Extending the domain
of APL

This paper explores connectivity mechanisms
between APL and other languages and
applications available on a modern computer
system. The design, implementation, and
application of APL facilities such as shared
variables, auxiliary processors, external names,
file subsystems, and namespaces, as they are
implemented in IBM’s APL 2 product, are
discussed and compared.

ue to the persistence and insight of men like

Iverson and Falkoff, in APL we are blessed
with a language which, after more than 25 years of
use, is still elegant, concise, precise, general, usable,
and machine-independent.

The definition of APL is purely abstract: the
objects of the language, arrays of numbers and
characters, are acted upon by the primitive func-
tions in a manner independent of their repre-
sentation and independent of any practical in-
terpretation placed upon them. The advantages
of such an abstract definition are that it makes
the language truly machine independent, and
avoids bias in favor of particular application
areas.’

Despite the importance of machine-independence,
a language that is used for computer programming
cannot practically exist without access to the com-
puting environment in which it runs. Further, to be
useful in a wide variety of applications, such a lan-
guage must also be able to access many of the other
tools, libraries, routines, and subsystems available
in that computing environment.

In the last 25 years, APL implementations have
grown significantly in their ability to interact with

446 WHEATLEY

by M. T. Wheatley

the computing environment, including its associ-
ated software tools. This paper reviews the key fa-
cilities in APL that provide this function, briefly fo-
cusing on their history, objectives, characteristics,
benefits, and problems. The discussion is centered
around IBM implementations of APL.

Description of facilities

Early APL systems. When APL was first imple-
mented on the IBM System/360* in 1966, it provided
two mechanisms that allowed access to the envi-
ronment: system commands and I-beams. Most APL
users are familiar with system commands, since
their use has survived and is widespread in current
APL implementations. I-beams, on the other hand,
are less familiar.

The use of the dyadic I-beam primitive was first
introduced in APL\360 to allow execution of IBM Sys-
tem/360 instructions from within an APL program.
It was considered an ad hoc facility for the use of
system programmers, and was never formally ac-
cepted as a primitive or made part of the APL lan-
guage. Nonetheless, I-beams were very useful and
the facility was extended in later APL implementa-
tions. Monadic and dyadic definitions provided ac-
cess to the underlying computing system. The def-
inition of a dyadic I-beam required an integer left
argument that specified the subfunction to be per-

©Copyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

formed, and a right argument and result that varied
by subfunction. Monadic I-beams, whose right ar-
gument specified the subfunction, simply returned
a subfunction dependent result.

In APL\360 and APLSV, the use of dyadic I-beams was
restricted to privileged users and provided such
functions as user and system control and access to
memory. The monadic I-beams provided statistics
on various aspects of the systems and access to cer-
tain key system variables such as time, date, and
terminal type. All of the nonprivileged I-beams
were replaced by system variables in later APL im-
plementations (see Table 1).

Since the earliest implementations of APL, there
have been requests from users for linguistic access
to many of the functions provided by system com-
mands. However, it was felt that the useful, usable,
and rudimentary syntax of system commands did
constitute a language—one that was incompatible
with APL and had no constructive potential.’
Locked functions were therefore provided in
APIL\360 to allow applications to perform such tasks
as setting index origin, or the random seed. These
locked functions contained [-beams that performed
the actual work. Again, this provided an ad hoc
solution to the problem. The long-term solution
was implemented with the introduction of system
functions and system variables in APLSV.

System functions and variables. In APLSV, two new
types of objects, system functions and system var-
iables, were introduced into the APL language.
These objects, distinguished by names that start
with the character [, are defined in the implemen-
tation and are available in every clear workspace. In
many senses, they are similar to primitives insofar
as they provide specific predefined functions.

