Storage management
in IBM APL systems

APL systems have traditionally used specialized
storage management schemes that avoid storage
fragmentation by “garbage collection,” moving
live data as needed to collect unused storage
into a single area. This was very effective on
systems with a small amount of real storage
addressed directly. It has become less effective
on today’s systems with virtual addressing and
Iarge amounts of virtual storage. Both traditional
schemes of storage management and a recently
implemented replacement for them are described.
The focus is on implementations for IBM
mainframe hardware.

Programs written in compiled languages typi-
cally use static definitions of working storage.
Much of the time the language syntax requires that
variables be declared as a particular type, structure,
and often a particular size. This allows the compiler
to generate very specific code for accessing the var-
iables.

In contrast, interpretive programs typically provide
much less data declaration information, and dec-
larations are often implicit in the data usage. A
number of interpretive languages allow a single
variable to take on varying definitions at different
times during program execution. APL, in fact, has no
data declaration constructs at all for objects that
exist within the active workspace. An object may
change during execution from Boolean to real to
complex, from simple scalar to four-dimensional
array to nested structure, and from numeric to
character to defined function.

Depending on the point of view, this dynamic char-
acteristic of data has been described as introducing
anarchy into the language, forcing heavy execution
time overhead, or permitting powerful and elegant
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algorithms that are independent of data structure
and format. Less frequently analyzed is the impact
on storage management strategies, and the second-
ary impact of those strategies on total system per-
formance. This paper discusses the storage man-
agement schemes that are used for APL running on
IBM mainframe processors.

APL data organization

By necessity, APL objects must be completely self-
describing, and it is impractical to assign them fixed
locations or sizes. This leads immediately to a level
of indirection in locating named objects accessed by
programs or users. Ultimately the locator tech-
nique must provide for a symbol table lookup, since
new references to objects can be introduced inter-
actively at any time. In practice, though, a symbol
table search incurs too much overhead on every
reference, so a pointer table with statically assigned
slots is used, each slot pointing to the current lo-
cation of the associated data. Programs needing to
access a data object can retain a table index for that
object instead of its actual address.

Traditional APL implementations are contrasted
here with systems like LISP that have large numbers
of internal connections among relatively small
stored objects. Some APL systems, such as VS APL,"
did use internal synonym chains to avoid making
copies of objects, but in general APL systems have
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handled large array objects that were mostly exter-
nalized, or named. LISP and some other languages
typically use direct internal pointers from one ob-
ject to another, and this is the only reasonable ap-
proach when storage cell sizes are very small. A full
pointer table for LISP could easily use up a quarter
or more of all available space in the system, and
management of space within it could become a
severe problem.

APL2 has introduced nested arrays into the lan-
guage, and this has significantly increased the num-
ber of internal connections, but the array orienta-
tion remains. For this reason, and to avoid the
decision overhead of handling a mixture of direct
and indirect pointers, APL2 follows traditional APL
usage of making all pointers indirect.

There are two major ways in which pointer tables
have been implemented by APL systems. Figure 1
shows separate symbol tables and pointer tables.
This approach permits the symbol table to be struc-
tured for binary or tree searches, and to be reor-
ganized or expanded as needed.

Figure 2 shows a combined symbol and pointer
table. The names of objects are stored as if they
were objects themselves (though some systems
store short names directly within the table). To lo-
cate a symbol by name, the system must follow the
name pointer from each row of the symbol table.
The combined table requires less storage, but is not
amenable to table reorganization, since an un-
known number of indices into it exist throughout
storage. Typically a hashing scheme is used to lo-
cate names within the table, but this precludes dy-
namic expansion of the table. Table expansion
would be possible only if sequential searches were
done (which are very costly in time) or if an index
were maintained (still significantly more costly than
hashing). For these reasons, systems employing the
combined table normally have a fixed symbol table
size, or a size that can only be set when an APL
workspace is first created.

