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APL systems  have  traditionally  used  specialized 
storage  management  schemes  that  avoid  storage 
fragmentation  by  “garbage  collection, ” moving 
live  data  as  needed  to  collect unused storage 
into  a  single  area.  This  was  very  effective  on 
systems  with a small  amount  of  real  storage 
addressed  directly.  It  has  become  less  effective 
on  today’s  systems  with  virtual  addressing  and 
lar e amounts  of  virtual  storage.  Both  traditional 
sc a ernes of storage  management  and a recently 
implemented  replacement  for  them are described. 
The  focus  is  on  implementations  for  IBM 
mainframe  hardware. 

P rograms written in  compiled languages typi- 
cally use static definitions of working storage. 

Much of the time the language syntax requires that 
variables be declared as a particular type, structure, 
and often a particular size. This allows the compiler 
to generate very  specific code for accessing the var- 
iables. 

In contrast, interpretive programs typically  provide 
much  less data declaration information, and dec- 
larations are often implicit  in the  data usage. A 
number of interpretive languages allow a single 
variable to take  on varying  definitions at different 
times during program execution. APL, in fact, has no 
data declaration constructs at all for objects that 
exist  within the active  workspace. An object may 
change during execution from Boolean to real to 
complex, from simple scalar to four-dimensional 
array to nested structure, and from numeric to 
character to defined function. 

Depending on  the point of  view, this dynamic char- 
acteristic of data has been described as introducing 
anarchy into the language, forcing heavy  execution 
time overhead, or permitting powerful and elegant 

algorithms that  are independent of data structure 
and format. Less frequently analyzed is the impact 
on storage management strategies, and the second- 
ary  impact of those strategies on total system per- 
formance. This paper discusses the storage man- 
agement schemes that  are used for APL running on 
IBM mainframe processors. 

APL data  organization 

By necessity, APL objects must be completely  self- 
describing, and it  is impractical to assign them fixed 
locations or sizes. This leads immediately to a level 
of indirection in locating named objects accessed by 
programs or users.  Ultimately the locator tech- 
nique must  provide for a symbol table lookup, since 
new references to objects can be introduced inter- 
actively at any  time. In practice, though, a symbol 
table search incurs too much overhead on every 
reference, so a pointer table with  statically  assigned 
slots is used, each slot pointing to  the current lo- 
cation of the associated data. Programs needing to 
access a data object can retain a table index for that 
object instead of its actual address. 

Traditional APL implementations are contrasted 
here with  systems  like LISP that have large numbers 
of internal connections among  relatively  small 
stored objects. Some APL systems,  such as vs APL,’ 
did use internal synonym chains to avoid  making 
copies of objects, but in general APL systems  have 
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handled large array  objects that were  mostly exter- 
nalized, or named. LISP and  some other languages 
typically  use  direct internal pointers from one ob- 
ject to another, and  this  is the only  reasonable ap- 
proach  when storage cell  sizes are very  small. A full 
pointer table  for LISP could  easily  use  up  a quarter 
or more of all  available  space  in the system,  and 
management of space  within  it  could  become  a 
severe  problem. 

A P L ~  has introduced nested  arrays into the lan- 
guage,  and  this  has  significantly  increased the num- 
ber of internal connections,  but the array orienta- 
tion remains. For this reason, and to avoid the 
decision  overhead of handling  a  mixture of direct 
and  indirect  pointers, APU follows traditional APL 
usage of making  all pointers indirect. 

There are two major ways in  which pointer tables 
have  been  implemented by APL systems.  Figure 1 
shows separate symbol  tables  and pointer tables. 
This approach permits the symbol table to be struc- 
tured for binary or  tree searches,  and to be reor- 
ganized or expanded  as needed. 

Figure 2 shows  a  combined  symbol  and pointer 
table. The names of objects are stored as if they 
were  objects  themselves  (though  some  systems 
store short names  directly  within the table). To lo- 
cate a  symbol  by name, the system  must  follow the 
name pointer from  each row  of the symbol  table. 
The combined  table requires less storage, but is not 
amenable to table  reorganization,  since  an  un- 
known number of indices into it  exist throughout 
storage. Typically  a  hashing  scheme  is  used to lo- 
cate names  within the table,  but  this  precludes dy- 
namic  expansion of the table. Table expansion 
would be possible  only if sequential searches  were 
done (which are very  costly  in  time) or if an  index 
were  maintained  (still  significantly more costly than 
hashing). For these reasons,  systems  employing the 
combined  table  normally  have  a fixed  symbol  table 
size, or a  size that can  only be set  when  an ApL 
workspace is first created. 

The combined  table  was  used  in earlier APL systems, 
including E” APLP60, APLSV, and VS APL. APL2, 
I B M S  current  offering  for the IBM System/370*  and 
System/390*,  uses separate symbol and  pointer  tables, 
in  large  part  because of nested  array  extensions,  but 
also partly  because  it was  designed  for  large  applica- 
tions  with  more  objects,  making  symbol  table  expan- 
sion  much  more  important. 
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Figure 1 Separate tables for locating objects 

PnlNTFR 
SYMBOL  TABLE  TABLE 

. - . . . . -. . 

