The APL IL Interpreter
Generator

The objective of the APL IL Interpreter Generator
is to solve the problem of creating APL
interpreters for different machines at a minimum
cost. The objective has been accomplished by
writing an APL interpreter in a specially designed
programming language (IL) that has very low
semantics but high-level syntax. The interpreter
is translated to each target machine language by
easily built compilers that produce high-
performance code. The paper describes IL, the
APL interpreters written in IL, and the final
systems generated for seven different target
machines and operating systems. Some of these
systems have been generated in an extremely
short time.

mong the many languages used to write pro-

grams, APL and its successor, APL2, are very
powerful. They support highly structured data of
several different internal types and recognize a
large number of primitive functions and operators,
some of which (for example, execute, ¢) are ex-
tremely complicated for some arguments. The ex-
istence of these primitives makes it very difficult for
APL to be compiled (except for subsets of the lan-
guage or through the inclusion of an interpreter in
the machine code). Thus full APL and APIL2 systems
have to be interpretive. These interpreters are very
large programs, consisting of tens of thousands of
instructions.

Since interpreted programs normally run at least an
order of magnitude slower than their compiled
equivalents, programs written in APL or APL2 start
with a speed handicap as compared to programs
written in, say, C. However, the designers of APL
and APL2 and the implementers of the interpreters

490 ALFONSECA, SELBY, AND WILKS

by M. Alfonseca
D. Selby
R. Wilks

have tried to reduce this effect in two different
ways:

* By extending the language with ever more pow-
erful primitives. In a single stroke, these perform
complex operations that, in other languages,
would require complicated algorithms. In this
way, the time for interpretation is minimized
with respect to the time for execution. The fact
that most APL primitives apply to entire arrays
also helps in this direction.

* By programming the interpreters in very low-
level languages that make the best possible use of
the resources of the machine or the operating
system.

As a result, APL and APL2 interpreters were usually
written in assembly languages, with the consequent
loss of portability. It has been estimated several
times that, done in this way, the full development of
an APL system for a new machine requires a total of
about 30 person-years.

The APL IL Interpreter Generator started as a proj-
ect in the IBM Madrid Scientific Center in 1977. The
objective of this project was to solve the problem of
obtaining APL interpreters for different machines,
at a minimum cost. The solution was to write an APL
interpreter in a programming language, specially

©Copyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

designed for the purpose, that has very low seman-
tics but high-level syntax. This interpreter is trans-
lated to each target machine by appropriate, easily
built compilers that produce high-performance
code.

In the past 14 years, the programming language
called the Madrid Scientific Center Intermediate
Language (IL) has reached its third version; it has
been essentially stable since 1980. The first section
of the paper describes the language design deci-
sions, which in many cases are curiously parallel to
those made in the design of the C language, al-
though there are important differences. The second
section of the paper describes the different inter-
preters that have been written in IL since 1980. Fi-
nally, the last section describes the procedure used
to generate an APL system for a given target envi-
ronment (a machine and an operating system).

The Intermediate Language

The Madrid Scientific Center Intermediate Lan-
guage (IL) was designed in the late 1970s, according
to the following criteria: on the one hand, a high-
level syntax was desirable to assure portability be-
tween different machines and operating systems;
on the other hand, very low-level semantics would
make it possible to obtain highly optimized code
with very simple, easy-to-build compilers.

The procedure that was followed to design the IL
instructions was to select the most common oper-
ations in the assembly languages of different I1BM
machines and to represent them with a high-level
syntax. In this way, compilation of IL instructions
into assembly language usually becomes a one-to-
one translation between one IL symbol and one as-
sembly instruction.

Even control instructions were subject to this pro-
cedure. Since the only control instruction in assem-
bly languages is usually the branch on condition, this
instruction is the only one that was implemented in
IL, although it received a high-level syntax in the
following way:

~label IF condition

Optimization, in this kind of intermediate lan-
guage, is not a question to be solved by the com-
pilers, which we want to build as quickly as possible,
but by the IL programmers who write the APL in-
terpreter. Remember that this job should be done

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

only once, although there may be as many compil-
ers as there are different target machines.

The only assumption about the machine in which IL
may eventually be implemented is that its memory
is considered to be a vector of fixed but undefined
size (eight bits or more per byte; two, four, or eight
bytes per word). Memory units should be consec-
utively numbered.

The four elements of IL are now described.

