Modeling and software
development quality

This paper summarizes the models used by a
large software development organization for
estimating software reliability and managing
software development quality. The role of
modeling in software quality improvement is
illustrated. Implementation of the models,
reliability of the estimates, predictive validity,
and the nature of data are discussed.

An emerging trend in the software industry is
to use scientific methods to achieve preci-
sion in managing software projects. In progress-
ing toward this goal, the role of statistical and
engineering modeling is pivotal. Modeling is a
systematic way to describe the complex reality.
The knowledge we gain from modeling can help
us develop quality strategies scientifically and
manage quality accordingly and appropriately.

This paper briefly describes the models used for
estimating software reliability and managing soft-
ware development quality at the IBM Rochester
Programming Laboratory. Examples are based
on data collected during the development of the
IBM Application System/400® (AS/400%) software
system. Issues of implementation, reliability, pre-
dictive validity, and the data are discussed where
applicable.

Reliability models

Reliability models are used to estimate the defect
rate that is latent in a system when the system is
shipped. Such an estimate is important for two
reasons: 1) it is an objective statement of the code
quality of the software system, and 2) it may be
used for resource planning in order to ensure con-
tinual programming and service support.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

by S. H. Kan

A number of software reliability models exist,
each having its own associated assumptions, lim-
itations, and applicability (see Reference 1). After
examining the data and considering relevant is-
sues, we decided to use the Rayleigh model and
the exponential model and its variants. Both mod-
els belong to the family of the Weibull distribu-
tion. The Weibull distribution has been used for
decades for reliability analysis in various fields of
engineering, ranging from the fatigue life of deep-
groove ball bearings to electron tube failures and
the overflow incidence of rivers. It is one of the
three known extreme-value distributions (see
Reference 2), and one of its marked characteris-
tics is that the tail of its probability density func-
tion approaches zero asymptotically, but never
reaches it. Its cumulative distribution function
(CDF) and probability density function (PDF)
are:

CDF: Fio)=1—-e-(8)"
PDF: f(f) = — <£)m (8"

T \c
where m is the shape parameter, ¢ is the scale
parameter, and ¢ is time.

Figure 1 shows several Weibull probability den-
sity curves with varying values of the shape pa-
rameter, m.

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

kan 351

Figure 1 Weibull probability density function

The Rayleigh model. The Rayleigh model is a spe-
cial case of the Weibull distribution when m = 2.
Its CDF and PDF are:

CDF: Fit)=1—e-(3)’
PDF: f(1) =§- (—Z—) (@)’

The Rayleigh PDF first increases to a peak and
then decreases at a decelerating rate. This is il-
lustrated in Figure 1 for m = 2. The ¢ parameter
is a function of tm, the time at which the curve
reaches its peak. By taking the derivative of f(z)
with respect to ¢, setting it to zero, and solving the
equation, tm can be obtained.

After tm is estimated, the shape of the entire
curve can be determined. The area below the
curve up to tm is 39.35 percent of the total area.

It has been empirically well-established that soft-
ware projects follow a life-cycle pattern described
by the Rayleigh density curve (see Reference 3).
The basic assumption for using the Rayleigh
model is that if more defects are discovered and
removed in the earlier development phases, fewer
will remain in later stages, which results in better
quality of the system. As shown in Figure 2, we
modeled the defect-removal pattern of the six de-
velopment steps: high-level design (10), low-level
design (11), coding (12), unit test (UT), component
test (CT), and system test (ST). The defect rate of
the last phase in the figure, the post-general-avail-
ability phase (PGA), is the target of our estimate.

The exponential model. The exponential model is
yet another special case of the Weibull family,

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 2 Rayleigh model

DEFECT RATE
|

10 n 12
DEVELOPMENT PHASE

with the shape parameter m equal to 1. It is best
used for statistical processes that decline mono-
tonically to an asymptote. Its CDF and PDF are:

CDF: Fit) =1 — e~(3)

=1—eM

PDF: f(1) = —i— e-(2)

:)‘.e'/\"

where c is the scale parameter, ¢ is time, and A =
1/c.

The exponential model is one of the better known
software reliability models. The Goel-Okumoto
Nonhomogeneous Poisson Process Model (NPPM)
is based on the exponential distribution (see Ref-
erence 4). Misra (see Reference 5) used the ex-
ponential model to estimate the defect-arrival
rates for the Shuttle Ground System software of
the National Aeronautics and Space Administra-
tion (NASA). The software provided the flight con-
trollers at the Johnson Space Center with proc-
essing support to exercise command and control
over flight operations. Actual data from a 200-
hour flight mission indicated that the model
worked very well.