When system functions and variables were intro-
duced into the APL language, they were introduced
cautiously and only a few were provided. Unfortu-
nately, their introduction was interpreted by some
implementers as the long overdue solution to a se-
rious problem—the problem that APL was limited,
particularly in its access to system facilities. A num-
ber of APL implementers immediately reacted by
introducing a large number of new system functions
and variables. These functions and variables were
introduced without much forethought, with little
consistency in syntax or semantics, and with little
compatibility between implementations. It was ini-
tially believed that system functions and variables

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Table 1 Nonprivileged monadic I-beams

I-beam Description Replaced

By

19 Cumulative keying time 0AT
20 Time of day ors
21 Compute time since sign on OAT
22 Free space in workspace WA
23 Number of users signed on UL
24 Elapsed time since sign on 0AT
25 Current date ars
26 First value in line counter 0Orc
27 Line counter vector are
28 Terminal type orr
29 User account number 0AT

were not part of the APL language, so implement-
ers, perhaps installations, and maybe even individ-
ual users were free to invent as many as they
pleased. System functions and variables, however,
are very much a part of the APL language, as is
demonstrated (in hindsight) by their inclusion in
the APL standard. They now provide one of the
more serious impediments to compatibility and
portability.

Little thought was given to which functions should
be provided as system functions, as primitives, or by
means of other mechanisms. Very little guidance on
this subject was provided to implementers. Func-
tions such as format have been widely implemented
both as primitives and system functions. Perhaps
they are most appropriately neither; perhaps they
should be defined functions. In the rush to provide
commonly used, “omnipresent” functions with ad-
equate performance, implementers have clearly
gone overboard with system functions and varia-
bles. Fortunately, there have been no system op-
erators introduced to date.

Component file systems. The need for file /O was
recognized as a key requirement in APL systems,
before the introduction of system functions and
variables. Component file systems were developed
to fill this need and access to them was provided
with locked functions that used the I-beam primi-
tive. These locked functions were replaced with sys-
tem functions soon after the introduction of those
facilities. A typical component file system adds
about 20 system functions to the language.

Component file systems provide facilities that allow
APL arrays to be stored in and retrieved from ex-
ternal files. They are designed to be fast, straight-

WHEATLEY 447

forward, and simple to use in APL applications.
They are not primarily designed to provide mech-
anisms that allow data interchange, via files, with
non-APL systems. The file and record formats im-
plemented in component file systems are typically
complex and difficult to read or write from other
high-level languages.

Shared variables and auxiliary processors. The
introduction of shared variables with APLSV was
motivated by the same need for file 1/0 facilities.
Lathwell, Falkoff, and others who worked on this
problem recognized that a primitive function or sys-
tem function solution would eventually become
unmanageable, particularly if a variety of access
methods and file formats were to be supported:

Most programming languages approach commu-
nication and storage problems by defining ex-
plicit communication primitives such as READ
and WRITE to transfer information. These spe-
cialized primitives, used in conjunction with de-
clarative statements and job control languages,
result in programs which contain file-handling
details irrelevant to the algorithm, and are
strongly dependent on host operating systems
and file structures. This approach was deemed
inappropriate for APL because it conflicted with
many of the principles that guide APL design; in
particular, it conflicted with the requirement for
machine-independent theoretical definitions of
primitive functions.?

... there is a high cost associated with the use of
primitive functions for communication, as is the
rule in most programming languages. This cost
takes the form of complications in both syntax
and semantics, and follows from the fact that in
any language the arguments of a primitive func-
tion must be objects in the language. Thus, when
functions like READ and WRITE operate on a va-
riety of files, these files must necessarily be in-
cluded in the language as additional constructs.
The situation can become more and more com-
plex, to the point where simple input and output
statements are no longer adequate, and auxiliary
statements, such as data declarations, must be
introduced. These complications then make the
language costly to implement, and costly to use.*

Further, Lathwell and others working on the prob-
lem realized that the requirement was not only for
file 1/0, but for other types of communication with
components of the underlying computing facility. It

448 WHEATLEY

was decided to implement a solution for the general
communication problem, and to use that solution
to implement file /O facilities, among other things.
The solution was shared variables, whose use had

With APL2, variables may be
shared between APL users
on the same computer.

been originally postulated to describe channel ar-
chitecture in the APL formal description of the IBM
System/360.°

A shared variable differs from a normal APL vari-
able insofar as it is “shared” or owned simulta-
neously by two “partners” or processes. Each part-
ner can set or use the variable; its value at any given
time reflects the last value set by either partner.

