Putting a new face
on APL2

APL2/X is an interface between APL2 and the
X Window System®, built at the IBM Cambridge
Scientific Center. This interface enables the full
set of the X Window System Xlib calls and the
related data structures to be used directly from
programs written in APL 2, thereby providing
APL2 with a true, full-function windowing
environment. The interface also deals with the
broader and more general issue of how to call
C programs from APL 2. The interface and the
experience of building it are described in some
detail in this paper.

he intent of this paper is to detail the experi-

ence of building an interface between APL2 and
the X Window System™**. AP1.2, having evolved over
two and a half decades, was a good candidate for a
“face lift” in that it benefits greatly from having a
modern presentation system. In turn, the X Win-
dow System gains the flexibility and power of APL2
in developing and driving applications.

This paper is divided into several subsections. To
set the stage, some simple examples of how the
interface can be used are shown, and an overview
of the X Window System is also given. With that as
a background, we then discuss the rationale for
building such an interface, as well as some of the
design choices made. Next, the general APL2-to-C
interface that has been implemented is presented.
APL2/X uses this interface heavily. The focus is on
how to be able to use a large number of already-
existing C routines from APL2 with as little addi-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Jensen

by J. R.
K. A. Beaty

tional work required as possible. Finally, examples
of how to use this interface to access and call C
routines from APL2 are shown, with a focus on the
special consideration that the X Window System
entails.

It is assumed that the reader has some knowledge
of both APL2 and the X Window System. See, for
example, 4PL2 at a Glance by Brown et al.’ for an
introduction to APL2, and Introduction to the X Win-
dow System by Jones? for information about the X
Window System .

An example. An example might help illustrate the
capabilities of the X Window System when used
with APL2. To display the image of this example, run
the following APL2 expression:

XIMAGE MAN COL 'Basic'

XIMAGE is an APL2 function that uses the X Window
System calls to display an image. MAN is an APL2
variable containing an image of a mandrill, COL is
a color lookup table, and 'Basic'is a window title.
It results in a new window displaying the content
shown in Figure 1.

©Copyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

JENSEN AND BEATY 469

Figure 1 Basic image

Figure 2 Image turned on side

This image can be manipulated using normal APL2
functions. The manipulation can take place on the
image matrix, the color table, or both. For instance,
to turn it on its side as in Figure 2 use:

XIMAGE (sMAN) COL 'Lazy'

To triple its size as shown in Figure 3, use the fol-
lowing function:

XIMAGE (3/3#MAN)Y COL 'Large'
To display as a negative as is done in Figure 4 use:

XIMAGE MAN (1000-COL) 'Neg'

470 JENSEN AND BEATY

Finally, to create four mirror images of the mandrill
as in Figure 5 use:

B2<MAN, ®MAN
By<B2,[1] eB2
XIMAGE B4 COL 'Four'

Why an APL2 X Window System interface. From
the advantages each has to offer, it is evident that
APL2 and the X Window System can benefit from an
interface connecting them. We now describe some
of the more compelling benefits for ApL2.

APL2 is provided with a modern-day interface. The
present interface of APL2 dates back to the late
1970s and has a distinct character-cell flavor to it.
Graphics are limited to fixed, nonmovable images.
Several desirable features can be incorporated by
utilizing the functions of the X Window System:

» Keystroke sensitivity for programs
* Pointing devices such as a mouse
* Multiple fonts of varying size

» Bitmapped graphics and image

* Dynamic graphics capabilities

Many of these features are as much a product of
better hardware (in the form of workstations) as
they are of the software, but this does not negate
the fact that they need the software to utilize these
advanced features.

The interface enables a given APL2 application to
display its output on any connected workstation,
and enables a workstation to initiate and run APL2
programs on many different hosts at the same time.

Similarly, the X Window System gains from using
APL2, APL2 provides an interactive environment.
Each call or series of calls can be tried out, verified,
and altered at will until the right combination is
reached. This activity can take place without any
recompilation whatsoever, speeding up the devel-
opment process. The X Window System can use the
array processing ability of APL2 to easily store and
manipulate images using standard APL2 primitives,
as shown in the example presented earlier.

For those readers not familiar with the X Window
System, the next section presents a brief overview.

An overview of the X Window System

The X Window System is the de facto standard for
windowing systems in the UNIX** environment. In

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 Image tripled in size

many respects it is very similar to the Operating
System/2* (0S/2*) Presentation Manager* and Mi-
crosoft Windows** for the 1BM Personal Computer
Disk Operating System (PC DOS) in that it provides
the application programmer with a multitude of
calls to control and manipulate the content of win-
dows on a display. However, it also differs from
these products in some key aspects. The foremost
difference is that the X Window System was de-
signed from its inception to be network-transpar-
ent. This means that an application can display its
results on any workstation attached to a local area
network, no matter where the application may ac-
tually be running. The X Window System employs

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

the client-server model of computing. It enables the
application, or client, to make use of the resources
of the workstation, or server, to display its output
and receive input from the user, as illustrated in
Figure 6.

Server. The X Server is a program running on the
workstation that manages the interaction with the
user. It typically controls one or more screens, a
keyboard, and a mouse or similar pointing device.
It allows clients to have use of all of these devices
and other resources such as windows, pixmaps,
fonts, and graphics contexts. The server receives
directives from communicating clients via network

JENSEN AND BEATY 471

Figure 4 Negative of image

protocol requests and acts upon them to draw win-
dows, graphics, text, and images on the display.
Whenever the user of the workstation performs an
action such as pressing a key, moving the mouse,
etc., the server will generate an event message and
return it to the client program via the underlying

network protocol (traditionally TCP/IP, the Trans-
mission Control Protocol/Internet Protocol).?

Client. The application is the client program. It
sends requests to the server via the network pro-
tocol and receives information back from the server
in the form of replies or events. These requests can
be generated and handled at the network protocol
level, or higher-level calls can be used.

Window manager. The window manager is an ap-
plication that controls where windows are placed,
the size of the windows, the window decorations,
and the interaction style. In separating it from the
X server, the X Window System has made it pos-
sible to have a replaceable window manager im-
plementing different interaction styles. As an ex-
ample, some window managers enable window
moving and resizing by grabbing and dragging the
window borders, whereas other window managers
will use menus to accomplish the same end result.
Among the many window managers that exist, one
now in common use is the Open Software Foun-
dation (OSF) Motif** window manager that gives
the X Window System a “look and feel” almost

Figure 5 Image quadrupled

472 JENSEN AND BEATY

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 6 The X Window System client-server relationship

X CLIENT AlX

{APPLICATION) VM/CMS
MVS
OEMs
ETC.
N

WINDOW MWM

MANAGER AIXWM
CWM
UWM
TWM
GWM
ETC.

A

TCP/IP

REQUESTS

RISC SYSTEM/6000
X STATION 120
PS/2 (AIX)

PS/2 (DOS)

AT

WINDOWS
FONTS

EVENTS

MULTIPLE DISPLAYS

MOUSE
— KEYBOARD

identical to that of the 0S/2 Presentation Manager.
A list of other existing window managers can be
found in Figure 6.

These three components of the X Window System
need not run on the same processor. An application
can be running on, say, a host with the Virtual
Machine/Extended Architecture operating system,
or VM, communicating through the X Window Sys-
tem client services with an X Window System server
running on an IBM RISC System/6000*. The net ef-
fect of this setup is that the results of the application
appear on the display of the workstation as though
the application had been run locally.

It is also possible for a single client application to
display on many servers at once. Likewise, a server
can service many clients at the same time, display-
ing the output of each application program at once.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Communications among the client, server, and win-
dow manager can be handled by any method that
provides a reliable bidirectional byte stream. When
the client and server both run on the same proces-
sor, some sort of interprocess communication is
used for communication between the two. When
the client and server are running on separate proc-
essors, the TCP/IP communications protocol usually
provides this service, although any other reliable
communications scheme could potentially be used
in its place.