Constants. Constants can be numeric or literal. In
actual fact, a literal constant can also be considered
as numeric and operated on accordingly. This
means that an expression such as

'A'+1

is valid and (assuming ordinality in the character
set) is equivalent to constant

'BV

The Clanguage manages character constants in the
same way.

ASCIl (American Standard Code for Information
Interchange) or EBCDIC (extended binary-coded
decimal interchange code) can be selected as the
internal representation of the literal constants. In
the case of the APL IL interpreters, ASCII has been
chosen.

Numeric constants can be either integer or floating
point. Floating-point constants, such as 2.0, are
distinguished by the presence of the period from
integer constants, such as 2.

Identifiers. Identifiers are names that begin with a
letter other than Q (which is reserved) and continue
with any (possibly empty) combination of letters
and figures. The maximum number of characters in
an identifier is five.

What an identifier represents is controlled by its
first letter, according to Table 1.

A full-word variable has an implementation-
dependent length. Depending on the machine (in a
16-bit system, for instance), a full-word variable can
be the same as a two-byte variable. This type is, to
a certain extent, similar to the int type in the C
language, but IL does not distinguish full-word in-

ALFONSECA, SELBY, AND WILKS 491

Table 1 Identifiers and their definitions

Identifier Representation
O,R,T,U,V,W A variable whose value is a vector of one-byte integers or literals.
LKL MN A variable whose value is a vector of two-byte integers.
AB,CD,G,H,P A variable whose value is a vector of full-word integers or pointers.
F A variable whose value is a vector of floating-point values.
E An internal label in a program.
S A public label in a program.
X,Y,Z A named constant.

tegers from pointers. Assembly languages do not
usually make this distinction either.

The only data structure supported is the vector (a
succession of values at consecutive locations).
Higher structures (such as matrices) are not a part
of 1L, as they are not a part of assembly languages.
A scalar is considered to be the same as a vector of
one element.

Declarations. In an IL program, declaration instruc-
tions are located at the beginning and clearly sep-
arated from executable instructions. Every variable
used by a program must be declared, either by as-
signing initial values to it, or by defining an equiv-
alence.

Initial values are assigned by means of instructions
such as the following:

A<1 3 57
B«10p0
W<t ABC'

The first instruction defines A as a vector of four full
words with initial values of one, three, five, and
seven. The second defines B as a vector of ten full
words with initial values of zero. The third defines
W as a vector of three bytes with initial values equal
to the ASCII representation of letters A, B, and C.

Equivalences are very powerful and have different
forms, such as:

C=A[2]
V=8pF
C1=3pP1(L)

The first instruction defines variable C to have the
same address as the third element of vector A (zero
origin is used). Both A and C are full-word objects
by virtue of their initial letter.

492 ALFONSECA, SELBY, AND WILKS

The second instruction defines V as a vector of eight
bytes, sharing the address of floating-point variable
F. This means that V is the vector of the bytes that
make up the floating-point value of F, assuming
that floating-point values are represented in eight
bytes.

The third instruction defines C1 as a vector of three
full words whose address is the current value of
pointer P1 plus four. Of course, if the value of P1
changes, the address of C will change accordingly.

Pointers are extremely useful in IL programs, just as
they are in C. However, there is no restriction on
the number of equivalences that may be defined to
a pointer at the same time. For instance, the fol-
lowing declarations

A1=UpP(0)
11=P(0)
V1=P(0)

are all valid and define three variables that share
the same address (the value of pointer P), but have
a different type. Al is a pointer or full-word integer
vector of four elements. I1 is a two-byte scalar, and
V1 is a one-byte scalar.

Executable instructions. Executable IL statements
are analyzed and executed from right to left. Func-
tions are executed without any precedence rules in
the order in which they are found. Parentheses are
not allowed. The main IL executable instructions
are of two different types: assignment instructions
and execution control instructions.

Assignment instructions may take four different
forms, according to the following syntax:

variable « expression
variable A expression
variable V expression
pointer_variable - address expression

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

where the first form corresponds to normal assign-
ment, the second increments the value of the vari-
able by the right-hand expression, the third decre-
ments that value in the same way, and the fourth,
only applicable to pointers, assigns to the variable
the address of the expression on the right side.

Execution control statements have three different
forms:

~Jlabel
~label IF condition
»Jlabel_list OF index

where the first form corresponds to the uncondi-
tional transfer, the second to the conditional trans-
fer, and the third to a computed go-to instruction.