Whichever structure is used by an  implementation, 
the primary pointer table  contains  addresses of all 
other objects  in the APL workspace,  and that is the 
only  place  (with  occasional  exceptions)  such ad- 
dresses are kept. Since interpreter routines always 
maintain  a  direct pointer to the pointer table, there 
is  very little extra  cost in converting  a table index to 
the address of the corresponding  object.  Most  im- 
portantly for storage management, it is  also  easy to 
move  an  object  from one place to another, since 
only a  single pointer to it needs to be updated. One 
other rule is  enforced to make  this  possible-any 
pointers to locations  within  an  object are always 
stored as  offsets, not addresses. 

Traditional APL storage  management 

Another attribute of APL objects is that many  of 
them are very transient. APL programs  often  use 
simple  names  like X for  variables that contain many 
different  kinds of data during the execution of a 
single  defined  function.  Since the storage require- 
ments  for these various  usages may gyrate  wildly, 
the system  actually creates a new object  each  time 
a  value  is  assigned to  the variable,  and  discards the 
object that previously represented the variable 
(thus their transient nature). Also, because APL is 
an array  processing  language, intermediate results 
are arbitrarily  large  and  it is not practical, in gen- 
eral, to use  predefined  temporary areas to hold 
those  results. Thus each  processing step within an 
APL statement produces  a new object  as  its  result. 



Figure 2 Combined table for locating objects 
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Because of these characteristics, storage allocation 
and release are critical paths in the performance of 
AFJL systems. Operating system path lengths for al- 
locating and freeing storage are typically hundreds 
or thousands of instructions. If AFJL were to use 
those services for each object allocation, they could 
easily use up 90 percent or  more of the application 
execution time. Thus APL, along with a number of 
other languages, was compelled to provide its own 
storage management function within an  area 
(which AFJL calls an active workspace), obtained 
from the  operating system. 

The traditional APL storage management technique 
is  very simple, but extremely fast in processing time. 
The APL system adds a standard prefix to all objects. 
The size and  format of the prefm  have varied among 
AFJL implementations, but  the prefix has included at 
least a flag  (typically the first bit) that indicates 
whether the  area is currently in use or is garbage, 
i.e., data  no longer needed,  and a field containing 
the length of the  area. 

A pointer is maintained to  the beginning of a free 
area where it is known that no storage is currently 
allocated. When an allocation request is made, the 
storage is allocated at  the beginning of the  free 
area, and the  free  pointer is stepped beyond the 
new allocation. When an  area is freed, its garbage 
flag  is set. (Often  the  end of the  freed  area is 
checked against the  free  pointer; if they match, the 
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free pointer is  backed up, but this is not a necessary 
part of the algorithm.) Figure 3 shows a simple 
example of what a workspace might look like after 
a few such storage operations. 

Eventually, of course, the  free pointer will ap- 
proach the  end of the  free  area,  and a storage re- 
quest will be made that cannot be satisfied. This 
triggers garbage collection, which has a number of 
meanings in computing literature: 

1. Garbage collection  sometimes refers to the proc- 
ess of determining  which parts of storage  can  be 
reused, perhaps by  following  all  valid storage links. 
AFJL, as  was already  indicated,  maintains a garbage 
bit  in  each  block of storage. It also maintains 
(either in the storage  block or  the pointer table) a 
use count (i.e., storage  is  in  use)  field for each  ac- 
tive  block. The garbage  bit  is turned on when the 
use count goes to zero, so there is no ambiguity 
about which  blocks  of storage  can  be  reused. 

2. When a garbage bit is  available, the system nor- 
mally, at some time, scans storage looking for 
blocks  it can reclaim. Often  part of that scan 
involves  coalescing adjacent garbage blocks. APL 
garbage collection performs this process. 

3. Blocks identified as containing garbage may be 
chained together for later reuse. This has not 
typically been done by APL systems, because it 
does nothing to relieve fragmentation and es- 
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Fiaure 3 Sample  of  workspace  with  garbage,  where Al-A7 represent allocation requests  that have been satisfied 

I 1-1 - GARBAGE -1 - IMMEDIATELY USABLE 

sentially leads to  the same sorts of operating 
system storage management schemes and  path 
lengths that APL has tried to avoid. 

4. “Live” blocks (those containing data  that  are 
currently in use) may be moved, resulting in ad- 
jacent areas of garbage that may be collected 
into larger garbage blocks.  Since APL maintains 
a complete indirect pointer list, it is  relatively 
simple to move  live entries. (APL systems nor- 
mally maintain a pointer list  index  in the live 
entries, which makes it  trivial to locate the  one 
pointer which  must be updated.) So for APL, gar- 
bage collection is the process of returning all of 
the garbage areas to  the block of free storage. 