The X Window System output capabilities can be
summarized as follows:

* Controlling multiple windows on one or more
display screens

* Drawing graphics primitives such as lines, arcs,
rectangles, and polygons with or without fills

JENSEN AND BEATY 473

Figure 7 The X Window System hierarchy

APPLICATION PROGRAM

OSF/MOTIF

X WIDGET SET

X INTRINSICS

XxLi8

NETWORK PROTOCOL (TCP/IP)

* Writing high-quality text with many different
fonts
* Supporting images

Inputs are received in the form of events. Events
can be generated by the user pressing a key on the
workstation keyboard, by the user manipulating the
mouse (moving it or using the mouse buttons), or
by other events, such as when a window is cleared
and needs to be redrawn.

The X Window System is a layered architecture,
depicted in Figure 7. An application can draw upon
the calls of all of these layers. The X Window Sys-
tem network protocol is at the base of the hierarchy,
ultimately defining the traffic flowing between the
client and server components.

The Xlib level is the next level. Most application
programmers will never interface with the X Win-
dow System at a level lower than this one. It consists
of about 400 separate calls written in C and more
than 100 data structures.

The X Intrinsics and the X Widget Set taken together
form the X Toolkit. A widget set is a collection of
common graphics elements that applications may
use, such as menus, scrollbars, pop-up windows,

474 JENSEN AND BEATY

and the like. The X Widget Set makes use of the X
Intrinsics, which provides it with an object-oriented
interface.

The OSF/Motif toolkit is an elaborate toolkit that
implements application elements such as sliders,
pull-down menus, and buttons in a three-dimen-
sional appearance.

One final aspect of the X Window System needs to
be touched upon. It does not seem to be a generally
known fact that it is indeed possible to run the X
Window System under VM* or Multiple Virtual
Storage (Mvs).’ In fact, most of the development
work of APL2/X was performed on a VM system. VM
and Mvs both support the X client services as part
of TCp/1P Version 2 for vM and TCP/IP Version 2 for
MVS.

Interface design criteria

As a stepping-stone to building the X Window Sys-
tem interface, a general APL2-to-C interface was
implemented. Although general in scope, it is cer-
tainly true that its built-in functionality has been
heavily influenced by the following considerations
that surfaced during the construction of the APL2/X
interface.

* The interface should be able to use the existing
C functions without any changes or modifica-
tions. This requirement is important, since the
source code for the C functions may not be avail-
able.

* The interface must be able to support a large
number of calls efficiently. The X Window Sys-
tem defines about 400 separate calls, depending
on the release considered.

¢ To be useful, APL2/X must be able to support data
structures but also allow APL2 to manipulate the
data using APL2 functions. Data structures play
an important role in many X Window System
calls.

* The external C routines must be used in a man-
ner much akin to normal APL2 functions (i.e.,
maintain the “feel” of an APL2 function) when
called from within APL2. Specifically, attainment
of this likeness requires that function arguments
be passed explicitly and by value. The interface
must take care of the needed argument type co-
ercion. Also, the interface should specifically re-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

frain from using designated variables or storage
areas that can be updated as a side effect of the
call; rather, all output should be returned as ex-
plicit results of the call.

* The defined X Window System call syntax should
be adhered to as closely as possible so as to en-
able the use of the normal X Window System
documentation. Only two noteworthy deviations
apply throughout the interface:

1. Output-only arguments are never specified on
input; they will be generated automatically
and returned as part of the explicit result of
the function call.

2. Arguments are given by value, even in cases
such as a character string, where C expects a
pointer in the parameter list. The interface
again handles the details of making this hap-
pen.

At times, maintaining this fidelity to the X Win-
dow System call syntax seems slightly out of place
in an APL2 setting. One of the places where this
is apparent is on those calls where the X Window
System expects a varying number of arguments
passed in an array or character string. These calls
invariably require the specification not only of
the array itself, but also of the number of ele-
ments in the array. This latter piece of informa-
tion is, of course, directly available with the APL2
array, so it seems slightly silly and annoying to
have to specify it in the call. However, in the
name of consistency we have chosen to stay with
the X Window System call syntax throughout,
even in cases such as this one.

» ApL2 will handle storage management automat-
ically, whereas C most often leaves the task for
the caller to do. APLYX takes over this chore
when calling the C functions, so the APL2 pro-
gram is freed from addressing this task explicitly.

* Enable the same interface from APL2 to the X
Window System in multiple host environments
to allow APL2 applications that use APL2/X to be
run under the Virtual Machine/Conversational
Monitor System (VM/CMS), Multiple Virtual
Storage/Time-Sharing Option (MVS/TSO), or un-
der Advanced Interactive Executive* (AIX*) on
the RISC System/6000.

All of these items are discussed later in more detail.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Using the X Window System from APL2

APL2 can use the X Window System in two differ-
ent ways. It can either use it indirectly, if the out-
put device APL2 is communicating with is being
remapped to a workstation running the X Window
System, or directly by issuing calls to the X Window
System from APL2. The indirect approach allows
existing applications written for a 3270-type display
screen to run on an X Window System workstation,
but the interaction style is then, of course, limited
to that of a 3270 device. However, to be able to
utilize the features and facilities of the X Window
System, it is necessary for the applications to be
given direct, explicit access to the X Window Sys-
tem.

APL2 using the X Window System in compatibility
mode. The simplest way today to use the X Window
System from APL2 is in compatibility mode. Essen-
tially it is another way of getting someone else to
worry about supporting the X Window System. Two
existing IBM products that do just that are described
below.

X3270. The x3270 is a terminal emulator that en-
ables a 3270-type session to run on an X Window
System workstation, given the proper network at-
tachments, It supports different size fonts including
APL2, GDDM-style graphics, and 3277GA emulation
and has limited mouse support.®

GDDM/XD. GDDM/XD is an interface that permits
the display of output from GDDM on workstations
supporting the X Window System. It is available as
part of TCP/IP Version 2 for vM and TCP/IP Version
2 for Mvs. It displays both character and graphics
output in a separate window on the X Window Sys-
tem workstation.’

Exploiting the X Window System from APL2.
APL2/X takes a different approach to the X Window
System. In order to fully exploit the X Window
System from the APL2 environment, it is essential
that the application be given direct access to all of
the X Window System calls.

The connection between C and APL2 is illustrated in
Figure 8. APL2/X receives data from APL2 in its com-
mon data representation (CDR) format. The CDR
format is a documented data format for APL2 ex-
ternal data. It includes not only the data, but also
descriptive information about data type, rank, and
dimensions. The format varies, depending on the

JENSEN AND BEATY 475

Figure 8 Calling C programs from APL2

APL2 ENVIRONMENT

C ENVIRONMENT

CDR

ONA OR AP144

CDR

APL2 COMMAND PROCESSOR

C ArgList

COMMAND AND
STRUCTURE TABLES

C APPLICATIONS

DD

C FUNCTIONS

>
-

[s]]

R
C STRUCTURES

host operating environment. The data are sent from
APL2 to APL2/X using the associated processor 11
(VM) or a new auxiliary processor AP144 (AIX).

Once in APL2/X, the incoming CDR is transformed
into a DD, or data descriptor, which is the data
representation used internally by APL2/X in all of
the host environments within which it operates.
This transformation essentially involves breaking
up the CDR into self-contained arrays connected via
pointers. This data representation can be used di-
rectly for new functions specifically written to use
this data structure.

However, it is more common to use already-existing
C functions. To do so, the data must be in the form
that the functions can use. The second transforma-
tion is then involved to build the C ArgList. The
argument list is for the C function that is to be

476 JENSEN AND BEATY

called. The ArgList format is also employed when
accessing and using C data structures.