The operations that can be a part of an expression
are the typical ones usually encountered in most
machine languages, such as the following: addition
(+), subtraction (-), multiplication (x), division (+),
residue (|), bit shift to the left (+), bit shift to the
right (), bit-to-bit logical operations that include
not (~), and (»), inclusive or (v), and exclusive or
(o), absolute value (| in monadic form), and an
operation to compute the integer part of a floating-
point number (~ in monadic form).

The following is an example of an executable in-
struction in IL:

P1<AREF+ZEIWAU4+11DREFT

This instruction computes the value of pointer P1
in the following way: The value of variable DREFT
is multiplied by two (a shift to the left of one po-
sition is equivalent to a multiplication by two); then,
four is added to the preceding result. Next, the new
result is shifted to the left by as many positions as
the value of constant ZET4 (which depends on the
target machine). Then the value of variable AREF is
added, and finally, the result is assigned to pointer
P1.

Another kind of executable instruction is the sub-
routine call. Its syntax is very simple, just the name
of the subroutine. No parameters can be passed
explicitly. All of them must be passed through com-
mon memory, or by means of a set of special pointer
variables, the values of which are automatically re-
stored before returning to the calling routine.
These variables fulfill the role of the machine reg-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

isters, and in fact, in several of our implementations
they are registers, but this is not necessarily so.

Language tradeoffs. A question that could be dis-
cussed is whether IL has any advantages over C for
the implementation of machine-independent soft-
ware. This question is really after the fact since IL.
was designed in 1977, at a time when C was in its
infancy and far from being as widespread as it is
now. However, in our opinion, IL is superior to Cin
its memory management capabilities, which are
much nearer to the machine language level, and
also in its ability to define multiple pointer-based
structures that can overlap freely and move around
without any restrictions.

In contrast, C has better type-constraint capabilities
that provide the programmer with mechanisms to
detect certain errors at compile time, which IL com-
pilers do not have. However, we did not find the
lack of these capabilities frustrating in our devel-
opment of APL interpreters.

Finally, 1L, being a less complicated language, can
be translated by very simple compilers. This point
was important in our development procedure,
which is described in the last section of this paper.

The APL IL interpreters

IL has been used for the development of several
different interpreters. In the time from 1978 to
1982, an APL interpreter was built at about the same
level of the language as the one implemented in the
VS APL product. This interpreter was especially ap-
plicable to small machines with reduced data spaces
in memory, and to increase the amount of work-
space available to the user, we introduced the con-
cept of an elastic workspace. This interpreter was
compiled into the System/370* (which we used as
our test machine), the Series/1*, and the IBM Per-
sonal Computer.

The Series/1 computers had an important limita-
tion: the memory data space used by one applica-
tion was restricted to 64K bytes. To increase it, we
implemented the elastic workspace as a disk exten-
sion of the workspace. APL objects directly acces-
sible to the user (in the active workspace) could also
reside on disk and would be copied into the main
memory only when they were needed.

When the 1BM Personal Computer was announced
in 1981, we decided to translate our interpreter to

ALFONSECA, SELBY, AND WILKS 493

this machine under the Personal Computer Disk
Operating System (PC DOS, or DOS). In this case,
there was the same limitation in the fact that the use
of segment registers made only 64K bytes directly
available. But these machines have greater flexi-
bility in comparison to the Series/1, since the con-
tents of the segment registers can be changed by the
program. This flexibility made it possible for us to
implement the elastic workspace extension in main
memory, which made it much faster and more ef-
ficient.

The workspace was divided into two different sec-
tions. In the first section, with a length of 64K bytes,
all the objects were directly accessible to the pro-
grams, This section included the APL symbol table,
the APL execution stack, and many APL objects, all
of them smaller than 32K bytes.

The second section (the elastic workspace) con-
tained APL objects larger than 32K bytes and (pos-
sibly) smaller APL objects that did not fit in the
directly available workspace at a given time and
were not currently needed. Depending on the
amount of space available (limited in DOS to 640K
bytes but possibly reduced by the actual memory of
the machine and the loading of the operating sys-
tem extensions), the elastic workspace could be au-
tomatically reduced to zero.

This organization made it possible to build the IL
compiler for the IBM Personal Computer in such a
way that the compiler could assume that all of the
objects are directly accessible and forget about seg-
ment registers. The only module not complying
with this restriction was the handler of the elastic
workspace, which was written directly in assembly
language.