The combined table was used in earlier APL systems,
including IBM’s APL\360, APLSV, and VS APL. API2,
IBM’s current offering for the IBM System/370* and
System/390*, uses separate symbol and pointer tables,
in large part because of nested array extensions, but
also partly because it was designed for large applica-
tions with more objects, making symbol table expan-
sion much more important.
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Figure 1 Separate tables for locating objects
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Whichever structure is used by an implementation,
the primary pointer table contains addresses of all
other objects in the APL workspace, and that is the
only place (with occasional exceptions) such ad-
dresses are kept. Since interpreter routines always
maintain a direct pointer to the pointer table, there
is very little extra cost in converting a table index to
the address of the corresponding object. Most im-
portantly for storage management, it is also easy to
move an object from one place to another, since
only a single pointer to it needs to be updated. One
other rule is enforced to make this possible—any
pointers to locations within an object are always
stored as offsets, not addresses.

Traditional APL storage management

Another attribute of APL objects is that many of
them are very transient. APL programs often use
simple names like X for variables that contain many
different kinds of data during the execution of a
single defined function. Since the storage require-
ments for these various usages may gyrate wildly,
the system actually creates a new object each time
a value is assigned to the variable, and discards the
object that previously represented the variable
(thus their transient nature). Also, because APL is
an array processing language, intermediate results
are arbitrarily large and it is not practical, in gen-
eral, to use predefined temporary areas to hold
those results. Thus each processing step within an
APL statement produces a new object as its result.
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Figure 2 Combined table for locating objects
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Because of these characteristics, storage allocation
and release are critical paths in the performance of
APL systems. Operating system path lengths for al-
locating and freeing storage are typically hundreds
or thousands of instructions. If APL were to use
those services for each object allocation, they could
easily use up 90 percent or more of the application
execution time. Thus APL, along with a number of
other languages, was compelled to provide its own
storage management function within an area
(which APL calls an active workspace), obtained
from the operating system.

The traditional APL storage management technique
is very simple, but extremely fast in processing time.
The APL system adds a standard prefix to all objects.
The size and format of the prefix have varied among
APL implementations, but the prefix has included at
least a flag (typically the first bit) that indicates
whether the area is currently in use or is garbage,
i.e., data no longer needed, and a field containing
the length of the area.

A pointer is maintained to the beginning of a free
area where it is known that no storage is currently
allocated. When an allocation request is made, the
storage is allocated at the beginning of the free
area, and the free pointer is stepped beyond the
new allocation. When an area is freed, its garbage
flag is set. (Often the end of the freed area is
checked against the free pointer; if they match, the
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free pointer is backed up, but this is not a necessary
part of the algorithm.) Figure 3 shows a simple
example of what a workspace might look like after
a few such storage operations.

Eventually, of course, the free pointer will ap-
proach the end of the free area, and a storage re-
quest will be made that cannot be satisfied. This
triggers garbage collection, which has a number of
meanings in computing literature:

1. Garbage collection sometimes refers to the proc-
ess of determining which parts of storage can be
reused, perhaps by following all valid storage links.
APL, as was already indicated, maintains a garbage
bit in each block of storage. It also maintains
(either in the storage block or the pointer table) a
use count (i.e., storage is in use) field for each ac-
tive block. The garbage bit is turned on when the
use count goes to zero, so there is no ambiguity
about which blocks of storage can be reused.

2. When a garbage bit is available, the system nor-
mally, at some time, scans storage looking for
blocks it can reclaim. Often part of that scan
involves coalescing adjacent garbage blocks. APL
garbage collection performs this process.

3. Blocks identified as containing garbage may be
chained together for later reuse. This has not
typically been done by APL systems, because it
does nothing to relieve fragmentation and es-
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Figure 3 Sample of workspace with garbage, where A1-A7 represent allocation requests that have been satisfied
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sentially leads to the same sorts of operating
system storage management schemes and path
lengths that APL has tried to avoid.

4. “Live” blocks (those containing data that are
currently in use) may be moved, resulting in ad-
jacent areas of garbage that may be collected
into larger garbage blocks. Since APL maintains
a complete indirect pointer list, it is relatively
simple to move live entries. (APL systems nor-
mally maintain a pointer list index in the live
entries, which makes it trivial to locate the one
pointer which must be updated.) So for APL, gar-
bage collection is the process of returning all of
the garbage areas to the block of free storage.

5. There are several possible algorithms. APL sys-
tems have almost universally used a “shifting”
rule that keeps the live storage blocks in their
previous order. The advantage of this is that over
time the more static objects in the workspace will
migrate to the low-address end, and will be un-
affected by later garbage collections. (Typically
a “lowest garbage” pointer is maintained so that
the system can skip over the static part of the
workspace.) The disadvantage is that in the short
term very large amounts of storage may need to
be moved to make small but previously long-
lived blocks reusable.

