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This  paper  summarizes the models  used  by a 
large  software  development  organization for 
estimating  software  reliability  and  managing 
software  development  quality.  The  role of 
modeling  in  software  quality  improvement  is 
illustrated.  Implementation of the  models, 
reliability of the  estimates,  predictive  validity, 
and  the nature of data are discussed. 

A n emerging trend in the  software  industry is 
to  use scientific methods to achieve preci- 

sion in managing software  projects.  In progress- 
ing toward  this  goal,  the role of statistical  and 
engineering modeling is pivotal. Modeling is a 
systematic way to describe  the complex reality. 
The knowledge we gain from modeling can help 
us develop quality strategies scientifically and 
manage quality accordingly and  appropriately. 

This  paper briefly describes  the models used for 
estimating software reliability and managing soft- 
ware  development quality at  the IBM Rochester 
Programming Laboratory.  Examples  are based 
on  data collected during the  development of the 
IBM Application System/4OO@' (AS/400@) software 
system.  Issues of implementation, reliability, pre- 
dictive  validity, and the  data  are  discussed where 
applicable. 

Reliability  models 

Reliability models are used to  estimate  the  defect 
rate  that is latent in a system when the  system is 
shipped.  Such an  estimate is important  for  two 
reasons: 1) it is an objective  statement of the  code 
quality of the software  system,  and 2 )  it  may  be 
used for  resource planning in order  to  ensure  con- 
tinual programming and  service  support. 
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A number of software reliability models exist, 
each having its own associated  assumptions, lim- 
itations,  and applicability (see Reference 1). After 
examining the  data  and  considering  relevant is- 
sues, we decided to use  the Rayleigh model and 
the  exponential model and its variants.  Both mod- 
els belong to  the family of the Weibull distribu- 
tion.  The Weibull distribution  has  been used for 
decades  for reliability analysis in various fields of 
engineering, ranging from the  fatigue life of deep- 
groove ball bearings to  electron  tube  failures  and 
the overflow incidence of rivers. It is one of the 
three known extreme-value  distributions  (see 
Reference 2 ) ,  and  one of its marked  characteris- 
tics is that  the tail of its probability density  func- 
tion approaches  zero  asymptotically,  but  never 
reaches  it. Its cumulative  distribution  function 
(CDF) and probability density  function (PDF) 
are: 

CDF: F(t)  = 1 - e-(:) 'n 

PDF: f ( r )  = E -  (:I - e - ~ m  

where m is the  shape  parameter, c is the scale 
parameter,  and r is time. 

Figure 1 shows  several Weibull probability den- 
sity curves with varying values of the  shape  pa- 
rameter, m. 

m 
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Figure 1 Weibull  probability  density  function 

The  Rayleigh  model. The Rayleigh model is a  spe- 
cial case of the Weibull distribution when m = 2.  
Its CDF and PDF are: 

CDF:  F(t) = 1 - e-(:) 

The Rayleigh PDF first increases to a peak and 
then  decreases  at  a  decelerating  rate.  This is il- 
lustrated in Figure l for m = 2. The c parameter 
is a  function of tm,  the time at which the  curve 
reaches  its  peak. By taking the derivative off(t) 
with respect  to t ,  setting it to  zero,  and solving the 
equation, tm can  be  obtained. 

After tm is estimated,  the  shape of the  entire 
curve  can  be  determined.  The area below the 
curve  up to tm is 39.35 percent of the total area. 

It  has  been empirically well-established that  soft- 
ware  projects follow a life-cycle pattern  described 
by the Rayleigh density  curve  (see  Reference 3). 
The  basic  assumption  for using the Rayleigh 
model is that if more  defects  are  discovered  and 
removed in the  earlier  development  phases,  fewer 
will remain in later  stages, which results in better 
quality of the  system. As shown in Figure 2, we 
modeled the  defect-removal  pattern of the six de- 
velopment steps: high-level design (IO), low-level 
design (Il), coding (12), unit test (UT), component 
test (CT), and  system  test (ST). The defect  rate of 
the  last  phase in the figure, the post-general-avail- 
ability phase (PGA), is the  target of our estimate. 