The conversion process is controlled by a command
definition that describes the arguments required by
a given command. These definitions are stored in
command tables. The first argument in any call
identifies the command to be executed. The tables
are searched to locate the matching command def-
inition.

APL2/X data descriptor

APL2/370,® APL2/6000, and APL2/PC’® all pass data to C
in the form of a monolithic block of data. This block
includes not only the data, but also information
describing the data type, rank, and dimension.
APL2/X breaks up the block of data into its compo-
nent pieces, storing the descriptor and data infor-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

mation in separately allocated areas for each nest-
ing level of the data. This division ultimately cuts
down on the amount of data copying needed, and
has also enabled APL2/X to extend the descriptors
with additional information. The descriptors cur-
rently hold the following pieces of information:

re Element return code

flags Assorted control flags

refs C indirection count

data Pointer to data values (or the data
value in the case of a scalar)

alloc Number of elements allocated

xrho Number of elements stored

rtl Data type

rank Rank

dims Array dimensions (zero, one, or more)

APL2/X adds the rc,alloc, flags, and refs items for
its own use. The remaining items are extracted from
the data passed from APL2.

The ability to use separately allocated items has
proved to be very useful when constructing elabo-
rate return values. As an example, see the result of
the GetConst command given later in the section on
support for C constants. The result consists of a
three-column table. The first column consists of a
character string, the second column another char-
acter string, and the third column a value that can
be either numeric or yet another character string.
This table is built in a bottom-up fashion, with each
element being appended in turn. With use of the
separately allocated items, it just becomes a ques-
tion of keeping track of a set of pointers, whereas
a monolithic approach would require a preliminary
pass to determine the size of the final table, before
the actual building of it could get under way.

Defining and calling C functions from APL2

The supported X Window System calls are defined
in a command table, along with their parameter and
result type codes. The type codes are used to val-
idate argument inputs and to gather resultant out-
put for returning to APL2. The X Window System
command table, as well as the related X Window
System structure definitions table, are compiled
into the command interface written in C. There-
fore, the interface that resides between APL2 and
the actual C functions (commands) being called is
the one responsible for validating input and check-
ing for and returning expected function results.

By having the command and structure definitions
reside in the C command interface, we can funnel

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

all Xlib calls through a common ApL2 function
rather than having an APL2 function for each X
Window System function call. This significantly re-
duces the number of X-Window-System-related
functions that need to be present in the application
workspace.

The APL2/X interface ends up being identical in VM
and AIX. Two simple APL2 functions C and X hide
the fact that communication between APL2 and
APL2/X is handled by processor 11 in vM and by
shared variables in AIX, giving APL2/X a single com-
mon interface to APL2 in all host environments.
These functions with calls and parameter are given
in the following box.

(rc [results]) « C command [parm]

Cresults) « X command [parm]

The terms in the box are defined below.

command ~ The name of the X Window System
call to be invoked, specified as an APL2
character vector.

Lparm] All but a few of the X Window System

calls require additional input parame-
ters to be specified. These parameters
are given after the name of the call
itself, in the same order as listed in the
X Window System documentation.

(results] The output from the call (if any) is re-
turned in the form of an explicit result.
This result includes the X Window Sys-
tem explicit result (if any), as well as
any implicit results passed back via
output parameters given on the call.

re The command return code. Note that
this is only returned when using the C
function. C and X only differ from one
another in the way they deal with error
conditions. C passes back an error code
as part of the function return. It is then
up to the calling program to check this
code and take appropriate action on a
nonzero return code. X supplies a de-
fault error-handler to check the return
codes as they are returned from each
call to APL2/X. X will suspend operation
in the function by issuing a “0ES 0 1”

JENSEN AND BEATY 477

event, if an error is encountered. The
programmer then has a chance to cor-
rect the problem.

Using these two functions as the base interface al-
lows easy portability of applications from host envi-
ronment to host environment, without having to
change the calls of the application to the X Window
System. We have been able to run identical sample
APLY/X applications under VM/CMS and AIX on the
RISC System/6000 without changing a single line of
APL2 code.

The X Window System calls XOpenDisplay and
XDrawLines can serve to illustrate the close corre-
spondence between X Window System calls issued
from C and from APL2.'%"! In C, the calls might look
like the following:

int points[4][2]=
{{16,10},(100,10},{10,1600},{10,10}};

dp = XOpenDisplay("");
XDrawlLines(dp,win,gc,points,4,0)

The same calls can be issued from APL2 (via APLY/X)
as follows:

points <« 10 10 100 10 10 100 10 10
dp « X 'XOpenDisplay' ''
X 'XDrawlines' dp win gc points 4 0O

The call to XDrawlLines obviously assumes that the
parameters dp, win, and gc have been set up by
preceding calls to other X Window System func-
tions.

Command definitions. The interface can support
an unlimited number of C routines. Each routine is
defined by a command definition that describes the
needed aspects of the call as follows:

e Command name

* Input type codes

¢ Output type codes

e Address of C function to be called

* Call method

» Two optional parameters that can be used by the
command

Some examples of command definitions (all of
which implement X Window System calls) are:

ACFN2(XDrawlines LIITI2071I,)
ACFN2(X0OpenDisplay ,"S" LIt)
ACFN2(XParseGeometry,"S" CUITIIL)

478 JENSEN AND BEATY

As can be seen, not all of the command definition
fields need be given explicitly. In the above exam-
ple, only the first three fields are given explicitly.
Instead, they are often set implicitly through the
choice of the defining C macro. In the case of ACFN2
above, the call method is a laid-out argument list,
and the two optional parameters are not used. Fur-
thermore, the first argument given to the macro
defines both the command name and the C function
to be called.

The calls can be grouped into different categories.
Each category has a defining C macro associated
with it to cut down on the number of items that
need to be specified explicitly.

In APL2/X, experience has shown that the com-
mands fall in one of three categories:

1. Most commands can be implemented using the
standard facilities available in the base interface.
In APL2/X we have implemented about 300 com-
mands this way, or about 75 percent of the total.

2. Some commands require some common pre- or
post-processing but are otherwise fairly stan-
dard. An example is:

AXFAS(XGetGCValues, "IIX", "IG",
&axGCValues)

The call runs the X Window System function
XGetGCValues. This function returns a pointer to
a structure of type XGCvalues. The cover func-
tion takes this pointer and resolves it into its
constituent values by using the structure class
(axGCvalues) as a guide to what elements the
structure contains. Thus, a call to XGetGCValues
will return the actual values to APL2, not just a
pointer. A number of X Window System calls uti-
lize this function.

We have used this facility extensively during the
development of the interface. A lot of the func-
tionality that is now part of the base interface was
prototyped in this fashion and was elevated into
the base only when the generality was established.

In the implementation of the X Window System
Xlib calls, 65 calls fell in this category, or 17 per-
cent of the total.

3. The third type of calls consists of the ones that for

some reason or another require some specialized
pre- or post-processing, €.8.:

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

ACFAB("XNextEvent™, "I", "G", axNextEvent)

There are a number of reasons why functions end
up in this category. Examples are calls returning
the X Window System event structures. We use a
cover function to convert the event structure
pointer to its constituent values, so that the values
can be returned by the call, instead of a pointer to
the values.

Of the total, 30 X Window System calls required
handling as special cases, or about 8 percent.

Command tables. The command definitions are
grouped together in tables. For example, all of the
X Window System calls are defined in a single table.
Typically, a table contains only related commands,
although this is not a requirement. These tables
form an integral part of the APL2/X interface.

When the C or X functions are called and the in-
terface gets control from AP12, the interface as-
sumes that the first argument given is the command
name. The interface uses this name to search
through its command tables looking for a matching
command definition. If one is found, it controls any
further parameter verification that needs to take
place before the actual C function can be invoked.

