
Putting a new face
on APL2

by J. R. Jensen
K. A. Beaty

APLZX is an interface between APL2 and the
X Window System’, built at the ISM Cambridge
Scientific Center. This interface enables the full
set of the X Window System Xlib calls and the
related data structures to be used directly from
pro rams written in APL2, thereby providing
APf2 with a true, full-function windowing
environment, The interface also deals with the
broader and more eneral issue of how to call
C programs from f P L 2 The interface and the
experience of building it are described in some
detail in this paper.

T he intent of this paper is to detail the experi-
ence of building an interface between ApL2 and

the X Window System**. APL~, having evolved over
two and a half decades, was a good candidate for a
“face lift” in that it benefits greatly from having a
modern presentation system. In turn, the X Win-
dow System gains the flexibility and power of A P L ~
in developing and driving applications.

This paper is divided into several subsections. To
set the stage, some simple examples of how the
interface can be used are shown, and an overview
of the X Window System is also given. With that as
a background, we then discuss the rationale for
building such an interface, as well as some of the
design choices made. Next, the general APL2-to-C
interface that has been implemented is presented.
APLW uses this interface heavily. The focus is on
how to be able to use a large number of already-
existing C routines from A P L ~ with as little addi-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

tional work required as possible. Finally, examples
of how to use this interface to access and call C
routines from A P L ~ are shown, with a focus on the
special consideration that the X Window System
entails.

It is assumed that the reader has some knowledge
of both APL2 and the X Window System. See, for
example, APL2 at a Glance by Brown et al.’ for an
introduction to APL~, and Introduction to the X win-
dow System by Jones’ for information about the X
Window System.

An example. An example might help illustrate the
capabilities of the X Window System when used
with APL~. To display the image of this example, run
the following A P L ~ expression:

XIMAGE MAN COL ‘Basic’

XIMAGE is an A P L ~ function that uses the X Window
System calls to display an image. MAN is an A P L ~
variable containing an image of a mandrill, COL is
a color lookup table, and ’ Basic ’ is a window title.
It results in a new window displaying the content
shown in Figure 1.

“Copyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

JENSEN AND BEATY 469

Figure 1 Basic image

Figure 2 Image turned on side

This image can be manipulated using normal A P L ~
functions. The manipulation can take place on the
image matrix, the color table, or both. For instance,
to turn it on its side as in Figure 2 use:

XIMAGE (QMAN) COL ' Lazy'
To triple its size as shown in Figure 3, use the fol-
lowing function:

XIMAGE (3/3fMAN) COL ' Large'
To display as a negative as is done in Figure 4 use:

XIMAGE MAN (1000-COLI 'Neg'

Finally, to create four mirror images of the mandrill
as in Figure 5 use:

B2 +MAN, @MAN
B4+B2,[11 eB2
XIMAGE B4 COL 'Four'

Why an APL2 X Window System interface. From
the advantages each has to offer, it is evident that
A P L ~ and the X Window System can benefit from an
interface connecting them. We now describe some
of the more compelling benefits for APL~.

A P L ~ is provided with a modern-day interface. The
present interface of A P L ~ dates back to the late
1970s and has a distinct character-cell flavor to it.
Graphics are limited to fixed, nonmovable images.
Several desirable features can be incorporated by
utilizing the functions of the X Window System:

Keystroke sensitivity for programs
Pointing devices such as a mouse
Multiple fonts of varying size
Bitmapped graphics and image
Dynamic graphics capabilities

Many of these features are as much a product of
better hardware (in the form of workstations) as
they are of the software, but this does not negate
the fact that they need the software to utilize these
advanced features.

The interface enables a given A P L ~ application to
display its output on any connected workstation,
and enables a workstation to initiate and run A P L ~
programs on many different hosts at the same time.

Similarly, the X Window System gains from using
APL~. A P L ~ provides an interactive environment.
Each call or series of calls can be tried out, verified,
and altered at will until the right combination is
reached. This activity can take place without any
recompilation whatsoever, speeding up the devel-
opment process. The X Window System can use the
array processing ability of A P L ~ to easily store and
manipulate images using standard A P L ~ primitives,
as shown in the example presented earlier.

For those readers not familiar with the X Window
System, the next section presents a brief overview.

An overview of the X Window System

The X Window System is the de facto standard for
windowing systems in the UNIX** environment. In

470 JENSEN AND BEATY IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 Image tripled in size

many respects it is very similar to the Operating
System/2* (os/2*) Presentation Manager* and Mi-
crosoft Windows* * for the IBM Personal Computer
Disk Operating System (PC DOS) in that it provides
the application programmer with a multitude of
calls to control and manipulate the content of win-
dows on a display. However, it also differs from
these products in some key aspects. The foremost
difference is that the X Window System was de-
signed from its inception to be network-transpar-
ent. This means that an application can display its
results on any workstation attached to a local area
network, no matter where the application may ac-
tually be running. The X Window System employs

the client-server model of computing. It enables the
application, or client, to make use of the resources
of the workstation, or server, to display its output
and receive input from the user, as illustrated in
Figure 6.

Server. The X Server is a program running on the
workstation that manages the interaction with the
user. It typically controls one or more screens, a
keyboard, and a mouse or similar pointing device.
It allows clients to have use of all of these devices
and other resources such as windows, pixmaps,
fonts, and graphics contexts. The server receives
directives from communicating clients via network

JENSEN AND BEATY 471 IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 4 Negative of image

protocol requests and acts upon them to draw win-
dows, graphics, text, and images on the display.
Whenever the user of the workstation performs an
action such as pressing a key, moving the mouse,
etc., the server will generate an event message and
return it to the client program via the underlying

network protocol (traditionally TCPDP, the Trans-
mission Control Protocol/Internet Protocol).

Client. The application is the client program. It
sends requests to the server via the network pro-
tocol and receives information back from the server
in the form of replies or events. These requests can
be generated and handled at the network protocol
level, or higher-level calls can be used.

Window manager. The window manager is an ap-
plication that controls where windows are placed,
the size of the windows, the window decorations,
and the interaction style. In separating it from the
X server, the X Window System has made it pos-
sible to have a replaceable window manager im-
plementing different interaction styles. As an ex-
ample, some window managers enable window
moving and resizing by grabbing and dragging the
window borders, whereas other window managers
will use menus to accomplish the same end result.
Among the many window managers that exist, one
now in common use is the Open Software Foun-
dation (oSF) Motif** window manager that gives
the X Window System a “look and feel” almost

Figure 5 Image quadrupled

472 JENSEN AND BEATY IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 6 The X Window System client-server relationship

(APPLICATION)
X CLIENT AIX

MVS
VM/CMS

OEMs
ETC.

WINDOW MWM
MANAGER AIXWM

CWM
UWM
TWM
GWM
ETC.

TCP/IP

REQUESTS 1 1' EVENTS V

RISC SYSTEM/6000
X STATION 120

P S I 2 (DOS)
P S I 2 (AlX)

OEMs
RT

ETC. -E
MULTIPLE DISPLAYS

MOUSE

KEYBOARD

identical to that of the 0s/2 Presentation Manager.
A list of other existing window managers can be
found in Figure 6.

These three components of the X Window System
need not run on the same processor. An application
can be running on, say, a host with the Virtual
MachineExtended Architecture operating system,
or VM, communicating through the X Window Sys-
tem client services with an X Window System server
running on an IBM RISC System/6000*. The net ef-
fect of this setup is that the results of the application
appear on the display of the workstation as though
the application had been run locally.

It is also possible for a single client application to
display on many servers at once. Likewise, a server
can service many clients at the same time, display-
ing the output of each application program at once.

Communications among the client, server, and win-
dow manager can be handled by any method that
provides a reliable bidirectional byte stream. When
the client and server both run on the same proces-
sor, some sort of interprocess communication is
used for communication between the two. When
the client and server are running on separate proc-
essors, the TCPAP communications protocol usually
provides this service, although any other reliable
communications scheme could potentially be used
in its place.

The X Window System output capabilities can be
summarized as follows:

Controlling multiple windows on one or more
display screens
Drawing graphics primitives such as lines, arcs,
rectangles, and polygons with or without fills

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 JENSEN AND BEATY 473

Figure 7 The X Window System hierarchy

APPLICATION PROGRAM

OSF/MOTIF

X WIDGET SET

X INTRINSICS

XLlB

NETWORK PROTOCOL (TCP/IPl

Writing high-quality text with many different

Supporting images
fonts

Inputs are received in the form of events. Events
can be generated by the user pressing a key on the
workstation keyboard, by the user manipulating the
mouse (moving it or using the mouse buttons), or
by other events, such as when a window is cleared
and needs to be redrawn.

The X Window System is a layered architecture,
depicted in Figure 7. An application can draw upon
the calls of all of these layers. The X Window Sys-
tem networkprotocol is at the base of the hierarchy,
ultimately defining the traffic flowing between the
client and server components.