Some APL systems have used predictive garbage col-
lection techniques that do the storage compaction
as soon as a certain amount of garbage has accu-
mulated. This approach can eliminate long pauses
for garbage collection at unexpected times, but typ-
ically also increases the number of times that an
object will be moved before it reaches its final rest-
ing point (or is deleted). Thus the net effect of such
schemes is to increase the total amount of storage
movement in the system, and so increase the CPU
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time used in processing an application. The ap-
proach can be useful despite this characteristic,
both because it does yield a more predictable re-
sponse time, and because it can reduce the appli-
cation working set. More will be said later about
that aspect.

One other enhancement used by Vs APL! was to
“ping-pong” allocations between both ends of the
free area. It did this by maintaining floating point-
ers to both the beginning and the end of the free
area, and by alternating their usage. The usefulness
of this becomes apparent when we consider what
happens while processing a series of primitive func-
tions in an APL statement. For example:

A<1 3 2.5
A<2+3xLA

Figure 4 illustrates the sequence of allocations with
a normal single-ended workspace system. Note that
each primitive operation must obtain space for its
result and calculate it before the space for the pre-
vious temporary result can be released.

Figure 5 shows the corresponding sequence of al-
locations with a two-ended (ping-pong) workspace.

Because of the ping-ponged allocations, temporary
blocks can often be returned immediately to the
free area, and embedded garbage builds up more
slowly.

The costs of garbage collection

The first APL implementations ran on systems
without paging facilities and used 32K-byte work-
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Figure 4 Processing with a one-ended workspace
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spaces. A typical garbage collection would move 4K
bytes of data or less, and might use the time equiv-
alent of less than 1000 instructions.

Today’s APL products run on systems that are often
capable of supporting workspaces up to a gigabyte
or two in size, all in pageable virtual storage. Al-
though many users limit themselves (or are limited
by their installations) to 10-megabyte workspaces
or less, a significant number are routinely using 50—
100 megabytes or more. In typical cases only a small
part of these larger workspaces is used for static
data and functions. The extra space has made it
possible to manipulate multiple megabyte arrays
and use algorithms with very large intermediate re-
sults. But this in turn means that garbage collec-
tions often involve moving many megabytes of data.

A typical garbage collection for a 20-megabyte
workspace might move 2-4 megabytes of data, re-
quiring execution time equivalent to executing on
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the order of 100 000 instructions. But this is only the
beginning of the problem. In the process of locating
and moving the data, the APL system will probably
touch 75 to 80 percent of the pages in the work-
space, or around 400 pages for the 20-megabyte
example. On typically loaded multiuser systems a
significant number of these will be paged out, re-
sulting in long delays to retrieve them, one after
another. These delays can easily add up to execu-
tion pauses of 5 to 10 seconds, which is intolerable
in an interactive system. These sudden paging loads
can also trigger periods of saturation for the paging
devices, and thus lead to execution pauses for other
interactive users on the system.

Finally, periodic usage spikes of real storage caused
by garbage collection mislead system resource man-
agement programs, causing them to overestimate
future APL real storage requirements and fre-
quently to move APL users to a lower priority ser-
vice class for most of their processing.
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Figure 5 Processing with a two-ended workspace
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The scenario just described at 20 megabytes be-
comes much (more than ten times) worse at 200
megabytes. The system has a limited amount of real
storage, and only a fraction of that can be dedicated
to a single user. It is a rare system today that will
allow one user to control as much as 150 megabytes
of real storage at a time. Note that APL garbage
collection actually involves two pointers “floating
up” through the workspace, one for where blocks
are being moved to and the other (many megabytes
ahead of the first in such a huge workspace) for
where blocks are being moved from. When the dis-
tance between those pointers exceeds about half
the real storage of the available user storage in the
system, the pages will begin to be paged out and
back in again between the time they are used. This
can triple or quadruple the paging load described
above. Execution pauses of many minutes have
been reported under these circumstances.

As was indicated earlier, predictive garbage collec-
tion, taking action when a threshold is reached on
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uncollected garbage, actually increases the total
amount of storage movement and thus the proc-
essor time required to run a given application. De-
spite this, it can be useful, because the paging usage
spikes are significantly reduced, and the “moved to”
and “moved from” pointers are much closer to-
gether during a garbage collection.