5. There  are several possible algorithms. APL sys- 
tems have almost universally used a “shifting” 
rule that keeps the live storage blocks  in their 
previous order.  The advantage of this is that over 
time the more static objects in the workspace will 
migrate to  the low-address end,  and will be un- 
affected by later garbage collections. (Typically 
a “lowest garbage” pointer is maintained so that 
the system can skip over the static part of the 
workspace.) The disadvantage is that in the  short 
term very large amounts of storage may need to 
be moved to make small but previously long- 
lived  blocks reusable. 

Some APL systems  have used predictive garbage col- 
lection techniques that  do  the storage compaction 
as soon as a certain amount of garbage has accu- 
mulated. This approach can eliminate long pauses 
for garbage collection at unexpected times, but typ- 
ically also increases the number of times that  an 
object will be moved before it reaches its final rest- 
ing point (or is deleted).  Thus  the  net effect of such 
schemes is to increase the  total amount of storage 
movement in the system, and so increase the CPU 
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time used in processing an application. The ap- 
proach can be useful despite this characteristic, 
both because it does yield a more predictable re- 
sponse time, and because it can reduce the appli- 
cation working set. More will be said later about 
that aspect. 

One  other enhancement used by vs APL’ was to 
“ping-pong” allocations between both ends of the 
free  area.  It did this by maintaining floating point- 
ers  to both the beginning and the  end of the  free 
area,  and by alternating their usage. The usefulness 
of this becomes apparent when  we consider what 
happens while  processing a series of primitive func- 
tions in an APL statement.  For example: 

A+l  3 2.5 
A+2+3x LA 

Figure 4 illustrates the sequence of allocations with 
a normal single-ended workspace system. Note that 
each primitive operation must obtain space for its 
result and calculate it before the space for the  pre- 
vious temporary result can be released. 

Figure 5 shows the corresponding sequence of al- 
locations with a two-ended (ping-pong) workspace. 

Because of the ping-ponged allocations, temporary 
blocks can often be returned immediately to  the 
free  area,  and  embedded garbage builds up  more 
slowly. 

The  costs of garbage  collection 

The first APL implementations ran  on systems 
without paging facilities and used  32K-byte  work- 
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Figure 4 Processing  with a one-ended  workspace 

-A- 

spaces. A typical  garbage  collection  would  move 4K 
bytes of data or less,  and  might  use the time  equiv- 
alent of less than 1000  instructions. 

Today’s APL products  run on systems that are often 
capable of supporting  workspaces  up to a  gigabyte 
or two in  size,  all  in  pageable  virtual  storage. Al- 
though many users  limit  themselves (or are limited 
by their installations) to 10-megabyte  workspaces 
or less,  a  significant  number are routinely  using 50- 
100 megabytes or more. In typical  cases  only  a  small 
part of these  larger  workspaces  is  used  for static 
data and  functions. The extra  space  has made it 
possible to manipulate  multiple  megabyte  arrays 
and  use  algorithms  with  very  large intermediate re- 
sults.  But  this  in turn means that garbage  collec- 
tions often involve  moving  many  megabytes  of data. 

A typical  garbage  collection for a  20-megabyte 
workspace  might  move 2-4 megabytes of data, re- 
quiring  execution  time  equivalent to executing on 

the order of 100 000 instructions.  But  this  is only the 
beginning of the problem.  In the process of locating 
and moving the data, the APL system  will  probably 
touch 75 to 80 percent of the pages  in the work- 
space, or around 400 pages  for the 20-megabyte 
example. On typically  loaded  multiuser  systems  a 
significant  number of these will be  paged out, re- 
sulting  in  long  delays to retrieve  them, one after 
another. These  delays  can  easily  add  up to execu- 
tion  pauses of 5 to 10 seconds,  which  is intolerable 
in  an  interactive  system.  These sudden paging  loads 
can  also  trigger  periods of saturation for the paging 
devices,  and thus lead to execution  pauses  for other 
interactive  users on the system. 

Finally,  periodic  usage  spikes of real storage caused 
by garbage  collection  mislead  system  resource  man- 
agement  programs,  causing  them to overestimate 
future APL real storage requirements and fre- 
quently to move APL users to a  lower  priority ser- 
vice  class for most of their processing. 
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Figure 5 Processing  with a two-ended  workspace 

(DISCARD BUT REUSED) 

-1 - GARBAGE 

I- IMMEDIATELY 
USABLE 

The scenario just described at 20 megabytes be- 
comes much (more than  ten times) worse at 200 
megabytes. The system has a limited amount of real 
storage, and only a fraction of that can be dedicated 
to a single user. It is a rare system today that will 
allow one user to control as much as 150 megabytes 
of real storage at a time. Note that APL garbage 
collection actually  involves  two pointers “floating 
up” through the workspace, one for where blocks 
are being moved to and  the  other (many  megabytes 
ahead of the first in such a huge workspace) for 
where blocks are being moved from. When the dis- 
tance between those pointers exceeds about half 
the real storage of the available user storage in the 
system, the pages will begin to  be paged out and 
back  in again between the time they are used. This 
can triple or quadruple  the paging load described 
above. Execution pauses of  many minutes have 
been  reported under these circumstances. 