The xlib level is the next level. Most application
programmers will never interface with the X Win-
dow System at a level lower than this one. It consists
of about 400 separate calls written in C and more
than 100 data structures.

TheXlntn’nsics and theX Widget Set taken together
form the X Toolkit. A widget set is a collection of
common graphics elements that applications may
use, such as menus, scrollbars, pop-up windows,

474 JENSEN AND BEAT”

and the like. The X Widget Set makes use of the X
Intrinsics, which provides it with an object-oriented
interface.

The OSF/Motif toolkit is an elaborate toolkit that
implements application elements such as sliders,
pull-down menus, and buttons in a three-dimen-
sional appearance.

One final aspect of the X Window System needs to
be touched upon. It does not seem to be a generally
known fact that it is indeed possible to run the X
Window System under VM4 or Multiple Virtual
Storage (MVS).’ In fact, most of the development
work of APLZ/X was performed on a VM system. VM
and MVS both support the X client services as part
of TCP/IP Version 2 for VM and TCPDP Version 2 for
MVS.

Interface design criteria

As a stepping-stone to building the X Window Sys-
tem interface, a general ML2-to-C interface was
implemented. Although general in scope, it is cer-
tainly true that its built-in functionality has been
heavily influenced by the following considerations
that surfaced during the construction of the APL~/X
interface.

The interface should be able to use the existing
C functions without any changes or modifica-
tions. This requirement is important, since the
source code for the C functions may not be avail-
able.

The interface must be able to support a large
number of calls efficiently. The X Window Sys-
tem defines about 400 separate calls, depending
on the release considered.

To be useful, APLZK must be able to support data
structures but also allow APLZ to manipulate the
data using APLZ functions. Data structures play
an important role in many X Window System
calls.

The external C routines must be used in a man-
ner much akin to normal A P L ~ functions (i.e.,
maintain the “feel” of an A P L ~ function) when
called from within APLZ. Specifically, attainment
of this likeness requires that function arguments
be passed explicitly and by value. The interface
must take care of the needed argument type co-
ercion. Also, the interface should specifically re-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

frain from using designated variables or storage
areas that can be updated as a side effect of the
call; rather, all output should be returned as ex-
plicit results of the call.

' The defined X Window System call syntax should
be adhered to as closely as possible so as to en-
able the use of the normal X Window System
documentation. Only two noteworthy deviations
apply throughout the interface:

1. Output-only arguments are never specified on
input; they will be generated automatically
and returned as part of the explicit result of
the function call.

2. Arguments are given by value, even in cases
such as a character string, where C expects a
pointer in the parameter list. The interface
again handles the details of making this hap-
pen.

At times, maintaining this fidelity to the X Win-
dow System call syntax seems slightly out of place
in an A P L ~ setting. One of the places where this
is apparent is on those calls where the X Window
System expects a varying number of arguments
passed in an array or character string. These calls
invariably require the specification not only of
the array itself, but also of the number of ele-
ments in the array. This latter piece of informa-
tion is, of course, directly available with the A P L ~
array, so it seems slightly silly and annoying to
have to specify it in the call. However, in the
name of consistency we have chosen to stay with
the X Window System call syntax throughout,
even in cases such as this one.

A P L ~ will handle storage management automat-
ically, whereas C most often leaves the task for
the caller to do. APL~/X takes over this chore
when calling the C functions, so the A P L ~ pro-
gram is freed from addressing this task explicitly.

I Enable the same interface from APLZ to the X
Window System in multiple host environments
to allow A P L ~ applications that use APL2/X to be
run under the Virtual Machine/Conversational
Monitor System (VMKMS), Multiple Virtual
Storagemime-Sharing Option (MVSESO), or un-
der Advanced Interactive Executive* (AIX*) on
the RISC System/6000.

All of these items are discussed later in more detail.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Using the X Window System from APL2

A P L ~ can use the X Window System in two differ-
ent ways. It can either use it indirectly, if the out-
put device A P L ~ is communicating with is being
remapped to a workstation running the X Window
System, or directly by issuing calls to the X Window
System from APL~. The indirect approach allows
existing applications written for a 3270-type display
screen to run on an X Window System workstation,
but the interaction style is then, of course, limited
to that of a 3270 device. However, to be able to
utilize the features and facilities of the X Window
System, it is necessary for the applications to be
given direct, explicit access to the X Window Sys-
tem.

APL2 using the X Window System in compatibility
mode. The simplest way today to use the X Window
System from A P L ~ is in compatibility mode. Essen-
tially it is another way of getting someone else to
worry about supporting the X Window System. Two
existing IBM products that do just that are described
below.

X3270 The x3270 is a terminal emulator that en-
ables a 3270-type session to run on an X Window
System workstation, given the proper network at-
tachments. It supports different size fonts including
APL~, GDDM-style graphics, and 3277GA emulation
and has limited mouse s ~ p p o r t . ~

GDDM/XD. GDDMKD is an interface that permits
the display of output from GDDM on workstations
supporting the X Window System. It is available as
part of TCPDP Version 2 for VM and TCPDP Version
2 for MVS. It displays both character and graphics
output in a separate window on the X Window Sys-
tem workstation.

Exploiting the X Window System from APL2.
APL~/X takes a different approach to the X Window
System. In order to fully exploit the X Window
System from the A P L ~ environment, it is essential
that the application be given direct access to all of
the X Window System calls.

The connection between C and A P L ~ is illustrated in
Figure 8. APL~/X receives data from A P L ~ in its com-
mon data representation (CDR) format. The CDR
format is a documented data format for A P L ~ ex-
ternal data. It includes not only the data, but also
descriptive information about data type, rank, and
dimensions. The format varies, depending on the

JENSEN AND BEATY 475

Figure 8 Calling C programs from APL2

APL2 ENVIRONMENT

APLP

CDR -

CDR -
ONA OR AP144

C ENVIRONMENT

COMMAND PROCESSOR

+ 4 CDR DD

1
C ArgList +

1
- CDR DD

COMMAND AND
STRUCTURE TABLES

l-"-l C APPLICATIONS

* C FUNCTIONS

- C STRUCTURES

host operating environment. The data are sent from
A P L ~ to APL~LX using the associated processor 11
(VM) or a new auxiliary processor AP144 (AIX).

Once in APL2/X, the incoming CDR is transformed
into a DD, or data descriptor, which is the data
representation used internally by APL~/X in all of
the host environments within which it operates.
This transformation essentially involves breaking
up the CDR into self-contained arrays connected via
pointers. This data representation can be used di-
rectly for new functions specifically written to use
this data structure.

However, it is more common to use already-existing
C functions. To do so, the data must be in the form
that the functions can use. The second transforma-
tion is then involved to build the C ArgList. The
argument list is for the C function that is to be

called. The ArgList format is also employed when
accessing and using C data structures.

The conversion process is controlled by a command
definition that describes the arguments required by
a given command. These definitions are stored in
command tables. The first argument in any call
identifies the command to be executed. The tables
are searched to locate the matching command def-
inition.

APLS/X data descriptor

APL2/370,* APL2/6000, and APL~PC' all pass data to C
in the form of a monolithic block of data. This block
includes not only the data, but also information
describing the data type, rank, and dimension.
APL~/X breaks up the block of data into its compo-
nent pieces, storing the descriptor and data infor-

476 JENSEN AND BEATY IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

mation in separately allocated areas for each nest-
ing level of the data. This division ultimately cuts
down on the amount of data copying needed, and
has also enabled APL~X to extend the descriptors
with additional information. The descriptors cur-
rently hold the following pieces of information:

r c Element return code
f 1 a g s Assorted control flags
r e f s C indirection count
d a t a Pointer to data values (or the data