The default is for the command name matching to
be case-sensitive, but it is a matter of a compile-
time option to change this default to be case-in-
sensitive.

The command tables not only allowed us to group
logically related commands together but also
proved to be beneficial during the development
stages, where a given set of commands could be
worked on by an individual without any fear of
overlaying someone else’s work. Not all of the ta-
bles need be active all of the time; they can be
activated and deactivated under user control, and
their ordering (governing the command search or-
der) can also be changed.

Currently the APL2/X interface defines the following
command tables:

» Xlib calls

& Structure support (structure commands)

» Interface control (system commands)

Tables implementing other collections of C func-
tions and structures can easily be added to this list.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The command tables can also be set up and used in
a nested fashion, i.e., subcommands may be spec-
ified in a secondary command table. In that case,
the command as given by the user is effectively
made up of two (or more) separate character
strings, one for each command table used. We use
this facility to implement some of the APL2/X system
commands, but we have not found it that useful
overall.

Type codes

The specified command determines what addi-
tional parameters need to be given, as well as what
information will be passed back as a result of the
call. These requirements are described by a series
of “type codes” attached to the command, with each
parameter described by a single type code.

A large number of type codes have been defined.
They are specified using one- or two-character al-
phanumeric strings. Whenever possible we used the
same choice of character codes as those given in
APL2 Programming: System Services Reference for
the APL2/370 processor 11 argument patterns.'? The
code is given on the left side, and its definition
follows to its right.

B1 One-bit Boolean

88 Eight-bit unsigned integer

€1 Character (one-byte)

E8 Double (eight-byte) floating-point real
12 Short (two-byte) integer

14 Long (four-byte) integer

Type coercion may be applied by the interface to
convert the APL2 data to the type expected by the C
function and to convert results from the C function
to a type that can be handled by APL2.

To enhance portability we also added definitions
that left the actual length of a parameter up to the
host environment, e.g.:

I Integer—This code can be used whenever a C
“int” is called for.

Other additions were called for by specific needs of
Cand X:

S A NULL-terminated character string

P A C pointer—This code is treated as a large
number that the calling APL2 application pro-
gram probably should never change.

JENSEN AND BEATY 479

x2 Two-byte hexadecimal value

x4 Four-byte hexadecimal value

X Two- or four-byte hexadecimal value, depend-
ing on the underlying environment

The hexadecimal values can be specified on input as
a bit-vector, as an integer, or as a string of hex
characters.

Finally, a couple of special type codes:

G Accept any parameter given—This code will
often be used where further verification of the
input will be performed later. An example can
be found in the structure commands. Valida-
tion of the content of the structure instance is
postponed until the proper structure class def-
inition has been determined.

_ A place-holder—The value is ignored.

Argument indirection is specified in a C-like man-

ner by prefixing the type code, e.g.:

*C1 A string of characters
**] A double indirect reference to an integer

Arrays are also specified in a C-like manner, e.g.:

12[3] A vector of three (short) integers

C1L] A vector of characters—The length is
left unspecified, so any length will be
accepted.

1[2;2] A two-by-two array of integers

I[2][2] Another way to specify the above two-
by-two array

Some considerations pertaining to arrays:

* Any array passed to a C function is passed as a
pointer to the values, not the values themselves,
as required by C.

* One or more array dimensions can be left un-
specified. The length will then be set according to
the incoming data.

* The type code specification is more compact
than the one used by the APL2/370 argument pat-
terns and also more like native C and APL2, we
believe.

Structures are catered to as well, e.g.:
{II} Anycombination of type codes can be spec-

ified inside the braces, including nested
structures.

480 JENSEN AND BEATY

The type codes are also affected by prefix and suffix
modifiers. The prefix modifiers are:

< Input only

> Output only
| Input/output
?

Optional parameter
The suffix modifiers are:

Repeat last type code as many times as
needed to account for the given input values.

* Ignore any input parameter beyond those
already verified.

Both of these suffix modifiers may only be specified
at the very end of a list of type codes or following
the last item before a “}” ending a substructure
definition.

Parameter passing

All parameters are passed explicitly to and from
APL2. APL2/X does not cater to side effects such as
update-in-place (i.e., changing the value of an ApL2
variable other than by explicit reference), nor does
it use call-by-name, where the name of a variable to
be used or changed is passed as a parameter and the
interface reaches back into the workspace to access
the specified variable. Although both are techni-
cally feasible to do, there has been neither the need
nor the desire to use them. In fact, a conscious
effort has been made to stay away from them, as it
was viewed as detrimental to the clarity of the re-
sulting code.

On calling a C routine from APL2 only those pa-
rameters listed as “input” or “input/output” must be
specified (i.e., the parameters listed in the input
type code field). The interface will generate what-
ever output parameter place-holders are needed in
the actual call to the C function. Upon completion
of the C routine, all parameters listed as “input/
output” or “output” will be returned to APL2, in
addition to the explicit C function result (if re-
quired). We thus take advantage of the ability of
APL2 to return multiple values in the explicit result
of a function invocation. This is an outgrowth of the
desire to avoid relying on (hidden) side effects.

Many X Window System calls return more than one
result via their parameters. The parameters used in
this fashion are always identified by including the
suffix “_return” with the parameter name. These

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

parameters appear at the end of the parameter list.
We have taken advantage of this fact in the way that
the input and output type codes are specified in the
command definitions.

XParseGeometry is an example of a call returning
multiple parameters. The C function prototype and
an example of its use via APL2/X are given below:

int XParseGeometry(string, x_return, y_return,
width_return, height_return)
char *string;
int *x_return, *y_return;
int *width_return, *height_return;

a Multiple output.
(mask x y width height) <«
X 'XParseGeometry' ‘'25x80+10~10'

Parameters passed by value

Parameters are passed to and from APL2 by value.
This is true no matter what level of indirection is
needed by the C routine to be called. The burden
of setting up this activity and administering the
space is handled by the interface. Thus, using the
XParseGeometry example given above, “string” is
given as “'25x80+10—10"” in the call from APL2,
and the interface will convert this string to the
proper “char *” format before calling the real C
routine.

Passing the parameters in this fashion maintains
the feel of an APL2 function. The housekeeping
chores of managing the temporary storage fall upon
the interface, not the user.

These statements do not imply that C data pointers
are never returned to APL2, or are used by it. Quite
the contrary, pointers are typically specified using
the “P” or “I” type codes and are passed back to
APL2 as large numbers. The application running in
APL2 may use this large number on subsequent calls
to external functions via APL2/X but will rarely, if
ever, have a need to modify the value of the pointer.

Dealing with structures warrants some special com-
ments. We prefer to pass them by value, and given
a choice we have set up the calls to do so. However,
there are enough exceptions to this procedure to
prevent it from being a general rule. The exceptions
come about for the following reasons:

1. Performance—It is inherently more expensive in
processing time to create the structure on the fly
from its values. If a structure instance is being

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

used repeatedly without its content being rede-
fined, it is more efficient to create the structure
once and then refer to it using the pointer to the
created structure instance.

2. Permanence—The structure may be modified by
future calls. It is therefore important that it re-
mains in a fixed location in storage.

3. Hidden side effects—Most X Window System
structures do not exhibit this problem, but we
did encounter it using the “Xrm” class of calls.
Although unstated, the structure pointer was
also being referred to in a hidden lookup table.
Another manifestation of such effects is where a
data structure has an unspecified or hidden pre-
fix or suffix section.

Wherever possible, APL2/X allows structures to be
specified on input either by value or by a pointer to
an already-existing structure instance.

Support for C data structures

As would be expected of any sizeable C application,
the X Window System defines close to 100 C data
structures. Therefore, to fully support the X Win-
dow System, the APL2/X interface had to be able to
provide access to these data structures as well as the
many function calls that are defined by the X Win-
dow System. In doing so, APL2/X has implemented
these data structures in C and provided import and
export access from APL2.

