
APL2: Getting  started 

by J. A. Brown 
H. P. Crowder 

APL  is a concise  and  economical  notation  for 
expressing  computational  algorithms  and 
procedures.  This  paper  introduces  the  main  ideas 
of  APL2, an ISM implementation  of  APL,  and 
illustrates  the  programming  style  with  some 
graphical  examples. 

0 riginally developed as a mathematical tool for 
teaching computer concepts, APL offers a sys- 

tematic and  structured method for thinking about 
computational problems and implementing solu- 
tions. Because the APL notation can be executed 
directly on computers, APL is a rich and powerful 
programming language, suitable for solving a wide 
range of computational problems in science, engi- 
neering, and business. 

The original APL notation was described by Iverson 
in  1962. The first commercial computer program- 
ming implementation of the language was docu- 
mented in  1968,’ and in 1971,  Brown extended the 
APL notation in  his  work at Syracuse Uni~ersity.~ 
APL~,  the IBM implementation of extended APL, is 
documented in Reference 4 and today is used as a 
problem-solving tool for a wide variety of applica- 
tions, as one may conclude reading papers such as 
those described in References 5-8. 

A P L ~  consists of three fundamental components: 
arrays, functions, and operators. Arrays are  the  data 
structures of APL~,  consisting of collections of num- 

bers and text characters. Functions are programs 
that manipulate arrays; functions take arrays as ar- 
guments and produce new arrays as results. Oper- 
ators, a powerful concept in APL~,  are programs that 
manipulate functions; they take functions as oper- 
ands and produce new functions as results. 

The purpose of this paper is to introduce the key 
A P L ~  concepts of arrays, functions, and  operators 
and how they relate  and interact in a unique prob- 
lem-solving environment. Several examples are 
provided that show  how solutions to some inter- 
esting problems can be expressed precisely and con- 
cisely. 

APLP arrays 

Arrays are  the  data structures of APL~. Arrays are 
collections of data,  the values being numbers or 
characters or both. Arrays have structure and are 
organized as single elements, vectors, matrices, and 
higher-dimensional rectangular arrangements. In 
addition, A P L ~  arrays can be structured in hierar- 
chical arrangements, as described later. 
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Arrays can have names that  are used to refer to 
their contents in ML:! expressions.  Shown  below are 
arrays named A (containing a single number), NUMS 
(containing a list of  five numbers), CHAR (contain- 
ing a matrix of  six characters), and MIXED (con- 
taining both numbers and characters): 

A 
3 

NUMS 
1 3 5 7 3.14159 

CHAR 
CAT 
FAT 

MIXED 
2 BE OR NOT 2 BE 

These examples  show how the values of arrays are 
displayed by APL~; input is indented from the left 
margin, and output is flush left. The default display 
shows the array values but little about the array 
structure. To better understand the structure of 
M L ~  arrays, use the function DISPLAY to construct 
pictures that show array structure. Following  is 
DISPLAY applied to  the previous  examples: 

DISPLAY A 
3 

DISPLAY NUMS 

11 3 5 7 3.141591 

DISPLAY CHAR 
r+"- 

DISPLAY MIXED 

In the first  example, the array A is  displayed  with no 
structural information. In A P L ~  terms, A is a simple 
scalar; it has only  value and no structure of interest. 
In  the next  example, NUMS is  displayed  in a box  with 
an arrow on  the  top edge, indicating that NUMS is a 
vector or one-dimensional array. The matrix CHAR 

is  displayed  in a box  with two arrows, indicating that 
the  data  are arranged along two dimensions. Fi- 
nally, the display of MIXED indicates that it  is a 
vector containing both simple scalar numbers (two 
instances of the number 2) and two character vec- 
tors. 