Using quickcells to minimize garbage
collection

APL2 uses one very successful strategy to reduce the
number of garbage collections. Although object al-
locations come in many and varying sizes, it was
noted that a large number of them are quite small.
This is particularly true for APL2, which actually
uses two Or more separate storage areas for most
nonscalar data objects. One of the areas contains
the data objects themselves and the other contains
the description of the data. (Nested arrays include
a number of descriptor areas and data areas.)
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* The standard descriptor blocks for vectors, ma-
trices, and three-dimensional arrays can all be fit
into a 32-byte area.

¢ The same size area can hold the data for an array
of 1-3 real numbers, up to six signed integers or
24 characters, and as many as 192 Boolean values.

APL2 storage management includes special han-
dling for 32-byte storage cells. When such a cell or
quickcell is no longer needed, it is put on a special
chain instead of being marked as garbage. Then
when another area of that size is needed, the chain
is checked first, thus avoiding encroachment into
the free area in many common situations. Since the
chain is maintained in last-in-first-out order, the
cell selected from the chain has the highest prob-
ability of still being in real storage.

There is another performance advantage to these
quickcells. Any time a new storage area is created
from what was the free area, a free slot in the
pointer (or symbol) table must be located and as-
sociated with the area, and the required header
area must be formatted. The quickcells retain their
table slot and are already formatted. Using them,
APL2 was able to achieve a path length of about 30
instructions to allocate a 32-byte area, including call
and return overhead, necessary tests, and addi-
tional formatting specific to the type of area being
obtained.

APL2 also provides a separate quickcell pool for
each type of scalar data (a single unstructured char-
acter or number). There are six of these pools, cov-
ering everything from standard characters to com-
plex numbers. Four of those six (characters,
extended characters, short integers, and signed in-
tegers) need only a 16-byte area, so the system splits
a quickcell to form two “short scalars.” Allocation
path lengths for all of the scalar quickcells are a
trivial 11 instructions because special entry points
are used, only one test (for empty pool) is needed,
and the cell is already completely formatted except
for the actual value.

Of course it is possible for APL applications to use
a very large number of such areas for a short time,
leaving huge pools of quickcells behind. The nor-
mal garbage collection algorithm would not detect
those, but APL2 provides a special quickcell cleanup
routine that does release the table slots and mark
the cells as garbage. This is usually performed if a
standard garbage collection is not able to free up
enough space. Until such time as this happens,
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though, large quickcell pools can have the effect of
increasing the number of real pages required by the
application.

Using buddy-system cells to avoid garbage
collection

It is tempting to try to extend the advantages of
quickcells to larger areas. This must be done care-
fully, though, because as the number of special
classes is increased the cost of determining the ap-
propriate class can rise, and pools of storage can
grow in some classes at the expense of available
space for others. One interesting solution to this
dilemma is a storage management technique called
the “buddy system.”

Knuth? reports that H. Markowitz first used the
buddy system for SIMSCRIPT, but it was apparently
first published by Knowlton® and may have been
named by Knuth. This early work has now come to
be called a “binary buddy system.” Hirschberg* pro-
posed a more space-efficient buddy system based
on a Fibonacci series, and Cranston and Thomas®
described a simplified recombination scheme for
Hirschberg’s system. Shen and Peterson® took a
different space-saving approach, which they called
a “weighted buddy system.” Then Peterson and
Norman’ produced a paper that reviewed the var-
ious buddy schemes and concluded that either the
original binary system or the improved Fibonacci
system was preferable. Bozman et al.® found buddy
systems in general very fast but inferior to subpool-
based systems for their purposes with IBM’s VM/SP
product. This may have been because the binary
system described below required an additional dou-
ble word in each allocation. As will be shown, no
extra storage is needed for APL.

Unfortunately for APL2, the improved Fibonacci
system depends on availability of three status bits in
the storage block, which would require a major re-
structuring and reinterpretation of flags throughout
the interpreter. So the following information fo-
cuses on the original binary system. It should be
noted that Page and Hagins® have more recently
defined an improved weighted buddy system, but
we have not analyzed that for applicability to APL.