1BM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

As Figure 3 shows, we modeled the weekly
defect-arrival data since the start of the system
test, which started when the development work
was virtually complete. The system test uses cus-
tomer interfaces, tests external requirements,
and simulates end-user application environ-
ments. The pattern of defect arrivals during this
stage, therefore, should be indicative of the la-
tent-defect rate.

In addition to the standard exponential model, we
also used two variant models that were proposed
by Ohba for software reliability analysis: the de-
layed S model and the inflection S model (see
Reference 6). The exponential model has no in-
flection points, the delayed S model has a slight
inflection at the beginning of the curve, and the
inflection S model has a substantial inflection.
The exponential model assumes that the peak of
defect arrival is at the beginning of the system test
phase, and continues to decline thereafter. The
delayed S model assumes a slightly delayed peak,
and the inflection S model assumes a later and
sharper peak. The three models, as well as others
similar, are referred to as reliability growth
models.

Implementation. Our estimations of the model pa-
rameters of the Rayleigh and exponential models

KaN 353

Figure 3 Exponential model

are implemented by programs written in the Sta-
tistical Analysis System, SAS (RAY for the Ray-
leigh model and EXPONEN for the exponential
model). The programs use the nonlinear regres-
sion procedure. From the several methods in non-
linear regression, we chose the DUD method for
its simplicity and efficiency (see Reference 7).
DUD is a derivative-free algorithm for nonlinear
least squares. It competes favorably with even
the best derivative-based algorithms when eval-
uated on a number of standard test problems.

Our SAS programs estimate model parameters and
produce a graph of fitted model versus actual data
points on a graphic terminal screen using the
Graphics Data Display Manager (GDDM). The SAS
programs perform a chi square goodness-of-fit
test, and derive estimates for the latent-error rate.
The probability (p-value) of the chi square test is
also calculated. If the test results indicate that the
fitted model does not adequately describe the
observed data (p > .05), a warning statement is
issued in the output.

In 1985, the 1BM Federal Systems Division at
Gaithersburg, Maryland, developed a PC program
called the Software Error Estimation Reporter
(STEER). The STEER program, now available to
other IBM sites, implements a discrete version of
the Rayleigh model by matching the input data

354 xan

with a set of 11 stored Rayleigh patterns and a
number of user patterns. The stored Rayleigh pat-
terns are expressed in terms of percent distribu-
tion of defects for the six development phases:
high-level design, low-level design, coding, unit
test, integration test, and system test. The match-
ing algorithm involves taking a logarithm trans-
formation of the input data and the stored Ray-
leigh patterns, calculating the separation index
between the input data and each of the stored
patterns, and selecting the stored pattern with the
lowest separation index as the best-fit pattern.

There are several problems with the STEER ap-
proach. First, the matching algorithm deviates
from statistical estimation methodology, which
derives estimates of model parameters directly
from the input data points based on theoretically
proven procedures. Second, it always produces a
best-match pattern even when none of the stored
patterns is statistically adequate in describing the
input data. There is no mention of how small the
separation index should be in order to indicate a
good fit. Third, the stored Rayleigh patterns are
far apart; specifically, they range from 1.00 to
3.00 in terms of tm, with a tm increment of 0.25,
which is considerably large. This means they are
not sufficiently sensitive for estimating the latent-
error rate, which is usually a very small number.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

There are, however, ways to circumvent the last
two problems. First, use the separation index
conservatively and be skeptical of the results if
the index exceeds 1. Second, use the program
iteratively: after selecting the best-match pattern
(for instance, the one with tm = 1.75), calculate
a series of slightly different Rayleigh patterns that
center at the best-match pattern (for instance,
patterns ranging from tm = 1.50 to tm = 2.00,
with an increment of 0.05 or 0.01) and use them
as user patterns to match against the input data
again. The outcome will be a better “‘best match.”
With this approach, STEER could be a good ref-
erence tool when mainframe statistical tools are
not available.

The Software Error Tracking Tool (SETT) devel-
oped by Falcetano and Caruso (see Reference 8)
provides an implementation for the three reliabil-
ity growth models discussed earlier.

Reliability and predictive validity. Reliability re-
fers to the degree of change in the model output
due to chance fluctuations in the input data. In the
present case, the question is how accurate are the
software reliability estimates. In specific statisti-
cal terms, reliability relates closely to the confi-
dence interval of the estimate: the narrower the
confidence interval, the more reliable the esti-
mate, and vice versa.

