APL2: Getting started

APL is a concise and economical notation for
expressing computational algorithms and
procedures. This paper introduces the main ideas
of APL 2, an IBM implementation of APL, and
illustrates the programming style with some
graphical examples.

O riginally developed as a mathematical tool for
teaching computer concepts, APL offers a sys-
tematic and structured method for thinking about
computational problems and implementing solu-
tions. Because the APL notation can be executed
directly on computers, APL is a rich and powerful
programming language, suitable for solving a wide
range of computational problems in science, engi-
neering, and business.

The original APL notation was described by Iverson
in 1962." The first commercial computer program-
ming implementation of the language was docu-
mented in 1968,% and in 1971, Brown extended the
APL notation in his work at Syracuse University.*
APL2, the IBM implementation of extended APL, is
documented in Reference 4 and today is used as a
problem-solving tool for a wide variety of applica-
tions, as one may conclude reading papers such as
those described in References 5-8.

APL2 consists of three fundamental components:

arrays, functions, and operators. Arrays are the data
structures of APL2, consisting of collections of num-

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

by J. A. Brown
H. P. Crowder

bers and text characters. Functions are programs
that manipulate arrays; functions take arrays as ar-
guments and produce new arrays as results. Oper-
ators, a powerful concept in APL2, are programs that
manipulate functions; they take functions as oper-
ands and produce new functions as results.

The purpose of this paper is to introduce the key
APL2 concepts of arrays, functions, and operators
and how they relate and interact in a unique prob-
lem-solving environment. Several examples are
provided that show how solutions to some inter-
esting problems can be expressed precisely and con-
cisely.

APL2 arrays

Arrays are the data structures of APL2. Arrays are
collections of data, the values being numbers or
characters or both. Arrays have structure and are
organized as single elements, vectors, matrices, and
higher-dimensional rectangular arrangements. In
addition, APL2 arrays can be structured in hierar-
chical arrangements, as described later.

©Copyright 1991 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is
done without alteration and (2) the Journal reference and IBM
copyright notice are included on the first page. The title and
abstract, but no other portions, of this paper may be copied or
distributed royalty free without further permission by computer-
based and other information-service systems. Permission to re-
publish any other portion of this paper must be obtained from
the Editor.

BROWN AND CROWDER 433

Arrays can have names that are used to refer to
their contents in APL2 expressions. Shown below are
arrays named A (containing a single number), NUMS
(containing a list of five numbers), CHAR (contain-
ing a matrix of six characters), and MIXED (con-
taining both numbers and characters):

A

3
NUMS

1 35 7 3.14158
CHAR

CAT

FAT

MIXED
2 BE OR NOT 2 BE

These examples show how the values of arrays are
displayed by APL2; input is indented from the left
margin, and output is flush left. The default display
shows the array values but little about the array
structure. To better understand the structure of
APL2 arrays, use the function DISPLAY to construct
pictures that show array structure. Following is
DISPLAY applied to the previous examples:

DISPLAY A

DISPLAY NUMS

‘1 357 3.1u159

DISPLAY CHAR
—
VCAT

LI:E

DISPLAY MIXED

2 |BE OR NOT| 2 |BE

€

In the first example, the array 4 is displayed with no
structural information. In APL2 terms, A is a simple
scalar; it has only value and no structure of interest.
In the next example, NUMS is displayed in a box with
an arrow on the top edge, indicating that NUMS is a
vector or one-dimensional array. The matrix CHAR

434 BROWN AND CROWDER

is displayed in a box with two arrows, indicating that
the data are arranged along two dimensions. Fi-
nally, the display of MIXED indicates that it is a
vector containing both simple scalar numbers (two
instances of the number 2) and two character vec-
tors.

In the last example, MTXED is an instance of a nested
array that has other arrays as items. The following
sequence builds up and displays a more compli-
cated nested array D:

A«2 2p 10 11 12 (13 14)
B<15

C<16 17 18

D<A B C

DISPLAY D

r
v 10 11 15 |16 17 18

—,—

12 [13 14

~——————d

€

—€

The array D is a vector with three items. The first
item is a two-by-two matrix, one of whose items is
again a vector of length two. The second item of D
is the simple scalar 15, and the third item is a vector
with three items.