Those familiar with the object-oriented paradigm
will recognize the similarities in that approach to
the APL2/X handling of data structures. APL2/X
maintains a structure (class) definition as part of
the C command interface. APL2 calls upon this def-
inition to create new instances of the structure in
memory and to assign values to and retrieve values
from the fields (class data members) of the in-
stance.

The structure instances are stored in memory con-
trolled by C and thereby directly available to the C
application, in this case the X Window System.
Upon request from APL2, the instance of the data
structure is mapped to an APL2 vector. The vector
may be simple (homogeneous) or general (heter-
ogeneous), depending on the underlying C defini-
tion. When in APL2, the array can be manipulated
in the normal APL2 fashion.

Structure commands. A common set of structure
commands has been defined to allow APL2 to easily

JENSEN AND BEATY 481

create and access the data structure instances main-
tained by C. Again one can draw comparisons to
these structure commands and those implemented
for class definitions in many object-oriented lan-
guages. The structure commands provide the
means to create instances of a given structure type,
to perform the chores of getting data in and out of
it, and to free up the space once it is no longer
needed.

Listed below are the commands that are defined.
The commands are shown in three groups: those in
the left column operate on a single instance of a
structure, the commands in the middle column op-
erate on multiple adjoining structures, and the ones
on the right return assorted information from the
structure definition.

Clear MClear GeConst
Get MFree GetFields
New MGet GetSize
Put MNew

NewPut MPut

SFree

Structure command usage. The syntax common to
all of the structure commands includes the com-
mand name followed by the structure type. For
those commands that deal with existing structure
instances, the pointer to the structure instance (its
handle) is expected as the third argument. Follow-
ing is the general structure command syntax as
called from APL2:

(rc [result]) « C command struct [parm] ...
Some examples of using these commands are:

n Create a new XTextItem instance
item « X 'New' 'XTextItem'

o Now fill it with data
X '"Put' 'XTextItem' item
('Simple' 1 2 3)

a Verify that the data made it in
X 'Get' 'XTextItem' item
Simple 1 2 3

a Use the structure in a call
X 'XDrawText' dp w gc x y item 1

a Remember to free it when all done
X 'SFree' 'XTextItem' item

Structure type definitions. The structure type def-
initions are grouped in tables in the same manner

482 JENSEN AND BEATY

as are the command definitions. In fact, the APL2/X
interface provides for each environment grouping
to accommodate both a command table and a struc-
ture table, as these definitions often go hand in
hand. Currently, these three structure definition
tables are provided by APL2/X: X events and other
X structures, and C primitive structures.

In order to have the structure commands work, the
tables must specify the structure type being ad-
dressed. The structure type located in one of the
predefined tables provides the definition of the el-
ements of a structure instance of that type. Specif-
ically, the type definition contains information
about each field of the structure, the names, and
data types. The field data types are specified using
the same type codes as are used for the function
arguments in the command tables.

This structure definition information is also readily
available from APL2 via the interface. Having this
information available can be of great assistance
when using the data structures from within APL2, in
that it associates each element in the vector with its
related field name in C.

To help illustrate the point, this is how the
XTextItem structure from the X Window System
Xlib.h header file is defined in C:

typedef struct {

char *chars; /* Pointer to string */

int nchars; /* Number of characters */

int delta; /* Delta between strings */

Font font; /* Font to be used, or None */
} XTextItem;

APL2 accesses the structure information in the fol-
lowing manner:

o Get all XTextItem fields
X 'GetFields' 'XTextItem'
char xchars S
int nchars I
int delta I
Font font I

Note that the full C definition of the field is main-
tained even though the field name and the field type
code are the only pieces of information used
by APL2/X. The C data type specification (e.g.,
char *, int, or Font) is kept as part of the field
definition since it is often very useful, if not crucial,
to the understanding of the role of a given structure
member.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Structure field access. To accomplish the equiva-
lent of field access by name as provided by C, two
APL2 functions, axGetFF and axGetFF1, are in-
cluded as part of APL2/X. These functions use the
field information provided by GetF ields to asso-
ciate indices to the various field names, thereby
providing the index-by-name capability for a re-
lated structure instance held in an APL2 vector. The
main difference between these two functions is that
axGetFF provides the indexing for all of the fields
in the structure, and axGetFF1 returns index in-
formation for selected fields specified in the call.

By means of an example, we now demonstrate how
the chars field of an XTextItem structure instance,
text, is accessed from both C and APL2. Note that
the axGetFF function has previously been called in
APL2 to associate the correct index to the field
name:

In C: In APL2:

text(chars]
text[chars]

text.chars
text->chars

As a benefit of obtaining the field indexing of the
structure from C, the APL2 application can have a
measure of independence from changes in the or-
der of fields in the underlying C data structure. That
is to say that as long as the fields remain intact and
the C structure definition is maintained in accor-
dance with the C application, the APL2 application
will not have to change either.

Abandoned approach. Originally we implemented
the structure support using “typed” instances so
that each instance had a hidden header section that
identified the structure type. This implementation
meant that the structure class did not have to be
specified on each structure command since the in-
formation was already available. However, when
the structure was allocated by the C application
instead of the APL2/X interface, it meant a lot of
extra work because the interface would have to al-
locate another instance with the proper header
attached and then copy the structure data of the
application into this new area. With the implemen-
tation of nested structures this activity became dif-
ficult to control, so we ultimately abandoned the
“typed” instance approach.

Support for C constants

If the X Window System defines a large number of
structures, it defines ten times that many constants

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

in its header files. As any experienced programmer
would attest, the use of constants is a major benefit
to an application in that it provides symbolic ref-
erence so that when a change is called for, only the
constant value needs to be changed, regardless of
how many references exist. Because these constants
disappear during the compilation process, there is
no penalty for defining large numbers of them, and
the X Window System takes advantage of this and
defines a large number of these constants in its
header files.

The sheer number of constants employed by the X
Window System dictated that APL2/X implement ac-
cess to these constants in a selective manner rather
than expose the whole lot. This approach is logical
since any given constant is typically used by only a
very limited number of structures or functions. In
fact, in the majority of cases, the constants defined
in the X Window System header files are related to
specific fields of a structure. Therefore, in giving
APL2 access to these constants, the constants are
logically tied to a related structure definition.

The GetConst command provided by APL2/X as part
of the structure commands is used to retrieve the
constant values associated with a given structure for
use in AP12. Following is an example of the output
from this command:

X 'Getlonst' 'XSizeHints'
USPosition X 1
USSize X 2
PPosition X 4
PSize X 8
PMinSize X 16
PMaxSize X 32
PResizelnc X 64
PAspect X 128
PBaseSize X 256
PWinGravity X 512
PA11Hints X 252

It is a simple task for an APL2 function to issue this
call, create a set of variables, and initialize them to
the constant values that are returned. In fact, the
axGetFF and axGetFF1 functions previously in-
troduced in the last section not only define struc-
ture field indexing, they also create these constant
variables for use by the APL2 application.

By doing so, the APL2 functions are able to use the
same constants as defined by the X Window Sys-
tem. Such usage insulates the application from
changes to these constant values. We experienced

JENSEN AND BEATY 483

an example of this when upgrading the APL2/X in-
terface support of the X Window System from
release 11.3 to release 11.4. Release 11.4 had
changed some of the constants associated with the
XSizeHints structure, among other changes. These
changes meant that the table holding the constants
in APL2Z/X had to be recompiled to pick up the
changed values, but through the use of the
axGetFF function it never affected the APL2 ap-
plications.