We purposely did not form confidence intervals
on our estimates. Given the few available input
data points, the chance of having satisfactory
confidence intervals is very slim. This is espe-
cially true for the Rayleigh model, which is based
on only six rates. Our strategy, therefore, is to
rely instead on intermodel reliability. Although
the confidence interval for each model estimate
may not be satisfactory, if the estimates by dif-
ferent models are close to each other, our confi-
dence about the estimates is strengthened. On the
other hand, if the estimates from different models
lie far apart, our confidence will not be strength-
ened even if the confidence interval for each sin-
gle estimate is very small. In our case, the Ray-
leigh model and the exponential model are based
on entirely different data. The final estimates for
the two approaches turned out to be consistent,
and we are comfortable with the results.

Predictive validity refers simply to the accuracy

of model estimates. To establish predictive va-
lidity, model estimates and actual outcomes must

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

be compared. When applying the Rayleigh model
to study the life cycle of manpower of software
projects, Wiener-Ehrlich and associates found
that the model underestimated the manloading
scores at the tail (see Reference 9). At the IBM
Rochester Programming Laboratory, actual de-
fect data after the system is shipped are available
for several releases of the 1BM System/38. When
comparing the Rayleigh estimates with the actual
defect rates, we also found that the Rayleigh
model consistently underestimates the latent-
error rates. Using the Rayleigh estimates directly,
therefore, will not be predictively valid. QOur strat-
egy is to adjust the Rayleigh output based on the
IBM System/38 experience. The adjustment factor
is the mean difference between the Rayleigh es-
timates and the actual defect rates reported. The
adjustment is logical, given the similar architec-
tures of IBM AS/M400 and IBM System/38 and the
similar structural parameters in the development
process, including organization, management,
and work force.

The exponential model is well known in software-
reliability analysis. However, most of the model’s
applications in the literature were for ‘““clean” ex-
ecution-time data. The defect-arrival data we
have are calendar-time based. In other words, the
data are less precise. Ohba notes the exponential
model does not work well for calendar-time data
with a nonhomogeneous time distribution of the
testing effort (see Reference 6). In the case of the
IBM AS/400, the testing efforts remained consis-
tently high and homogeneous throughout the sys-
tem-test phase. Furthermore, because the system
is very large (7.1 million lines of source code at
the first release), the rates tend to be stable even
though no execution-time data are available.

The general availability (GA) date of the IBM AS/400
was August 24, 1988. Since then, the actual field
defect arrivals have been tracked. Projections
based on defect arrivals validated our estimation
methodology based on pre-GA data.

Software quality management models

It is important to assess the quality of a software
system when development work is complete. It is
as important, if not more so, to monitor the quality
during development. Software quality management
models serve as the measuring tool. Early warning
signs or improvement can be detected, and timely
management actions can be taken.

kAN 355

Figure 4 Defect injection and removal step

Any software quality management model must
cover the early development stages in order to be
useful. Models that are based on data collected at
the end of the development process permit little
time for actions, if needed. The exponential
model, which is based on system-test data when
development work is virtually complete, is, there-
fore, not as useful as other models that are dis-
cussed in the following sections. However, when
sufficient system-test data are available, the ex-
ponential model can be used to determine when to
end system testing for a specific, predetermined
quality index.

The Rayleigh model. A Rayleigh model derived
from a previous release of a product or from his-
torical data can be used to track the current pat-
tern of defect removal. If the current pattern is
more front-loaded than the model would predict,
it is a positive sign; it is a negative sign if the
opposite is true. When sufficient data are avail-
able before development work is complete, pa-
rameters of the model can be re-estimated, and
projections of the final quality index can be made.
For models based on defect-removal rates of de-
velopment steps (in our case, six steps), at least
two rates are required for parameter estimation.
Such early projections would not be as reliable as
the final estimate at the end of the development
cycle. Nonetheless, they can indicate the direc-
tion of the quality of the current release so that
timely actions can be taken. For instance, if pro-
jections at the coding stage (12) indicate a poor
final quality index, one feasible action is to in-
crease focus on code inspection of the software
modules, allowing fewer defects to escape to the
integrated code.

356 «aN

The discrete defect-removal model. Whereas the
Rayleigh curve models only the pattern of defect
removal, the discrete defect-removal model
(DRM) deals with both defect removal and defect
injection. The DRM takes a set of error-injection
rates by development step and a set of inspection
and testing-effectiveness rates as input, then
models the defect-removal pattern step-by-step.
The defect injection and removal activities at
each step (see Reference 10) are described by
Figure 4.