The  exponential  model. The exponential model is 
yet another special case of the Weibull family, 
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Figure 2 Rayleigh model 
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with the  shape  parameter m equal  to 1. It is best 
used  for  statistical  processes  that decline mono- 
tonically to  an  asymptote.  Its CDF and PDF are: 

CDF: ~ ( t )  = 1 - e- ( : )  

- - 1 - e - A r  

1 
P D F : ~ ( ~ )  = -. e- ( ;>  c 

= A . e-At 

where c is the scale  parameter, t is time, and A = 
l/c. 

The exponential model is one of the  better known 
software reliability models.  The Goel-Okumoto 
Nonhomogeneous  Poisson  Process Model (NPPM) 
is based  on  the  exponential  distribution  (see Ref- 
erence 4). Misra (see  Reference 5 )  used the  ex- 
ponential model to estimate  the  defect-arrival 
rates  for  the  Shuttle  Ground  System  software of 
the National  Aeronautics  and  Space Administra- 
tion (NASA). The software  provided  the flight con- 
trollers  at  the  Johnson  Space  Center with proc- 
essing support  to  exercise command and  control 
over flight operations.  Actual  data from a 200- 
hour flight mission indicated  that  the model 
worked  very well. 
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As Figure 3 shows,  we modeled the weekly 
defect-arrival  data  since  the  start of the  system 
test, which started  when  the  development  work 
was virtually complete.  The  system  test  uses  cus- 
tomer  interfaces,  tests  external  requirements, 
and simulates  end-user  application  environ- 
ments. The  pattern of defect  arrivals  during  this 
stage,  therefore, should be indicative of the la- 
tent-defect  rate. 

In addition to  the  standard  exponential  model,  we 
also used two  variant models that  were  proposed 
by Ohba  for  software reliability analysis: the de- 
layed S model and  the inflection S model (see 
Reference 6).  The  exponential model has  no in- 
flection points,  the  delayed S model has  a slight 
inflection at  the beginning of the  curve,  and  the 
inflection S model has  a  substantial inflection. 
The  exponential model assumes  that  the  peak of 
defect  arrival is at  the beginning of the  system  test 
phase,  and  continues  to  decline  thereafter.  The 
delayed S model assumes  a slightly delayed  peak, 
and  the inflection S model assumes a later  and 
sharper  peak.  The  three  models, as well as  others 
similar, are referred  to as reliability growth 
models. 

Implementation. Our  estimations of the model pa- 
rameters of the Rayleigh and  exponential models 



Figure 3 Exponential  model 

are implemented by programs  written in the  Sta- 
tistical Analysis System, SAS (RAY for  the Ray- 
leigh model and EXPONEN for  the  exponential 
model). The  programs use the nonlinear regres- 
sion procedure.  From  the  several  methods in non- 
linear  regression,  we  chose  the DUD method  for 
its simplicity and efficiency (see  Reference 7). 
DUD is a  derivative-free algorithm for nonlinear 
least  squares.  It  competes  favorably with even 
the  best  derivative-based algorithms when eval- 
uated  on  a  number of standard  test  problems. 

Our SAS programs  estimate model parameters  and 
produce a graph of fitted model versus  actual  data 
points on a graphic terminal screen using the 
Graphics  Data Display Manager  (GDDM).  The SAS 
programs  perform a chi square goodness-of-fit 
test, and  derive  estimates  for  the  latent-error  rate. 
The probability  (p-value) of the chi square  test is 
also  calculated. If the  test  results  indicate  that  the 
fitted model does not adequately  describe  the 
observed data (p > .05), a warning statement is 
issued in the  output. 