System commands

APL2/X provides a group of system commands in
addition to the structure and X Window System
commands. These commands are used to control
and interrogate the interface itself, as opposed to
accessing and using external functions that supply
the application with needed services. The names of
these commands all start with a closing parenthesis,
mimicking the APL2 system commands.

The following system commands are presently de-
fined:

yCmds List the available commands

YEnv Get Get current command environments

YEnv Set Change the command environment
order

JRC List a return code message

yStructs List the available structures

)Syntax List the syntax of a specific command

yVersion Return the APL2/X version identifier

Some examples of their use follow:

X ')Syntax' 'XParseGeometry'’
X1ib XParseGeometry S 1I1111]

X ")Version'
APL2/X Development Version 0.00

X ')Env' 'Get'
X1ib Structs System

Return codes

A major difference between APL2/X and processor
11 of APL2/370 is in the way that errors are reported.
Processor 11 treats this condition at an atomic level,
using the normal API2 error messages such as
DOMATN ERROR and VALUE ERROR. If the error
stems from using an element of the wrong type in
a vector of arguments, it can be quite difficult to
locate the source of the error, especially since the

484 JENSEN AND BEATY

APL2/370 [INA argument pattern information is not
directly available to the application.

APL2/X improves error reporting in several ways.
First of all, the arguments in error can easily be
determined, since each argument passed to APL2/X
will be associated with a return code. Second, the
return code is tied to an error message explaining
the source of the error, if using the X ApL2 function.
Third, the syntax of the call is available for inspec-
tion via a system command.

For instance, using the X function:

X 'XOpenDisplay'
Error in input (RC=1)
Index rc parm
® © XOpenDisplay
116
16 Expected parameter of type '%s' is missing
Command 'XOpenDisplay' defined by:
X1ib XOpenDisplay SI
X 'XOpenDisplay'

A

Note the use of the default error handler that is part
of the X function; it will halt execution at the place
of error and will point out the parameter or pa-
rameters in error.

Using C instead (without the trailing comment, of
course; it is just placed here for explanation):

C 'XOpenDisplay' 'first' 'second'
17 00 17
a 17: Too many parameters

The C function does not halt the processing when
an error is encountered. Instead, it returns a non-
zero return code to the application, and it is up to
the application to take whatever corrective action is
required. Note the structure of the element return
codes: it contains an element for each given or re-
quired parameter, whichever count is the larger of
the two. This way it is possible to uniquely identify
the source of any errors in the parameters.

This principle extends to nested parameters as well,
as the following example shows:

C 'Put' '"XTextItem' 589120
(1 "text* 2 3 4)
1 0060 26210017
a 17: Excessive number of parameters given
a 21: Dimension 981 must be equal to 90s
a 26: Cannot convert from type 90 to type 90s

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Issues in calling C routines from APL2

The initial version of APL2/X was completed on a VM
system, using processor 11 of APL2 Version 1 Re-
lease 3 to call functions external to APL2 itself. The
only two programming languages specifically men-
tioned in the documentation for processor 11 are
FORTRAN and System/370 Assembler.” Initially we
used the FORTRAN linkage-type of processor 11
rather than OBJECT. It was chosen because it would
include the length information for each parameter
passed. However, in trying to call routines written
in C, we encountered the following problems that
had to be solved in order for us to implement the
X Window System interface:

* Character strings not null-terminated—Charac-
ter strings are by definition required to be ter-
minated by a null byte in C, but processor 11 does
not ensure that the strings passed are null-ter-
minated.

* Returning the result of a C function to APL2—C
functions compiled with the €/370 compiler place
the result in register 1, but processor 11 expects
a result to be passed back to APL2 in register 0.

* Using C pointers—It is not possible to specify a
given parameter as being a pointer, such as the
C definition char * would require. The argument
patterns™ of processor 11 do not cater to this
type of definition, and it is therefore possible to
handle the distinction of passing a parameter by
value, as opposed to passing it by reference.

* Fully specified function argument patterns—The
function argument pattern of processor 11 must
be completely known by the time a function is
called. It is not possible to defer processing and
verification of some of the arguments until later,
or to ignore others altogether. Thus, it is not
possible to call a given function with differing
types of arguments.

The above problems are related to calling a single
C function. In addition to these problems, trying to
implement an X Window System interface intro-
duces another set of problems related to the sheer
number of calls to support (395 in the case of the
X Window System):

* No list options—There is no call to obtain the
function argument pattern of a given external
function from within APL2 (short of extracting it
from the names file), or to obtain a list of all the
accessible external functions.

* Cumbersome to implement and maintain—For a
function to be used, it must have an entry in both

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

the names file and the assembler stub module, as
well as a ONA definition in the workspace. Each
workspace needing access to the X Window Sys-
tem therefore ends up with a large number of
function definitions, in most cases swamping the
real functions of the application.

As can be seen, most of these problems revolve
around parameter passing. They have been solved
in APL2/X by having the interface itself take over the
parameter verification chore, using the FUNCTION
linkage-type of processor 11, without any parame-
ter verification imposed by the processor. And in-
stead of storing the argument patterns in an exter-
nal names file, APL2/X now stores these patterns in
command tables internal to the interface. Thus,
what APL2/X receives is the APL2 data specified by
the calling function, and it is up to the interface to
perform any needed parameter validation and co-
ercions. This scheme has given APL2/X maximum
control of the parameter passing, and thus the fol-
lowing results have been achieved:

* Only a single external function is established in
the workspace. The name of the C function to be
called is now passed as the first argument in the
call.

* Null-termination of character strings is handled
automatically by the interface. It avoids having
the caller do it in APL2 by either imposing a fixed-
length restriction on each string or requiring that
the string include the NULL terminator.

* The interface supports pointer variables. The
support caters to an unlimited number of refer-
ence indirections. As an example, an argument
with a declaration of “int **” is supported. This
would be specified as “**1”.

* Argument verification has been extended to al-
low for deferred verification. Such verification
has proved to be especially important when
working with data structures, where the content
and structure can vary greatly from structure to
structure.

* Additional data types are supported, such as
hexadecimals. Also, some data types can be spec-
ified in multiple ways. An example of the latter
is a bit-field, which can be specified as a vector of
bits, an integer (i.e., packed bits), or in hexadec-
imal format (in the form of a character string).

* Multiple results can be returned as explicit re-
sults of the call to a given C function, without the
need to build special APL2 functions that preal-
locate variables to hold the returned informa-
tion.

JENSEN AND BEATY 485

~» Commands have been added to interrogate the
interface itself. This interrogation enables the in-
terface to return the expected syntax of a given
call or provide lists of the commands and struc-
tures supported.

» Using function linkage has enabled APL2/X to use
the processor 11 service routines. These routines
provide some useful services, such as data con-
version and execution of APL2 expressions from
within C.

~ A large number of utility functions have been
implemented in C that allow us to process and
manipulate APL2 data structures in C in an easy
and proficient manner.

Taking over the argument verification job turned
out to be a blessing in disguise for APL2/X. It made
the “port” to the APL2/6000 and APL2/PC environ-
ments very easy to accomplish. (In APL2/PC, only the
basic APL2-to-C interface has been implemented,
not the support for the X Window System.) Both of
these environments communicate with APL2/X via a
shared variable interface, unlike the APL2/370 im-
plementations. Except for different internal for-
mats of the APL2 data passed from APL2, the proc-
essing remains the same as far as APLY/X is
concerned, at the internal level and, more impor-
tantly, at the user interface level too.

Changes to the X Window System call
syntax

One of the design goals for APL2/X was to imple-
ment as faithful a representation of the X Window
System in APL2/X as possible. However, some dif-
ferences exist due to the very different nature of C
and APL2. The important differences are:

~ Function arguments are always specified by
value in the same way that they would be for
regular APL2 functions. This is true for all types
of arguments, scalars as well as arrays. APLYX
performs any needed type coercion and also adds
any required indirection pointers based on the
type code information before making the actual
call to the C routine.