The DRM takes a simplified view of Figure 4 and
works as shown in Figure 5.

The error-injection rates and the inspection and
testing effectiveness are usually based on esti-
mates from the previous release or from historical
data. If the total number of defects, or defect rate,
of the system are known, the final quality index
can be calculated based on the model output at
the exit of the last development step. However,
unlike the parametric models, the DRM cannot es-
timate the final quality index. It cannot do so be-
cause the total defect rate (or, for that matter, the
latent-defect rate when the system is shipped),
the very target for estimation, is needed as input
to the model. It is a tracking tool instead of a
projection tool. The rationale behind this model is
that if one can ensure that the defect-removal pat-
tern by step is similar to that for a previous expe-
rience, one might reasonably expect to see ap-
proximately the same final quality index.

The DRM is a useful management tool which can
track current quality status during development

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 5 Defect injection and removal step, simplified view

. DEFECTS AT THE . DEFECTS ESCAPED-
~ FROMPREVIOUS -

DEVELOPMENT STEP

" GURRENT STEP

DEFECTS
INJECTED IN REMOVED IN

CURRENT STEP-

Figure 6 Discrete defect-removal modei

i

ACTUAL

I
10
INSPECTION TEST STAGE

KLOC - THOUSAND LINES OF CODE

(as shown in Figure 6) and verify the final quality
index that is estimated from independent sources.

More importantly, the DRM can be used to eval-

uate the influence of inspection and testing effec-
tiveness or error-injection rates on the final qual-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

ity index. If we plan to improve the inspection
effectiveness by 15 percent at the low-level design
stage, how much can we expect to gain in system
quality? If we invest in a defect prevention
process and plan to reduce the error-injection rate
at the coding stage by 5 percent, how much could

Kan 357

Figure 7 Percent improvement in Ql by improvement
in inspection effectiveness for an IBM AS/400
product

we gain? Approximate answers to questions like
these could be obtained through the DRM. Once
the DRM is verified, one can vary the input (for
instance, inspection effectiveness of a particular
stage) and compute the final quality index again.
Figure 7 shows the percent improvement in the
final quality index (Q1I) by improving inspection
effectiveness for a software product.

The PTR submodel. For the DRM (as well as for the
Rayleigh model), when used for tracking quality
status during development, the Rochester Pro-
gramming Laboratory also uses a submodel to
track the Program Trouble Report (PTR) data dur-
ing the machine testing stages. The PTR is the
vehicle for defect reporting and integrating fix
when the code is placed under a formal change-
control process. Valid PTRs are, therefore, code
defects found during machine testing. A PTR sub-
model is necessary because the period of formal
machine testing (part of unit test, component test,
and system test) usually spans months, and one
must ensure that the chronological pattern of de-
fect removal is also on track. Simply put, the sub-
model spreads over time the number of defects that
are expected to be removed during the machine-
testing phases so that more precise tracking is pos-
sible. It is a function of three variables:

« Expected overall PTR rate (per thousand lines of
code)

¢ Planned or actual lines of code integrated over
time

s PTR-surfacing pattern after code is integrated

The expected overall PTR rate can be estimated

from historical data. Lines-of-code integration

over time is usually available in the current im-

358 «an

plementation plan. The PTR-surfacing pattern af-
ter code integration depends on both testing ac-
tivities and the driver-build schedule. For
instance, if a new driver is built every week, the
PTR discovery/fix/integration cycle will be faster
than that for bi-weekly or monthly drivers. As-
suming similar testing efforts, if the driver-build
schedule differs from the previous release, adjust-
ment to the previous release pattern is needed. If
the current release is the first release, it is more
difficult to establish a base pattern. Once a base
pattern is established, subsequent refinements are
easy. For the IBM AS/400 system, the base pattern
was estimated from System/38 data and refined sev-
eral times during the development process. The
current pattern involves a seven-month spread of
PTRs after code is integrated.

Figure 8 shows an example of the PTR submodel
with actual data. The code integration changes
over time during development, so the model is
updated periodically. In addition to quality track-
ing, the model also serves as a powerful quality
impact statement for any slip in code integration
or testing schedule. Specifically any delay in de-
velopment and testing will skew the model to the
right, and the intersection of the model line and
the vertical line of the general-availability (GA)
date will become higher.