a 1 1 oc Number of elements allocated
x r ho Number of elements stored
rtl Data type
r a n k Rank
d i m s Array dimensions (zero, one, or more)

~~~2~addstherc,alloc,flags,andrefsitemsfor 
its own  use. The remaining items are extracted from 
the  data passed  from APL~. 

The ability to use separately allocated items has 
proved to be very  useful  when constructing elabo- 
rate return values. As an example, see the result of 
the G e t  C on s t  command  given later in the section on 
support for C constants. The result consists of a 
three-column table. The first  column  consists of a 
character string, the second column another char- 
acter string, and the third column a value that can 
be either numeric or yet another character string. 
This table is built in a bottom-up fashion, with each 
element being appended in turn. With  use of the 
separately allocated items, it just becomes a ques- 
tion of keeping track of a set of pointers, whereas 
a monolithic approach would require a preliminary 
pass to determine the size of the final table, before 
the actual building of it  could get under way. 

Defining  and  calling C functions  from APLP 
The supported X Window  System  calls are defined 
in a command table, along with their parameter and 
result type  codes. The type codes are used to Val- 
idate argument inputs and to gather resultant out- 
put for returning to APL~. The X Window  System 
command table, as well as  the related X Window 
System structure definitions table, are compiled 
into the command interface written in C. There- 
fore, the interface that resides between A P L ~  and 
the actual C functions (commands) being  called  is 
the  one responsible for validating input and check- 
ing for and returning expected function results. 

By having the command and structure definitions 
reside in the C command interface, we can funnel 

value  in the case of a scalar) 

IBM SYSTEMS JOURNAL,  VOL 30, NO 4, 1991 

all  Xlib  calls through a common A P L ~  function 
rather than having an A P L ~  function for each X 
Window  System function call. This significantly re- 
duces the number of X-Window-System-related 
functions that need to  be present in the application 
workspace. 

The A P L ~ K  interface ends up  being identical in VM 
and AIX. Two  simple A P L ~  functions C and X hide 
the fact that communication  between A P L ~  and 
APL~K is handled by processor 11 in VM and by 
shared variables  in AIX, giving APL~X a single  com- 
mon interface to APL~ in  all  host environments. 
These functions with  calls and parameter are given 
in the following  box. 

r 

( r c   C r e s u l  tsl 1 - C command l p a r m l  . . . 
[ r e s u l t s ]  + X command Cparml . . . 

The terms in the box are defined  below. 

command The name of the X Window  System 
call to  be invoked,  specified as an A P L ~  
character vector. 

pa rml All but a few  of the X Window  System 
calls require additional input parame- 
ters  to  be specified. These parameters 
are given after the name of the call 
itself,  in the same order  as listed  in the 
X Window  System documentation. 

C r e s u  1 tsl The output from the call (if any) is re- 
turned in the form of an explicit result. 
This result includes the X Window  Sys- 
tem  explicit  result (if any), as well as 
any  implicit results passed  back  via 
output parameters given on  the call. 

r c  The command return code. Note that 
this is  only returned when  using the C 
function. C and X only differ from one 
another in the way they deal with error 
conditions. C passes  back an error code 
as part of the function return.  It is then 
up to  the calling program to check this 
code and take appropriate action on a 
nonzero return code. X supplies a de- 
fault error-handler to check the return 
codes as they are returned from each 
call to APL~K.  X will suspend operation 
in the function by issuing a “OES 0 1” 

JENSEN  AND  BEATY 477 



event, if an error is encountered. The 
programmer then has a chance to cor- 
rect the problem. 

Using these two functions as the base interface al- 
lows  easy portability of applications from host envi- 
ronment to host environment, without having to 
change the calls of the application to  the X Window 
System.  We  have been able to run identical sample 
APL~/X applications under VM/CMS and AIX on  the 
RISC Systed6000 without changing  a  single line of 
A P L ~  code. 

The X Window  System  calls XOpen Di s p l   a y  and 
X D r a w L i n e  s can serve to illustrate the close corre- 
spondence between X Window  System  calls  issued 
from C and from APL~. lo~ll In C, the calls  might  look 
like the following: 

d p  = X O p e n D i s p l a y ( " " ) ;  

XDrawLines(dp,win,gc,points,4,8) 

The same calls can be issued from A P L ~  (via A P L ~ K )  
as follows: 

points + 10 10 100 10  10 100 10 10 
dp + X 'XOpenDisplay' ' I  

X 'XDrawlines' d p  win gc points 4 0 

The call to XDrawL i   nes  obviously  assumes that the 
parameters dp, win,  and gc have been set up by 
preceding calls to  other X Window  System  func- 
tions. 

Command definitions. The interface can support 
an unlimited number of C routines. Each routine is 
defined by a command definition that describes the 
needed aspects of the call as follows: 

Command name 
Input type codes 
Output type codes 
Address of C function to  be called 
Call method 
Two optional parameters that can be used by the 
command 

Some examples of command definitions (all of 
which implement X Window  System  calls) are: 

A C F N P ( X D r a w 1 i n e s   , " 1 1 1 1 2 [ ] 1 1 " , " "  1 
ACFN2( X O p e n D i s p l   a y  , " S "  , " I " 
ACFN2(XParseGeomet ry , "S"  ,"IIIII") 

478 JENSEN AND  BEATY 

As can be seen, not all of the command definition 
fields need be given  explicitly. In the above  exam- 
ple, only the first three fields are given  explicitly. 
Instead, they are often set implicitly through the 
choice of the defining C macro. In  the case of AC FN2 
above, the call method is a laid-out argument list, 
and the two optional parameters are not used. Fur- 
thermore, the first argument given to  the macro 
defines both the command name and the C function 
to be called. 

The calls can be grouped into different categories. 
Each category has a  defining C macro associated 
with  it to cut  down on the number of items that 
need to be specified  explicitly. 

In APL~/X, experience has shown that  the com- 
mands  fall  in one of three categories: 

1. Most  commands can be implemented using the 
standard facilities  available  in the base interface. 
In APL~/X we  have implemented about 300 com- 
mands this way, or about 75 percent of the total. 

2. Some  commands require some common pre- or 
post-processing but are otherwise fairly stan- 
dard. An example is: 

AXFAS(  XGetGCVaiues, "IIX", "IG", 
&axGCVal   ues)  

The call runs the X Window  System function 
XGetGCVal  ues. This function returns a pointer to 
a structure of type XGCVa 1 ues. The cover  func- 
tion takes this pointer and resolves  it into its 
constituent values by using the structure class 
(axGCValues)  as a guide to what elements the 
structure contains.  Thus,  a  call to XGet GCVa 1 u e s  
will return the actual  values to mu, not  just  a 
pointer.  A  number of X Window  System calls uti- 
lize  this  function. 

We  have  used  this  facility  extensively during the 
development of the interface.  A  lot of the func- 
tionality that is  now part of the base  interface was 
prototyped  in  this  fashion  and was  elevated into 
the base only  when the generality  was  established. 

In the implementation of the X Window  System 
Xlib  calls,  65  calls  fell  in  this  category, or 17 per- 
cent of the total. 

3. The third  type of calls  consists  of the ones that for 
some  reason or another require  some  specialized 
pre- or post-processing,  e.g.: 

IBM  SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 



ACFAO("XNextEvent", " I " ,  " G " ,  axNex tEven t )  

There are a  number of reasons why functions end 
up  in  this  category.  Examples are calls  returning 
the X Window  System  event  structures.  We  use  a 
cover  function to convert the event  structure 
pointer to its  constituent  values, so that the values 
can be returned by the call, instead of a  pointer to 
the values. 

Of the total, 30 X Window  System  calls required 
handling as special  cases, or about 8 percent. 

Command tables. The command definitions are 
grouped together in tables. For example,  all of the 
X Window  System  calls are defined  in  a  single table. 
Typically,  a table contains only related commands, 
although this is not a requirement. These tables 
form an integral part of the APL~/X interface. 

When the C or X functions are called and the in- 
terface gets control from APL~, the interface as- 
sumes that  the first argument given  is the command 
name. The interface uses this name to search 
through its command tables looking for a  matching 
command definition. If one is found, it controls any 
further parameter verification that needs to take 
place before the actual C function can be invoked. 

The default is for the command name matching to 
be case-sensitive, but it is a matter of a  compile- 
time option to change this default to  be case-in- 
sensitive. 

The command tables not only  allowed  us to group 
logically related commands together but also 
proved to  be beneficial during the development 
stages, where a  given set of commands could be 