In  the last example, MIXED is an instance of a nested 
array that has other arrays as items. The following 
sequence builds up and displays a more compli- 
cated nested array D: 

A+2 2p 10  11  12  (13  14) 
B+15 
C+16  17  18 
D+A B C 

DISPLAY D 

L o  11 

12 [14] 
15 116 17  181 

The array D is a vector with three items. The first 
item is a two-by-two  matrix, one of whose items is 
again a vector of length two. The second item of D 
is the simple scalar 15, and the third item  is avector 
with three items. 

A P L ~  arrays are very  powerful but simple  in  concept. 
An ML:! array is a rectangular arrangement of 
items;  any item in the array can be a single number, 
a single character, or another array of arbitrary 
complexity. This ability to structure data as nested 
A P L ~  arrays offers two  major  benefits.  First,  most 
data processing and computational data structures 
can be modeled and captured as A P L ~  arrays and 
thus used  in A P L ~  applications. And second, as dem- 
onstrated in  following  sections,  complicated A P L ~  
data structures allow simpler A p ~ 2  application pro- 
grams that  are easier to design, code, and maintain. 

As a final  example of an array, the nested array 
SALESDATA is a matrix  having four rows and five 
columns. DISPLAY shows  all the detail of the ma- 
trix and each item in  row one and column one is a 
character vector; every other item  is a single num- 
ber: 
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DISPLAY SALESDATA 
r 

I -  I NORTHEAST ] 

1 MID-COAST 1 
632 

719 

1435 

1256  959  1033 

548  1179  1180 

884  1020  1331 

The default display of SALESDATA in A P L ~  has the 
following form similar  in appearance to a spread- 
sheet report: 

SALESDATA 
REGION/QTR 1Q 2Q 3Q 4Q 
NORTHEAST 632 1256 959 1033 

SOUTHEAST 1435 884 1020 1331 
MID-COAST  719  548 1179 1180 

This array structure is identical to the data aggre- 
gates that  are created and manipulated by rela- 
tional data systems. This ability for A P L ~  arrays to 
consistently represent data relations has resulted in 
A P L ~  being  used for data analysis and manipulation 
in conjunction with relational database manage- 
ment systems. 

APLP functions 
A P L ~  functions are programs that manipulate and 
perform calculations with arrays. Functions take  ar- 
rays as their arguments and create new arrays as 
their results. In A P L ~ ,  functions can be  eitherprim- 
itive or defined. A third class of functions is  dis- 
cussed later. Primitive functions are  part of the 
APU language and are provided  with the A P L ~  Pro- 
gram Product from IBM. Defined functions are pro- 
grams that  are composed of primitive and defined 
functions. A P L ~  provides a rich set of primitive  func- 
tions, but a subset of these is introduced here so 
that interesting examples can be presented. 

In  the previous section on arrays, the defined  func- 
tion DISPLAY is used to  further understand the 
structure of A P L ~  arrays. DISPLAY takes as its ar- 
gument any A P L ~  array and produces a character 
matrix  showing the array’s structure. The primitive 
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function reshape denoted by the symbol “p” is  also 
used to convert a list into a matrix. Reshape works 
on both numbers and characters: 

3p ’A‘ 
AAA 

2 2pl 2 3 4 
1 2  
3 4  

vs 2 3p‘CATFAT‘ 
CAT 
F A T  

The same symbol  is  used for the function shape 
which  yields information about the structure of its 
argument: 

p3p’A’ 
3 

C 
CAT 
FAT 

PC 
2 3  

In APL~, for conservation of symbols, each symbol 
represents two functions. When the symbol  is writ- 
ten with one argument (on the right) you get one 
function, and when the symbol  is written with two 
arguments (one on each side) you get the other 
function. In most cases, the two functions are  re- 
lated. In  the case of shape, the result is an array that 
gives structural information-the  “shape”-about 
its array argument. In  the case of the related func- 
tion reshape, the result is an array whose structure 
is dictated by the left argument and is composed  of 
items from its right argument. 