The PTR arrival/backlog projection model. Near
the end of the development cycle, a key question
is whether the scheduled code-freeze date can be
met without sacrificing quality. Will the PTR ar-
rival and backlog decrease to the predetermined
desirable levels by the code-freeze date? The PTR
submodel discussed is not sufficiently precise and
objective. It is a tracking tool, not a projection
tool. On the other hand, the exponential model, or
other models based on system-test data, is suffi-
cient, but requires data generated when the sys-
tem test is well under way. To fill this void, we
developed the PTR-arrival/backlog projection
model based on the polynomial regression model.
Specifically, a few weeks after the start of system
test (usually several months before the planned
code-freeze date), we modeled the PTR arrival and
backlog trend based on polynomial terms of chro-
nological time, time lag variables, cumulative
lines-of-code integrated, and other significant di-
chotomous variables.

This model is different from the exponential model
in several aspects. First, the time frame covers all

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 8 PTR submodel

PTRs

oo\

15 14 13 12 1 10
MONTHS TO GA

machine testing (all PTRs) after the code is integrated
(part of unit test, component test, and system test).
The exponential model applies only to defect arriv-
als during system test. Second, the data for this
model are PTR arrivals and backlog while the ex-
ponential model includes only valid PTRs (defects).

Figure 9 compares the PTR-arrival projection
model for AS/400, Release 1, with actual data
points for the projection period. The model, with
R? = 95.6 percent, produces a projection that is
accurate within a week in terms of when the PTR
arrivals would decrease to the predetermined de-
sirable level.

Unlike other models discussed, the PTR arrival/
backlog projection model is really a modeling ap-
proach, rather than a specific model. Statistical ex-
pertise, modeling experience, and a thorough un-
derstanding of the data are necessary in order to
deal with issues pertaining to model assumptions,
variables specification, and final model selection. A

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

desirable outcome often depends on the model’s
R-square and on the validity of the assumptions.
Furthermore, it requires a fairly large number of
data points, and the data must pass the last inflec-
tion point of the process in order for the projections
to be accurate.

Implementation. As mentioned earlier, we imple-
mented the Rayleigh model by SAS programs.
GRAFSTAT, an 1BM graphic and statistical software
system, is also a good tool for models based on
such statistical distributions as the Weibull and
Rayleigh.

Both the DRM and the PTR submodel are non-
parametric and relatively simple: they can be im-
plemented by most programming languages or
even by manual calculation. At the Rochester
Programming Laboratory, they are implemented
in spreadsheet programs. QRISK, a productivity
and quality-assessment tool developed by Stott,
also implements the DRM (see Reference 11).

kan 359

Figure 9 PTR-arrival projection model

. TR TR e TEr R Ty e e T I e e e e T E e Ty TEe i e T
"WEEK 234567891111111111222222222233333333884444444444555555555566666666667777
I 01234567890123456789012345678090123456789012345678901234567890123

PROJECTION

FINAL MODEL LINE w=wrmowsmee

We implemented the PTR-arrival/backlog projec-
tion model in SAS. Since the model is based on the
method of least square regression, which is rela-
tively straightforward and robust in terms of com-
putational algorithms, any statistical software can
do the job. In constructing the model, however,
the assumptions of normality, expected mean er-
ror, and homoscedasticity should be examined.
The assumption of correct specification should be
satisfied if a high R-squared is obtained. In poly-
nomial models, multi-collinearity always exists
among the polynomial terms (such as time, ¢, ¢,
and ¢3). If multi-collinearity is a concern, center-
ing the values of the variables at their means will
yield satisfactory results.

Summary and conclusions

We have briefly summarized the models used at
the 1BM Rochester Programming Laboratory for
managing software development quality and es-
timating software reliability. The Rayleigh model
and the DRM cover the entire development cycle,
and the three other models focus on different seg-
ments of the continuum of machine testing. All
five models have proven useful in the develop-
ment of the IBM AS/400 software system.

Modeling is a systematic way to describe the
complex reality in simpler terms. Because reality

360 xan

changes, the models must be re-examined and up-
dated. We continue to refine our models as soon
as new data are available. For instance, the in-
spection effectiveness of the DRM has been re-
vised, based on the defect data collected during
the development of the IBM AS/400. Since the
general-availability date of the IBM AS/400 (August
1988), we have been tracking the field defect data
and monitoring the predictive validity of the mod-
els. Although implementation tools are available,
we make sure that every time a model is used,
relevant issues are re-examined.