worked on by an individual without any fear of 
overlaying someone else's work. Not all of the  ta- 
bles need be active  all of the time; they can be 
activated and deactivated under user control, and 
their ordering (governing the command search or- 
der) can also be changed. 

Currently the APL~/X interface defines the following 
command tables: 

Xlib  calls 
Structure support (structure commands) 
Interface control (system commands) 

Tables implementing other collections of C  func- 
tions and structures can easily be added to this list. 

IBM SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 

The command tables can also be set up and used  in 
a nested fashion, i.e., subcommands may be spec- 
ified  in  a  secondary  command table. In  that case, 
the command as given by the user is  effectively 
made up of two (or more) separate character 
strings, one for each command table used.  We  use 
this facility to implement some of the APL~X system 
commands, but we have not found it that useful 
overall. 

Type  codes 

The specified  command determines what addi- 
tional parameters need to be given, as well as what 
information will be passed  back as a result of the 
call. These requirements are described by a series 
of "type  codes" attached to  the command, with each 
parameter described by a  single  type  code. 

A large number of type codes have been defined. 
They are specified  using one- or two-character al- 
phanumeric strings. Whenever possible we used the 
same choice of character codes as those given  in 
APL2 Programming:  System  Services  Reference for 
the ApL2/370 processor 11 argument patterns. '* The 
code is  given on  the left side, and its definition 
follows to its right. 

61 One-bit Boolean 
68 Eight-bit unsigned integer 
c 1 Character (one-byte) 
E8 Double (eight-byte) floating-point real 
12 Short (two-byte) integer 
I 4  Long (four-byte) integer 

Type coercion may be applied by the interface to 
convert the A P L ~  data to the type expected by the C 
function and to convert results from the C function 
to a  type that can be handled by ApL2. 

To enhance portability we also added definitions 
that left the actual length of a parameter up to  the 
host environment, e.g.: 

I Integer-This code can be used  whenever  a  C 
"int" is called for. 

Other additions were called for by specific needs of 
C and X: 

S A NULL-terminated character string 
P A C  pointer-This code is treated  as a large 

number that  the calling ~ p ~ 2  application pro- 
gram probably should never change. 

JENSEN  AND  BEATY 479 



x 2 Two-byte hexadecimal value 
X4 Four-byte hexadecimal value 
x Two- or four-byte hexadecimal value, depend- 

ing on the underlying environment 

The hexadecimal values can be specified on input as 
a bit-vector, as an integer, or as a string of  hex 
characters. 

Finally, a couple of special type codes: 

G Accept any parameter given-This code will 
often be used where further verification of the 
input will be performed later. An example can 
be found in the  structure commands. Valida- 
tion of the  content of the  structure instance is 
postponed until the  proper structure class def- 
inition has been determined. 

- A place-holder-The value is ignored. 

Argument indirection is  specified  in a C-like man- 
ner by prefixing the type code, e.g.: 

* C 1 A string of characters 
** I A double indirect reference to  an integer 

Arrays are also specified  in a C-like manner, e.g.: 

12 [ 3 I A vector of three  (short) integers 
C 1 [ 1 A vector of characters-The length is 

left unspecified, so any length will be 
accepted. 

I [ 2 : 2 I A two-by-two array of integers 
I [21 [   21  Another way to specify the above  two- 

by-two array 

Some considerations pertaining to arrays: 

Any array passed to a C function is passed as a 
pointer to  the values, not  the values themselves, 
as required by C.  
One  or more array dimensions can be left un- 
specified. The length will then be set according to 
the incoming data. 
The type code specification  is more compact 
than  the  one used by the ApL2/370 argument pat- 
terns and also more like native C and A P L ~ ,  we 
believe. 

Structures are  catered  to as well,  e.g.: 

{ I I ) Any combination of type codes can be spec- 
ified inside the braces, including nested 
structures. 

480 JENSEN AND  BEATY 

The type codes are also affected by prefix and suffix 
modifiers. The prefix  modifiers are: 

< Input only 
> Output only 
I Input/output 
? Optional parameter 

The suffix  modifiers are: 

. . . Repeat last  type code as many times as 
needed to account for the given input values. 

* Ignore any input parameter beyond those 
already verified. 

Both of these suffix modifiers may only be specified 
at the very end of a list of type codes or following 
the last item before a “)’’ ending a substructure 
definition. 

Parameter  passing 

All parameters  are passed explicitly to  and from 
A p ~ 2 .  A p ~ 2 / x  does not  cater  to side effects such as 
update-in-place (i.e., changing the value of an A P L ~  
variable other  than by explicit reference), nor  does 
it use call-by-name, where the name of a variable to 
be used or changed is passed as a parameter  and  the 
interface reaches back into  the workspace to access 
the specified variable. Although both  are techni- 
cally feasible to  do,  there has been neither  the need 
nor  the desire to use them. In fact, a conscious 
effort has been made to stay away from them, as it 
was  viewed as detrimental to the clarity of the  re- 
sulting code. 

On calling a C routine from A P L ~  only those pa- 
rameters listed as “input”  or  “input/output” must be 
specified  (i.e., the  parameters listed  in the input 
type code field). The interface will generate what- 
ever output  parameter place-holders are needed in 
the actual call to  the C function. Upon completion 
of the C routine, all parameters listed as “input/ 
output” or “output” will be  returned to N L ~ ,  in 
addition to the explicit C function result (if re- 
quired). We thus  take advantage of the ability of 
A P L ~  to return multiple values in the explicit result 
of a function invocation. This is an outgrowth of the 
desire to avoid  relying on (hidden) side effects. 

Many X Window  System  calls return more than  one 
result via their parameters. The parameters used in 
this fashion are always identified by including the 
suffix “-return” with the  parameter name. These 

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 



parameters  appear  at  the  end of the  parameter list. 
We have taken advantage of this fact in the way that 
the input and  output type codes are specified in the 
command definitions. 

XParseGeometry is an example of a call returning 
multiple parameters. The C function prototype and 
an example of its use via APL~/X are given  below: 

i n t   X P a r s e G e o m e t r y ( s t r i n g ,   x - r e t u r n ,   y - r e t u r n .  
w i d t h - r e t u r n .   h e i g h t - r e t u r n )  

c h a r   * s t r i n g :  
i n t   * x - r e t u r n .   * y - r e t u r n :  
i n t   * w i d t h - r e t u r n ,   * h e i g h t - r e t u r n ;  

R M u l t i p l e   o u t p u t .  
(mask x y w i d t h   h e i g h t )  

X ‘XParseGeomet ry ’  ‘25x88+1@-1@’ 

Parameters  passed by value 

Parameters  are passed to  and from A P L ~  by value. 
This is true  no  matter what  level of indirection is 
needed by the C routine to  be called. The  burden 
of setting up this activity and administering the 
space is handled by the interface. Thus, using the 
XParseGeometry example  given above, “string” is 
given as “’25x80+10-10”’ in the call from A P L ~ ,  
and  the interface will convert this string to  the 
proper  “char *” format before calling the real C 
routine. 

Passing the  parameters in this fashion maintains 
the feel of an A P L ~  function. The housekeeping 
chores of managing the temporary storage fall upon 
the interface, not the user. 

These  statements  do  not imply that C data pointers 
are never returned to APL~,  or  are used by it. Quite 
the contrary, pointers are typically  specified  using 
the “P” or  “I” type codes and are passed back to 
A P L ~  as large numbers. The application running in 
A P L ~  may use this large number on subsequent calls 
to external functions via APL~/X but will rarely, if 
ever, have a need to modify the value of the pointer. 

Dealing with structures warrants some special com- 
ments. We prefer to pass them by value, and given 
a choice we  have set up  the calls to  do so. However, 
there  are enough exceptions to this procedure  to 
prevent it from being a general rule. The exceptions 
come about  for  the following reasons: 

1. Performance-It  is inherently more expensive in 
processing time to  create  the  structure on the fly 
from its values. If a structure instance is being 

IBM SYSTEMS  JOURNAL, VOL 30, NO 4, 1991 

used repeatedly without its content being rede- 
fined, it  is more efficient to  create  the  structure 
once and then refer to it  using the pointer to  the 
created  structure instance. 

2. Permanence-The structure may be modified by 
future calls. It is therefore  important  that it re- 
mains in a k e d  location in storage. 

3. Hidden side effects-Most X Window  System 
structures do not exhibit this problem, but we 
did encounter it  using the “Xrm” class of calls. 
Although unstated, the  structure pointer was 
also being referred to in a hidden lookup table. 
Another manifestation of such effects is where a 