The binary buddy system works by allocating all
storage in sizes which are a power of two. Free area
chains are maintained for each storage size. If no
storage is available on a particular chain, an area can
be taken from the next larger size and split to form
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two areas, one of which will be put on the chain and
the other used to satisfy the current request. (This
splitting is, of course, a recursive process since the
next larger chain could also be empty.)

Consider what would happen if a request were
made for 80 bytes of storage and the system cur-
rently had no free blocks smaller than 4K bytes. The
initial request would be rounded up to the next
power of 2 (128 in this case) and then recursive
splitting would be used to satisfy it. An implemen-
tation can choose which of the two “buddies” cre-
ated by splitting an area is to be used immediately,
and which is to be placed on the chain. For this
example we assume that the buddy at the lower
address is placed on the chain. Figure 6 is a pictorial
representation of the way the 4K-byte storage area
would be divided up at the end of the request.

First, note that any request for a small amount of
storage when pools are empty will not only get that
storage but will prime all pools up to the next one
that was not empty. Because of this behavior, pools
tend to be nonempty much of the time, and a ma-
jority of storage requests can be satisfied without
having to split larger cells.

A second less obvious observation is critical to the
behavior of the buddy system when storage is re-
turned. If the original 4K area illustrated in Figure
6 began on a 4K-byte boundary, then the 2K bud-
dies will each be on a 2K-byte boundary, 1Ks on a
1K boundary, and so forth, no matter how many
times the area is split. In general any buddy system
cell must be on a boundary that is a multiple of its
size, and that requirement will be met automatically
so long as it was met by the original areas. A dif-
ferent way of stating this is that for any buddy cell
of size 2", the low order n bits of its binary address
will be zero.

Now consider what happens when a cell of size 2™**
is split. The first (low address) cell created will have
n + 1 low order zero bits in its address, while its
buddy will have the same address except for a 1 in
the first of those n + 1 low order bits. Splitting a 1K
(2°*1) cell, for example, yields Boolean addresses of

XXXX XXXX XXXX XXXX XXXX xx08 0000 0000
XXXX XXXX XXXX XXXX XXXX xx10 0000 0000

But that same bit position is the location of the sole

1 in the binary representation of the length (2") of
the new buddy cells. This leads to the remarkably
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Figure 6 Dividing a 4K storage area to satisfy an 80-byte
request
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useful conclusion that given any buddy cell, per-
forming an exclusive-OR operation of its address
with its length will yield the address of its buddy.

The exclusive-OR technique makes it feasible to
coalesce cells without an unreasonable amount of
processing if two pieces of information are avail-
able with each cell:

¢ A flag that indicates whether the area is currently
in use
* A field containing the length of the area

These are the same pieces of information that APL
storage systems have always maintained. The buddy
can be located by using the exclusive-OR operation.
Once located, the two areas can be coalesced if the
buddy is not in use and if it has not been further
subdivided, i.e., if its length has not been reduced.

Knowlton’s original paper expressed one concern
that most later researchers seem to have ignored.
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He felt that it might be better not to coalesce bud-
dies in all cases where that was possible. Based on
some modeling we indeed found what we called a
“zipper” effect that can occur if a single small stor-
age area is repeatedly allocated and freed at a time
when most chains are empty. (Getting the block
causes a series of cell divisions, leaving one cell on
each chain. Freeing that block then zips all the cells
back together into one large area, leaving the chains
empty again.) Kaufman'® has looked at this in some
detail and considered two types of solutions:

1. Leave a minimum number of cells on each chain,
with the number probably determined by the us-
age level of the chain

2. Delay recombination until a larger cell is needed

He concluded that there were conditions where
each solution would be better than the other. For
our work we chose a simplified form of the first
solution, bypassing the coalesce if it would leave the
chain empty.

It would not be fair to leave this topic without ac-
knowledging one significant problem. Traditional
APL storage allocation techniques rounded storage
sizes up to a multiple of eight, while buddy (plus
quickcell) allocation rounds sizes to a power of two
with a minimum of 16 bytes. This has been referred
to in the literature as internal fragmentation, and can
result in an effective virtual storage utilization of
only about 75 percent.