In 1985, the IBM Federal  Systems Division at 
Gaithersburg,  Maryland,  developed  a PC program 
called the  Software Error Estimation  Reporter 
(STEER). The STEER program, now available to 
other IBM sites,  implements  a  discrete version of 
the Rayleigh model by matching the input data 

with a  set of 11 stored Rayleigh patterns  and a 
number of user  patterns.  The  stored Rayleigh pat- 
terns are expressed in terms of percent  distribu- 
tion of defects  for  the six development  phases: 
high-level design, low-level design,  coding, unit 
test, integration test, and  system  test. The match- 
ing algorithm involves taking a logarithm trans- 
formation of the input  data  and  the  stored Ray- 
leigh patterns, calculating the  separation  index 
between the input data  and  each of the stored 
patterns,  and  selecting  the  stored  pattern with the 
lowest separation  index as  the best-fit pattern. 

There are several  problems with the STEER ap- 
proach.  First,  the matching algorithm deviates 
from statistical  estimation  methodology, which 
derives  estimates of model parameters  directly 
from the  input  data  points  based  on  theoretically 
proven  procedures.  Second, it always  produces a 
best-match  pattern  even when none of the  stored 
patterns is statistically  adequate in describing the 
input data. There is no  mention of how small the 
separation  index should be in order  to indicate a 
good fit. Third,  the  stored Rayleigh patterns  are 
far  apart; specifically, they range from 1.00 to 
3.00 in terms of rm, with a rm increment of 0.25, 
which is considerably  large.  This  means  they are 
not sufficiently sensitive  for  estimating  the  latent- 
error  rate, which is usually a  very small number. 
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There  are,  however, ways to circumvent  the  last 
two problems.  First,  use  the  separation index 
conservatively  and be skeptical of the  results if 
the index  exceeds 1. Second, use the program 
iteratively:  after selecting the  best-match  pattern 
(for instance,  the  one with tm = 1 . 7 9 ,  calculate 
a  series of slightly different Rayleigh patterns  that 
center  at  the  best-match  pattern (for instance, 
patterns ranging from tm = 1.50 to tm = 2.00, 
with an  increment of 0.05 or 0.01) and  use  them 
as user  patterns  to  match against the input data 
again. The  outcome will be a better  “best  match.” 
With this  approach, STEER could be a good ref- 
erence  tool  when mainframe statistical  tools are 
not  available. 

The Software Error Tracking Tool (SETT) devel- 
oped by Falcetano  and  Caruso  (see  Reference 8) 
provides an implementation for  the  three reliabil- 
ity growth models discussed  earlier. 

Reliability and predictive validity. Reliability re- 
fers  to  the degree of change in the model output 
due  to  chance  fluctuations in the input data. In the 
present  case,  the  question is how accurate  are  the 
software reliability estimates. In specific statisti- 
cal  terms, reliability relates closely to  the confi- 
dence  interval of the  estimate:  the  narrower  the 
confidence interval, the more reliable the  esti- 
mate,  and vice versa. 

We purposely did not form confidence intervals 
on  our  estimates. Given the few available input 
data  points,  the  chance of having satisfactory 
confidence intervals is very slim. This is espe- 
cially true  for  the Rayleigh model, which is based 
on only six rates.  Our  strategy,  therefore, is to 
rely instead  on  intermodel reliability. Although 
the confidence interval  for  each model estimate 
may not be  satisfactory, if the  estimates by  dif- 
ferent models are close to each other,  our confi- 
dence  about  the  estimates is strengthened. On the 
other  hand, if the estimates from different models 
lie far  apart,  our confidence will not be  strength- 
ened  even if the confidence interval  for  each sin- 
gle estimate is very small. In  our  case,  the Ray- 
leigh model and  the  exponential model are based 
on  entirely different data.  The final estimates  for 
the two  approaches  turned  out  to be consistent, 
and we are comfortable with the  results. 