As was indicated earlier, predictive garbage collec- 
tion, taking action when a threshold is reached on 

uncollected garbage, actually increases the total 
amount of storage movement and thus  the proc- 
essor time required to  run a given application. De- 
spite this, it  can be useful, because the paging  usage 
spikes are significantly reduced, and  the “moved to” 
and “moved from” pointers are much closer to- 
gether during a garbage collection. 

Using  quickcells  to  minimize  garbage 
collection 

A P L ~  uses one very  successful strategy to reduce the 
number of garbage collections. Although object al- 
locations come in  many and varying  sizes,  it  was 
noted that a large number of them are quite small. 
This is particularly true for A P L ~ ,  which  actually 
uses  two or more separate storage areas for most 
nonscalar data objects. One of the  areas contains 
the  data objects themselves and the  other contains 
the description of the  data. (Nested arrays include 
a number of descriptor areas and data areas.) 
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The standard descriptor blocks for vectors, ma- 
trices, and three-dimensional arrays can all be fit 
into a 32-byte area. 
The same size area can hold the  data  for  an array 
of  1-3 real numbers, up  to six signed integers or 
24 characters, and as  many  as  192  Boolean  values. 

A P L ~  storage management includes special han- 
dling for 32-byte storage cells. When such a cell or 
quickcell is no longer needed, it is put on a special 
chain instead of being marked as garbage. Then 
when another  area of that size  is needed,  the chain 
is checked first, thus avoiding encroachment into 
the  free  area in many common situations. Since the 
chain is maintained in last-in-first-out order,  the 
cell selected from the chain has  the highest prob- 
ability of still being in real storage. 

There is another performance advantage to these 
quickcells. Any time a new storage  area is created 
from what  was the  free  area, a free slot in the 
pointer (or symbol) table must be located and as- 
sociated with the  area,  and  the required header 
area must be formatted. The quickcells retain their 
table slot and  are already formatted. Using them, 
A P L ~  was able to achieve a path length of about 30 
instructions to allocate a 32-byte area, including call 
and  return overhead, necessary tests, and addi- 
tional formatting specific to  the type of area being 
obtained. 

A P L ~  also provides a separate quickcell pool for 
each type of scalar data (a single unstructured char- 
acter  or number). There  are six of these pools, cov- 
ering everything from standard characters to com- 
plex numbers. Four of those six (characters, 
extended characters, short integers, and signed in- 
tegers) need only a 16-byte area, so the system splits 
a quickcell to form two “short scalars.” Allocation 
path lengths for all of the scalar quickcells are a 
trivial 11 instructions because special entry points 
are used, only one test (for empty pool) is needed, 
and  the cell  is already completely formatted except 
for  the actual value. 

Of course it  is  possible for APL applications to use 
a very large number of such areas  for a short time, 
leaving huge pools of quickcells behind. The nor- 
mal garbage collection algorithm would not  detect 
those, but APL2 provides a special quickcell cleanup 
routine  that does release the  table slots and mark 
the cells as garbage. This is  usually performed if a 
standard garbage collection is not able to  free  up 
enough space. Until such time as this happens, 
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though, large quickcell pools can have the effect of 
increasing the number of real pages required by the 
application. 

Using  buddy-system  cells  to  avoid  garbage 
collection 

It is tempting to try to extend the advantages of 
quickcells to larger areas. This must be  done care- 
fully, though, because as the number of special 
classes  is increased the cost of determining the ap- 
propriate class  can  rise, and pools of storage can 
grow  in some classes at  the expense of available 
space for others. One interesting solution to this 
dilemma is a storage management technique called 
the “buddy system.” 

Knuth’ reports  that H. Markowitz  first used the 
buddy  system for SIMSCRIPT, but it was apparently 
first published by Knowlton3 and may  have been 
named by Knuth. This early work has now come to 
be called a “binary buddy  system.” Hirschberg4 pro- 
posed a more space-efficient buddy  system based 
on a Fibonacci series, and Cranston and Thomas’ 
described a simplified recombination scheme for 
Hirschberg’s  system. Shen and Peterson6 took a 
different space-saving approach, which  they called 
a “weighted buddy  system.’’ Then Peterson and 
Norman7 produced a paper  that reviewed the var- 
ious buddy schemes and concluded that  either  the 
original binary system or  the improved Fibonacci 
system  was preferable. Bozman et al. found buddy 
systems  in general very fast but inferior to subpool- 
based systems for their purposes with IBMS VWSP 
product. This may have been because the binary 
system described below required an additional dou- 
ble  word in each allocation. As will be shown, no 
extra storage is needed for APL. 