APL2 arrays are very powerful but simple in concept.
An APL2 array is a rectangular arrangement of
items; any item in the array can be a single number,
a single character, or another array of arbitrary
complexity. This ability to structure data as nested
APL2 arrays offers two major benefits. First, most
data processing and computational data structures
can be modeled and captured as APL2 arrays and
thus used in APL2 applications. And second, as dem-
onstrated in following sections, complicated APL2
data structures allow simpler APL2 application pro-
grams that are easier to design, code, and maintain.

As a final example of an array, the nested array
SALESDATA is a matrix having four rows and five
columns. DISPLAY shows all the detail of the ma-
trix and each item in row one and column one is a
character vector; every other item is a single num-
ber:

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

DISPLAY SALESDATA

| REGION/QTR

NORTHEAST 632

1256 959 1033

MID-COAST 719 548 1179 1180

SOUTHEAST 1435 884 1020 1331

-€

The default display of SALESDATA in APL2 has the
following form similar in appearance to a spread-
sheet report:

SALESDATA
REGION/QTR 1Q 2Q 3Q 4Q
NORTHEAST 632 1256 959 1033
MID-COAST 719 by48 1179 1180
SOUTHEAST 1u35 884 1020 1331

This array structure is identical to the data aggre-
gates that are created and manipulated by rela-
tional data systems. This ability for APL2 arrays to
consistently represent data relations has resuited in
APL2 being used for data analysis and manipulation
in conjunction with relational database manage-
ment systems.

APL2 functions

APL2 functions are programs that manipulate and
perform calculations with arrays. Functions take ar-
rays as their arguments and create new arrays as
their results. In APL2, functions can be either prim-
itive or defined. A third class of functions is dis-
cussed later. Primitive functions are part of the
APL2 langunage and are provided with the APL2 Pro-
gram Product from 1BM. Defined functions are pro-
grams that are composed of primitive and defined
functions. APL2 provides a rich set of primitive func-
tions, but a subset of these is introduced here so
that interesting examples can be presented.

In the previous section on arrays, the defined func-
tion DISPLAY is used to further understand the
structure of APL2 arrays. DISPLAY takes as its ar-
gument any APL2 array and produces a character
matrix showing the array’s structure. The primitive

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

function reshape denoted by the symbol “p” is also
used to convert a list into a matrix. Reshape works
on both numbers and characters:

3p'A"
AAA

22012 31U
12
34
vs 2 3p'CATFAT'
CAT
FAT

The same symbol is used for the function shape
which yields information about the structure of its
argument:

p3p'A'
3
c
CAT
FAT
pC
23

In APL2, for conservation of symbols, each symbol
represents two functions. When the symbol is writ-
ten with one argument (on the right) you get one
function, and when the symbol is written with two
arguments (one on each side) you get the other
function. In most cases, the two functions are re-
lated. In the case of shape, the result is an array that
gives structural information—the “shape”—about
its array argument. In the case of the related func-
tion reshape, the result is an array whose structure
is dictated by the left argument and is composed of
items from its right argument.

An important concept in APL2 is the rank of an
array—the number of directions along which data
are arranged. The rank of an array is the number of
items in the shape of the array, so it follows that
rank is obtained by applying the shape function to
the shape of an array. Matrices have rank 2 (data
arranged in rows and columns), vectors have rank
1 (data arranged along one direction) and scalars
have rank 0 (no structure; data arranged along zero
directions). The following is an example of each:

pp2 3p'CATFAT'

BROWN AND CROWDER 435

ppl 2 3
pplAV

A large class of functions in APL2 is called scalar
functions because the functions apply to the simple
scalars of their arguments independent of array
structure. Examples include most of the arithmetic
functions such as addition (denoted by +), subtrac-
tion (-), multiplication (x), division (+), pewer (*),
maximum (1), minimum (1), and the scalar func-
tions include the relational functions such as less
than (<), less than or equal (<), and equal (=).
Some examples are:

234+567
7 9 11

123<321
110

100 x 1 2 3
100 200 300

and in the example before of a nested array D,
where:

DISPLAY D

:
P10 11 15 L16 17 18

~—.