Predictive validity refers simply to  the  accuracy 
of model estimates.  To establish  predictive va- 
lidity, model estimates  and  actual  outcomes must 
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be compared. When applying the Rayleigh model 
to study  the life cycle of manpower of software 
projects,  Wiener-Ehrlich  and  associates  found 
that  the model underestimated  the manloading 
scores  at  the tail (see  Reference 9). At the IBM 
Rochester Programming Laboratory, actual  de- 
fect  data  after  the  system is shipped are available 
for  several  releases of the IBM System/38.  When 
comparing the Rayleigh estimates with the  actual 
defect  rates,  we  also  found  that  the Rayleigh 
model consistently  underestimates the latent- 
error  rates. Using the Rayleigh estimates  directly, 
therefore, will not be predictively valid. Our strat- 
egy  is to  adjust  the Rayleigh output  based  on  the 
IBM System/38  experience.  The  adjustment  factor 
is the mean difference between  the Rayleigh es- 
timates  and  the  actual  defect  rates  reported. The 
adjustment is logical, given the similar architec- 
tures of IBM AS/400 and IBM System/38 and  the 
similar structural  parameters in the development 
process, including organization,  management, 
and work force. 

The  exponential model is well known in software- 
reliability analysis.  However,  most of the model’s 
applications in the  literature  were  for  “clean”  ex- 
ecution-time data.  The defect-arrival  data  we 
have are calendar-time  based. In other  words,  the 
data  are  less  precise.  Ohba  notes  the  exponential 
model does  not  work well for  calendar-time  data 
with a nonhomogeneous  time  distribution of the 
testing effort (see Reference 6). In  the  case of the 
IBM AS/400, the  testing efforts remained  consis- 
tently high and  homogeneous  throughout  the  sys- 
tem-test  phase.  Furthermore,  because  the  system 
is very large (7.1  million lines of source  code  at 
the first release),  the  rates  tend to be stable  even 
though no execution-time  data are available. 

The  general availability (GA) date of the IBM AS/400 
was August 24, 1988. Since then,  the  actual field 
defect  arrivals  have  been  tracked.  Projections 
based on defect  arrivals  validated our estimation 
methodology based  on pre-GA data. 

Software  quality  management  models 

It is important to  assess  the quality of a  software 
system when development  work is complete. It is 
as important, if not more so, to monitor the quality 
during development. Software quality management 
models serve  as  the measuring tool. Early warning 
signs or improvement can be detected, and timely 
management actions can be taken. 



Figure 4 Defect injection and removal step 

Any software quality management model must 
cover  the  early  development  stages in order  to  be 
useful. Models that  are  based  on  data collected at 
the  end of the  development  process permit little 
time  for  actions, if needed.  The  exponential 
model, which is based  on  system-test  data when 
development  work is virtually complete,  is,  there- 
fore, not as useful as  other models that  are dis- 
cussed in the following sections.  However, when 
sufficient system-test  data  are  available,  the  ex- 
ponential model can  be used to determine when to 
end  system  testing  for a specific, predetermined 
quality  index. 

The Rayleigh model. A Rayleigh model derived 
from a previous  release of a  product or from his- 
torical  data  can  be used to  track  the  current pat- 
tern of defect  removal. If the  current  pattern is 
more  front-loaded  than  the model would predict, 
it is a positive sign; it is a negative sign if the 
opposite is true. When sufficient data  are avail- 
able  before  development  work is complete, pa- 
rameters of the model can be re-estimated,  and 
projections of the final quality index  can  be  made. 
For models based on defect-removal  rates of de- 
velopment  steps (in our  case, six steps),  at  least 
two  rates  are  required  for  parameter  estimation. 
Such  early  projections would not be as reliable as 
the final estimate  at  the end of the  development 
cycle.  Nonetheless,  they  can  indicate  the direc- 
tion of the  quality of the  current  release so that 
timely actions  can be taken.  For  instance, if pro- 
jections  at  the coding stage (12) indicate  a  poor 
final quality  index, one feasible  action is to in- 
crease  focus  on  code  inspection of the  software 
modules, allowing fewer  defects  to  escape  to  the 
integrated  code. 