That number can be intuitively understood by ob-
serving that all of the storage areas allocated to a
given buddy cell size are at least 50 percent as large
as that cell, and at most 100 percent of the cell size.
Assuming a linear distribution of sizes, the size of
the required storage would average 75 percent of
the cell size. In practice, size distributions are
skewed with more allocations of the smaller sizes,
so that the typical utilization should be somewhat
less than 75 percent. Compensating for this is the
fact that more than half of the allocations are for
either scalar quickcells or array descriptors in
quickcells. And it happens that those always use at
least 75 percent of the cell size.

Buddy system researchers have also explored exter-
nal fragmentation, which occurs because multiple
unpaired but unused cells of some size may exist
and yet be unusable if a larger block of storage is
needed. This fragmentation is not a conceptual
problem for APL, because active cells can be
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swapped at any time so that the unused cells do
become buddies. It can, however, have some prac-
tical effect, because the swapping process can be
time consuming for the CPU, and can increase the
real storage requirements of the system.

Managing large-scale accountable storage

It is not very practical to extend buddy cell sizes
beyond 4K bytes on an IBM System/370, because in
most cases operating system interfaces do not pro-
vide for storage alignment on any boundary greater
than 4K. But this is not a serious problem for two
reasons:

1. The number and frequency of large allocations
is far lower than for small allocations.

2. Once a large area has been allocated, a great deal
of effort normally goes into filling it with data.

Both of these reasons ensure that path lengths for
large area allocations are not critical. Any of a num-
ber of more conventional storage schemes could be
used successfully to provide accountability and re-
use of large areas. Indeed, it would be feasible to
depend on operating system storage management
for these areas. APL systems do not do that at the
present time because of a concern about storage
fragmentation. If storage should become badly
fragmented there would be no practical way to re-
cover when using operating system control. So long
as APL controls the storage, garbage collection can
be used if necessary.

Along with the work to support buddy system cells,
there is also a new scheme for managing larger
blocks of storage. Historically such schemes have
usually been based on maintaining linked lists of
available areas. (Each currently unused area con-
tains a pointer to the next unused area in its group.)
Since we were dealing specifically with large
amounts of pageable storage we were concerned
about the potential paging overhead of traversing
such chains to locate a usable area.

The solution chosen was to maintain a bit map of
storage blocks. This became feasible because the
smallest unit of storage to be managed was a 4K
page (2'* bytes). All subdivisions of that were man-
aged by the buddy system. Because of operating
system limitations, the largest total area that APL
could be presented with was somewhat less than 1
gigabyte (2% bytes). This meant that all possible
pages could be represented by 2312 = 28 bits, This
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is 2% bytes, given an 8-bit byte. Thus a bit map for
the largest supported amount of storage could be
stored in 32 K, or eight 4K pages, a very reasonable
amount of space when dealing with a gigabyte of
storage. For workspaces up to 128 megabytes the
bit map requires only a single page.

One of the problems that linked list management
systems must address is coalescing adjacent free
areas. This problem disappears with a bit map,
since the bits are stored in virtual storage order.
Linked list systems can also simplify the problem by
using address order for linking, but this usually

Bit maps are used for pages and
buddy system cells are used for
smaller cells.

makes allocation and de-allocation searches too ex-
pensive. With a bit map there is no problem at
de-allocation time. The storage address is trivially
converted into an index into the table. But locating
an available area of appropriate size during allo-
cation is another matter.

This was solved by using a set of 256-byte lookup
tables to convert one 8-bit pattern to another. A
table is chosen based on the number of pages re-
quired for an allocation. Each byte in the bit map
is treated as an index into the table. The content of
the table entry indicates whether the request can be
satisfied from that section of the bit map.

If, for example, a request was made for six pages of
storage, the request could be satisfied by either

* Six or more contiguous free bits within a byte

* Three or more contiguous free bits at the edge of
a byte with the remaining one to three bits avail-
able at the adjacent edge of the adjoining byte

The bit configurations satisfying the first criterion
are:

00000011 00000001 10000001 11000000
0OEEEE10 QPEOLELO 1000000E 01000600
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Treating these bit configurations as binary num-
bers, zero-origin entries 3, 1, 129, and 192, as well
as 2, 0, 128, and 64 in the lookup table would need
to contain values that indicate the configurations
are satisfactory.

The System/370 includes a translate and test (TRT)
instruction that can automate the search, so long as
unsatisfactory configurations have a binary zero en-
try in the lookup table. Because of this a convention
of putting the one-origin offset of the first satisfying
bit into the table was chosen.