Unfortunately for A P L ~ ,  the improved Fibonacci 
system depends on availability of three  status bits in 
the storage block,  which  would require a major re- 
structuring and reinterpretation of flags throughout 
the  interpreter. So the following information fo- 
cuses on  the original binary  system. It should be 
noted that Page and Hagins’  have more recently 
defined an improved weighted  buddy  system, but 
we  have not analyzed that  for applicability to APL. 

The binary buddy  system  works by allocating all 
storage in  sizes  which are a power of two. Free  area 
chains are maintained for each storage size. If no 
storage is  available on a particular  chain, an area can 
be taken from the next larger size  and  split to form 
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two areas, one of  which will be put on the chain  and 
the other used to satisfy the current request.  (This 
splitting  is,  of  course, a recursive  process since the 
next  larger  chain  could also be empty.) 

Consider what  would happen if a request were 
made for 80 bytes of storage and the system cur- 
rently  had no  free blocks  smaller than 4K bytes. The 
initial request would be rounded up  to  the next 
power of 2 (128 in this case) and then recursive 
splitting would be used to satisfy  it. An implemen- 
tation can choose which  of the two "buddies" cre- 
ated by splitting an area is to be used  immediately, 
and which  is to be placed on  the chain. For this 
example we assume that  the buddy at the lower 
address is  placed on the chain. Figure 6 is a pictorial 
representation of the way the 4K-byte storage area 
would be divided up at  the end of the request. 

First, note  that any request for a small amount of 
storage when  pools are empty will not only get that 
storage but will prime all  pools up to the next one 
that was not empty.  Because of this behavior, pools 
tend to be nonempty much of the time, and a ma- 
jority of storage requests can be satisfied without 
having to split larger cells. 

A second  less  obvious observation is  critical to  the 
behavior of the buddy  system  when storage is re- 
turned. If the original 4K area illustrated in Figure 
6 began on a 4K-byte boundary, then the 2K bud- 
dies will each be on a 2K-byte boundary, 1Ks on a 
1K boundary, and so forth, no  matter how  many 
times the  area is  split. In general any  buddy  system 
cell  must be on a boundary that is a multiple of its 
size, and that requirement will be met automatically 
so long as it  was met by the original areas. A dif- 
ferent way  of stating this is that for any  buddy  cell 
of size  2", the low order n bits of its binary address 
will be zero. 

Now consider what happens when a cell of size 2"+l 
is split. The first  (low address) cell created will have 
n + 1 low order zero bits in its address, while its 
buddy will have the same address except for a 1 in 
the first of those n + 1 low order bits. Splitting a 1K 
(29+') cell, for example,  yields Boolean addresses of 

xxxx   xxxx   xxxx   xxxx   xxxx   xxoo eeoo ooee 
xxxx   xxxx   xxxx   xxxx   xxxx   xx1o  3880 ooeo 

But that same bit position is the location of the sole 
1 in the binary representation of the length (2") of 
the new  buddy  cells. This leads to  the remarkably 
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Figure 6 Dividing a 4K storage area to satisfy an 80-byte 
request 

ON 2K CHAIN 

ON 1K CHAIN I ON 512 CHAIN 

useful  conclusion that given  any  buddy  cell, per- 
forming an exclusive-OR operation of its address 
with its length will yield the address of its buddy. 

The exclusive-OR technique makes it feasible to 
coalesce  cells without an unreasonable amount of 
processing if two pieces of information are avail- 
able with each cell: 

A flag that indicates whether the  area is currently 

A field containing the length of the  area 
in  use 

These are  the same pieces of information that AFJL 
storage systems  have  always maintained. The buddy 
can be located by using the exclusive-OR operation. 
Once located, the two areas can be coalesced if the 
buddy is not in use and if it  has not been further 
subdivided,  i.e., if its length has not been reduced. 

Knowlton's  original paper expressed one concern 
that most later researchers seem to have ignored. 



He felt that it  might be better  not to coalesce bud- 
dies in  all cases where that was  possible.  Based on 
some modeling we indeed found what we called a 
“zipper” effect that can occur if a single  small stor- 
age area is repeatedly allocated and freed at a time 
when most chains are empty. (Getting  the block 
causes a series of cell  divisions,  leaving one cell on 
each chain. Freeing that block then zips all the cells 
back together into one large area, leaving the chains 
empty  again.) Kaufman’O has looked at this  in  some 
detail and  considered two types of solutions: 

1. Leave a minimum number of cells on each chain, 
with the number probably determined by the us- 
age  level of the chain 

2. Delay recombination until a larger cell  is needed 

He concluded that  there were conditions where 
each solution would be  better  than  the  other.  For 
our work we chose a simplified form of the first 
solution, bypassing the coalesce if it  would leave the 
chain empty. 

It would not be fair to leave this topic without ac- 
knowledging one significant problem. Traditional 
APL storage allocation techniques rounded storage 
sizes up  to a multiple of eight, while  buddy (plus 
quickcell) allocation rounds sizes to a power of two 
with a minimum of 16 bytes. This has been referred 
to in the  literature as internalfragmentation, and can 
result in an effective virtual storage utilization of 
only about 75 percent. 