However, the indicated memory organization had
an important disadvantage: many of the basic APL
structures, such as the symbol table and the exe-
cution stack, could not increase further than 32K
bytes, and users soon found that this was a strict
limitation. Therefore, during 1983-85, we devel-
oped a new APL interpreter with a more general
workspace management, specially adapted for 16-
bit addressed segmented microprocessors (such as
the i8086). This interpreter, which from the lan-
guage point of view was still at the VS APL level, was
compiled into the System/370 (which we always use
as the test machine) and also into the 1BM Personal
Computer (under DOS) and the IBM Japanese Per-
sonal Computer and JX PC (under Japanese DOS) as

494 ALFONSECA, SELBY, AND WILKS

a result of a joint project between the IBM Madrid
and Tokyo Scientific Centers.

The elastic workspace concept was abandoned, or
(as it may be preferred) extended to the whole
workspace. In actual fact, what happened is that
this system incorporated a single workspace area
containing all of the APL objects, including the sym-

This organization made it possible
to build the IL compiler for the
IBM Personal Computer so that

the compiler could assume all of
the objects are directly accessible.

bol table and the execution stack, regardless of their
sizes. The lower part of the workspace, however,
always directly accessible through the base segment
registers, includes all of the interpreter data and
work areas plus four “operand areas.”

An operand area is a section of the workspace lo-
cated in the lower 64K bytes of the total workspace,
where the system can copy APL objects, either com-
pletely or partially. A set of special subroutines
manages the transfer of the data from the operand
areas to the workspace proper and vice versa. The
remainder of the interpreter works only with the
operand areas and can thus forget about the seg-
ment registers. Only a few modules in the whole
interpreter (less than 10 percent) must work di-
rectly on the workspace, and thus they must be
hand-modified in assembly language to introduce
the required modifications to the segment registers.

In 1985 we started a joint project between the
Madrid and United Kingdom Scientific Centers to
build an APL2 interpreter written in IL. This inter-
preter has been compiled, as usual, into the Sys-
tem/370, and also to the following target machines
and operating systems: the IBM Personal Computer
(1BM pC), Personal Computer AT*, and Personal
System/2* (under DOS and Operating System/2*, or
0s/2*), the IBM Japanese Personal Computer (un-
der Japanese DOS), the Intel 80386**-based ma-
chines in 32-bit addressing mode (under DOS), the

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Table 2 Previously available interpreters

Scientific Center.
Scientific Center.

Center.

5775-RCA (Part No. 38F1754), 1988.

Development Group from the IBM Kingston Laboratory.

1. IBM Personal Computer APL, version 1.0, Program Number 6024077, 1983.

2. IBM Personal Computer APL, version 2.0, Program Number 6391329, 1985.

3. 5550 NiHonGo (Japanese) APL, version 1.0, Program Number 5600-JPL, 1984, developed in collaboration with the Tokyo

4, 5550 NiHonGo (Japanese) APL, version 2.0, Program Number 5600-JPN, 1985, developed in collaboration with the Tokyo
. JX NiHonGo (Japanese) APL, Program Number 5601-JPL, 1985, developed in collaboration with the Tokyo Scientific

. APL2 for the IBM Personal Computer, version 1.0, Program Number 5799-PGG (PRPQ RJ0411, Part No. 6242936), 1988.
. APL2 for the IBM Personal Computer, version 1.0E, Program Number 5604-260 (Part No. 38F1753), and Program Number

. APL2 for the IBM RISC System/6000, Program Number 5765-012, 1991, developed in collaboration with the APL2/6000

IBM 6150 RT PC* (under Advanced Interactive Ex-
ecutive*, or AIX*), and the IBM RISC System/6000*
(under AIX).

There are two versions of this interpreter. The first
one, used to generate the PC-like 16-bit systems,
still uses the memory management described for
the second APL interpreter. However, in the second
APL2 interpreter used to generate the 32-bit sys-
tems, where memory management is not a problem,
some of the modules have been replaced by others
that work directly on the workspace, skipping the
copy to the operand areas, to improve performance.

An additional improvement in the APL2 interpret-
ers is the presence of a reference table, functionally
intermediate between the symbol table and the ac-
tual APL objects. This improvement means that
most of the time the interpreter may refer to a given
object by its reference number, regardless of the ac-
tual position where the object is located in the work-
space. There are several important consequences of
this organization that are now described.