Seven tables of this form were generated, to allow
searches for up to seven contiguous available bits in
a byte. Note that if the search succeeds, both the
byte and bit numbers of the desired position in the
bit map are known.

When fewer than eight pages are required, a fast
search is made for all bits within one byte using one
of the above seven tables. If this search fails, a byte-
by-byte check of the bit map is used to look for an
area crossing two bytes. This check also utilizes a
lookup table that is indexed by the bit map bytes,
but in this case the indexing is done manually, and
the codes within the table indicate the number of
bits available on each edge of the argument byte
(i.e., the code is treated as a pair of 4-bit numbers).
By adding appropriate edge-counts from adjacent
bytes, the system can determine whether enough
space is available at that boundary.

If eight or more pages are needed, a search is made
for a byte in which all eight bits are free. Once such
a byte is found, the search is expanded around that
byte as needed to obtain more than eight pages. If
no appropriate area can be found containing an
all-free byte, and if 14 or fewer pages are needed,
the same edge search is run that is used for less than
eight pages.

The expanded search for more than eight bits is
somewhat tedious, but it should be noted that the
storage areas involved are always longer than 32K
bytes, so the processing cost after allocation is usu-
ally much larger than the time spent to locate an
available area.

In all of the searches a choice had to be made be-
tween a “first fit” (or perhaps “next fit”) and a “best
fit” rule. Bays’s analysis'’ shows that next fit is a
poor choice, but does not provide a clear prefer-
ence between first and best fit. We prototyped an
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exact fit scan followed by a first fit scan, but found
that for our bit map search routines using first fit
alone provided slightly better overall performance.
We did not analyze the reasons, but assume it was a
combination of the extra CPU cost for a double scan
and because first fit develops a set of “favorite pages,”
or those which are less likely to be paged out.

As with the buddy system, there is a storage penalty
for the page-oriented allocations. For blocks up to
8192 bytes (8K) the same usage constraints exist as
for buddy cells, and the effective utilization is
slightly less than 75 percent. This number rises,
though, for larger blocks. The only allocations
made to a ten page block, for example, are those
requiring more than 90 percent of its space. The
usage of large arrays varies greatly among applica-
tions, so it is difficult to generalize. It is probably
safe to say, though, that for most applications the
effective utilization of large-scale storage will be
between 75 and 95 percent.

Getting the best of both

The previous discussions of buddy cells and large-
scale storage each ended with warnings about limits
on effective utilization of virtual storage. To some
extent this is a deceptive concern. All storage man-
agement systems produce small fragments of stor-
age intermixed with live data, and for most systems
the fragments are either completely unusable, us-
able only at great expense, or usable only for a small
subset of the allocation requests. But there are
three ways in which this is a very real concern:

¢ The fragments at issue are all less than one page
long, and are all on pages containing live data.
Thus in a paging system they always act to in-
crease the number of real pages required to run
the application effectively.

¢ Unlike traditional APL storage management,
there is no way to “squeeze” the fragments out of
the live data and make them available again.

» Because of the previous point, the unusable frag-
ments would still exist in APL workspaces that are
saved. This implies an increase in required perma-
nent storage space as well as additional data trans-
fer while reading and writing the workspaces.

To address these concerns a hybrid scheme was
implemented. The workspace is divided into two
sections, with a floating boundary between them.
Storage to the left (low address end) of the bound-
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ary contains densely packed objects managed using
traditional garbage techniques. Storage to the right
of the boundary is managed using bit maps for
pages and the buddy system for smaller cells. So
long as enough reusable storage is available at the
right end of the workspace, garbage is allowed to
collect at the left end. In many cases this will suffice
for so long as the workspace is active. When a re-
quest arrives that cannot be satisfied, some form of
garbage collection is done. One of three alterna-
tives is chosen:

1. If there are enough free pages at the right end
to satisfy the request (but they are scattered),
and there is more storage available in free pages
than in garbage at the left end, then allocated
pages at the right end are rearranged so that all
free pages are in one group.

2. If there is enough garbage at the left end to
satisfy the request, and there is more storage
available in garbage than in free pages at the
right end, then all garbage at the left end is col-
lected, the dividing line is moved left to the end
of the last page on that side still containing data,
and the remainder of the collected storage is
made available in the page pool.