The discrete defect-removal model. Whereas the 
Rayleigh curve models only the  pattern of defect 
removal,  the  discrete  defect-removal model 
(DRM)  deals with both  defect  removal  and  defect 
injection. The DRM takes a set of error-injection 
rates by development  step  and  a  set of inspection 
and  testing-effectiveness  rates as input,  then 
models the  defect-removal  pattern  step-by-step. 
The  defect injection and  removal  activities at 
each  step (see Reference 10) are described by 
Figure 4. 

The DRM takes  a simplified view of Figure 4 and 
works as shown in Figure 5 .  

The  error-injection  rates  and the inspection  and 
testing effectiveness are usually based  on  esti- 
mates  from  the  previous  release or from  historical 
data. If the  total  number of defects, or defect rate, 
of the  system are  known,  the final quality  index 
can  be  calculated  based  on  the  model  output  at 
the  exit of the  last  development  step.  However, 
unlike the  parametric  models, the DRM cannot  es- 
timate  the final quality index. It  cannot  do so be- 
cause  the  total  defect  rate (or,  for that  matter,  the 
latent-defect  rate  when  the  system is shipped), 
the  very  target  for  estimation, is needed as input 
to  the model. It is a  tracking  tool  instead of a 
projection  tool.  The  rationale  behind  this model is 
that if one  can  ensure  that  the  defect-removal  pat- 
tern by step is similar to  that  for a previous  expe- 
rience,  one might reasonably  expect to  see ap- 
proximately the  same final quality  index. 

The DRM is a useful management tool which can 
track  current quality status  during  development 
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Figure 5 Defect injection and removal step, simplified view 
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Figure 6 Discrete defect-removal model 
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(as  shown in Figure 6) and verify the final quality ity index. If we plan to  improve the inspection 
index  that is estimated from independent  sources. effectiveness by 15 percent  at  the low-level design 

stage, how much can  we  expect to gain in system 
More  importantly,  the DRM can be used to eval- quality? If we  invest in a defect  prevention 
uate  the  influence of inspection  and testing effec- process  and plan to  reduce  the  error-injection  rate 
tiveness or error-injection  rates  on  the final qual- at  the coding stage by 5 percent, how much could 
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we gain? Approximate  answers to questions like 
these could be  obtained  through the DRM. Once 
the DRM is verified, one  can  vary  the input (for 
instance,  inspection  effectiveness of a particular 
stage) and  compute  the final quality index again. 
Figure 7 shows  the  percent  improvement in the 
final quality index (QI) by improving inspection 
effectiveness  for a software  product. 

The PTR submodel. For  the DRM (as well as  for  the 
Rayleigh model),  when used for  tracking quality 
status during development,  the  Rochester Pro- 
gramming Laboratory  also  uses a submodel to 
track  the Program Trouble  Report (PTR) data  dur- 
ing the machine testing stages. The PTR is the 
vehicle  for  defect  reporting  and integrating fix 
when the  code is placed  under  a  formal change- 
control  process. Valid PTRS are, therefore,  code 
defects  found  during machine testing. A PTR sub- 
model is necessary  because the period of formal 
machine testing  (part of unit test, component test, 
and  system  test) usually spans  months,  and  one 
must  ensure  that  the chronological pattern of de- 
fect  removal  is  also  on  track. Simply put,  the  sub- 
model spreads over time the number of defects that 
are expected to be removed during the machine- 
testing phases so that more precise tracking is  pos- 
sible. It is a function of three variables: 