data  structure has an unspecified or hidden pre- 
fix or suffix section. 

Wherever possible, APL~/X allows structures to  be 
specified on input either by value or by a pointer to 
an already-existing structure instance. 

Support  for C data  structures 

As would be expected of any sizeable C application, 
the X Window  System defines close to 100 C data 
structures. Therefore,  to fully support the X Win- 
dow  System, the APL~/X interface had to be able to 
provide access to these data  structures as well as the 
many function calls that  are defined by the X Win- 
dow  System.  In doing so, APL~X has implemented 
these data structures in C and provided import and 
export access from APL~.  

Those familiar with the object-oriented paradigm 
will recognize the similarities in that approach to 
the AFJL~/X handling of data structures. APL2/X 
maintains a structure (class) definition as part of 
the C command interface. A P L ~  calls upon this def- 
inition to  create new instances of the structure in 
memory and to assign values to  and retrieve values 
from the fields  (class data members) of the in- 
stance. 

The  structure instances are stored in memory con- 
trolled by C and thereby directly  available to  the C 
application, in this case the X Window  System. 
Upon request from APL~,  the instance of the  data 
structure is mapped to an A P L ~  vector. The vector 
may be simple (homogeneous) or general (heter- 
ogeneous), depending on  the underlying C defini- 
tion. When in APL~,  the array can be manipulated 
in the normal A P L ~  fashion. 

Structure  commands. A common set of structure 
commands has been defined to allow A P L ~  to easily 

JENSEN  AND  BEATY 481 



create and access the  data  structure instances main- 
tained by C.  Again one can draw comparisons to 
these structure commands and those implemented 
for class definitions in  many object-oriented lan- 
guages. The structure commands provide the 
means to  create instances of a  given structure type, 
to perform the chores of getting data in and out of 
it, and to free up the space once it is no longer 
needed. 

Listed  below are  the commands that  are defined. 
The commands are shown  in three groups: those in 
the left column operate  on a  single instance of a 
structure, the commands in the middle  column op- 
erate  on multiple adjoining structures, and the ones 
on  the right return assorted information from the 
structure definition. 

C 1  e a r  MC1 ear  GeConst 
Get   MFree  GetF i   e l   ds  
New MGet Ge tS ize  
Pu t  MNew 
NewPut  MPut 
SFree 

Structure  command  usage. The syntax common to 
all of the  structure commands includes the com- 
mand name followed by the structure type. For 
those commands that deal with  existing structure 
instances, the pointer to  the structure instance (its 
handle) is expected as the third argument. Follow- 
ing  is the general structure command syntax as 
called from APL~: 

( r c   C r e s u l t l )  + C command s t r u c t  Cparml . . . 
Some examples of using these commands are: 

R Create  a  new  XTextItem  instance 
item + X 'New'  'XTextItem' 

R Now  fill  it with  data 
X 'Put'  'XTextItem'  item 

( 'Simple' 1 2 3 )  

R Verify  that  the  data  made  it  in 
X 'Get'  'XTextItem'  item 

Simple 1 2 3 

R Use the  structure  in  a  call 
X ' XDrawText ' dp w gc  x y item 1 

R Remember  to  free  it when all  done 
X 'SFree'  'XTextItem'  item 

Structure  type  definitions. The  structure type def- 
initions are grouped in tables in the same manner 

482 JENSEN  AND  BEATY 

as are  the command  definitions. In fact, the APL~/X 
interface provides for each environment grouping 
to accommodate both a command table and a struc- 
ture table, as these definitions often go  hand  in 
hand. Currently, these three structure definition 
tables are provided by APL~/X: X events and other 
X structures, and C primitive structures. 

In  order  to have the structure commands  work, the 
tables must  specify the structure type  being ad- 
dressed. The structure type located in one of the 
predefined tables provides the definition of the el- 
ements of a structure instance of that type.  Specif- 
ically, the type  definition contains information 
about each field of the structure, the names, and 
data types. The field data types are specified  using 
the same type codes as are used for the function 
arguments in the command  tables. 

This structure definition information is  also  readily 
available from A P L ~  via the interface. Having this 
information available can be of great assistance 
when using the data structures from within APL~, in 
that it  associates each element in the vector with its 
related field name in C. 

To help illustrate the point, this is  how the 
XText I t em structure from the X Window  System 
Xlib.h header file is  defined  in C: 

t y p e d e f   s t r u c t  I 
c h a r   * c h a r s :  I* P o i n t e r   t o   s t r i n g  * I  
i n t   n c h a r s :  I* Number o f   c h a r a c t e r s  * I  
i n t  d e l t a ;  I* D e l t a   b e t w e e n   s t r i n g s  * /  
F o n t   f o n t :  / *  F o n t   t o   b e   u s e d .   o r  None * /  

I XTex t I tem:  

A P L ~  accesses the structure information in the fol- 
lowing manner: 

R Get all XTextItem  fields 
X 'GetFields'  'XTextItem' 

char  *chars S 
int  nchars I 
int  delta I 
Font  font I 

Note that the full C definition of the field  is  main- 
tained even though the field name and the field  type 
code are  the only  pieces of information used 
by APL~/X. The C data type  specification  (e.g., 
char *, int, or Font) is kept as part of the field 
definition  since it is often very  useful, if not crucial, 
to  the understanding of the role of a  given structure 
member. 

IBM SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 



Structure field access. To accomplish the equiva- 
lent of field  access by name as provided by C, two 
A P L ~  functions, axGetFF and axGetFF1, are in- 
cluded as part of APL2K. These functions use the 
field information provided by GetFie’d I s to asso- 
ciate indices to  the various field names, thereby 
providing the index-by-name capability for a re- 
lated structure instance held in an ApL2 vector. The 
main difference between these two functions is that 
axGetFF provides the indexing for all  of the fields 
in the structure, and axGetFFl returns index  in- 
formation for selected fields  specified  in the call. 

By means of an example,  we  now demonstrate how 
the c h a r s  field of an X T e x t  I tern structure instance, 
t e x t ,  is  accessed from both C and APL~. Note that 
the axGetFF function has previously been called  in 
A P L ~  to associate the correct index to  the field 
name: 

In C: In APL~: 

t e x t . c h a r s   t e x t C c h a r s 1  
t e x t - > c h a r s   t e x t [ c h a r s l  

As a benefit of obtaining the field  indexing of the 
structure from C, the APL2 application can have a 
measure of independence from changes in the  or- 
der of fields in the underlying C data structure. That 
is to say that as long as the fields remain intact and 
the C structure definition is maintained in accor- 
dance with the C application, the A P L ~  application 
will not have to change either. 

Abandoned  approach. Originally we implemented 
the  structure  support using “typed” instances so 
that each instance had a hidden header section that 
identified the  structure type. This implementation 
meant that  the  structure class did not have to  be 
specified on each structure command since the in- 
formation was already available.  However, when 
the  structure was allocated by the C application 
instead of the APL~K interface, it meant a lot of 
extra work because the interface would  have to al- 
locate another instance with the proper  header 
attached and  then copy the structure  data of the 
application into this new area. With the implemen- 
tation of nested structures this activity became dif- 
ficult to control, so we ultimately abandoned the 
“typed” instance approach. 

Support for C constants 
If the X Window  System defines a large number of 
structures, it defines ten times that many constants 

IBM SYSTEMS  JOURNAL, VOL 30, NO 4, 1991 

to  an application in that it provides symbolic ref- 
erence so that when a change is called for, only the 
constant value needs to be changed, regardless of 
how  many references exist. Because these constants 
disappear during the compilation process, there is 
no penalty for defining large numbers of them, and 
the X Window  System takes advantage of this and 
defines a large number of these constants in  its 
header files. 

The sheer number of constants employed by the X 
Window  System dictated that APL2/X implement ac- 
cess to  these constants in a selective manner rather 
than expose the whole lot. This approach is  logical 
since any  given constant is  typically  used by only a 
very limited number of structures or functions. In 
fact, in the majority of cases, the constants defined 
in the X Window  System header files are related to 
specific  fields of a structure. Therefore, in  giving 
A P L ~  access to these constants, the constants are 
logically tied to a related structure definition. 

The Ge t C on  s t command provided by A P L ~ K  as part 
of the  structure commands is  used to retrieve the 
constant values associated with a given structure for 
use  in APL~.  Following  is an example of the  output 
from this command: 

X 
U S P o s i t i o n  