An important concept in A P L ~  is the rank of an 
array-the number of directions along which data 
are arranged. The rank of an array is the number of 
items in the shape of the array, so it follows that 
rank is obtained by applying the shape function to 
the shape of an array. Matrices have rank 2 (data 
arranged in  rows and columns), vectors have rank 
1 (data arranged along one direction) and scalars 
have rank 0 (no structure; data arranged along zero 
directions). The following  is an example  of  each: 

pp2 3p ‘CATFAT ’ 
2 
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PPI 2 3 
1 

P P ' A '  
0 

A large class of functions in A P L ~  is called scalar 
functions because the functions apply to  the simple 
scalars of their arguments independent of array 
structure. Examples include most of the arithmetic 
functions such as addition (denoted by +), subtrac- 
tion (-), multiplication (x), division (+), power (*), 
maximum (r), minimum ( L), and the scalar func- 
tions include the relational functions such as less 
than (<), less than  or  equal (L), and equal (=). 
Some examples are: 

2 3 4 + 5 6 7  
7 9 11 

1 2 3 1 3 2 1  
1 1 0  

100 x 1 2 3 
100  200  300 

and in the example before of a nested array D, 
where: 

DISPLAY D 

.1 10  11  15 [% 

I an arithmetic function example is: 

CISPLAY D+10 

4. 20  21 25 1- 

When a single item is presented to a scalar function, 
the scalar is paired with  every item in the  other 
argument. This powerful concept, scalar extension, 
is used frequently in following  examples. 

A useful function for array manipulation is catenate 
(denoted by , ). Catenate is used to join arrays to 
form new  arrays: 

A 
1 2 3  

B 
100  200  300 

A, B 
1 2 3 100  200  300 

M 
1 2  
3 4  

N 
100 200 300 
400 500 600 

M,N 
1 2 100  200  300 
3 4 400  500  600 

N ,  0 
100 200 300 0 
400 500 600 0 

Interval (denoted by I) produces arrays based on 
numerical sequences. Interval and arithmetic sca- 
lar functions can be combined to produce a wide 
variety of arrays: 

17 
1 2 3 4 5 6 7  

2x 17 
2 4 6 8 10  12  14 

2*17 
2 4 8 16 32 64  128 

Notice that in A P L ~  expressions, functions are ex- 
ecuted from right to left. 

Enclose (denoted by c) is  used to convert any  col- 
lection of data  into a scalar. For example: 

DISPLAY Q 
r- 

14 2 5 6 31 
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DISPLAY cQ p; 
In the second expression above, the DISPLAY func- 
tion shows the result to  be a scalar. The  data  are 
organized along no axes and have rank 0. Inside the 
scalar, however, the complete original array is re- 
tained. Therefore enclose returns a scalar that con- 
tains its argument as its only item. 

This data structure has several practical applica- 
tions. Arrays are sometimes used in situations 
where the  structure is not  important. Enclose al- 
lows  hiding the  inner  structure of arrays. For ex- 
ample, ' JIM' is a three item character vector. If an 
application treats this array as a name  then  the fact 
that it has three items is not relevant. The expres- 
sion c' JIM ' hides the  structure, making  it easier to 
treat it as a single object (a name). 

Enclose is also useful if the contents of an array are 
required to participate in scalar extension. Note  the 
difference that enclose makes in the following  ex- 
amples: 

DISPLAY 100  200 300 + 1 2 3 .-I 
DISPLAY 100 200 300 + c1 2 3 

In this second expression, the scalar cl 2 3 is 
paired with each of the numbers 100,  200, and 
300. 