That number can be intuitively understood by ob- 
serving that all of the storage areas allocated to a 
given  buddy  cell  size are at least 50 percent as large 
as that cell, and  at most 100 percent of the cell  size. 
Assuming a linear distribution of sizes, the size of 
the required storage would average 75 percent of 
the cell  size. In practice, size distributions are 
skewed  with more allocations of the smaller sizes, 
so that  the typical utilization should be somewhat 
less than 75 percent. Compensating for this is the 
fact that more than half of the allocations are for 
either scalar quickcells or array descriptors in 
quickcells. And it happens  that those always use at 
least 75 percent of the cell  size. 

Buddy  system researchers have  also explored ater- 
nul fragmentation, which occurs because multiple 
unpaired but unused cells of some size  may  exist 
and yet be unusable if a larger block of storage is 
needed. This fragmentation is not a conceptual 
problem for APL, because active  cells can be 
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swapped at any time so that  the unused cells do 
become buddies. It can, however,  have some prac- 
tical effect, because the swapping process can be 
time consuming for the CPU, and can increase the 
real storage requirements of the system. 

Managing  large-scale  accountable  storage 

It is not very practical to extend buddy  cell  sizes 
beyond 4K bytes on  an IBM Systed370, because in 
most  cases operating system interfaces do not pro- 
vide for storage alignment on any boundary greater 
than 4K. But this is not a serious problem for two 
reasons: 

1. The number and frequency of large allocations 
is far lower than for small allocations. 

2. Once a large area has been allocated, a great deal 
of effort  normally  goes  into  filling  it  with data. 

Both of these reasons ensure  that  path lengths for 
large area allocations are  not critical.  Any of a num- 
ber of more conventional storage schemes could be 
used successfully to provide accountability and re- 
use of large areas. Indeed, it would be feasible to 
depend on operating system storage management 
for these areas. APL systems do  not  do  that at the 
present time because of a concern about storage 
fragmentation. If storage should become badly 
fragmented there would be no practical way to  re- 
cover  when  using operating system control. So long 
as APL controls the storage, garbage collection can 
be used if necessary. 

Along with the work to  support buddy  system  cells, 
there is  also a new scheme for managing larger 
blocks of storage. Historically such schemes have 
usually been based on maintaining linked lists of 
available areas. (Each currently unused area con- 
tains a pointer to  the next unused area in its group.) 
Since we were dealing specifically  with large 
amounts of pageable storage we were concerned 
about the potential paging overhead of traversing 
such chains to locate a usable area. 

The solution chosen was to maintain a bit map of 
storage blocks. This became feasible because the 
smallest unit of storage to be managed was a 4K 
page (212 bytes).  All  subdivisions of that were man- 
aged by the buddy  system. Because of operating 
system limitations, the largest total area  that APL 
could be presented with  was somewhat less than 1 
gigabyte (230 bytes). This meant that all  possible 
pages could be represented by 230”2 = 218 bits. This 
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is  215 bytes,  given an 8-bit byte. Thus a bit map for 
the largest supported amount of storage could be 
stored in 32 K, or eight 4K pages, a very reasonable 
amount of space when dealing with a gigabyte of 
storage. For workspaces up  to 128 megabytes the 
bit map requires only a single  page. 

One of the problems that linked list management 
systems  must address is  coalescing adjacent free 
areas. This problem disappears with a bit map, 
since the bits are stored in virtual storage order. 
Linked list  systems can also  simplify the problem by 
using address order for linking, but this usually 

Bit maps  are  used  for  pages  and 
buddy  system  cells  are  used  for 

smaller  cells. 

makes allocation and de-allocation searches too ex- 
pensive. With a bit map there is no problem at 
de-allocation time. The storage address is  trivially 
converted into an index into  the table. But locating 
an available area of appropriate size during allo- 
cation is another  matter. 

This was  solved by using a set of 256-byte lookup 
tables to convert one 8-bit pattern  to  another. A 
table is chosen based on  the number of pages re- 
quired for an allocation. Each byte  in the bit map 
is treated as an index into  the table. The content of 
the table entry indicates whether the request can be 
satisfied from that section of the bit map. 

If, for example, a request was made for six pages of 
storage, the request could be satisfied by either 

Six or more contiguous free bits within a byte 
Three or more contiguous free bits at  the edge of 
a byte  with the remaining one  to  three bits avail- 
able at  the adjacent edge of the adjoining byte 

The bit configurations satisfying the first criterion 
are: 

oeeeee11 eeeee001 1eeeeee1 lleeeeoe 
eeeeeelo 0000000B 1eeeeeoe e1e00e00 
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Treating these bit configurations as binary num- 
bers, zero-origin entries 3, 1, 129, and 192, as well 
as 2,0, 128, and 64  in the lookup table would need 
to contain values that indicate the configurations 
are satisfactory. 