On the one hand, a given APL2 piece of data may be
pointed to by more than one APL object. Since APL2
supports general arrays, this capability is important
to prevent memory duplication. The reference ta-
ble keeps information that indicates whether an ob-
ject is multipointed, which will be used in case of
modification to decide whether the value should be
copied somewhere else before the changes are per-
formed.

On the other hand, garbage collection is much sim-
plified and made extremely fast. This has always
been the case with APL, but it is even more dramatic
now that extremely large workspace sizes can be

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

attained. With our 32-bit interpreter, workspace
sizes can reach many megabytes, but even so, gar-
bage collection never takes longer than a few seconds.
This speed contrasts with other interpretive lan-
guages, such as LiSP and Smalltalk, where garbage
collection was traditionally a very expensive proce-
dure, sometimes taking several minutes to complete.

Table 2 lists some of the previous interpreters that
have become international IBM products.

Generating an APL interpreter

The procedure to generate an APL2 system for each
environment (machine and operating system) can
be summarized as follows. First, a compiler that
translates IL code into the target machine code is
built. Next, the APL2 IL interpreter is compiled into
the target machine code. This produces an incom-
plete system, with a few loose ends (subroutines)
that depend on the operating system and that have
not been written in IL. These subroutines are then
written, usually in assembly language, and added to
the compiled interpreter. Finally, some auxiliary proc-
essors are written to perform special I/O operations.

This procedure has proved its usefulness in the fast
and effective generation of APL2 interpreters for
different machines. The outstanding example was
the i80386 interpreter, where we could get rid of the
fourth step (since we took care that all auxiliary
processors written for the IBM Personal Computer
and Personal System/2 [PS/2*] interpreter would be
compatible). The total effort required to execute
the other three steps and produce and debug a full
APL2 system for these machines was 13 person-
weeks. The system was announced and shipped just
six months after the work started.

ALFONSECA, SELBY, AND WILKS 495

Another outstanding example was the porting of
the APL2 IL interpreter to the IBM RISC System/6000
machine under the AIX operating system. It was
done in about ten person-weeks by two people who
did not have previous knowledge of either IL or the
RISC System/6000 machine code.

IL compilers. The IL compilers are usually written
in APL or APL2, which makes them very easy to
adapt to new target machines. They are somewhat

When an APL system must be
generated, it is usually not
necessary to build a full
IL compiler.

slow since they are being interpreted, but this is not
a problem since, in principle, they need only be
executed once.

When an APL system must be generated for a new
machine or operating system, it is usually not nec-
essary to build a full 1L compiler. Since the source
language is the same, the lexical and syntax analysis
sections of any of the preceding compilers are au-
tomatically usable. Only the code generator section
must be rewritten, and even there, many subpro-
grams and program structures can be reused.

The exception is the IL-to-System/370 compiler,
since we are using the System/370 as a test machine
and many changes and trials are performed on it.
Therefore, the IL-to-System/370 compiler was writ-
ten in IL and is much faster than all of the other IL
compilers.

At this point, we have IL compilers available for the
System/370, the Series/1, the i8086 and 180286 ma-
chines (which include the 1BM Personal Computer,
the ps/2 Models 25, 30, 50, and 60 and the Japanese
IBM PC), the i80386 machines (such as Ps/2 Models
70, 80, 90, and 55SX), the 1BM 6150, and the 1BM
RISC System/6000. The last three compilers are
written in APL2.

496 ALFONSECA, SELBY, AND WILKS

Operating-system-dependent code. Operating-sys-
tem-dependent code performs those functions that
depend closely upon the operating system and are
not easily made machine-independent. They in-
clude system initiation and disconnection, machine
check recovery, console 1/0, sequential file /0, and
the timer routines. This code, as compared to the
size of the APL interpreter, amounts to about 5 per-
cent of the total code.

In the case of the Series/1, we also implemented a
time-sharing system able to support the simulta-
neous use of the machine by several users. This
system was written directly in assembly language,
and its presence increased the amount of machine-
dependent code to about 10 percent of the total
code of the system.

Auxiliary processors. Auxiliary processors are writ-
ten for the management of different peripherals
and specialized computations. They perform func-
tions such as loading and execution of external pro-
grams, printer interface, operating system inter-
face, full screen management, data file processing,
communications, graphics, music generation, spe-
cial device drivers, and logic programming.

Not all of these auxiliary processors are available
for all of our target machines. Some of them are
written in IL, some in C, and some in assembly
language. A few of them (such as the special device
drivers) are not only machine- and operating-sys-
tem-dependent, but also hardware-attachment-de-
pendent. It makes no sense to develop them in a
high-level language, since assembly language al-
ways provides the maximum efficiency.