Defined functions in A P L ~  are programs that consist 
of a sequence of APL expressions.  Syntactically, de- 
fined functions are used in the same manner as 
primitive functions. The function AVG, for example, 

computes the average of a list of numbers: 

L O 1  Z+AVG X 
til COMPUTE T H E  NUMERIC AVERAGE 
C21 R OF VECTOR <X> 
C 3 1 Z 4  +/X )+pX 

AVG 3 9 7 11  14 
8.8 

2 x AVG 3 9 7 11  14 
17.6 

The function SD computes the  standard deviation 
of a list of numbers; it  invokes AVG as a subfunc- 
tion: 

E01 Z+SD x 
[11 R COMPUTE THE: NUMERIC 
121 R STD  DEVIATION OF VECTOR <X> 
C31 Z+AVG X 
C41 2 4  ( +/( X-Z )*2 )+pX I* .5 

SD 3 9 7 11  14 
3.709 

APLP operators 

A P L ~  operators  take existing functions as arguments 
and produce new functions as results. The functions 
produced by operators  are called derivedfunctions. 
Operators can process both primitive and defined 
functions. 

The  operator reduction (denoted by /) takes a 
function as operand and produces a related derived 
function. Derived functions are  the third class of 
functions. What follows  is an example of reduction 
applying to  the addition function producing the 
summation function and applied to  the maximum 
function producing the largest of function: 

+/1 3 4 2 5 
15 

r/l 3 4 2 5 

5 

If F is  any function, then  the expression F / A  B C 
is equivalent to  the expression c A  F B F C. 

Reduction also produces functions that  operate  on 
arrays of higher rank: 
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M give the following  type  of result: 
1 2 3 4  
5 6 7 8  
9 10  11 1 2  

+/M 
10 26 42 

r /M 
4 8 1 2  

The operator each (denoted by ") applies its func- 
tion operand to each  item of an array. For example, 
the interval function "I" can be combined  with 
each to produce a derived  function that produces 
arrays of arithmetic intervals: 

DISPLAY 15 1 3  
DISPLAY 1.~15 

Each  can produce derived  functions that take two 
array  arguments. For example, each applied to the 
reshape function " p" produces a function  useful for 
building structured arrays: 

In the second  expression  above, the left  argument 
3 was replicated by scalar  extension to apply to each 
item of the character vector  right  argument.  Using 
enclose to produce scalars for scalar  extension  can 

r 
r 

J. 
r- 

DISPLAY 2 3 p 'ABCDEF' 

iij 
R+2 3 p 'ABCDEF' 
DISPLAY ( c3 4 ) p"R 

Each can  apply to defined  functions exactly  as it 
applies to primitive  functions.  Next, the AVG func- 
tion is applied to a vector of numeric  vectors to 
produce a vector of averages: 

DISPLAY A 

3.75  2.95  5.45  12.85 

AVG" A 
5 3 6.25 

This  expression  applies the program AVG over  and 
over  again to the items of data in A. This  is  close to 
the definition of iteration. The APU each operator 
is the array  analogue of iteration. It permits the 
writing of  many iterative  computations  without a 
loop. 

APLP examples 
The ,following  sections present three different ex- 
amples that illustrate A P L ~  programming  style.  Use 
of A P L ~  is  by no means  restricted to these kinds of 
applications. 

438 BROWN  AND  CROWDER IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991 



A graphical  example of the  each  operator. Earlier 
it  was seen that  the each operator was  useful for 
introducing structure  into nested arrays. Here each 
is used at a higher level for drawing pictures. 

The following A P L ~  defined function draws a circle 
on a graphics device: 

" _  
C13 FI- SIMPLE CIRCLE FUNCTION 

C31 'GSCOL' GDMXrCLR-WHLtl~CLR-WHL 
C41 'GSARC' GDMX LOC,360 

[23 'GSMOVE' GDMX LOC-.SxDIAM 

The left argument of CIRCLE is a single number, 
the diameter of the circle to be drawn. The right 
argument is a pair of numbers giving the x-y coor- 
dinate of the  center of the circle. The function con- 
sists of calls to  the GDMX function that is supplied 
with 113"s A P L ~  Program Product. GDMX uses the 
Graphical Data Display Manager (GDDM*)9 to  per- 
form graphics primitives, but any graphics system 
could be used in a similar manner." 