A control mechanism is provided to synchronize
access to the variable, if such control is desired by
the partners. If a shared variable is left uncon-
trolled, each partner is free to set or use the variable
at will. With access control, however, protocols
such as “master/slave” or “message passing” can be
easily established.

Declaration, control, and management of shared
variables is provided with a set of system functions.
Variables can be shared between APL users or with
other processes, referred to as “auxiliary proces-
sors,” in the computing environment. Typically,
auxiliary processors are programs written in a lan-
guage other than APL that are designed specifically
to share variables with APL applications and to pro-
vide specialized functions, such as file /0, to those
applications.

With APL2, variables may be shared between APL
users on the same computer, between APL users and
an auxiliary processor, or for that matter, between
auxiliary processors. Auxiliary processors that exist
in the APL user’s address space are called “local”
processors, and normally share variables only with
that APL user. Auxiliary processors may also be im-
plemented as multiservers that exist in separate ad-
dress spaces and share variables simultaneously

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

with more than one APL user. Such auxiliary proc-
essors are called “global processors,” and can pro-
vide facilities such as shared file support to a group
of APL users.

Experimental facilities have been developed that
allow variables to be shared between partners on
separate computing facilities that are linked by tele-
communication facilities.

Shared variables are handled by a component of the
APL system called the “shared variable processor.”
This component is invoked when either partner at-
tempts to set or use a shared variable. In most APL

Shared variables were designed to
provide a general, asynchronous
communication facility.

implementations, the shared variable processor
uses an area of memory referred to as “shared
memory” to temporarily hold the value of a shared
variable until both partners are aware of it. Shared
memory is also used to hold control and manage-
ment information, such as identification, state, and
access control for the shared variables and the part-
ners sharing them.

The initial implementation of shared variables in
APLSV supported communication between APL us-
ers, and communication with auxiliary processors.
One auxiliary processor, TSIO, was provided with
the system, and it was expected that installations
would write others as required. TSIO provided se-
quential and direct access to files maintained by the
underlying operating system. It was particularly
useful for exchanging files with applications written
in other languages, but fell short in terms of func-
tion and usability when compared with the more
special purpose component file systems.

There is no technical reason that a component file
system should not be implemented with shared var-
iables and an auxiliary processor. In fact, such im-
plementations eventually emerged. At first, propo-
nents of the component file system refused to
consider the use of shared variables. In their de-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

fense, it should be pointed out that the use of
shared variables was often difficult and complex
before general arrays were introduced into the lan-
guage. Auxiliary processors typically required
paired variables and sometimes multiple modes of
communication.

Further complicating the issue and polarizing those
involved was the fact that many of the auxiliary
processors that emerged were inelegant and inher-
ently sequential in their communication protocol.
Component file systems, on the other hand, typi-
cally presented a more elegant and usable interface.

Finally, it should be remembered that shared var-
iables were designed to provide a general, asyn-
chronous communication facility. It was originally
envisaged that they would be used within cover
functions to implement a specific communication
protocol, or access method interface. Because these
cover functions were not “omnipresent” or partic-
ularly good performers, however, and because most
of the required communication involved simple
synchronous protocols (e.g., READ, WRITE), the sys-
tem function approach remained a more desirable
alternative for many users.

When general arrays were introduced into the lan-
guage, the use of shared variables and the imple-
mentation of auxiliary processors became consid-
erably simpler. The command and data could be
packaged together in a single WRITE request, and
the return code and data could be packaged to-
gether for READ. Paired shared variables, with all of
their associated complications, were no longer re-
quired.