The System/370 includes a translate and test (TRT) 
instruction that can automate  the search, so long as 
unsatisfactory configurations have a binary zero en- 
try  in the lookup table. Because of this a convention 
of putting the one-origin offset of the first  satisfying 
bit into  the table was chosen. 

Seven tables of this form were generated,  to allow 
searches for up  to seven contiguous available bits in 
a byte. Note that if the search succeeds, both the 
byte and bit numbers of the desired position in the 
bit map are known. 

When fewer than eight pages are required, a fast 
search is made for all bits within one byte  using one 
of the above seven tables. If this search fails, a byte- 
by-byte check of the bit map is  used to look for an 
area crossing  two  bytes. This check  also  utilizes a 
lookup table that is  indexed by the bit map bytes, 
but in this case the indexing  is done manually, and 
the codes within the table indicate the number of 
bits available on each edge of the argument byte 
(i.e., the code is treated as a pair of 4-bit numbers). 
By adding appropriate edge-counts from adjacent 
bytes, the system can determine whether enough 
space is  available at  that boundary. 

If eight or more pages are needed, a search is made 
for a byte  in  which  all eight bits are free. Once such 
a byte  is found, the search is expanded around that 
byte  as needed to obtain more than eight pages. If 
no appropriate  area can be found containing an 
all-free byte, and if 14 or fewer pages are  needed, 
the same edge search is run that is  used for less than 
eight pages. 

The expanded search for more than eight bits is 
somewhat tedious, but it should be noted that  the 
storage areas involved are always longer than 32K 
bytes, so the processing  cost after allocation is usu- 
ally  much larger than  the time spent to locate an 
available area. 

In all of the searches a choice had to  be made be- 
tween a “first fit” (or  perhaps “next fit”) and a “best 
fit” rule. Bays’s analysis” shows that next  fit  is a 
poor choice, but does not provide a clear prefer- 
ence between first and best fit.  We prototyped an 



exact  fit  scan  followed by a first  fit  scan,  but  found 
that for our bit  map search routines using  first  fit 
alone provided  slightly better overall  performance. 
We  did  not  analyze  the  reasons,  but  assume  it was a 
combination of the extra CPU cost  for a double  scan 
and  because  first  fit  develops a set of “favorite  pages,” 
or those which are less  likely to be  paged  out. 

As  with the buddy  system, there is a storage penalty 
for the page-oriented allocations. For blocks  up to 
8192 bytes (8K) the same  usage constraints exist as 
for buddy  cells,  and the effective  utilization  is 
slightly  less than 75 percent. This  number  rises, 
though,  for  larger  blocks. The only  allocations 
made to a ten page  block, for example, are those 
requiring more than 90 percent of its  space. The 
usage of large  arrays  varies  greatly  among  applica- 
tions, so it  is  difficult to generalize. It is  probably 
safe to say, though, that for most  applications the 
effective  utilization of large-scale storage will be 
between 75 and 95 percent. 

Getting  the  best of both 

The previous  discussions of buddy  cells  and  large- 
scale storage each ended with  warnings about limits 
on effective  utilization of virtual  storage. To some 
extent  this  is a deceptive  concern.  All storage man- 
agement  systems  produce  small  fragments of stor- 
age  intermixed  with live data, and  for  most  systems 
the fragments are either completely  unusable, us- 
able only at great expense, or usable  only  for a small 
subset of the allocation  requests.  But there are 
three ways in  which  this  is a very real concern: 

The fragments at issue are all  less than one page 
long,  and are all on pages  containing  live data. 
Thus in a paging  system  they  always  act to in- 
crease the number of real pages required to run 
the application  effectively. 
Unlike traditional APL storage management, 
there is no way to “squeeze” the fragments out of 
the live data and  make  them  available  again. 
Because of the previous  point, the unusable  frag- 
ments  would  still  exist  in AFT workspaces that are 
saved.  This  implies an increase  in  required  perma- 
nent  storage  space  as well  as  additional  data  trans- 
fer while  reading  and  writing the workspaces. 

To address these concerns a hybrid  scheme  was 
implemented. The workspace  is  divided into two 
sections,  with a floating  boundary  between  them. 
Storage to the left (low address end) of the bound- 
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ary contains  densely  packed  objects  managed  using 
traditional garbage  techniques. Storage to the right 
of the boundary  is  managed  using  bit  maps  for 
pages  and the buddy  system for smaller  cells. So 
long  as  enough  reusable storage is  available at the 
right  end of the workspace,  garbage  is  allowed to 
collect at the left  end. In many  cases  this will  suffice 
for so long  as the workspace is active.  When a re- 
quest  arrives that cannot be satisfied,  some  form of 
garbage  collection is done. One of three alterna- 
tives  is  chosen: 

1. If there are enough free pages at the right end 
to satisfy the request  (but  they are scattered), 
and there is more storage available  in free pages 
than in  garbage at the left end, then allocated 
pages at the right  end are rearranged so that all 
free pages are in one group. 