As an example, an expression to draw a single circle 
using the CIRCLE function is: 

2 CIRCLE 0 0 

Figure 1A shows the resulting picture. 

Consider now the requirement to draw several cir- 
cles  using the basic circle-drawing routine. In most 
programming languages, this would  involve  design- 
ing and writing a higher-level program to stage data 
for repetitive calls to CIRCLE. In APL~,  this addi- 
tional structure can be incorporated into  the  data 
instead of the program. For example, consider the 
following  expression: 

2 CIRCLE" -4 0 4 ,"O 

Figure 1B shows the graphical result of executing 
this expression. 

In this example, we are using  CIRCLEwith the each 
operator.  The resulting function is applied to  the 
vector of pairs in its right argument (recall right to 
left execution). Since the left argument is a scalar 
number, all  circles are drawn the same size. 

In the next  example, CIRCLE is used with a vector 
left argument of sizes and a scalar right argument 
indicating location: 

Figure 1 Result of drawing one, three, and five circles 
~~ 

The resulting arrangement of concentric circles  is 
shown  in Figure 1C. 

The final  example  involves a more complicated cal- 
culation. Building the right argument to CIRCLE is 
similar to  the example shown in Figure 1B-we are 
constructing a vector of pairs representing loca- 
tions of multiple circles. The y coordinate of each 
pair is computed using lo, the APL~ function for 
mathematical SINE. Figure 2A  shows the result of 
DISPLAY on the first two pairs: 

Figure 2B  is the graphical result of executing the 
final  expression: 

1.5 CIRCLE" T 

This example demonstrates the power of APU ar- 
rays. The use of hierarchical arrangement allows 
the  representation of complicated data structures. 
But in addition, the structure of data arrays re- 
places the unnecessary complicating programming 
structure  that clutters application programs; com- 
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Figure 2 Result of drawing multiple circles 

DISPLAY 2rT 
r+ I 

plexity  is  moved out of programs and into  the data. 
There is no explicit loop  here;  there is no IF.. . THEN 
. . . ELSE. The  structure is in the  data, not in the 
program. This simplifies application design, imple- 
mentation, and maintenance, and encourages mod- 
ular design and program reuse. 

Representing  and  manipulating  sparse  arrays. 
Many computational applications are required to 
create, manipulate, and process sparse  arrays whose 
elements are mostly zero. It is  wasteful in both 
memory and computation to process these data as 
full arrays. In many  cases,  especially for large ar- 
rays, structures can be used to encapsulate these 
data in a sparse format. A P L ~  does not have a 
built-in sparse array representation, but depending 
on  the application and the  nature of data manip- 
ulation and calculation required, sparse structures 
can be  represented by A P L ~  nested arrays. 

A sparse vector can be represented  as a two-item 
nested array; the first item contains the indices of 
the nonzero coefficients in the vector, and the sec- 
ond item contains the coefficients  themselves. For 

example, the vector V has most of its elements equal 
zero: 

V 
0 0 0 0 4 0 0 0 0 0 0 2 0 0 0 3  

The function SVPACK packs vectors into a sparse 
format: 

C01 ZcSVPACK V ;  I 
[11 R PACKS A FULL VECTOR <V> 
[21 R INTO A SPARSE  VECTOR <Z> 

Now the result of 

SV-SVPACK V 

is: 

D I S P L N  SV 
r I  

A common computational operation on arrays is 
inner product. The following example shows a func- 
tion SIP performing an inner product between a 
full vector FV and a sparse vector SV. In A P L ~  terms, 
this should give the same result as the  inner product 
of FV and the nonsparse representation of S V :  

LO1 2-V SIP s 
C11 A INNER PRODUCT OF 
[21 R FVLL  VECTOR <V> 
C31 R WITH SPARSE  VECTOR <S> 
C41 Z+VCrSl+.x2~S 

Ev 
1 4 3 3 2 1 4 4 5 2 3 5 1 1 3 4  

Fv SIP sv 
30 

Fv +.x V 
30 

A sparse matrix can be represented as a list, each 
item of which  is a sparse vector representing a col- 
umn of the matrix. The array SM represents a matrix 
with three rows and four columns: 

PSM 
4 
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p”SM 
2 2 2 2  

Next the four items are arranged in a two-by-two 
matrix so that  the result of DISPLAY fits on  the 
page, as shown  in Figure 3. 