Note that the explicit use of pointers in APL2/X is
not precluded. In fact, they are used as such in
many of the X Window System calls, as well as in
the routines that implement the structure calls.
In these cases, the pointer given is a “magic”
constant; as far as the application is concerned it
is a value that uniquely identifies some available

486 JENSEN AND BEATY

resource, and no explicit changes to the value
should be attempted. A prime example of such a
constant is the X Window System “display point-
er.” This pointer is used on most X Window Sys-
tem calls, but no calculations are ever performed
on the pointer itself.

~ Only input parameters may be specified on the
calls to the X Window System. APL2/X automat-
ically adds any needed output parameters that
the call may require. It is a change from the C
environment, where the output parameters must
be specified explicitly on the call and space pos-
sibly allocated to hold the results.

~ Allresults from calling a function are returned as
explicit results, including results returned in C
via changes to the output arguments. No side
effects such as changing of global variables in the
workspace are employed. Also, pointer argu-
ments are de-referenced, so what is returned in
APL2 are the data values, not the pointers.

The above differences are a consequence of the
basic design philosophy underlying the APL2-to-C
interface. Another difference, described next, is
specific to the X Window System calls dealing with
event structures and is more a matter of con-
venience.

X Window System events are always set or returned
by value. The event data are then immediately
available for use in the APL2 environment, instead
of the structure commands being employed to re-
trieve the event structure values on the basis of a
returned pointer value. The rationale for this de-
cision is that the event data are almost invariable as
required by the APL2 application, not just the event
pointer, so APL2/X returns the data to speed up the
process. In the rare cases where the event pointer
is required, it can be acquired through a separate,
special call to the interface.

Potential improvements

Although we have come a long way in providing
APL2 with access to the X Window System, more
work can certainly be envisioned. First among the
possibilities would be to add a layer of APL2 func-
tions to help use the X Window System facilities.
This could shield some of the complexity of the X
Window System, in much the same way it was done
in the past in the workspace FSC126 that helped ApL2
create and use a full-screen panel by accessing rou-
tines of GDDM via APL2 cover functions.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

A second option is to extend the range of supported
X Window System routines. The Xlib layer is the
only layer supported today. There appear to be no
technical problems in extending the support to
higher layers of the X Window System functional-
ity. It is certain that APL2 would benefit from gain-
ing access to higher-level routines that create and
manipulate window system items such as menu
bars, sliders, pop-up windows, and other items as-
sociated with a modern, windowed user interface.
Indeed, this possibility is not restricted solely to the
X Window System libraries; other collections of C
functions can be accessed equally well from APL2
via this interface.

In an effort to improve the interface for use with C
applications in general, some experimental work
has already gone into providing the means to
dynamically define C commands and structures
from APL2. This capability allows APL2 to directly
interface with existing C applications without re-
quiring the definitions of the related functions and
structures to be built into the APL2/X interface itself.

Last, an even better support for data structures is
possible if implemented in APL? itself, maybe in the
form of an option on [INA to allow APL2 to access
external data variables in much the same way that
external functions today are suppori.::. An advan-
tage would be a single copy of data, with the obvious
corollary of improved data integrity.

A final example

It would appear as though it is a rite of passage for
a windows-based system to have a “HelloWorld”
sample program. APLY/X follows this trend. The
HeiloWorld Ap12 function listed in Appendix A il-
lustrates how many of the concepts and ideas pre-
sented in this paper fit together. It shows how an
APL2 function can implement the two fundamental
concepts of a windows-based system: window ma-
nipulation and responding to user-generated
events. We will let the function listing speak for
itself as to the detail; for a more in-depth discussion
of the program, see Introduction to the X Window
System, Chapter 2, IBM AIx APL2/6000 User’s
Guide,'s or An Interface Between APL2 and the X
Window System."

Note that the function as listed takes a simplistic
view of the world. It has only minimal error-check-
ing, and it is coded as a single, large function. A
production-level version of the same function

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

would certainly have to do a more thorough job
verifying that error conditions had not occurred.
Also, much of the functionality would be imple-
mented through secondary functions common to
many windowed applications. However, since the
focus of this paper is purely and solely on the ca-
pability to access and call C and the X Window
System routines from APL2 functions, this example
is presented in the form given.

Summary

A major goal achieved in this project was to enable
APL2 to use the exciting new facilities that the X
Window System embodies and to bring to the X
Window System the power of the APL2 interactive
environment and array-handling capabilities. This
truly brings the potential of a modern-day interface
to APL2 while at the same time augmenting the X
Window System. A second goal was to provide a
common interface to the C language from all of
IBM’s APL2 systems, ranging from pC DOS through
AIX on the RISC System/6000 to VM and MVS, in-
cluding full support of C data structures. A third
goal was to maintain the function-call “feel” of
APL2, enabling the external functions to be used as
though they were truly written in APL2.

To achieve these goals a number of large issues had
to be overcome. Among the more daunting ones
were data mapping, handling storage management,
and automatic parameter indirection so vital to any
C interface. Since APL2 and C are so diverse in the
way they deal with storage management, it proved
to be a real challenge, especially when dealing with
data structures.

The APL2/X interface described is currently avail-
able to IBM customers on two APL2 platforms. In
APL2/6000 for AIX on the RISC System/6000 (Pro-
gram No, 5765-012) it is included as the AP144 aux-
iliary processor,’® and it is provided as a sample
offering with TCP/IP Version 2 for vM (Program No.
5735-FAL) to be used by APL2/VM."

Acknowledgments

We would be remiss if we did not acknowledge the
significant amount of help we have received from
many people. A special acknowledgment goes to
Bob Cohen, who worked with us part time while
pursuing his Ph.D., for implementing and verifying
a good portion of the X Window System calls. We
would also like to thank our manager, Love Sea-

JENSEN AND BEATY 487

wright, and our center manager, Dick MacKinnon, (451

for making it possible for us to engage in this proj- L o A S Cs ontet
ect; Andy Pierce for showing us his REXX-based (48] X 'XSetBackground' dp gc bp
interface and providing us the X Window System (491 % 'XSetForeground' dp ge wp
on VM/CMS; Mike VanDerMeulen and John Mizel (611 a Window mapping
for helping us port the interface to the RISC Sys- Eg%} X 'XMapRaised' dp w
tem/6000; Ray Trimble, Michael Wheatley, Nancy [54] = Input event selection '
Wheeler, and David Liebtag for helping us through (28] I puitonbressiack, 'KeyPressilask
the ONA of APL2; Elbert Hu for including APL2/X [571 (rc m)<m axGetFFi 'XEvent'

] i . [581 X 'XSelectInput' dp w(+/m)
with TCP/IP Version 2 for vM; and the many people [20] ep-X 'XGotEvontBurrer'
that answered our queries on the electronic forums [60]

Vi i i - [61] = Get some more constants
anld provided us with good feedback during the de L2l e T P e
velopment. Ega% r(n«-m, ')EXDZ;S(S ' l"_’gip;'))i(ngl\lot%'fy'
rce m)«m et Event
* Trademark or registered trademark of International Business [65] a ... and some event s‘t;ructure layouts
Machines Corporation. Eg% n%«n% 13:5_: ﬁetg‘; :§geyEv§gt‘ ,
~nl,1> t tt t

** Trademark or registered trademark of Massachusetts Insti- [681 Ehﬁl J12'E_" ax(;ZtFF ' XEipo‘s’eE‘JZﬁt'
tute of Technology, UNIX System Laboratories, Inc., Microsoft [69] . .
Corporation, or Open Software Foundation, Inc. [70] a Main event-reading loop