>

12 [13 14

€

€
an arithmetic function example is:

DISPLAY D+10

:
L 20 21 25 {26 27 28
22 [23 oy
o
€

When a single item is presented to a scalar function,
the scalar is paired with every item in the other
argument. This powerful concept, scalar extension,
is used frequently in following examples.

436 BROWN AND CROWDER

A useful function for array manipulation is catenate
(denoted by ,). Catenate is used to join arrays to
form new arrays:

A
123

B
100 200 300

A,B
1 2 3 100 200 300

M

wW
BN

N
100 200 300
400 500 600

M,N
100 200 300
400 500 600

N,0
100 200 300 O
400 500 600 O

w =
Eeg N}

Interval (denoted by 1) produces arrays based on
numerical sequences. Interval and arithmetic sca-
lar functions can be combined to produce a wide
variety of arrays:

17
1234567

2x17
2 468 10 12 14

T8+42x17
64 20246

2%17
2 4 8 16 32 64 128

Notice that in APL2 expressions, functions are ex-
ecuted from right to left.

Enclose (denoted by <) is used to convert any col-
lection of data into a scalar. For example:

DISPLAY Q
{1 2 3

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

DISPLAY <@

—
1 2 3
Lu 56

€

In the second expression above, the DISPLAY func-
tion shows the result to be a scalar. The data are
organized along no axes and have rank 0. Inside the
scalar, however, the complete original array is re-
tained. Therefore enclose returns a scalar that con-
tains its argument as its only item.

This data structure has several practical applica-
tions. Arrays are sometimes used in situations
where the structure is not important. Enclose al-
lows hiding the inner structure of arrays. For ex-
ample, 'JIM' is a three item character vector. If an
application treats this array as a name then the fact
that it has three items is not relevant. The expres-
sion <'JIM' hides the structure, making it easier to
treat it as a single object (a name).

Enclose is also useful if the contents of an array are
required to participate in scalar extension. Note the
difference that enclose makes in the following ex-
amples:

DISPLAY 100 200 300 + 1 2 3

101 202 303

1

DISPLAY 100 200 300 + <1 2 3

[101 102 103

{201 202 203

€

301 302 303

In this second expression, the scalar <1 2 3 is
paired with each of the numbers 100, 200, and
300.

Defined functions in APL2 are programs that consist
of a sequence of APL expressions. Syntactically, de-
fined functions are used in the same manner as
primitive functions. The function AVG, for example,

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

computes the average of a list of numbers:

fo] 7<AVG X

(1] «~ COMPUTE THE NUMERIC AVERAGE
(2] o OF VECTOR <X>

(3] Z«(+/X)+pX

AVG 3 9 7 11 14
8.8

2 x AVG 3 9 7 11 14
17.6

The function SD computes the standard deviation
of a list of numbers; it invokes AVG as a subfunc-
tion:

(0] 7<SD X

{13 = COMPUTE THE NUMERIC

[2] & STD DEVIATION OF VECTOR <X>
[3] 7<AVG X

(4] Z<((+/(X-Z)*2)+pX)*.5

SD 38 7 11 14
3.709

APL2 operators

APL2 operators take existing functions as arguments
and produce new functions as results. The functions
produced by operators are called derived functions.
Operators can process both primitive and defined
functions.

The operator reduction (denoted by /) takes a
function as operand and produces a related derived
function. Derived functions are the third class of
functions. What follows is an example of reduction
applying to the addition function producing the
summation function and applied to the maximum
function producing the largest of function:

+/1 3425
15

/713425
5

If F is any function, then the expression F/A B C
is equivalent to the expression <A F B F C.