Name association and external functions. Thus far,
we have dealt mainly with issues involving file 1/0.
Since the emergence of APL there has been an ad-
ditional requirement voiced by users for facilities
that allow non-APL programs to be called from APL
and to exchange data with APL. Over the years there
have been a number of attempts to provide such
facilities, typically with specialized auxiliary proces-
sors. While these auxiliary processors provided at
least some of the needed function, their use never
became widespread, probably for the following rea-
sons:

* The auxiliary processors were difficult and cum-
bersome to use. Their use depended on shared
variables for passage of control and data. Typi-

WHEATLEY 449

cally multiple variables had to be shared, and
typically the interface was complex.

* The shared variable interface used was inher-
ently asynchronous, while the primary require-
ment was for a synchronous interface to subrou-
tines written in languages other than APL.

* Passing argument data was difficult. The shared
variable processor sometimes imposed limits on
the size of data that could be passed to a sub-
routine. Further, subroutines in other languages
often required multiple heterogeneous argu-
ments that were difficult to package and send
across the shared variable interface.

* It was difficult to access routines that were not
specifically designed to interface to APL. Existing
libraries of subroutines required argument data
types not supported by APL or specialized inter-
face conventions.

General arrays presented a practical solution to
some of these problems. They allow parameter
passing on subroutine calls with a syntax amazingly
similar to that commonly used in other languages,
as shown in the following example.

APL:

A«10 20 30
B«'ABCDE'

C<1.2 1.3
PROCESS (A B C)

FORTRAN:

INTEGER*4 A(3)/10 26 30/
CHAR*5 B/"ABCDE"/
REAL*8 C(2)/1.2,1.3/
CALL PROCESS(A,B,C)

When this was recognized, it became clear that sub-
routines written in other languages could be treated
syntactically as locked APL functions. To complete
the design of this facility, “associated processors”
were invented and the system function [INA was
introduced to declare a name to be external to APL.

ONA is used to declare the name of a variable, func-
tion, or operator to be external to APL and to be
associated with a specified processor. When that
name is subsequently encountered during execu-
tion of an APL expression, control is passed to the
associated processor to perform the computation
required to reference or specify the variable, or to
execute the function or operator with the argu-

450 WHEATLEY

ments and operands provided. On completion of
this synchronous call to the associated processor,
execution of the APL expression continues with any
results returned.

The processing to be performed on an external
name when control is passed to its associated proc-
essor is not defined in the APL language. An APL
system may provide many associated processors to
deliver different sorts of function to the APL users.
When this facility was initially introduced in APL2
Version 1, Release 2, two associated processors
were supplied to provide support for calls to rou-
tines written in FORTRAN, assembler, and REXX.
Since that time, users have used these processors to
call a wide variety of routines and languages in-
cluding PL/1, COBOL, C, and Pascal.

The problem of argument coercion to the data
types expected by the external routines in languages
like FORTRAN was solved by providing facilities in
the associated processor to allow descriptive infor-
mation to be associated with any of the called rou-
tines. This information, among other things, pro-
vides descriptions of the expected arguments and
their data types for an external function. When the
function is called, it is used to determine if the
expected arguments have been provided, and if the
data types of those arguments need to be trans-
formed to data types expected by the external func-
tion. A similar process is used to transform results
from the external function to data types acceptable
to APL.

One of the real advantages of this solution to the
requirement for calls to non-APL routines is that
these external routines look just like APL locked
functions. Thus it is possible to write an application
entirely in APL and then replace portions of it with
routines written in other languages; or it is possible
to design a heterogeneous application without do-
ing damage to the syntax of the APL portions of that
application.