Conclusion

The APL IL Interpreter Generator has proved its
usefulness in generating APL and APL2 interpreters
with a considerable reduction of the total product
cycle. It has been used to generate nine IBM prod-
ucts: the eight APL and APL2 systems listed previ-
ously, plus an educational product announced by
IBM Japan, called LETSMATH, that includes the in-
terpreter without the user being aware of it. Several
additional systems, restricted for 1BM internal use,
have also been generated in the same way.

* Trademark or registered trademark of International Business
Machines Corporation.

** Trademark or registered trademark of Intel Corporation.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Cited references

1. APL Language, GC26-3847, IBM Corporation (1975); avail-
able through IBM branch offices.

2. APL2 Programming: Language Reference, SH20-9227, IBM
Corporation (1987); available through IBM branch offices.

3. M. Alfonseca and M. L. Tavera, “A Machine-Independent
APL Interpreter,” IBM Journal of Research and Development
22, No. 4, 413-421 (July 1978).

4. M. L. Tavera, M. Alfonseca, and J. Rojas, “An APL System
for the IBM Personal Computer,” IBM Systems Journal 24,
No. 1, 61-70 (1985).

5. M. Alfonseca and D. Selby, “APL2 and PS/2: The Language,
the Systems, the Peripherals,” APL89 Conference Proceed-
ings, APL Quote Quad 19, No. 4, 1-5, ACM, New York
(1989).

Accepted for publication June 21, 1991.

Manuel Alfonseca IBM Software Technology Laboratory, Paseo
de la Castellana, 4, 28046 Madrid, Spain. Dr. Alfonseca is a
Senior Technical Staff Member in the IBM Software Technol-
ogy Laboratory. He has worked in IBM since 1972, having been
previously a member of the IBM Madrid Scientific Center. He
has participated in a number of projects related to the devel-
opment of APL interpreters, continuous simulation, artificial
intelligence, and object-oriented programming. Eleven interna-
tional IBM products have been announced as a result of his
work. Dr. Alfonseca received electronics engineering and Ph.D.
degrees from Madrid Polytechnical University in 1970 and 1971,
and the Computer Science Licenciatura in 1972. He is a pro-
fessor in the Faculty of Computer Science in Madrid. He is the
author of several books and was given the National Graduation
Award in 1971 and two IBM Outstanding Technical Achieve-
ment Awards in 1983 and 1985. He has also been awarded as a
writer of children’s and juvenile literature.

David Selby IBM United Kingdom Scientific Centre, Athelstan
House, St. Clement Street, Winchester, Hants, SO23 9DR, En-
gland. Mr. Selby joined IBM at the Havant manufacturing lo-
cation in 1977, where he worked on many APL projects in the
capacity of analyst programmer and later as a microcode engi-
neer for the 4700 Finance Industry System. In 1985 he joined the
Scientific Center at Winchester in the Graphics Systems Re-
search group as a scientist employed on workstations. Beginning
in 1983, he collaborated with Dr. Alfonseca on APL/PC 2.0 with
special emphasis on auxiliary processors and device support. The
result of this work was used in APL/PC 2.0, Japanese PC APL
2.0, and the APL2/PC products. Mr. Selby is also responsible for
the design of the extended memory driver of the 32-bit version
of the APL2/PC interpreter and has worked as a technical con-
sultant to the APL2/6000 project. While working for IBM, he has
obtained an ONC in electrical engineering, and an HNC in
computer science. He has also received an IBM Exceptional
Achievement Award.

Ron Wilks IBM United Kingdom Scientific Centre, Athelstan
House, St. Clement Street, Winchester, Hants, SO23 9DR, En-
gland. Mr. Wilks joined IBM in 1973 and has used APL since his
very first day with IBM. He started his career in a group devel-
oping diagnostics for small disk files. From there, he joined the
IBM Hursley Information Systems (IS) Applications Support
group to support APL and related products. While in IS, Mr.
Wilks assisted with enhancements to the APL/PC Version 1

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

product culminating with the announcement of the APL/PC
Version 2.0 product for which he received an IBM Exceptional
Achievement Award. After IS, he joined the small group of
APL2/PC developers to assist with APL2 for the IBM PC prod-
uct and, more recently, the AIX APL2/6000 product.

Reprint Order No. G321-5448.

ALFONSECA, SELBY, AND WiLkS 497