The function derived from SIP using each can be 
used to premultiply SM by a full vector: 

( c l  3 2) SIP” SM 
7.3 7.8 13.5  7.2 

This calculation should give the same result as per- 
forming the analogous calculation with the full ma- 
trix. In the next example, the function UNPACK re- 
stores sparse matrices to full two-dimensional A p ~ 2  
matrices. Inner product on full arrays is performed 
by the derived function + . x : 

UNPACK SM 
1.1 1.2 0 0 
0 2.2 2.3 2.4 
3.1 0 3.3 0 

1 3 2 +.x  UNPACK SM 
7.3 7.8 13.5  7.2 

Simulation  and analysis of dice throws. A data 
analysis example is  discussed next, illustrating the 
functional programming style of APL~. In this mode 
of A P L ~  application design, a series of computa- 
tional steps are each performed by separate func- 
tional units, with the result of one functional unit 
becoming the  operand of the succeeding functional 
unit. Because functional units are  independent, 
they can be “unplugged” and replaced by function- 
ally equivalent units; this allows experimentation 
with various implementation strategies and fine- 
tuning of the application. 

The function DICE is  used to simulate a prescribed 
number of rolls of a pair of dice: 

L O 1  Z+DICE N 
C11 R ROLL DICE <N> TIMES 
C21  Z+?(N,2)p6 

Now  if the number of rolls of the dice are 5 and 8: 

DICE 5 
4 1  
1 4  
2 4  
5 2  
5 6  
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Figure 3 A two-by-two matrix 

DISPLAY 2 2pSM 

J 
r 

I I ’  I I  

I r w  I 

DICE 8 
2 6  
5 2  
3 3  
1 3  
3 5  
4 3  
6 4  
2 5  

The argument N is the number of rolls to simulate. 
The result of executing DICE is an N-by-2 matrix, 
each row representing a dice roll. DICE uses the 
A P L ~  function roll (denoted by ?), which produces 
random numbers. In this particular application, the 
elements of the result are picked from the pseudo- 
random uniform distribution in the range 1 to 6. 

Next, the function COUNT can be used with DICE to 
summarize the results of a series of dice rolls: 

COI ZtCOUNT A 
C11 R COUNTS DICE THROWS IN <A> 
C21 Z++/A 
[31 Z++/(l+~ll)o.=Z 

Now the expression: 

AcDICE 7 

results in: 
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Figure 4 Result of 36 dice  throws 

"1 
4- 

2 -  

0 I I I I 
2 3 4 5 

RESULTS 

/ 

0 6 
8 9 10 11 12 

A 
2 5  
2 4  
2 5  
6 3  
1 1  
4 2  
5 2  

The argument to COUNT is a  dice-roll  series pro- 
duced by DICE. COUNT computes the sum of the 
two dice  values  for  each  roll,  and tabulates the to- 
tals of each sum in the series. The result 2 is an 
integer list of length 11; 2 C 11 contains the number 
of 2s rolled  in the series, 2 2 1 contains the number 
of 3s, and so on. The sum of 2 equals the number 
of rolls. 

