  was written directly  in  assembly language, 
and its presence increased the amount of machine- 
dependent code to  about 10 percent of the  total 
code of the system. 

Auxiliary processors. Auxiliary processors are writ- 
ten for the management of different peripherals 
and specialized computations. They perform func- 
tions such as loading and execution of external pro- 
grams, printer interface, operating system inter- 
face, full screen management, data file processing, 
communications, graphics, music generation, spe- 
cial  device drivers, and logic programming. 

Not  all of these auxiliary processors are available 
for all of our  target machines. Some of them  are 
written in IL, some in C, and some in  assembly 
language. A few of them (such as the special device 
drivers) are  not only machine- and operating-sys- 
tem-dependent,  but also hardware-attachment-de- 
pendent. It makes no sense to develop them in a 
high-level language, since assembly language al- 
ways provides the maximum  efficiency. 

Conclusion 

The APL IL Interpreter  Generator has proved its 
usefulness in generating APL and A P L ~  interpreters 
with a considerable reduction of the  total product 
cycle. It has been used to  generate nine IBM prod- 
ucts: the eight APL and A P L ~  systems listed previ- 
ously, plus an educational product announced by 
IBM Japan, called LETSMATH, that includes the in- 
terpreter without the user being aware of it. Several 
additional systems, restricted for IBM internal use, 
have  also been  generated in the same way. 
* Trademark or registered trademark of International Business 
Machines Corporation. 

* *  Trademark or registered trademark of Intel Corporation. 
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