Reduction also produces functions that operate on
arrays of higher rank:

BROWN AND CROWDER 437

/M
4 8 12

The operator each (denoted by **) applies its func-
tion operand to each item of an array. For example,
the interval function “1” can be combined with
each to produce a derived function that produces

arrays of arithmetic intervals;

DISPLAY 15
12345

DISPLAY 1""15

][4 [z

Ll 231

€

123465

Each can produce derived functions that take two
array arguments. For example, each applied to the
reshape function “p” produces a function useful for
building structured arrays:

DISPLAY (13) p'" 'ABC'

@ BB| |cCC

DISPLAY 3 p™" 'ABC'

€

AAA| |BBB| |CCC

€

In the second expression above, the left argument
3 was replicated by scalar extension to apply to each
item of the character vector right argument. Using
enclose to produce scalars for scalar extension can

438 BROWN AND CROWDER

give the following type of result:

DISPLAY 2 3 p 'ABCDEF'

.

VABC

DEF
R<2 3 p '"ABCDEF'
DISPLAY (<3 4) "R

|

o r |

VAAAA|l VBBBB| «CCCC

AAAA| |BBBB| |CCCC
AAAA| |BBBB| |CCCC

-
\DDDD| +EEEE| (FFFF
DDDD| |EEEE| |FFFF
DDDD| |EEEE| |FFFF

€
Each can apply to defined functions exactly as it
applies to primitive functions. Next, the AVG func-

tion is applied to a vector of numeric vectors to
produce a vector of averages:

DISPLAY A

24

L3 51576

€

‘3.75 2.95 5.u5 12.85

AVGT A
5 3 6.25

This expression applies the program AVG over and
over again to the items of data in A. This is close to
the definition of iteration. The APL2 each operator
is the array analogue of iteration. It permits the
writing of many iterative computations without a
loop.

APL2 examples

The following sections present three different ex-
amples that illustrate APL2 programming style. Use
of APL2 is by no means restricted to these kinds of
applications.

iBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

A graphical example of the each operator. Earlier
it was seen that the each operator was useful for
introducing structure into nested arrays. Here each
is used at a higher level for drawing pictures.

The following APL2 defined function draws a circle
on a graphics device:

(0] DIAM CIRCLE LOC

[1] = SIMPLE CIRCLE FUNCTION

[2] '"GSMOVE' GDMX LOC-.5xDIAM

[3] 'GSCOL' GDMX+CLR_WHL<1¢CLR_WHL
(4] 'GSARC' GDMX LOC, 360

The left argument of CIRCLE is a single number,
the diameter of the circle to be drawn. The right
argument is a pair of numbers giving the x-y coor-
dinate of the center of the circle. The function con-
sists of calls to the GDMX function that is supplied
with IBM’s APL2 Program Product. GDMX uses the
Graphical Data Display Manager (GDDM*)® to per-
form graphics primitives, but any graphics system
could be used in a similar manner."

As an example, an expression to draw a single circle
using the CIRCLE function is:

2 CIRCLE 0 0O
Figure 1A shows the resulting picture.

Consider now the requirement to draw several cir-
cles using the basic circle-drawing routine. In most
programming languages, this would involve design-
ing and writing a higher-level program to stage data
for repetitive calls to CIRCLE. In APL2, this addi-
tional structure can be incorporated into the data
instead of the program. For example, consider the
following expression:

2 CIRCLE™ "4 0 4,0

Figure 1B shows the graphical result of executing
this expression.

In this example, we are using CIRCLE with the each
operator. The resulting function is applied to the
vector of pairs in its right argument (recall right to
left execution). Since the left argument is a scalar
number, all circles are drawn the same size.

In the next example, CIRCLE is used with a vector

left argument of sizes and a scalar right argument
indicating location:

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1981

Figure 1

f%ﬂ

Result of drawing one, three, and five circles

(15) CIRCLE" <0 O

The resulting arrangement of concentric circles is
shown in Figure 1C.