U S S i  Z E  

PPos i t i  on 
P s i  z e  
P M i  n S i  ze  
PMaxSi   ze 
P R e s i z e I n c  
P A s p e c t  
P B a s e S i z e  
P W i n G r a v i t y  
PA1 1 H i n t s  

G e t c o n s t ’  ‘ X S i z e H i n t s ’  
X 1 
X 2 
X 4 
X 8 
X 16 
X 3 2  
X 64 
X 1 2 8  
X 256 
X 512 
X 25 2 

It is a simple task for an A P L ~  function to issue this 
call, create a set of variables, and initialize them to 
the constant values that  are  returned.  In fact, the 
axGetFF and axGetFFl functions previously in- 
troduced in the last section not only define struc- 
ture field  indexing, they also create these constant 
variables for use by the APL2 application. 

By doing so, the M L ~  functions are able to use the 
same constants as defined by the X Window Sys- 
tem. Such  usage insulates the application from 
changes to  these constant values. We experienced 

JENSEN  AND BEATY 483 



an example of this when upgrading the A P L ~ X  in- 
terface support of the X Window  System from 
release 11.3 to release 11.4. Release 11.4 had 
changed some of the constants associated with the 
X Si z eH i n t s structure, among other changes. These 
changes meant that  the table holding the constants 
in A P L ~ X  had to be recompiled to pick up the 
changed values, but through the use of the 
axGetFF function it never affected the A P L ~  ap- 
plications. 

System  commands 

APLZX provides a group of  system commands in 
addition to  the structure and X Window  System 
commands. These commands are used to control 
and  interrogate the interface itself, as opposed to 
accessing and using external functions that supply 
the application with needed services. The names of 
these commands all start with a closing parenthesis, 
mimicking the A P L ~  system commands. 

The following  system commands are presently de- 
fined: 

1 Cmd s List the available commands 
) En v Get Get  current command environments 
) En v Se t  Change the command environment 

order 
1 R C  List a return code message 
) S t  r u c  t s List the available structures 
) Syntax  List the syntax of a specific command 
) Ve r s i on Return  the A P L ~ / X  version identifier 

Some examples of their use follow: 

X ' )Syn tax '   'XParseGeomet ry '  
X l i b  XParseGeometry S 1 1 1 1 1  

I 
X ' ) V e r s i o n '  

APLL!X Deve lopment   Vers ion  0 . 0 0  

I X ' ) E n v '   ' G e t '  
X 1  i b   S t r u c t s  System 

I Return  codes 

I A major difference between APL~X and processor 
11 of ApL21370 is  in the way that  errors  are  reported. 
Processor 11 treats this condition at an atomic level, 
using the normal APL2 error messages such as 
D O M A I N  ERROR and VALUE ERROR. If the  error 
stems from using an element of the wrong  type  in 
a vector of arguments, it can be quite difficult to 
locate the source of the  error, especially  since the 

484 JENSEN AND  BEATY 

APL2/370 UNA argument pattern information is not 
directly  available to  the application. 

A P L ~ X  improves error reporting in several  ways. 
First of all, the arguments in error can easily be 
determined, since each argument passed to A P L ~ X  
will be associated with a return code. Second, the 
return code is  tied to  an  error message  explaining 
the source of the  error, if using the X A P L ~  function. 
Third, the syntax of the call  is  available for inspec- 
tion via a system command. 

For instance, using the X function: 

X ' XOpenDi s p l  ay ' 
E r r o r   i n   i n p u t  ( R C = l )  

I n d e x   r c   p a r m  
I3 0 XOpenDispl  ay 
1 16 

1 6  E x p e c t e d   p a r a m e t e r   o f   t y p e  ' % S I  i s   m i s s i n g  
Command ' X O p e n D i s p l a y '   d e f i n e d   b y :  

X1 i b XOpenDi s p l  ay S I  
X ' XOpenDi s p l a y '  
A 

Note  the use of the default error handler that is part 
of the X function; it will halt execution at the place 
of error  and will point out the  parameter or pa- 
rameters in error. 

Using C instead (without the trailing comment, of 
course; it is just placed here for explanation): 

C ' X O p e n D i s p l a y '   ' f i r s t '   ' s e c o n d '  
1 7  0 0 1 7  

A 1 7 :  Too many pa ramete rs  

The C function does not halt the processing  when 
an  error is encountered. Instead, it returns a non- 
zero  return code to  the application, and it  is up to 
the application to take whatever corrective action is 
required. Note the structure of the element return 
codes:  it contains an element for each given or  re- 
quired parameter, whichever count is the larger of 
the two. This way it  is  possible to uniquely identify 
the source of any errors in the parameters. 

This principle extends to nested parameters as  well, 
as the following  example  shows: 

C ' P u t '   ' X T e x t I t e m '  5 0 9 1 2 0  
(1 ' t e x t '  2 3 4) 

1 I 3 0 0  2 6 2 1 0 0 1 7  
A 1 7 :  E x c e s s i v e   n u m b e r   o f   p a r a m e t e r s   g i v e n  
R 2 1 :  Dimens ion   90 i   must   be   equa l  t o  9 0 s  
A 2 6 :  C a n n o t   c o n v e r t   f r o m   t y p e  9 0  t o   t y p e  9 0 s  

IBM SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 



Issues  in calling C routines  from APLP 

The initial  version of APL2K was completed on a VM 
system,  using processor 11 of A P L ~  Version 1 Re- 
lease 3 to call functions external to A P L ~  itself. The 
only two programming languages specifically men- 
tioned in the documentation for processor 11 are 
FORTRAN and System/370  Assembler. l3 Initially we 
used the FORTRAN linkage-type of processor 11 
rather than OBJECT. It was  chosen because it  would 
include the length information for each parameter 
passed.  However, in trying to call routines written 
in  C, we encountered the following problems that 
had to be solved in order for us to implement the 
X Window  System interface: 

Character strings not null-terminated-charac- 
ter strings are by definition required to be ter- 
minated by a null  byte  in  C, but processor 11 does 
not ensure that  the strings  passed are null-ter- 
minated. 
Returning the result of a C function to m~2-C 
functions compiled  with the C/370 compiler place 
the result in register 1, but processor 11 expects 
a result to  be passed  back to A P L ~  in register 0. 
Using C pointers-It  is not possible to specify a 
given parameter as being a pointer, such as the 
C definition c h a r * would require. The argument 
patterns14 of processor 11 do not cater to this 
type of definition, and it  is therefore possible to 
handle the distinction of passing a parameter by 
value, as opposed to passing  it by reference. 
Fully  specified function argument patterns-The 
function argument pattern of processor 11 must 
be completely known by the time a function is 
called.  It is not possible to defer processing and 
verification of some of the arguments until later, 
or to ignore others altogether. Thus, it is not 
possible to call a given function with  differing 
types of arguments. 

The above  problems are related to calling a single 
C function. In addition to these problems, trying to 
implement an X Window  System interface intro- 
duces another  set of problems related to  the sheer 
number of calls to support (395 in the case of the 
X Window  System): 

No list  options-There  is no call to obtain the 
function argument pattern of a given external 
function from within A P L ~  (short of extracting it 
from the names file), or to obtain a list of all the 
accessible external functions. 
Cumbersome to implement and maintain-For a 
function to be used, it must  have an entry in both 

the names file and the assembler stub module, as 
well as a DNA definition  in the workspace. Each 
workspace needing access to  the X Window Sys- 
tem therefore ends up with a large number of 
function definitions,  in  most  cases  swamping the 
real functions of the application. 

As can be seen, most of these problems revolve 
around parameter passing.  They  have been solved 
in APL~/X by having the interface itself take over the 
parameter verification chore, using the FUNCTION 
linkage-type of processor  11, without any parame- 
ter verification imposed by the processor. And in- 
stead of storing the argument patterns in an exter- 
nal names file, APL2iX now stores these patterns in 
command tables internal to  the interface. Thus, 
what APL~K receives  is the A P L ~  data specified by 
the calling function, and it is up to  the interface to 
perform any needed parameter validation and co- 
ercions. This scheme has given APL~K maximum 
control of the parameter passing, and thus the fol- 
lowing results have been achieved: 

Only a single external function is  established  in 
the workspace. The name of the C function to  be 
called is  now passed as the first argument in the 
call. 
Null-termination of character strings is handled 
automatically by the interface. It avoids  having 
the caller do it  in A P L ~  by either imposing a fixed- 
length restriction on each string or requiring that 
the string include the N U L L  terminator. 
The interface supports pointer variables. The 
support caters to an unlimited number of refer- 
ence indirections. As an example, an argument 
with a declaration of “i n t  **” is supported. This 
would be specified as “**I”. 
Argument verification  has been extended to al- 
low for deferred verification.  Such  verification 
has proved to be especially important when 
working  with data structures, where the content 
and structure can vary  greatly  from structure to 
structure. 
Additional data types are supported, such as 