In APL2 Version 1, Release 3, the facilities support-
ing external functions were extended to allow ex-
ternal functions called from APL to issue calls back
to APL. Using these facilities, non-APL routines can
request execution of APL functions or operators, or
can reference or specify APL variables. This exten-
sion could be particularly useful for external opera-
tors whose operands might be APL functions, or for an
APL compiler that might choose to compile parts of an
application but use APL primitives for other parts.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Recently, an enhancement to APL2 Release 3 was
made to allow non-APL application programs to
invoke APL and issue calls to it. Using these facil-
ities, applications written in a wide variety of lan-
guages can conveniently and simply execute APL
functions, passing arguments to them and receiving

Namespaces represent an
important advance in APL
systems.

results from them. Using the same facilities, the
non-APL application can also reference or specify
APL variables, or pass control to the APL interactive
environment.

APL namespaces. When external functions and as-
sociated processors were designed, the interface
was structured such that calls to routines written in
APL could be accommodated. In particular, ambiv-
alent functions and operators were not excluded in
the interface syntax.

After considerable discussion and experimentation,
it was decided to use this facility to address the
problems of name scope isolation and shared code
for APL applications.®

With an extended interface provided in APL2 Re-
lease 3, it is possible to declare an APL variable,
function, or operator to be external to the work-
space and to exist in another “namespace.” A
namespace differs from an APL workspace in two
ways. First, it is formatted to allow it to be handled
by the operating system facilities used to load pro-
grams, rather than in the normal format of a saved
workspace. Second, it is accessed in a read-only
mode; the results of computations are never actu-
ally stored in a namespace, but rather in the user’s
active workspace from which the namespace was
accessed.

Like the active workspace, each namespace defines
a name scope. A name scope is simply a set of
names of variables, functions, and operators and
the values and definitions associated with them.
Users are able to declare names to exist in a

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

namespace, in much the same way that external
function names are declared with [JNA. When the
name of an external APL function, operator,
or variable is encountered during the execution
of an APL expression, the system locates the
namespace in which it exists and switches to the
name scope of that namespace in order to process
that name.

For an external APL function, this means that ar-
guments to the function are provided from the call-
er’s name scope, but names referred to in the body
of the function come from the namespace’s name
scope. For an external APL variable, it means that
the value comes from the namespace name scope
when the variable is referenced, and is set in the
name scope of the namespace when the variable is
specified.

Since namespaces are accessed on a read-only ba-
sis, they may be shared between users. New or mod-
ified values or function definitions in a namespace
name scope are actually saved in the user’s active
workspace. Thus, if more than one user accesses the
same namespace, the system behaves as if each has
its own private instance of it. Further, the state of
the namespace, if modified as a result of execution,
is maintained and can be saved and reloaded along
with the workspace with which it is associated.

Namespaces represent an important advance in
APL systems:

* They provide a simple, convenient, and powerful

way to segment applications and to deal with the
probiems of “name pollution” common in large
applications.
They allow dynamic access to segments of an
application without) LOAD or YCOPY commands.
They provide a mechanism where application
programs can be shared by multiple simulta-
neous users; this is particularly important for
large popular APL application packages.

Comparison of facilities

As previously described, there are three major fa-
cilities provided in the APL language that allow ac-
cess to things outside the APL workspace: system
functions and variables, shared variables, and name
association.

Had all three of these facilities been proposed for
incorporation into the APL language at the same

WHEATLEY 451

time, all three probably would have been accepted.
Clearly, there are advantages and useful applica-
tions for each of the facilities. It should also be clear
that there is a substantial amount of overlap in the
applications for which each facility has been used.
Many applications could be implemented with any
one of the facilities, and the specific choice that was
made in many cases reflected the state of APL im-
plementations at the time, rather than any partic-
ular reason that one facility was better for an ap-
plication than another.

System functions and variables offer the advantage
that they are “omnipresent,” and create no name
conflicts with application-defined names. A unique
function or variable, however, is required for each
distinct operation. Unless restrictions are placed on
implementers, this will inevitably lead to a large and
unmanageable number of system functions and var-
iables, and conflicting names between implemen-
tations. The APL standard defines about 20 system
functions and variables; APL2 defines 41; another
popular implementation defines over 120.