[71] done«0
[72] 1levent:+(done=0)+lend

(73]
. . . [74] @ Read and process the next event
Append|x A: HelloWorid Ilsting [75] x<lKeyPress lButtonPress
[76] x<x, l1Expose lMaz'inngNotify‘
{0l HelloWorld;DIO0;dp;w;gc;s;e;k;rwsbp;wpim E;g% ~(m=K_typese<X 'XNextEvent' dp)/x
.;ﬁ?;l{?égl;done;None;hp shints;rc [79] I1Expose: a Repaint window on expose events
El% A f__amplglx pro:cI;ram, based on helloworld.c Eg(l)% ;fg%‘icgggﬁ;jegeﬁgndoslcggn§0>58 ?
2 a from Oliver Jones: = bl g
[3] n Introduction to the X Window System Eg%% Eg;"’)égzt*awlmageStrmg '),x,hello(phello)
4] a Prentice-Hall, 1989; ISBN 0-13-499997-4 [8u]
Eg% 0I0+0 Egg% lButt[:gnl(;L:esi: nBPrchss]mouse-[-guttgn ;]>resses
. _ . x«e[B_display B_windowl,gc,elB_x B_y
[8) hellocHotlo, World,t o oring [87] X(<'XDrawlmageString'),%,hi(phi)
[91 a fl:h$ g}lccl?m?tion point makes hi ugly: Egg% ~levent
Eig% hi«'Hi',('A'=0AF 65)>04F 90 33 Egﬂ lléeypr;?S?):(Ln Prggess keveyboa.rd input
sy s s 9 «el> ookupString' ep
(12 » Initialization
[13] -(0=dp-X 'XOpenDisplay' '')+lopen Eg%% *E‘dc[mxfg('fk;e'q%)f_lgve?t (K x K v]
[14] D*'XOpeuDlsplay failed . tou]);(S'XD 15117 ay Stw%n ?“)’ ’gi(’ ek)_x ¥
(151 [O-'... HelloWorld aborted' (98] levent ' TogestTing’ ke
[16] -~lexit tae] even
[17] lopen: [97) IMappingliotify: = Reset keyboard
[19] s Default pixel values Egg% Xl XRej_ZreshKeyboardMapplng €
E%g% s*XX'}’(ggfaultScre?n' dp £100] ~ieven
bp- lackPixel! dp s {101] /end: s Termination
N FARE el Top
. estroyWindow' dp w
i241 » Define an X constant [104] X 'XCloseDisplay' dp
o i
a Prepare to set window position and size
(28] (rc nl)<'H ' axGetFF 'XSizeHints' 7 1861 u-16 18.43.0 (GUI-)
EC%%% m«+/PPosition PSize
[31] « Build an XSizeHints structure instance Cited references
[32] hp<X 'New' 'XSizeHints'
E%S% glngszﬁ J'f?et' I'{XSI;ZIQH?ltSéog 300 1. J. A. Brown, S. Pakin, and R. P. Polivka, APL2 at a Glance,
ints ags i X L y.+m Prentice-Hall, Inc., Englewood Cliffs, NJ (1988).
Egg% 1}}11.’;3&13’_ V%gsgeg:ggéqh}%*gigtgso 2. O. Jones, Introduction to the X Window System, Prentice-
£273 Hall, Inc., Englewood Cliffs, NJ (1989).
[38] a Window creation 3. D. Comer, Internetworking with TCP/IP, Prentice-Hall, Inc.,
[39] weX ' XDefaultRootWindow' dp Englewood Cliffs, NJ (1988).
Eﬁg% };:?l?)%ggéaieg l’;;] izwi’g dowvir' dp rwhx 4. IBM Transmission Control Program/Internet Protocol Version
[u2] x<hello hello Nonme('A' 'test')2 hp 2 for VM: Programmer’s Reference Manual, Appendix A,
[43] X 'XSetStandardProperties' dp w,x SC31-6084, IBM Corporation (1990); Program No. 5735
[44] X 'SFree' 'XSizeHints' hp FAL; available through IBM branch offices.

488 JENSEN AND BEATY IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

5. IBM Transmission Control Program/Internet Protocol Version
2 for MVS: Programmer’s Reference Manual, SC31-6087,
IBM Corporation (1991); Program No. 5735 HAL; available
through IBM branch offices.

6. X3270—AIX X Windows 3270 Emulator User’s Guide, SC23-
0579-0, IBM Corporation (1991); available through IBM
branch offices.

7. 1. A. Pierce and R. O. Reynolds, The X Window System in
the S/370 Environment, G325-4100-0, IBM Corporation
(1991); available through IBM branch offices.

8. APL2 Programming: Processor Interface Reference, SH20-
9234-0, IBM Corporation (1987), pp. 15-23; available
through IBM branch offices.

9. APL2 Programming: APL2 for the IBM PC, User’s Guide,
Version 1.02, SC33-0600-2, IBM Corporation (1990), pp.
436-438; available through IBM branch offices.

10. R. W. Scheifier and J. Gettys with J. Flowers, R. Newman,
and D. Rosenthal, X Window System: The Complete Refer-
ence to Xlib, X Protocol, ICCCM, XLFS, Digital Press, Bed-
ford, MA (1990).

11. AIX Calls and Subroutine Reference for RISC System/6000,
Volume 4: User Interface, SC23-2198, IBM Corporation
(1990); available through IBM branch offices.

12. APL2 Programming: System Services Reference, Chapter 23,
SH20-9218, IBM Corporation (1990), pp. 238-239; available
through IBM branch offices.

13. Ibid., p. 237.

14. Ibid., p. 243.

15. See Reference 2, Chapter 2.

16. AIX APL2/6000 User’s Guide, SC23-3051-0, IBM Corpora-
tion (1991), pp. 305-314; available through IBM branch of-
fices.

17. An Interface Between APL2 and the X Window System, IBM
licensed material provided with TCP/IP Version 2 for VM
(Program No. 5735-FAL), pp. 5~14; available through IBM
branch offices.

18. See Reference 16, pp. 209-216.

19. See Reference 17.

Accepted for publication June 10, 1991.

John R. Jensen [BM Cambridge Scientific Center, 101 Main
Street, Cambridge, Massachusetts 02142. Mr. Jensen is a scientific
staff member at the Cambridge Scientific Center. He joined
IBM Denmark in 1978 as a systems engineer. In 1982, he worked
at the IBM Canada Computing Centre in Vancouver, British
Columbia, and from 1983 to 1988 was at the Dallas Develop-
ment Laboratory in Texas, working on the IC/1 and Office Vision
products. He became a member of the Cambridge Scientific
Center staff in 1988. His current areas of interest include user
interface design, application prototyping, programming environ-
ments, and compilers. Mr. Jensen received an M.Sc. degree in
electrical engineering from the Technical University of Copen-
hagen, Denmark, in 1978 and an M.B.A. in accounting from the
Copenhagen School of Economics in 1981. He is a member of
the ACM and the IEEE Computer Society.

Kirk A. Beaty IBM Cambridge Scientific Center, 101 Main
Street, Cambridge, Massachusetts 02142. Mr. Beaty is a scientific
staff member at the Cambridge Scientific Center. He joined
IBM at Sterling Forest, New York, in 1981 as a systems pro-
grammer. Furthering his experience at Sterling Forest, from
1983 to 1987 he became involved in telecommunications, in-
cluding the technical software leadership role in the creation of
IBM’s centrally managed internal VNET backbone network. He

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

has been a member of the Cambridge Scientific Center since
1987. Mr. Beaty received a B.S. with honors in mathemat-
ics/computer science (while minoring in business administra-
tion) in 1981 from Manchester College, North Manchester, In-
diana. He is a graduate of the IBM Systems Research Institute
and has recently completed a Certificate of Advanced Study in
software engineering at Harvard University.

Reprint Order No. G321-5447.

JENSEN AND BEATY 489