hexadecimals. Also, some data types  can be spec- 
ified  in  multiple  ways.  An  example  of the  latter 
is a bit-field,  which can be  specified as a vector of 
bits, an integer (i.e.,  packed bits), or in  hexadec- 
imal format (in the form of a character string). 
Multiple results can be returned as explicit re- 
sults of the call to a given C function, without the 
need to build  special A P L ~  functions that preal- 
locate variables to hold the returned informa- 
tion. 

IBM  SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 JENSEN  AND  BEATY 485 



Commands have been added  to  interrogate  the 
interface itself. This interrogation enables the in- 
terface to return  the expected syntax of a given 
call or provide lists of the commands and struc- 
tures  supported. 
Using function linkage has enabled APLZLX to use 
the processor 11 service routines. These routines 
provide some useful services, such as data con- 
version and execution of APLZ expressions from 
within C. 
A large number of utility functions have been 
implemented in C that allow us to process and 
manipulate APLZ data structures in C in an easy 
and proficient manner. 

Taking over the argument verification job  turned 
out  to be a blessing in disguise for APLZLX. It made 
the  “port”  to  the APLZ/6000 and APLZPC environ- 
ments very  easy to accomplish. (In APLZPC, only the 
basic APL2-to-C interface has been implemented, 
not  the support for the X Window  System.) Both of 
these environments communicate with APLZLX via a 
shared variable interface, unlike the APL2/370 im- 
plementations. Except for different internal for- 
mats of the APLZ data passed from APLZ, the proc- 
essing remains the same as far as APLZK is 
concerned, at the internal level and, more impor- 
tantly, at the user interface level too. 

Changes to  the X Window  System call 
syntax 

One of the design  goals for APLZLX was to imple- 
ment as faithful a representation of the X Window 
System in APLZLX as possible. However, some dif- 
ferences exist due  to  the very different nature of C 
and APLZ. The  important differences are: 

Function arguments are always  specified by 
value in the same way that they  would be for 
regular APLZ functions. This is true  for all  types 
of arguments, scalars as well as arrays. APLZLX 
performs any needed type coercion and also adds 
any required indirection pointers based on  the 
type code information before making the actual 
call to  the C routine. 

Note  that  the explicit  use of pointers in APLZLX is 
not precluded. In fact, they are used as such in 
many of the X Window  System  calls, as well as in 
the  routines  that implement the  structure calls. 
In  these cases, the pointer given  is a “magic” 
constant; as far  as  the application is concerned it 
is a value that uniquely identifies some available 

486 JENSEN AND BEATY 

resource, and no explicit changes to  the value 
should be attempted. A prime example of such a 
constant is the X Window  System  “display point- 
er.” This pointer is used on most X Window Sys- 
tem calls, but no calculations are ever performed 
on  the  pointer itself. 

Only input parameters may be specified on  the 
calls to  the X Window  System. APL~LX automat- 
ically adds any needed output  parameters  that 
the call  may require. It is a change from the C 
environment, where the  output  parameters must 
be specified  explicitly on  the call and space pos- 
sibly allocated to hold the results. 

All results from calling a function are  returned as 
explicit results, including results returned in C 
via changes to  the  output arguments. No side 
effects such as changing of global variables in the 
workspace are employed. Also, pointer argu- 
ments are de-referenced, so what  is returned in 
A P L ~  are  the  data values, not the pointers. 

The above differences are a consequence of the 
basic  design  philosophy  underlying the APL2-to-C 
interface. Another difference, described next,  is 
specific to  the X Window  System  calls dealing with 
event structures and is more a matter of con- 
venience. 

X Window  System events are always set or returned 
by value. The event data  are  then immediately 
available for use  in the APLZ environment, instead 
of the  structure commands being  employed to re- 
trieve the event structure values on  the basis of a 
returned  pointer value. The rationale for this de- 
cision  is that  the event data are almost invariable as 
required by the ApL2 application, not just the event 
pointer, so APLZLX returns  the  data to speed up  the 
process. In  the  rare cases where the event pointer 
is required, it can be acquired through a separate, 
special  call to  the interface. 

Potential  improvements 

Although we  have come a long way in providing 
APLZ with  access to  the X Window  System, more 
work can certainly be envisioned. First among the 
possibilities  would be to add a layer of APL~ func- 
tions to help use the X Window  System  facilities. 
This could shield some of the complexity of the X 
Window  System,  in  much the same way it  was done 
in the past in the workspace FSC126 that helped APLZ 
create and use a full-screen panel by accessing rou- 
tines of GDDM via APLZ cover functions. 

IBM SYSTEMS  JOURNAL, VOL 30, NO 4, 1991 



A second option is to extend the range of supported 
X Window  System routines. The Xlib  layer  is the 
only  layer supported today. There appear to be no 
technical problems  in extending the support to 
higher layers of the X Window  System functional- 
ity. It is certain that ApL2 would benefit from gain- 
ing  access to higher-level routines that create and 
manipulate window  system items such as menu 
bars, sliders, pop-up windows, and other items as- 
sociated with a modern, windowed user interface. 
Indeed, this possibility  is not restricted solely to  the 
X Window  System libraries; other collections of C 
functions can be accessed  equally  well from A P L ~  
via this interface. 

In an effort to improve the interface for use with C 
applications in general, some experimental work 
has already gone into providing the means to 
dynamically define C commands and structures 
from APL~. This capability  allows A P L ~  to directly 
interface with  existing C applications without re- 
quiring the definitions of the related functions and 
structures to  be built into  the APL~IX interface itself. 

Last, an even better support for data structures is 
possible if implemented in APLZ itself,  maybe  in the 
form of an option on ONA to allow APL2 to access 
external data variables  in  much the qame  way that 
external functions today are support-.:;!. An advan- 
tage would be a single  copy  of data, with the obvious 
corollary of improved data integrity. 

A  final  example 

It would appear as though it is a rite of passage for 
a windows-based  system to have a “HelloWorld” 
sample program. A ~ L ~ / X  follows this trend. The 
HelloWorld A p ~ 2  function listed  in Appendix A il- 
lustrates how  many  of the concepts and ideas pre- 
sented in this paper fit together. It shows  how an 
A P L ~  function can implement the two fundamental 
concepts of a windows-based  system:  window ma- 
nipulation and responding to user-generated 
events. We will let the function listing speak for 
itself as to  the detail; for a more in-depth discussion 
of the program, see Introduction to the X window 
System, Chapter 2,15 ZBM AM APL216OOo User’s 
Guide,16 or An Interface  Between APL2 and  the X 
window  system. l7 

Note that  the function as listed takes a simplistic 
view  of the world. It has only  minimal error-check- 
ing, and it  is coded as a single, large function. A 
production-level version of the same function 

IBM SYSTEMS  JOURNAL,  VOL 30, NO 4, 1991 

would  certainly  have to  do a more thorough job 
verifying that  error conditions had not occurred. 
Also, much of the functionality  would be imple- 
mented through secondary functions common to 
many  windowed  applications.  However,  since the 
focus of this paper is  purely and solely on the ca- 
pability to access and call C and the X Window 
System routines from A P L ~  functions, this example 
is presented in the form  given. 

Summary 

A major  goal  achieved  in this project was to enable 
A P L ~  to use the exciting  new  facilities that the X 
Window  System embodies and to bring to the X 
Window  System the power of the A P L ~  interactive 
environment and array-handling capabilities. This 
truly  brings the potential of a modern-day interface 
to A P L ~  while at the same time  augmenting the X 
Window  System. A second goal  was to provide a 
common interface to  the C language from all of 
IBM’S ~ p ~ 2  systems,  ranging from PC DOS through 
AIX on  the RISC System16000 to VM and MVS, in- 
cluding  full support of C data structures. A third 
goal  was to maintain the function-call “feel” of 
APL~,  enabling the external functions to be used as 
though  they were truly written in APL2. 

To achieve these goals a number of large issues  had 
to be  overcome.  Among the more daunting ones 
were data mapping,  handling storage management, 
and automatic parameter indirection so vital to any 
C interface. Since A P L ~  and C are so diverse  in the 
way they deal with storage management, it proved 
to  be a real challenge, especially  when dealing with 
data structures. 

The APL~/X interface described is currently avail- 
able to IBM customers on two ApL2 platforms. In 