From our experience, the largest obstacle in soft-
ware modeling was data constraints. For the past
several years, we have been making a concerted
effort to improve our data collection system. With
better data, we anticipate our models will provide
better explanations and more accurate projec-
tions of the complex reality.

Modeling is closely related to our development
quality strategy. Figure 10 shows two key direc-
tions in our strategy in relation to the Rayleigh
model, which is derived from the AS/400 defect
removal data throughout the development
process. The first direction is to shift the peak of
the curve to the left as much as possible by early
defect removal. This can be achieved by process
improvement, especially for the design review

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 10 Development quality strategy and the defect injection and removal model

DEFECT RATE
|

l—————‘ REDUCE DEFECT INJECTION

4—— EARLY DEFECT REMOVAL

| 1] i
10 1 I2
DEVELOPMENT PHASES

GA

and code inspection process. The second direc-
tion is to reduce error injection and push the
curve downward. This approach is more difficult
but also more effective. Actions taken under this
approach at the Rochester Programming Labora-
tory include, among others, specific quality and
technical education and laboratory-wide imple-
mentation of the defect prevention process. The
lower curve in Figure 10 represents our ultimate
goal for the defect injection and removal pat-
tern—much lower defect injection and much ear-
lier defect removal.

The role of modeling is crucial to software devel-
opment quality at the Rochester laboratory.
Through modeling, we gain understanding of the
mechanics of engineering quality into the devel-
opment process. In addition to the models dis-
cussed in this report, other statistical and quality
engineering tools are available. We also take ad-
vantage of them whenever the nature of our data
permits.

Acknowledgments

I would like to thank Lionel L. Craddock, David
J. Lind, and John E. Peterson for their review of

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

and comments on this paper. I am grateful to the
anonymous reviewers for their helpful com-
ments.

Application System/400 and AS/400 are registered trademarks
of International Business Machines Corporation.

SAS is a trademark of SAS Institute, Inc.

Cited references

1. A. L. Goel, “*Software Reliability Models: Assumptions,
Limitations, and Applicability,”” IEEE Transactions on
Software Engineering SE-11, No. 12, 1411-1423 (1985).

2. P. A. Tobias and D. C. Trindade, Applied Reliability, Van
Nostrand Reinhold Company, New York (1986).

3. L. H. Putnam, “A General Empirical Solution to the
Macro Software Sizing and Estimating Problem,” IEEE
Transactions on Software Engineering SE-4, No. 4, 345-
361 (1978).

4. A. L. Goel and L. Okumoto, “A Time-Dependent Error-
Detection Rate Mode! for Software Reliability and Other
Performance Measures,” IEEE Transactions on Reliabil-
ity R-28, 206-211 (1979).

5. P. N. Misra, “Software Reliability Analysis,” IBM Sys-
tems Journal 22, No. 3, 262-270 (1983).

6. M. Ohba, ““Software Reliability Analysis Models,” IBM
Journal of Research and Development 28, No. 4, 428-443
(1984).

7. M. L. Ralston and R. L. Jennrich, “DUD, a Derivative-
Free Algorithm for Nonlinear Least Squares,” Techno-
metrics 20, No. 1, 7-14 (1978).

KAN

361

8. Personal communications with Michael J. Falcetano and
Joseph M. Caruso at IBM Kingston, New York.

9. W. K. Wiener-Ehrlich, J. R. Hamrick, and V. F. Rupolo,
“Modeling Software Behavior in Terms of a Formal Life
Cycle Curve: Implications for Software Maintenance,”
IEEE Transactions on Software Engineering SE-10, No.
4, 376383 (1984).

10. H. Remus and S. Zilles, “Prediction and Management of
Program Quality,” Proceedings of the Fourth Interna-
tional Conference on Software Engineering, Munich,
341-350 (1979).

11. Personal communications with Dan R. Stott at IBM King-
ston, New York.

Stephen H. Kan IBM Application Business Systems, High-
way 52 and NW 37th Street, Rochester, Minnesota 55901. Dr.
Kan is a staff programmer in the Market-Driven Quality de-
partment, Application Business Systems Development Lab-
oratory. He holds B.S. degrees in sociology and computer
science, M.S. degrees in statistics and sociology, and a Ph.D
in demography with majors in projection and estimation, sta-
tistics, and survey research. He joined IBM in 1987, and is a
Certified Quality Engineer in the American Society for Quality
Control. In his current assignment, his focuses are software
development quality, AS/400 system software quality plan,
and laboratory-wide implementation of the defect prevention
process in programming areas.

Reprint Order No. G321-5440.

362 xan IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

