Preface

The first APL workspace became available at IBM on
November 27, 1966, making 1991 the twenty-fifth
anniversary of APL. The IBM Systems Journal joins in
the anniversary celebration by presenting 12 papers
and one essay covering APL’s history, implementa-
tion, and applications. We are indebted to R. P.
Polivka of the IBM Data Systems Division in Pough-
keepsie, New York, for his extensive contributions
to the planning and development of this issue, in-
cluding the solicitation of numerous papers and
suggestions for referees. We also commend and
thank J. McGrew of the 1BM Application Solutions
Division in Kingston, New York, for his consider-
able efforts in ensuring the proper appearance of
APL throughout the issue.

The term APL is attributed to a suggestion made by
A. Falkoff when a name was needed for the pro-
gramming language that was to be built from the
ideas in K. E. Iverson’s 1962 book entitled A Pro-
gramming Language. Today, after many generations
of the language and implementations, APL2 i IBM’s
strategic interactive programming language, serv-
ing I1BM and its customers in a wide range of ap-
plications and across a broad spectrum of imple-
mentations.

The papets and essay begin with a history and an
introduction to APL, then progress through a set of
papers on APL systems and a set on applications,
ending with an exploration of the importance of
symbols and a look forward from Iverson’s unique
vantage point.

The first paper, by Falkoff, traces the genealogy of
the 1BM family of APL systems. His perspective
stems from his place as one of the first, foremost,
and current advocates of APL. He describes the in-
terplay between language constructs, implementa-
tion methods, and evolution for the breadth of
IBM APL systems.

Brown and Crowder introduce the essential fea-
tures of APL2, IBM’s current APL offering. The au-

414 PREFACE

thors show, through examples, the use of arrays and
functions, and show how the arrays (APL’s data
structures) control the flow of execution of a pro-
gram.

Programming languages exist in close association
with the language environment designed for their
use. In the first paper in the set on APL systems,
Wheatley discusses the issue of connectivity among
APL2, its environment, and other programming lan-
guages. From the point of view of APL2, there are
three major facilities that permit communication
beyond the APL workspace: system variables and
functions, shared variables, and name association.
Each is presented, along with the historical setting.

Most APL systems have depended on the storage
management technique known as garbage collec-
tion. This strategy has become less effective as vir-
tual and real storage have grown dramatically. APL2
Version 2 takes a new approach: a quickcell scheme
for small data items, a variation of the buddy sys-
tem, and a bit map scheme for large blocks of stor-
age. Trimble shows how this provides a better
means of storage management.

Jensen and Beaty present the results and the expe-
rience of building an X Window System** interface
for APL2 (called APL2/X). They also present a C in-
terface for all IBM APL2 systems (called APL2-to-
C), which was created in order to support the
ApL2/X effort. Following an overview of the X Win-
dow System and the interface design criteria, the
authors detail the APL2/X and APL2-to-C inter-
faces, concluding with a sample program.

The APL IL Interpreter Generator has contributed
to the successful and rapid proliferation of APL sys-
tems. Alfonseca, Selby, and Wilks describe IL and
the use of it to generate new APL interpreters. To
date IL has been used to create nine IBM products,
with as little as 13 person-weeks of effort.

APL, with its array orientation, would appear to be
a natural candidate for use in parallel expression

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

and computing. Willhoft analyzes each APL con-
struct for its potential parallelism. Through argu-
ment and studies of examples, he shows that APL
has a high degree of parallelism, both in its con-
structs and in its common uses. The types of par-
allelism examined are data, algorithm, data flow,
and task. Suggestions are made for improving the
language and implementations to further increase
parallelism.

Turning to papers on APL applications, Jordan and
Friis describe the application of APL2 to music, both
for building music software and as a musical nota-
tion. Examples are given that show how frequency,
pitch, tempo, loudness, chords, and passages can be
represented in APL. The authors claim that the
iconic nature of APL2 is well suited to musical
expression.

Verifying that an implementation of a new archi-
tecture indeed matches its functional specification
usually involves the use of test generators. The
IBM RISC System/6000* was tested in that way by the
random test program generator (RTPG), built in
APL for that purpose. Aharon, Bar-David, Dorf-
man, Gofman, Leibowitz, and Schwartzburd
present the concepts and implementation of RTPG.
They discuss the advantages of using an interactive
language in test situations, where many changes are
made with a need for rapid test creation, and the
suitability of using APL to represent computer ar-
chitectures.

Thomson describes the efforts of a group of aca-
demic and industrial statisticians in the United
Kingdom, with the support of the British APL As-
sociation, to build on the popularity of APL for sta-
tistics and on its ability to express specifications of
mathematical functions. They are creating the APL
Statistics Library (ASL), which will contain stan-
dardized APL specifications of statistical functions.
The author describes the philosophy of ASL code
and documentation and illustrates how it provides
a medium for algorithmic discussion among statis-
ticians. The paper concludes with a demonstration
of how advanced functions can be readily and re-
liably built using standardized ones from ASL.

Alfonseca summarizes his work on the application
of APL to the fields of logic programming and ar-
tificial intelligence, neural networks, and object-
oriented programming and hypertext. The paper
argues that APL is applicable to a broad range of
modern programming challenges.

IBM SYSTEMS JOURNAL, VOL 30, NO 4, 1991

Leaving the papers on APL applications, McIntyre
describes APL from the perspective of symbolic lan-
guages throughout history, including our number
system, many ancient written languages, and much
of mathematics. He finds that APL, a symbolic lan-
guage, is an “intellectual triumph.” This paper grew
out of an invited talk at APLS3 in Washington, D.C.,
where the author presented a detailed history of the
evolution of symbols.

The issue closes with an essay by Iverson that traces
the development of his rationale for the APL nota-
tion, beginning with his original motive: creation of
a tool for writing and teaching about data process-
ing. Much of the essay is devoted to a discussion of
the J language, which has evolved from his earlier
work with APL. Iverson continues to pursue lan-
guage styles and constructs that would be accessible
to wide audiences.

There have been two changes to the form of the
Journal. The first is the use of asterisks to signify a
trademark or registered trademark. The appropri-
ate designation for each term is shown just before
the list of references in each paper. The second is
the inclusion of the date on which the paper was
accepted for publication by the editors (following
editorial and peer review, and author revisions) and
after which content would not have been materially
changed. That date is shown just after the list of
references in each paper.

The next issue of the Journal will contain several
papers on the Optimization Subroutine Library
(osL) and others on such subjects as a portable
model for the design of device drivers in 08/2*.

Gene F. Hoffnagle
Editor

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Massachusetts Insti-
tute of Technology.

PREFACE 415