~ ~ ~ 2 1 6 0 0 0  for MX on  the RISC Systed6000 (Pro- 
gram  No.  5765-012)  it  is  included as  the Ap144 aux- 
iliary  processor,18 and it  is  provided as a sample 
offering with TCPiIP Version 2 for VM (Program No. 
5735-FAL) to  be used by A P L ~ ~ v M . ’ ~  

Acknowledgments 

We  would be remiss if  we did not acknowledge the 
significant amount of help we have  received from 
many people. A special  acknowledgment  goes to 
Bob Cohen, who  worked  with  us part time while 
pursuing his  Ph.D., for implementing and verifying 
a good portion of the X Window  System  calls.  We 
would  also  like to thank our manager, Love Sea- 

JENSEN  AND  BEATY 487 



wright,  and  our center  manager,  Dick  MacKinnon, 
for  making  it possible for us to engage in  this  proj- 
ect; Andy  Pierce  for  showing us his  REXX-based 
interface  and  providing us the X Window  System 
on VMICMS; Mike VanDerMeulen and  John  Mizel 
for  helping us port  the  interface to the RISC Sys- 
tem/6000;  Ray  Trimble,  Michael  Wheatley,  Nancy 
Wheeler, and  David  Liebtag for helping us through 
the UNA of APL~;  Elbert Hu for including APL~/X 
with TCPLIP Version 2 for vM; and the many people 
that  answered our queries on the  electronic forums 
and  provided us with good feedback  during  the de- 
velopment. 
* Trademark or registered trademark of  International  Business 
Machines  Corporation. 
** Trademark or registered trademark of  Massachusetts  Insti- 
tute of Technology, UNIX System  Laboratories, Inc., Microsoft 
Corporation, or Open  Software  Foundation,  Inc. 

Appendix A: HelloWorld  listing 

LO1 HelloWor1d;UIO;dp;w;gc;s:e:k:~:bp:wp:m 
;hello:hi;done;None;hp;hints;rc 
: nl :x:  ep 

C11 A Sample X program, based on hellowor1d.c 
: nl :x:  ep 

C11 A Sample X program, based on hellowor1d.c 
C21 A from  Oliver  Jones: 
C31 A Introduction  to  the X Window  System 
C41 A Prentice-Hall, 1989; ISBN 0-13-499997-4 
C51 010~0 

C21 A from  Oliver  Jones: 
C31 A Introduction  to  the X Window  System 
C41 A Prentice-Hall, 1989; ISBN 0-13-499997-4 
C51 010~0 
C61 
171 A Define  some  constant  text-strings 
181 hello-'Hello,  World.' 
C91 A The  exclamation  point  makes  hi  ugly: 
E101 hi-'Hi' ,( 'A'=OAF 65bOAF 90  33 
1113 
C121 R Initialization 
C131 4 O=dp+X  'XOpedisplay' ' )&lopen 
C141 O+:XOpnDisplay  failed ..;' 
C151 0- ... HelloWorld  aborted 
C161 +lexit 
C171 l o p n :  
C181 
E191 A Default  pixel  values 
C201 s-X 'XDefaultScreen'  dp 
C211 bp+X  'XBlackPixel'  dp s 
C221 wpcX  'XWhitePixel'  dp s 
r0-7 
L L J J  

C241 A Define an X constant 
C 2 5 1 Nonet0 r m  "" 

C271 A Prepare  to  set  window  position  and  size 
C281 (rc nl)-'H ' axGetFF  'XSizeHints' 
C291 nr+/PPosition  PSize 
C301 ~~~. 

C311 a Build  an  XSizeHints  structure  instance 

C331 hints+X-'Get'  'g3'izeHints'  hp 
C321 hpX 'New' 'XSizeHints' 

C341 hintsCH  flags H x H-yl-m 200 300 
C351 hintsCrwidth  Ifheightl-350 250 
C361 X 'Put  'XSizeHints'  hp  hints 
r 177 L1. > 

C381 A Window  creation 
C391 rw+X 'XDefaultRootWindow'  dp 
C403 x-hintsC1 2 3 41,5 bp w p  
E411 w-X  'XCreateSimpleWindow'  dp m , x  
1421 xthello  hello  None( ' A '  test' 12 hD 
f43j X vXSetStandardPro&rtiesf  dp w,x' 
C441 X 'SFree'  'XSizeHints'  hp 

~~ ~~.~ 

C451 
C461 a Create a Graphics  Context 
E471 gc-X  'XCreateGC'  dp w 0 0 
C481 X 'XSetBackground'  dp  gc  bp 
E491 X 'XSetForeground'  dp gc wp 
r 501 "" 

C521 X 'XMapRaised'  dp w 
C511 A Window  mapping 

c531 
C54I R Input  event  selection 
C551 m-'ButtonPressMask'  'XeyPressMask' 
C561 m-m,c'ExposureMaskf 
C571 (rc m)+m axGetFF1  'XEvent' 
I581 X 'XSelectInput'  dp ++/m) 
E591 epX 'XGetEventBuffer 
1601 
C611 A Get  some  more  constants 
C621 m-'KeyPress'  'ButtonPress' 
C631 mcm, 'Expose'  'MappingNotffy' 
E641 (rc m)-m axGetFFl  'XEvent 
C651 A ... and some  event  structure  layouts 
C661  nl-nl,l.'h' axGetFF  'XXeyEvent' 
C671  nl-n1,13'B-' axGetFF  'XButtonEvent' 
C681 nl+nl,131E-T axGetFF  'XExposeEvent' 
r m 1  "" 

C701 A Main  event-reading  loop 
C711 done-0 
[721 levent:+(done=O)&lend 
C731 
C741 A Read  and  process  the  next  event 
C751 x-lKeyPress  1ButtonPress 
C761 x-x,lExpose  1MappingNotify 
1771 +(mLtype3e+X 'XNextEvent'  dp)/x 
C781 
C791 lExpose: A Repaint  window on expose  events 
C801  +eCE-countlrlevent A Count > 0 1 
C811 x+eCE-display  E-windowl,gc,50 50 
E821 X( C'XDrawImaqeString'  ),x,hello(  phello) 
C831 +levent 
C841 
C851 1ButtonPress: A Process  mouse-button  presses 
1861 x-eCB-display  B-windowl,gc,eCB-x BJI 
C871 X(c'XDrawImageString'),x,hi(phi) 
C881 -1event 
E891 
C901 1KeyPress: A Process  keyboard  input 
C911 k-elzX  'XLookupString'  ep 

1931 x-eCLdisplay  lCwindowl,gc,eCK-x K y l  
C921 +(done-(  tkk'qQ'  )tlevent 

C941 X( ~'XDrawImageStrinq'  ),x,k(pk) 
C951 +levent 
C961 
E971 1MappingNotify: A Reset  keyboard 
C981 X 'XRefreshKeyboardMapping' e 
C991 +levent 

C1011 /end: A Termination 
11001 

C1021 X ' XFreeCL'  dp  gc 
C1031 X 'XDestroyWindow'  dp w 
C1041 X 'XCloseDisplay'  dp 
C1051 nl-OEX'nl 
C1061 lexit: 

V 1991-4-16  18.43.0 (GMT-4) 

Cited  references 
1. J. A. Brown, S. Pakin,  and R. P. Polivka, APL2 at a Glance, 

Prentice-Hall, Inc., Englewood  Cliffs, NJ (1988). 
2. 0. Jones, Introduction to the X Wndow System, Prentice- 

Hall, Inc., Englewood  Cliffs, NJ (1989). 
3. D. Comer, Intemetworking with  TCPIIP, Prentice-Hall, Inc., 

Englewood  Cliffs, NJ (1988). 
4. IBM Transmission Control Programllntemet Protocol Version 

2 for VM: Programmer's  Reference Manual, Appendix A, 
SC31-6084, IBM  Corporation  (1990);  Program No. 5735 
FAL;  available  through  IBM  branch offices. 

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 



5. IBM Transmission Control Programllntemet Protocol Version 
2 for MVS: Programmer’s  Reference Manual, SC31-6087, 
IBM Corporation (1991);  Program  No.  5735 HAL, available 
through  IBM  branch  offices. 

6. X327O”XX windows 3270 Emulator User’s Guide, SC23- 
0579-0,  IBM Corporation (1991);  available  through  IBM 
branch  offices. 

7. J. A. Pierce and R. 0. Reynolds, The X Window System  in 
the Si370 Environment, G325-4100-0,  IBM Corporation 
(1991);  available  through  IBM  branch  offices. 

8. APLZ Programming:  Processor  Interface Reference, SH20- 
9234-0,  IBM Corporation (1987),  pp. 15-23; available 
through  IBM  branch  offices. 

9. APLZ Programming: APLZ for the  IBM PC, User’s Guide, 
Version 1.02, SC33-0600-2,  IBM Corporation (1990),  pp. 
436-438;  available  through  IBM  branch  offices. 

10.  R. W. Scheiiler  and J. Gettys with  J.  Flowers,  R.  Newman, 
and  D. Rosenthal, X window System:  The Complete Refer- 
ence to Xlib, X Protocol, ICCCM, XLFS, Digital  Press,  Bed- 
ford, MA (1990). 

11. AIX Calls and Subroutine  Reference for RISC  Systemi6OO0, 
Volume 4: User Interface, SC23-2198,  IBM Corporation 

- 

(1990);  available  throbgh  IBM  branch  offices. 
12. APLZ Programming:  System  Services Reference, Chapter 23, 

SH20-9218,  IBM Corporation (1990),  pp. 238-239; available 
through  IBM  branch  offices. 

13. Ibid., p.  237. 
14. Ibid., p.  243. 
15. See Reference 2, Chapter 2. 
16. AIXAPL2I6000 User’s Guide, SC23-3051-0,  IBM Corpora- 

tion  (1991),  pp. 305-314; available  through  IBM  branch  of- 

17. An Interface  Between APLZ and the X Window System, IBM 
fices. 

licensed material provided  with TCP/IP Version  2 for VM 
(Program No. 5735-FAL),  pp. 5-14; available  through  IBM 
branch  offices. 

18. See Reference 16,  pp. 209-216. 
19. See Reference 17. 

Accepted for publication June 10, 1991. 

John R. Jensen IBM Cambridge Scientific  Center, 101 Main 
Street, Cambridge, Massachusetts 02142. Mr. Jensen is a  scientific 
staff  member at the Cambridge  Scientific Center. He joined 
IBM Denmark in  1978  as  a  systems engineer. In 1982, he  worked 
at the IBM Canada Computing Centre in  Vancouver,  British 
Columbia,  and from 1983 to 1988  was at the Dallas Develop- 
ment Laboratory  in  Texas,  working on the IC11 and Officevision 
products. He became  a  member of the Cambridge  Scientific 
Center staff  in  1988.  His current areas of interest include  user 
interface design,  application  prototyping,  programming  environ- 
ments,  and  compilers.  Mr. Jensen received an M A .  degree in 
electrical engineering from the Technical  University of Copen- 
hagen, Denmark, in  1978  and an M.B.A.  in  accounting  from the 
Copenhagen  School of Economics in  1981. He is  a  member of 
the ACM and the IEEE Computer Society. 

Klrk A. Beaty IBM Cambridge Scientific Center, 101 Main 
Street, Cambridge, Massachusetts 02142. Mr.  Beaty  is  a  scientific 
staff  member at the Cambridge  Scientific Center. He joined 
IBM at Sterling Forest, New York,  in  1981 as a  systems pro- 
grammer. Furthering his  experience at Sterling Forest, from 
1983 to 1987 he  became  involved in telecommunications, in- 
cluding the technical  software leadership role in the creation of 
IBMs centrally  managed internal W E T  backbone  network. He 

has been a  member of the Cambridge  Scientific Center since 
1987.  Mr.  Beaty  received a B.S.  with honors in mathemat- 
ics/computer  science  (while  minoring  in  business administra- 
tion) in  1981 from  Manchester  College, North Manchester, In- 
diana. He is a graduate of the IBM  Systems Research Institute 
and  has  recently  completed  a  Certificate of  Advanced  Study  in 
software  engineering at Harvard  University. 

Reprint Order No.  G321-5447. 

IBM  SYSTEMS  JOURNAL, VOL 30, NO 4, 1991 JENSEN  AND  BEATY 4 9  