COUNT A 
1 0 0 0 2 3 0 1 0 0 0  

COUNT DICE 50 
2 1 2 9 6 1 0 9 6 4 1 0  

COUNT DICE 500 
14 33 37 50 65  89  73 42 58 22 17 

Continuing the discussion, the function EXPECT 
can be used to compute the expected  number of 
dice-pair  sums for a  prescribed  number of rolls: 

ro1 Z+EXPECT N:T 

The argument EXPECT is the number of dice  rolls. 
The result 2 is  a  list of length 11; 2 11 gives the 
number of expected  occurrences of 2s in N rolls, 
2 C 2 1 gives the number of expected  occurrences of 
3s, and so on.  Some  examples  are: 

EXPECT 36 
1 2 3 4 5 6 5 4 3 2 1  

EXPECT 72 
2 4 6 8 1 0 1 2 1 0 8 6 4 2  
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Figure 5 Result of 100 dice throws 

! 
10 I /  
5~ 0 

2 3 4 
RESULTS 

-r 
5 
7 

6 

L 

I 

8 

n 
'i\ J 

10 11 12 

EXPECT 500 
13.9  27.8  41.7  55.6  69.4  83.3  69.4 

55.6  41.7  27.8  13.9 

Finally, the function DRAW can be used to plot 
the actual  and  expected  results of a  dice  roll  series. 
The main  component of DRAW is the CHARTX func- 
tion  distributed  with IBMS APLZ Program  Product. 
DRAW accepts  a  two-item  list.  The  first  item is the 
actual  results of dice-roll  simulations  as generated 
by DICE and COUNT; the second  item is a  list of 
expected  dice-roll  results as computed by EXPECT: 

C01 DRAW D:FORMNAME 
Cli R CHARTS ACTUAL AND EXPECTED 
C21 R DICE ROLLS 
C31 FORMNAME+'DICE' 
C41 ( 1+111 )CHARTX.D 

The following  expression  simulates 36 dice  throws 
and  produces the picture  in  Figure 4: 

DRAW (COUNT DICE: 36) (EXPECT 36) 

Figure 5 shows the result of the following  expres- 
sion  with 100 dice  throws. 

DRAW ( COUNT  DICE 100 ) ( EXPECT 100 ) 
Note that as the number of simulated  rolls  in- 
creases, the actual  occurrences  come  closer pro- 
portionately to the expected  occurrences, giving an 
empirical  confirmation of the statistical law  of large 
numbers. The absolute  deviation of actual  from ex- 
pected  grows  as the number of rolls  increases. The 
following  expression  simulates 1000 dice  rolls  and 
the result  is  shown  in  Figure 6: 

DRAW (COUNT DICE 1000) (EXPECT 1000) 
The  functional  programming  style of APLZ encour- 
ages the construction of complicated  programs 
from  less  complicated  subprograms.  This  ability, 
derived  from the A P L ~  language  syntax,  can  result  in 
shorter application  development  times  and more 
error-free code. In addition, it can  simplify  appli- 
cation  maintenance  and  encourage code reuse. 
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Figure 6 Result of 1000 dice throws 
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Conclusion 

A P L ~  is one of the most  powerful array processing 
notations in  existence.  But this power does not 
come only from the existence of structured data. 
Much more important is the ability of the structural 
data  to control the flow  of execution of a program. 
The structure of the data determines how algo- 
rithms are applied rather  than determining the con- 
trols that the programmer inserts into a program. 

This is  why A P L ~  programs can be very  small and 
easy to write and maintain. The complicated struc- 
ture  that sometimes permeates programs and 
makes them large and hard to manage is  removed 
from the program and placed into  the  data, leaving 
programs that more accurately  reflect the user’s 
vision of the problem solution. A P L ~  is one alter- 
native solution to structured programming. 

*Trademark or registered trademark of International Business 
Machines Corporation. 
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10. The  precise  definition of this  function  is not relevant to the 
discussion;  however, an explanation of what the function 
does follows:  Line 1 is an APL2  comment.  Line  2  puts the 
center where requested. Line  3  selects  a  color. In GDDM 
colors are indicated by integers. This line rotates a  vector of 
integers and uses the leading one as the color of this  circle. 
Each time the function  is  called, it chooses the next  color in 
sequence.  Line 4 draws an arc of  360 degrees (i.e., a  circle). 
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