3. If neither end has enough space to satisfy the
request on its own, all unused quickcells are re-
leased and then a full garbage collection of the
workspace is done. At the end of this process the
dividing line is at the end of the last page con-
taining data, and the remainder of the work-
space is in the page pool.

The third form of garbage collection is always per-
formed when a workspace is saved. (The page pool
is not kept with the saved workspace. Indeed when
the workspace is reloaded later the page pool may
be of a different size.)

Note that this concept of two storage zones is a
simplified form of “generational garbage collec-
tion” as recently advocated by Appel,'? Wilson and
Moher," and others.

Comparative performance measurements

A limited amount of performance measurement
has been obtained comparing APL2 with and with-
out the storage management changes described in
this paper. The results are very encouraging, but
should not be over-interpreted. A storage-intensive
test function was generated that allocated and ini-
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Figure 7 Comparison of CPU times

Figure 8 Comparison of elapsed times
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tialized storage blocks of random sizes and random
lifetimes. The algorithm automatically adjusted to
workspace size, and tended to keep an average of
60 to 65 percent of the workspace in use. This is not
a typical APL application, but it was created specif-
ically to exaggerate any differences in the storage
behavior of the systems.

Figure 7 shows the amount of CPU time used by the
test case over a range of workspace sizes. It has
been scaled by the average amount of allocated
storage rather than by workspace size to remove
any bias due to buddy cell internal fragmentation.
All tests were run on an IBM 3090* with 128 mega-
bytes of real storage and very little other concurrent
activity, so no paging was needed.

Figure 8 shows test case elapsed times from the
same runs as Figure 7. We believe that the accel-
erating slope seen here is caused by IBM’s Multiple
Virtual Storage Resource Manager function inten-
tionally slowing the application down as larger frac-
tions of the system’s total real storage are used.

Testing under loaded conditions produces similar
results. As a controlled environment, ten tests were
submitted simultaneously and competed for three
initiators on an idle system with three CPUs. Sepa-
rate runs were made with 100-megabyte and 200-
megabyte workspaces. With three initiators and
three CPUs these resulted respectively in roughly
1.5:1 and 3:1 overcommitments of available real
storage. At 100 megabytes the new system used 47
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percent as much CPU time and only 38 percent as
much elapsed time as the old. At 200 megabytes the
elapsed time dropped to 34 percent. In both the
100- and 200-megabyte cases the usable allocated
storage dropped by less than 1 percent since inter-
nal buddy cell fragmentation is of little conse-
quence in such large workspaces.

Finally, it is important to stress again that the differ-
ences shown here are exaggerated from those that
would be seen by an APL application. More than 90
percent of the test application time was spent in al-
locating and initializing storage. It would be more
typical for an application to spend between 1 and 10
percent of its CPU time in that code, and it could
spend much less than 1 percent of its elapsed time
there if it was highly input/output oriented.

Concluding remarks

For 25 years APL systems have depended on gar-
bage collection for storage management, and it has
served them well. Pure garbage collection schemes
are likely to be used less in the future than in the
past, but composite schemes will continue to exist
where garbage collection is an important compo-
nent.

This paper has focused on the current storage man-
agement schemes for APL running on IBM main-
frame hardware and their operating systems. The
issues and solutions would be entirely different, for
example, if the storage model used by an IBM Ap-
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plication System/400* processor were assumed.
This paper has not addressed the unique attributes
of Enterprise Systems Architecture systems, but the
virtual storage model that they implement is not
radically different from their predecessors. It does
hold out the promise of breaking the 1-2 gigabyte
barrier that was assumed earlier in this paper. Un-
fortunately it appears the promise can be realized
for APL2 only with a major rewrite of the inter-
preter, and that work has not been accomplished. It
would be premature to speculate on optimal stor-
age management strategies for multiple address
spaces.

One clear lesson of the last four decades is that
computer addressability will quickly expand beyond
anything we consider reasonable today. The more
sobering lesson is that application storage require-
ments seem quite capable of expanding as fast as
hardware capabilities. This race will not only keep
implementers of language products busy for the
foreseeable future, it will also keep a noticeable
part of their focus on matching these storage re-
quirements and capabilities.

* Trademark or registered trademark of International Business
Machines Corporation.
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