The final example involves a more complicated cal-
culation. Building the right argument to CIRCLE is
similar to the example shown in Figure 1B—we are
constructing a vector of pairs representing loca-
tions of multiple circles. The y coordinate of each
pair is computed using 10, the APL2 function for
mathematical SINE. Figure 2A shows the result of
DISPLAY on the first two pairs:

T«.2x U45+170
T<T, "3x10T

Figure 2B is the graphical result of executing the
final expression:

1.5 CIRCLE" T

This example demonstrates the power of APL2 ar-
rays. The use of hierarchical arrangement allows
the representation of complicated data structures.
But in addition, the structure of data arrays re-
places the unnecessary complicating programming
structure that clutters application programs; com-

BROWN AND CROWDER 439

Figure 2 Result of drawing multiple circles

A

Te.2x"U5+170
T«T,""3x10T

DISPLAY 21T

t8.8 ‘1.7514751579} [_8.6 ~2.203191294

€

(8]

plexity is moved out of programs and into the data.
There is no explicit loop here; there isno IF... THEN
... ELSE. The structure is in the data, not in the
program. This simplifies application design, imple-
mentation, and maintenance, and encourages mod-
ular design and program reuse.

Representing and manipulating sparse arrays.
Many computational applications are required to
create, manipulate, and process sparse arrays whose
elements are mostly zero. It is wasteful in both
memory and computation to process these data as
full arrays. In many cases, especially for large ar-
rays, structures can be used to encapsulate these
data in a sparse format. APL2 does not have a
built-in sparse array representation, but depending
on the application and the nature of data manip-
ulation and calculation required, sparse structures
can be represented by APL2 nested arrays.

A sparse vector can be represented as a two-item
nested array; the first item contains the indices of
the nonzero coefficients in the vector, and the sec-
ond item contains the coefficients themselves. For

440 BROWN AND CROWDER

example, the vector V has most of its elements equal
Zero:

v
0000KBL0O0O0O0O0002000 3

The function SVPACK packs vectors into a sparse
format:

(0] 7<SVPACK VI
[1] = PACKS A FULL VECTOR <V>
[2] o INTO A SPARSE VECTOR <Z>
[3] I<V£0
(4] Z(I/1pVICI/V)
Now the result of:
SV«SVPACK V
is:

DISPLAY SV

{51216 L423

€

A common computational operation on arrays is
inner product. The following example shows a func-
tion STP performing an inner product between a
full vector FV and a sparse vector SV. In APL2 terms,
this should give the same result as the inner product
of FV and the nonsparse representation of SV:

(0] <V SIP S

(11 = INNER PRODUCT OF

(2] a FULL VECTOR <V>

(3] o WITH SPARSE VECTOR <G5>
(4] Z<V[+S1+.x2>8

FV
1433214452351 134
FV SIP SV
30
FV +.x V
30

A sparse matrix can be represented as a list, each
item of which is a sparse vector representing a col-
umn of the matrix. The array SM represents a matrix
with three rows and four columns:

pSM

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

o™ SM
2222

Next the four items are arranged in a two-by-two
matrix so that the result of DISPLAY fits on the
page, as shown in Figure 3.

The function derived from SIP using each can be
used to premultiply SM by a full vector:

(e1 3 2) SIP" SM
7.3 7.8 13.5 7.2

This calculation should give the same result as per-
forming the analogous calculation with the full ma-
trix. In the next example, the function UNPACK re-
stores sparse matrices to full two-dimensional APL2
matrices. Inner product on full arrays is performed
by the derived function +.x:

UNPACK SM
1.20 0
2.2 2.3 2.4
0 3.30

WOk

.1
.1

1 3 2 +.x UNPACK SM
7.3 7.8 13.5 7.2

Simulation and analysis of dice throws. A data
analysis example is discussed next, illustrating the
functional programming style of APL2. In this mode
of APL2 application design, a series of computa-
tional steps are each performed by separate func-
tional units, with the result of one functional unit
becoming the operand of the succeeding functional
unit. Because functional units are independent,
they can be “unplugged” and replaced by function-
ally equivalent units; this allows experimentation
with various implementation strategies and fine-
tuning of the application.