Some system functions and variables are clearly
part of the language and are required for execution
of most applications. 70, OCT, and LNC are cer-
tainly in this class. Further, it is appropriate that
they be implemented as system functions and var-
iables rather than primitives, because they have to
do with the implementation of APL as a program-
ming language, rather than as a machine-indepen-
dent language. Other functions like [ISVO or ONA
must be implemented as system functions if they
are to provide access to facilities that in turn pro-
vide extra-linguistic function.

It is not clear, however, that system functions and
variables like ODL, JARBOUT, OAI, and JUL should
be part of the language. None of these is required
for proper operation of the primitive functions and
each could easily be implemented as an external
function or with shared variables.

There are no explicit rules or guidelines to tell im-
plementers whether a facility should be imple-
mented as a system function, a primitive, or an ex-
ternal function. There is some consensus that
primitive functions should deal only with abstract
objects (arrays of numbers and characters), while
management of the APL environment or interface
to things outside the APL environment should be
provided with nonprimitive functions. All of the
system functions defined in the APL standard or

452 WHEATLEY

APL2 have to do with APL as a computer program-
ming language, and thus are appropriate nonprim-
itives. There are, however, a number of primitive
functions like ¢, #, 7, and £ which might better be
implemented as something other than primitives.

The distinction between the shared variable and
name association facilities is a little clearer. Shared
variables implement a general-purpose, asynchro-
nous communication facility between cooperating

There is some consensus that
primitive functions should deal
only with abstract objects.

but independent processes. Name association, on
the other hand, allows the processing associated
with function call and variable reference or speci-
fication to be handled in a synchronous manner by
an external processor and in a name scope other
than the user’s active workspace.

Because system functions and shared variables pre-
dated the implementation of name association,
these earlier facilities were sometimes used to im-
plement function that is more appropriately han-
dled by name association. File 1/0 is a good exam-
ple. There is a need for access to many different file
subsystems from APL, which often require the use of
different syntax and arguments and whose use may
be desirable in one application but not in another.
Typically, the access to file subsystems is most con-
veniently implemented with synchronous subfunc-
tion calls, rather than with the more complicated
shared variable interface. Because of the diverse
requirements for functions to handle these inter-
faces and because of the number of functions re-
quired for full support of an access method, it
makes most sense to implement these functions as
external functions rather than system functions.
One final advantage of the external function ap-
proach is that it is possible in some cases to change
access methods by merely changing the name as-
sociation of the external functions.

Another class of functions that are more appropri-
ately provided as external functions include ?, H,

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

dyadic @, and [OFMT. Each of these functions im-
plements one of a set of acceptable solutions. For
example, ? generates random numbers with a flat
distribution. While this is acceptable in many ap-
plications, there are certainly lots of other applica-
tions where other distributions would be more
appropriate. Where functions exhibit this charac-
teristic, they should be provided as defined or ex-
ternal functions rather than primitives or system
functions.

Choice of the correct facility. From the foregoing,
it should be clear that the choice of a “correct”
facility for the implementation of a specific function
is not simple. There are no clear-cut guidelines, and
many new proposals fall into grey areas. Nonethe-
less, there are some principles that should be kept
in mind when choosing a facility to implement spe-
cific function:

» APL is designed to be an abstract language whose
definition is machine-independent and need not
be associated with a computer system in any way.
Primitives in the language should adhere to these
principles.

& Primitives in the language should be useful
across a wide variety of applications and a wide
variety of users. Further, they should be general
and usable in conjunction with other primitives
to provide rich function.

» Function should not be implemented as primi-
tive where only one of a set of commonly ac-
ceptable solutions is implemented. Random
number generation is an example of such a func-
tion. It is useful only if the particular mathemat-
ical algorithm used is appropriate to the user’s
problem.

» System functions and variables are part of the
language. Users should be able to depend on
their availability across implementations. Use of
a system function or variable should not inhibit
the portability of an APL application.