2. If there is enough  garbage at the left  end to 
satisfy the request, and there is more storage 
available  in  garbage than in free pages  at the 
right end, then all  garbage at the left  end  is  col- 
lected, the dividing  line  is  moved  left to the end 
of the last  page on that side  still  containing data, 
and the remainder of the collected storage is 
made  available  in the page  pool. 

3. If neither end  has  enough  space to satisfy the 
request  on its own,  all  unused  quickcells are re- 
leased  and then a full  garbage  collection of the 
workspace  is  done.  At the end of this  process the 
dividing  line is at the end of the last  page  con- 
taining data, and the remainder of the work- 
space  is  in the page  pool. 

The third form of garbage  collection is  always per- 
formed  when a workspace  is  saved. (The page  pool 
is not kept with the saved  workspace. Indeed when 
the workspace  is reloaded later the page  pool may 
be of a different  size.) 

Note that this  concept of  two storage zones  is a 
simplified  form of “generational garbage  collec- 
tion” as  recently  advocated by Appel,  Wilson  and 
Moher, l3 and  others. 

Comparative  performance  measurements 

A limited  amount of performance  measurement 
has  been obtained comparing A P L ~  with  and  with- 
out the storage management  changes  described  in 
this paper. The results are very encouraging,  but 
should not be over-interpreted. A storage-intensive 
test function was generated that allocated  and  ini- 
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Figure 7 Comparison of CPU times 
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tialized storage blocks of random sizes and random 
lifetimes. The algorithm automatically adjusted to 
workspace size, and tended  to  keep an average of 
60 to 65 percent of the workspace in  use. This is not 
a typical APL application, but it  was created specif- 
ically to exaggerate any differences in the storage 
behavior of the systems. 

Figure 7 shows the amount of CPU time used by the 
test case over a range of workspace sizes. It has 
been scaled by the average amount of allocated 
storage rather than by workspace size to remove 
any bias due  to buddy  cell internal fragmentation. 
All tests were run  on  an IBM 3090* with 128 mega- 
bytes of real storage and very little other concurrent 
activity, so no paging  was needed. 

Figure 8 shows test case elapsed times from the 
same runs  as Figure 7. We believe that  the accel- 
erating slope seen  here is caused by IBM’s Multiple 
Virtual Storage Resource Manager function inten- 
tionally  slowing the application down as larger frac- 
tions of the system’s total real storage are used. 

Testing under loaded conditions produces similar 
results. As a controlled environment, ten tests were 
submitted simultaneously and competed for three 
initiators on  an idle system  with three CPUS. Sepa- 
rate runs were made with 100-megabyte and 200- 
megabyte workspaces. With three initiators and 
three CPUS these resulted respectively in roughly 
151 and 3:l overcommitments of available real 
storage. At 100 megabytes the new  system used 47 

percent as much CPU time and only 38 percent as 
much elapsed time as the old. At 200 megabytes the 
elapsed time dropped  to 34 percent. In both the 
100- and 200-megabyte  cases the usable allocated 
storage dropped by less than 1 percent since inter- 
nal buddy  cell fragmentation is  of little conse- 
quence in such large workspaces. 

Finally,  it  is important to stress  again that the differ- 
ences  shown here are exaggerated  from  those  that 
would be seen by an APL application.  More  than 90 
percent of the test  application  time was spent in al- 
locating  and  initializing  storage. It would  be  more 
typical for an  application to spend  between 1 and 10 
percent of its CPU time in that code,  and  it  could 
spend  much  less than 1 percent of its  elapsed  time 
there if it was  highly input/output oriented. 

Concluding remarks 

For 25 years APL systems  have depended  on gar- 
bage collection for storage management, and it has 
served them well. Pure garbage collection schemes 
are likely to be used  less  in the  future than in the 
past, but composite schemes will continue to exist 
where garbage collection is an important compo- 
nent. 

This paper has focused on  the  current storage man- 
agement schemes for APL running on IBM main- 
frame hardware and their operating systems. The 
issues and solutions would be entirely different, for 
example, if the  storage model used by an IBM Ap- 
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plication System/400* processor were assumed. 
This paper has not addressed the unique attributes 
of Enterprise Systems Architecture systems, but  the 
virtual storage model that they implement is not 
radically different from their predecessors. It does 
hold out  the promise of breaking the 1-2 gigabyte 
barrier  that was assumed earlier in this paper.  Un- 
fortunately it appears  the promise can be realized 
for A P L ~  only  with a major rewrite of the  inter- 
preter, and that work has not been accomplished. It 
would be  premature  to speculate on optimal stor- 
age management strategies for multiple address 
spaces. 

One clear lesson of the last four decades is that 
computer addressability will  quickly expand beyond 
anything we consider reasonable today. The more 
sobering lesson is that application storage require- 
ments seem quite capable of expanding as fast as 
hardware capabilities. This race will not only keep 
implementers of language products busy for the 
foreseeable future, it will also keep  a noticeable 
part of their focus on matching these storage re- 
quirements and capabilities. 

* Trademark  or registered  trademark of International Business 
Machines Corporation. 
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