The function DICE is used to simulate a prescribed
number of rolls of a pair of dice:

L0] Z«DICE N

[1] o ROLL DICE <N> TIMES

[2] Z«?(N,2)pb

Now if the number of rolls of the dice are 5 and 8:

DICE 5

QAN
ONFEER

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 3 A two-by-two matrix

DISPLAY 2 2p8M

3
E=

f
v

€

DICE 8

NOFWFRLWwWwaN
OFWOWWNO®

The argument N is the number of rolls to simulate.
The result of executing DICE is an N-by-2 matrix,
each row representing a dice roll. DICE uses the
APpL2 function roll (denoted by ?), which produces
random numbers. In this particular application, the
elements of the result are picked from the pseudo-
random uniform distribution in the range 1 to 6.

Next, the function COUNT can be used with DICE to
summarize the results of a series of dice rolls:

[0] Z<COUNT A

[1] = COUNTS DICE THROWS IN <A>
[2] Ze+/A

[3] Z<+/(1+111)0 .=7

Now the expression:

A<DICE 7

results in:

BROWN AND CROWDER 441

Figure 4 Result of 36 dice throws

Y
o

OCCURRENCES

@
]

RESULTS

GEROMNNN
NN WO FE O

The argument to COUNT is a dice-roll series pro-
duced by DICE. COUNT computes the sum of the
two dice values for each roll, and tabulates the to-
tals of each sum in the series. The result Z is an
integer list of length 11; Z[1] contains the number
of 2s rolled in the series, Z[21 contains the number
of 3s, and so on. The sum of Z equals the number
of rolls.

COUNT A
10002301000

COUNT DICE 50
212961086410

442 BROWN AND CROWDER

COUNT DICE 500
14 33 37 50 65 89 73 42 58 22 17

Continuing the discussion, the function EXPECT
can be used to compute the expected number of
dice-pair sums for a prescribed number of rolls:

{0} Z<EXPECT N;T

(11 = EXPECTED NUMBER OF EACH SUM
[2] o FOR <N> DICE THROWS

£31] Z<Nx(T1¢T«111)+36

The argument EXPECT is the number of dice rolis.
The result Z is a list of length 11; Z[1] gives the
number of expected occurrences of 2s in N rolls,
Z[2] gives the number of expected occurrences of
3s, and so on. Some examples are:

EXPECT 36
12345654321

EXPECT 72
24681012 1086 4 2

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Figure 5 Result of 100 dice throws

@ 20
Q
z
g
3
8 /N
15 //
10
\
5 —
° T | 1 T | T T T T T
2 3 4 5 7 8 9 10 1 12
RESULTS
EXPECT 500 Figure 5 shows the result of the following expres-

13.9 27.8 41.7 55.6 63.4 83.3 69.4
55.6 41.7 27.8 13.9

Finally, the function DRAW can be used to plot
the actual and expected results of a dice roll series.
The main component of DRAW is the CHARTX func-
tion distributed with IBM’s APL2 Program Product.
DRAW accepts a two-item list. The first item is the
actual results of dice-roll simulations as generated
by DICE and COUNT; the second item is a list of
expected dice-roll results as computed by EXPECT:

[0] DRAW D;FORMNAME

(1] o CHARTS ACTUAL AND EXPECTED
[2] = DICE ROLLS

(31 FORMNAME<'DICE'

(4] (1+111)CHARTX>D

The following expression simulates 36 dice throws
and produces the picture in Figure 4:

DRAW (COUNT DICE 36) (EXPECT 36)

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

sion with 100 dice throws.
DRAW (COUNT DICE 100) (EXPECT 100)

Note that as the number of simulated rolls in-
creases, the actual occurrences come closer pro-
portionately to the expected occurrences, giving an
empirical confirmation of the statistical law of large
numbers. The absolute deviation of actual from ex-
pected grows as the number of rolls increases. The
following expression simulates 1000 dice rolls and
the result is shown in Figure 6:

DRAW (COUNT DICE 1000) (EXPECT 1000)

The functional programming style of APL2 encour-
ages the construction of complicated programs
from less complicated subprograms. This ability,
derived from the APL2 language syntax, can result in
shorter application development times and more
error-free code. In addition, it can simplify appli-
cation maintenance and encourage code reuse.