» There is no such thing as a primitive variable.
Thus, variables such as 0I0 or [ICT, which are
implicit arguments to primitive functions, are ap-
propriately implemented as system variables.

» Functions that are needed to declare the ma-
chine-dependent characteristics of an APL object
(such as “shared variable” or “external func-
tion”) are appropriately implemented as system
functions.

» Functions required to manage the contents of a
workspace, such as ONC, ONL, [OCR, and 0FX, are

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

appropriately implemented as system functions.
Care should be exercised in this area, however,
since other commonly accepted system functions
such as [ITF can be easily defined based upon 7,
OCR, and OFX. Redundant function should be
avoided.

» The availability of external functions and varia-
bles makes it possible to implement a great deal
of commonly used function with acceptable per-
formance characteristics. In a large number of
cases, external functions and variables are a
more appropriate implementation vehicle than
system functions and variables.

» External functions use a synchronous interface
to facilities outside APL that can be thought of as
a subroutine call. Shared variables, on the other
hand, provide an asynchronous communication
channel and are more appropriately used where
this asynchronous characteristic is important.

Improvements and extensions

Given the opportunity to do it all again, there are
certainly some things that would be done differ-
ently. In a perfect world, implementers would be
more clairvoyant and would easily choose between
primitives, system functions, external functions,
and shared variables. Unfortunately, given the
broad base of existing users and their investment in
APL application code, it will be difficult to make any
radical changes in the short term. Existing facilities
will have to continue to be supported, probably for
a considerable length of time. We can hope, how-
ever, that as new function is implemented, appro-
priate facilities will be used, and that the benefits
inherent in the use of that new function will quickly
attract users.

With regard to the facilities themselves, however, a
number of improvements and extensions can be
envisaged:

~ While the use of system functions and variables
to implement new function should be avoided in
many cases, the usability of system variables
could be improved with a simple extension. If
pass-through localization’ was provided for sys-
tem variables, certain operations, which are cum-
bersome now, could be made much simpler. For
example, with pass-through localization a func-
tion could easily capture its caller’s 0I0 before
setting its own:

WHEATLEY 453

VZ<L F R;0I0;I0
(11 IO0<OI0 o GET CALLER'S 0OI0
[21 0OIO0«0 e BUT USE DOI0<0

It is sometimes possible to make simple changes
to auxiliary processors that result in substantial
performance or usability improvements. For ex-
ample, APL2’s AP 111 has been extended recently
to support matrix output. It could also easily be
extended to support matrix input.

Variables in APL namespaces are currently cop-
ied into the user’s workspace before they are
used. It was just simpler to implement the system
that way. An obvious extension would allow ex-
ternal variables to be used without first having to
make a copy of them. With such an extension,
namespaces could be used as data spaces housing
large, shared, in-memory tables of data.

Shared variable processor facilities could be ex-
tended to allow communication between physi-
cal machines. Such an extension might be par-
ticularly useful between APL applications run-
ning in a client/server relationship, for example,
between workstation and host-based applica-
tions.

Similarly, associated processors could be devel-
oped to generate remote procedure calls to cause
external functions to execute on a different phys-
ical machine. Again, such an extension would be
particularly useful to a workstation APL imple-
mentation where the power and facilities of a
host machine might be highly attractive. Such an
extension would allow true distributed process-
ing without any change to the language or to
many existing applications.

The introduction of external functions and as-
sociated processors into APL represents an im-
portant advance, allowing hybrid applications to
be constructed from a variety of tools or lan-
guages. The facilities provided with APL2 are
nonetheless relatively rudimentary at the present
time and could be extended and simplified to
make the construction, testing, and maintenance
of such hybrid applications considerably simpler.