Expected  overall PTR rate  (per  thousand lines of 

Planned or  actual lines of code integrated over 

PTR-surfacing pattern  after  code is integrated 

The  expected  overall PTR rate  can be estimated 
from historical data. Lines-of-code integration 
over time is usually available in the  current im- 

code) 

time 
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plementation plan.  The PTR-surfacing pattern af- 
ter code integration depends  on  both  testing  ac- 
tivities and  the driver-build schedule. For 
instance, if a new driver is built every  week,  the 
PTR discoveryhxhntegration  cycle will be  faster 
than  that  for bi-weekly or monthly drivers. As- 
suming similar testing  efforts, if the driver-build 
schedule differs from the previous release, adjust- 
ment to  the previous release pattern is needed. If 
the current release is the first release, it is more 
diacult  to establish a base pattern. Once a base 
pattern is established, subsequent refinements are 
easy.  For  the IBM AS1400 system,  the  base  pattern 
was estimated from Systed38 data  and refined sev- 
eral times during the development process.  The 
current pattern involves a seven-month spread of 
PTRS after code is integrated. 

Figure 8 shows  an  example of the PTR submodel 
with actual  data.  The  code  integration  changes 
over time during development, so the model is 
updated periodically. In  addition to quality  track- 
ing, the model also  serves  as  a powerful quality 
impact statement  for  any slip in code integration 
or testing schedule. Specifically any  delay in de- 
velopment and  testing will skew the model to  the 
right, and  the  intersection of the model line and 
the  vertical line of the general-availability (GA) 
date will become higher. 

The PTR arrivavbacklog  projection  model. Near 
the  end of the  development  cycle, a key  question 
is whether  the  scheduled  code-freeze date  can  be 
met without sacrificing quality. Will the PTR ar- 
rival and backlog decrease  to  the predetermined 
desirable  levels by the code-freeze  date? The PTR 
submodel  discussed is not sufficiently precise  and 
objective. It is a  tracking  tool,  not a projection 
tool. On the  other  hand,  the  exponential  model,  or 
other models based  on  system-test  data, is suffi- 
cient,  but  requires  data  generated  when  the  sys- 
tem test is well under  way. To fill this  void,  we 
developed  the  PTR-arrival/backlog  projection 
model based  on the polynomial regression model. 
Specifically , a few weeks  after the  start of system 
test (usually several  months  before  the  planned 
code-freeze  date),  we modeled the PTR arrival and 
backlog trend  based  on polynomial terms of chro- 
nological time, time lag variables,  cumulative 
lines-of-code integrated,  and  other significant di- 
chotomous  variables. 

This model  is  different from the exponential model 
in several aspects.  First,  the time frame  covers all 
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Figure 8 PTR submodel 
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machine testing (all PTRS) after the code is integrated 
(part of unit test, component test, and system test). 
The exponential model applies only to defect arriv- 
als during system  test.  Second,  the  data for this 
model are PTR arrivals and backlog  while the ex- 
ponential model includes only  valid PTRS (defects). 

Figure 9 compares  the PTR-arrival projection 
model for AS/400, Release 1 ,  with actual  data 
points  for the projection  period.  The model, with 
R2 = 95.6 percent,  produces  a projection that is 
accurate within a week in terms of when the PTR 
arrivals would decrease  to  the  predetermined  de- 
sirable level. 

Unlike other models discussed, the PTR arrival/ 
backlog projection model  is  really a modeling ap- 
proach,  rather than a specific model. Statistical ex- 
pertise, modeling experience, and a thorough  un- 
derstanding of the  data  are necessary in order to 
deal with issues pertaining to model assumptions, 
variables specification, and  final  model selection. A 

desirable outcome often depends on  the model’s 
R-square and on the validity  of the assumptions. 
Furthermore, it requires a fairly  large number of 
data points, and the  data must pass the last  inflec- 
tion point of the process in order  for  the projections 
to be accurate. 

Implementation. As mentioned earlier, we imple- 
mented the Rayleigh model by SAS programs. 
GRAFSTAT, an IBM graphic  and  statistical  software 
system, is also a good tool for  models  based  on 
such statistical  distributions as  the Weibull and 
Rayleigh. 

