A knowledge-based
system for MVS
dump analysis

A new domain in software problem determination
can be automated by means of this knowledge-
based system. The system imitates a human
problem solver by using the same tools and the
same diagnostic approach as the experts use,
including the processing of human-readable data.
The application is fully integrated within the
target Multiple Virtual Storage (MVS) operating
system to ensure user acceptance. A large
variety of knowledge is contained in the system,
ranging from pattern-recognition knowledge to
basic MVS knowledge and problem-solving
strategies. The diagnostic approach is based on
a model of software problem situations and on
diagnostic reasoning methods adopted from the
medical application domain. The goal of the
project was to solve a significant part of the
problem resolution process automatically, rather
than to build yet another tool for use in software
problem determination. This system is a first step
to further automation in this area.

hree groups of people are involved in the de-

velopment of a knowledge-based system, us-
ers, experts, and knowledge engineers. The users
consult a knowledge-based system to solve their
problems. It is well-known that user acceptance
of a knowledge-based application is not easy to
attain. Lack of acceptance is for various reasons,
some of which may be psychological. Therefore,
the project must be very carefully positioned, and
the users must be involved early in the develop-
ment process to ensure that their expectations are
met. The integration of the knowledge-based sys-
tem into the working environment of the user is a
key point.

336 LENZ AND SAELENS

by N. G. Lenz
S. F. L. Saelens

The development process for a knowledge-based
system differs substantially from the staged de-
velopment process for traditional software. Ex-
perts and knowledge engineers work together to
bring the system into being. The experts need not
have data processing skills, but they do have to
contribute the application-specific expertise. The
knowledge engineers elicit the knowledge from
the experts and map it to an executable form, for
example, a set of rules.

We describe a knowledge-based system called the
MVS Dump Analyzer and some experiences with
it, along with the intricacies involved in the prac-
tice of knowledge-based programming.

The task of solving MVS software problems

Since its introduction in 1973, the 1BM Multiple
Virtual Storage (MVS) operating system has be-
come large and powerful, but also complex. The
complexity becomes obvious in error situations.
Typically, MVS is run in a big computer installa-
tion. The installation is managed and maintained
by a dedicated group of MVS operators and system
programmers who have to solve software prob-
lems. It can also be difficult for application pro-
grammers to resolve error situations.

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

The availability of competent people for problem
resolution is a bottleneck in computing centers. In
small computer installations, the skill may not be
available at all. In big computer installations, ex-
perts typically are very busy. It takes years of

Application and system problems can
be diagnosed by analyzing the dump
containing the problem situation.

experience to acquire the knowledge that system
programmers need for MVS problem resolution.
Our goal was to remedy this bottleneck situation
by providing MVS problem-solving expertise in
the form of a knowledge-based system. Thus,
MVS problem resolution can be partially auto-
mated.

To handle MVS problems, the problem-solving
process is organized into several stages. Our in-
vestigation showed that in each stage approxi-
mately 90 percent of the arriving problems are
solved. The other 10 percent must be routed to
the subsequent stage. The following are typical
stages:

1. Help desk—A person having a problem usu-
ally contacts the help desk first. The problems
are similar to these: “I cannot print my data set
on printer xyz,” or ‘“My application panel
does not come up, although I did not change
anything.” The latter problem might result
from a version update of a specific tool. Often
several people have the same problem. In that
case the help desk will immediately know what
to do.

. System support—For about 10 percent of the
cases, system programmers have to take a
closer look at the problem. They consult de-
tailed manuals, sometimes analyze a dump,
and solve the majority of the problems. The
rest must be forwarded to the IBM service or-
ganization.

3. First-level IBM support—This organization re-

ceives customer problems and resolves them
to a certain extent. For example, a database is

[\

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

queried to find out if the problem is already
known. Difficult problems or those not found
in the problem database are passed to the sec-
ond-level support.

4. Second-level IBM support—Here the sophisti-
cated problems are analyzed. The outcome
can be manifold, for example, a new problem
which must be fixed by IBM, a customer error
in the use of a specific software component, or
an installation problem.

The knowledge required to solve help desk prob-
lems is typically shallow and rapidly changing.
We decided to concentrate on the other areas,
where more thorough reasoning is necessary. By
including all basic MVS knowledge, we ensure that
the knowledge stays relevant for a long period of
time.

Problem categories. In the MvS environment all
software problems can be categorized according
to symptoms in the following way:

% Abend (abnormal termination)

% Wait

% Loop

% Program check

% Message

%~ Incorrect output

% Other (for example, hardware, teleprocessing
problem, etc.)

A problem may fall into more than one of these
categories. In some cases a dump is automatically
generated. For other cases a dump can be pro-
duced in order to analyze the problem.

Both application and system problems can be di-
agnosed by analyzing the dump containing the
problem situation. In many cases this analysis is
sufficient to resolve the problem. In some cases
further investigation is needed, based on the re-
sults provided by the dump analysis. The limits of
the dump analysis are reached when a human
problem solver must look into the program logic
to find out what the programmer meant to do.