As described in this paper, facilities to perform
input/output (e.g., file 1/0, screen 1/0, etc.) have
been implemented in a variety of ways including
locked functions, system functions, shared vari-

454 WHEATLEY

ables, and external functions. All of these imple-
mentations introduce a degree of complexity to
the APL user who simply wants to treat data as
data, irrespective of the source or destination.
The introduction of large workspaces in APL2
demonstrated that when all data used by an ap-
plication could be maintained in APL variables in
the workspace, the complexity of the application
was often reduced substantially. The technology
provided with associated processors, if extended
in a few areas, could provide a mechanism that
would allow data on files, or for that matter, data
on the user’s screen to be treated by the appli-
cation as if the data were resident in variables in
the user’s workspace. Indeed, limited forms of
this approach have been implemented in some
systems with shared variables or system variables
used to access external data. The use of external
variables and associated processors offers an op-
portunity for generality and power not afforded
by earlier approaches.

These examples of improvements and extensions
range from suggestions that would make the facilities
in today’s APL implementations more usable and
more valuable, to extensions that open up new op-
portunities for APL applications and for the exploita-
tion of system facilities from an APL environment.

Conclusion

APL was originally conceived as a mathematical no-
tation used to express ideas and algorithms. When
it was later found to be a useful computer program-
ming language, it became evident that its domain
had to be expanded to provide connectivity to sys-
tems and facilities outside the APL workspace.

The mechanisms that provide connectivity between
APL and other facilities in the computing environ-
ment have evolved over more than 20 years. There
is no evidence to suggest that this evolution is com-
plete. In fact, it seems to have been accelerating
recently. In the first 20 years, we made many mis-
takes by rushing to use existing interfaces to solve
all problems, often without a good understanding
of the interfaces and without attempting to deter-
mine whether completely new types of interfaces
need to be developed. The unfortunate part of this
story is that users have made substantial invest-
ments in application code that is often difficult and
costly to migrate to new and better facilities as they
emerge.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

The wise APL application developer develops an
application as a set of building blocks that can be
replaced as better technology becomes available.

* Trademark or registered trademark of International Business
Machines Corporation.

Cited references and notes

1. A. D. Falkoff and K. E. Iverson, “The Design of APL,” IBM
Journal of Research and Development 17, No. 4, 324-334
(1973).

2. Formally, the names of system functions and variables may
begin with either [or [; however, to date no {1 names, other
than [itself, have been introduced.

3. R. H. Lathwell, “System Formulation and APL Shared Var-
iables,” IBM Journal of Research and Development 17, No. 4,
353-359 (1973).

4. A. D. Falkoff, Some Implications of Shared Variables, Tech-
nical Report 02.688, IBM San Jose, CA (June 1975).

5. A. D. Falkoff, K. E. Iverson, E. H. Sussenguth, “A Formal
Description of System/360,” IBM Systems Journal 3, Nos. 2
and 3, 198-261 (1964).

6. It should be noted that this choice is implemented by a par-
ticular associated processor provided with APL2. Other as-
sociated processors could be implemented to offer other
choices to the user.

7. With pass-through localization, a local variable retains its
global value until specified.

Accepted for publication July 24, 1991.

Michael T. Wheatley /BM Santa Teresa Laboratory, 555 Bailey
Avenue, San Jose, California 95141. Mr. Wheatley is currently a
Senior Technical Staff Member in the language products de-
velopment organization in the IBM Santa Teresa Laboratory.
He has been involved with APL marketing, support, and devel-
opment within IBM for over 20 years. From 1979 to 1989 he
worked with James Brown on the design and implementation of
APL2. As part of that effort, Mr. Wheatley led the design and
implementation teams for the shared variable processor, auxil-
iary processor, associated processor, external function, and
namespace components of APL2. Mr. Wheatley graduated with
a B.S. in mathematics from the University of Montreal in 1966.
He holds two patents, one patent on file, and one published
invention disclosure, all of which are APL-related. He is a re-
cipient of an IBM Outstanding Innovation Award for his work
in the design and implementation of APL2 namespaces. Mr.
Wheatley is currently the cross language architect in the Santa
Teresa Laboratory with lead technical responsibility for IBM
language products.

Reprint Order No. G321-5445.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

WHEATLEY 455