Both the DRM and  the PTR submodel are non- 
parametric  and relatively simple: they  can be im- 
plemented by most programming languages or 
even by manual calculation. At the  Rochester 
Programming Laboratory, they are implemented 
in spreadsheet  programs. QRISK, a  productivity 
and  quality-assessment tool. developed by Stott, 
also implements the DRM (see  Reference 11). 
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Figure 9 PTR-arrival projection  model 
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We implemented the PTR-arrival/backlog projec- 
tion model in SAS. Since  the model is based on the 
method of least  square  regression, which is rela- 
tively straightforward  and  robust in terms of com- 
putational  algorithms,  any  statistical  software  can 
do  the  job. In constructing  the  model,  however, 
the  assumptions of normality,  expected mean er- 
ror, and  homoscedasticity should be examined. 
The  assumption of correct specification should be 
satisfied if a high R-squared is obtained.  In poly- 
nomial models, multi-collinearity always  exists 
among  the polynomial terms (such as time, r ,  t 2 ,  
and t ’). If multi-collinearity is a concern,  center- 
ing the values of the variables at their  means will 
yield satisfactory  results. 

Summary  and  conclusions 

We have briefly summarized  the models used at 
the IBM Rochester Programming Laboratory  for 
managing software  development quality and es- 
timating software reliability. The Rayleigh model 
and the DRM cover  the  entire  development  cycle, 
and the  three  other models focus on different seg- 
ments of the  continuum of machine testing. All 
five models have  proven useful in the develop- 
ment of the IBM AS/400 software  system. 

Modeling is a  systematic way to describe  the 
complex reality in simpler terms.  Because reality 

changes,  the models must  be re-examined and up- 
dated. We continue  to refine our models as  soon 
as new data  are  available. For  instance,  the in- 
spection  effectiveness of the DRM has  been  re- 
vised,  based  on  the  defect  data  collected during 
the  development of the IBM AS/400. Since  the 
general-availability date of the IBM AS400 (August 
1988), we have  been  tracking the field defect data 
and monitoring the  predictive validity of the mod- 
els. Although implementation  tools are available, 
we make sure  that  every time a model is used, 
relevant  issues  are  re-examined. 

From  our  experience,  the  largest  obstacle in soft- 
ware modeling was  data  constraints.  For  the  past 
several  years, we have  been making a concerted 
effort to  improve  our  data  collection  system. With 
better  data, we anticipate  our models will provide 
better  explanations  and more accurate projec- 
tions of the complex reality. 

Modeling is closely related  to our development 
quality strategy.  Figure 10 shows two key direc- 
tions in our  strategy in relation to  the Rayleigh 
model, which is derived  from  the AS/400 defect 
removal data  throughout  the  development 
process.  The first direction is to shift the peak of 
the  curve to  the left as much as possible by early 
defect  removal. This can be achieved by process 
improvement, especially for  the design review 
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Figure 10 Development  quality  strategy  and  the  defect  injection and removal  model 
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and  code  inspection  process.  The  second  direc- 
tion is to reduce  error injection and  push  the 
curve  downward.  This  approach is more difficult 
but  also  more effective. Actions  taken  under this 
approach  at  the  Rochester Programming Labora- 
tory  include, among others, specific quality and 
technical  education  and  laboratory-wide imple- 
mentation of the defect  prevention  process.  The 
lower  curve in Figure 10 represents  our ultimate 
goal for the defect  injection  and removal pat- 
tern-much lower  defect injection and much ear- 
lier defect  removal. 

The role of modeling is crucial  to  software devel- 
opment quality at the Rochester  laboratory. 
Through modeling, we gain understanding of the 
mechanics of engineering quality into  the  devel- 
opment  process. In addition  to  the models dis- 
cussed in this  report,  other  statistical  and quality 
engineering tools  are  available. We also  take  ad- 
vantage of them  whenever  the  nature of our  data 
permits. 
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