BROWN AND CROWDER 443

Figure 6 Result of 1000 dice throws

150 —

OCCURRENCES

100 —

50 —

RESULTS

Conclusion

APL2 is one of the most powerful array processing
notations in existence. But this power does not
come only from the existence of structured data.
Much more important is the ability of the structural
data to control the flow of execution of a program.
The structure of the data determines how algo-
rithms are applied rather than determining the con-
trols that the programmer inserts into a program.

This is why APL2 programs can be very small and
easy to write and maintain. The complicated struc-
ture that sometimes permeates programs and
makes them large and hard to manage is removed
from the program and placed into the data, leaving
programs that more accurately reflect the user’s
vision of the problem solution. APL2 is one alter-
native solution to structured programming.

*Trademark or registered trademark of International Business
Machines Corporation.

444 BROWN AND CROWDER

Cited references and note

1.
2.

K. E. Iverson, A Programming Language, John Wiley & Sons,
Inc., New York (1962).

A. D. Falkoff and K. E. Iverson, APL\360: User’s Manual,
IBM Corporation (1968).

. J. A. Brown, A Generalization of APL, Ph.D. thesis, Depart-

ment of Computer and Information Science, Syracuse Uni-
versity, Syracuse, NY (1971), Clearing House 74h004942
AD-770488./5.

. APL2 Programming: Language Reference, SH20-9227, IBM

Corporation (1988); available through IBM branch offices.

. Stanley Jordan and Erik S. Friis, “The Foundations of Suit-

ability of APL2 for Music,” IBM Systems Journal 30, No. 4,
513-526 (1991, this issue).

. M. Alfonseca, “Advanced Applications of APL: Logic Pro-

gramming, Neural Networks, and Hypertext,” IBM Systems
Journal 30, No. 4, 543-553 (1991, this issue).

. A. Aharon, A. Bar-David, B. Dorfman, E. Gofman, M. Lei-

bowitz, and V. Schwartzburd, “Verification of the IBM
RISC System/6000 by a Dynamic Biased Pseudo-Random
Test Program Generator,” IBM Systems Journal 30, No. 4,
527-538 (1991, this issue).

. J. R. Jensen and K. A. Beaty, “Putting a New Face on

APL2,” IBM Systems Journal 30, No. 4, 469-489 (1991, this
issue).

. GDDM Version 2 General Information, GC33-0319, IBM

Corporation (1990); available through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

10. The precise definition of this function is not relevant to the
discussion; however, an explanation of what the function
does follows: Line 1 is an APL2 comment. Line 2 puts the
center where requested. Line 3 selects a color. In GDDM
colors are indicated by integers. This line rotates a vector of
integers and uses the leading one as the color of this circle.
Each time the function is called, it chooses the next color in
sequence. Line 4 draws an arc of 360 degrees (i.e., a circle).

Accepted for publication June 21, 1991.

James A. Brown IBM Santa Teresa Laboratory, 555 Bailey
Avenue, San Jose, California 95150. Dr. Brown is currently IBM’s
chief APL architect in the Technical Computing Solutions De-
partment in Kingston, New York, and also in the APL Products
Department in IBM’s Santa Teresa Laboratory. He is respon-
sible for the overall design of IBM APL systems and for mar-
keting strategies. Dr. Brown received his Ph.D. in computer and
engineering science from Syracuse University and his graduate
thesis became the basis for the IBM APL2 products. He is a
member of the Computer Science Accreditation Board that cer-
tifies computer science curricula at universities, and he is the
language editor for the ACM Quote Quad.

Harlan P. Crowder IBM Corporation, 1530 Page Mill Road,
Palo Alto, California 94304. Dr. Crowder is currently a consult-
ant in the areas of application and technology with IBM’s Tech-
nical Computing Systems Department. He is responsible for
support and services for technical computing technology, in-
cluding mathematical sciences, optimization, computer lan-
guages, and applications ranging from high performance com-
puting to analytical business solutions. Dr. Crowder received a
B.S. in chemistry from East Texas State University, an M.S. in
operations research and industrial engineering from New York
University, and a Ph.D. in computer science from the City Uni-
versity of New York. He is a member of the ACM, the Institute
of Management Sciences, and the Operations Research Society
of America.

Reprint Order No. G321-5444.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

BROWN AND CROWDER 445