Because not all system programmers are experi-
enced dump readers and because analyzing a dump
is very time-consuming, even for a specialist, we
decided to build a knowledge-based system for MvSs
dump analysis. Dump analysis is complex; no al-
gorithmic solution is available today. Therefore,
dump analysis is suitable for a knowledge-based
system. The knowledge to analyze a dump is not
volatile. This stability is important to ensure the
maintainability of the system.

LENZ AND SAELENS 337

Knowledge acquisition

A major point that distinguishes knowledge-
based from ‘‘classical” program development is
the necessity of knowledge acquisition. It corre-
sponds to system analysis and partly to the design
phase in traditional programming. The ultimate
goal of the knowledge acquisition phase is to have

Performance is pure experience and
the most tacit knowiedge.

a knowledge model. The knowledge engineer an-
alyzes the expert’s knowledge and at the same
time puts together a logical construct of it. This
process is a combination of analysis and synthesis
and is usually performed in a highly iterative way.

Since we had to elicit different kinds of knowl-
edge, we used various techniques:

¢ Open interviews (experts talk about their work,
no directed questioning)

¢ Closed interviews (with directed questions to
clarify details)

¢ Expert lessons on selected MVS topics

¢ Books and system literature

» Example protocols (watching how the expert
proceeds to solve a problem)

* Expert reviews of protocols and written notes

» Iterative enhancements of the prototype

* Completion of selected parts of the application
by the expert

The last way is only possible if a framework for
the part of the knowledge to be completed is de-
fined. This way is probably the most preferable,
since no information is lost by the knowledge en-
gineering process. The two methods mentioned
prior to the last one have an advantage from a
cognition point of view: Humans are more inven-
tive in criticizing or commenting on a solution
than in creating one.

The knowledge engineering method we used is
best reflected in an article by O. E. Laske.! The
article, which is about building knowledge-based

338 LENZ AND SAELENS

systems, distinguishes three dimensions of expert
knowledge:

¢ Task environment—The physical and organiza-
tional environment in which the expert works

s Competence—The expert’s intrinsic, tacit pro-
fessional knowledge

¢ Performance—The step-by-step problem-solv-
ing procedure of an expert, i.e., his or her expe-
rience

Each of the three dimensions had to be identified
and acquired in a different way. With regard to
our project, these three dimensions of expert
knowledge have the following meanings.

Environmental knowledge reflects the context of
solving MVs software problems. It consists of the
service organization structure and the tools used
to solve the different tasks. This knowledge is not
explicitly coded in rules. It is reflected in the way
we implemented and designed the MvS Dump An-
alyzer and in the way we address its users. This
environmental knowledge was retrieved by visit-
ing customer and IBM computer installations and
service organizations. The main technique used
here was the open interview.

Competence is theoretical in nature. Competence
knowledge was collected by closed interviews
and from teaching sessions, from reviews, and
from literature. As there is a vast amount of MVS
documentation, knowing which topics are impor-
tant is also expert competence. Typical examples
of competence knowledge are the control block
structure and chaining, the use of supervisor calls
(SVCs), the operating system error recovery, or
the status of a resource.

Competence mostly includes analytical MVS
knowledge, but it also includes basic heuristics.
(For example, a task with a nonzero completion
code typically has a problem, but there are ex-
ceptions.) In our system this knowledge is coded
in rules and is also reflected in the structure of the
data.

Performance is pure experience and the most tacit
knowledge. An expert may solve a problem with-
out being able to tell why he or she proceeds in a
particular way or any other way. This compiled
knowledge can be retrieved by watching the ex-
pert at work. In our case we produced protocols
and captured the screen images of the data at which

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

the expert looked. We printed these screens and
reconstructed the diagnostic reasoning with the ex-
pert during reviews.

This kind of knowledge is partly coded in rules
and partly reflected in the module structure. It
covers heuristics (rules of thumb) and strategies.

The MVS Dump Analyzer

The developed MvS Dump Analyzer offers the
following functions:

e Identification of the failing module—The fail-
ing module need not be the module issuing the
error. Knowing what module is failing is the key
to resolution of the problem, because the mod-
ule owner must repair the error. The name of
the module identifies the owner of the failing
piece of software,

* Analysis of the problem to determine the
cause—Often problems are not isolated. One
error situation can cause another and so on. The
latest error that is seen on a screen is sometimes
only a consequence of an earlier malfunction.
Our system analyzes the problems as far as it is
possible in order to determine the cause.

* Generation of a technical problem descrip-
tion—Independent of the ownership question, a
problem can only be fixed if relevant informa-
tion for the maintainer is provided. The MVS
Dump Analyzer describes each problem in a
detailed manner. (See Figure 7 later in the paper
for an example.)

Using the MVS Dump Analyzer results in a num-
ber of benefits. First, inexperienced application
and system programmers can locate the problem
without any help from an experienced system
programmer. The MvVS Dump Analyzer provides
expertise and supports learning by its explanation
capabilities.

Second, it relieves experienced system program-
mers from routine tasks because it contains the
human expertise to perform a standard analysis of
problems. The MvS Dump Analyzer is strong for
the “bread and butter” type of problems. It gives
the expert the time to solve the really difficult
problems.

Further, the problem-solving process becomes
more systematic. The MVS Dump Analyzer output
consists of a condensed error description. Similar

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

errors are described in a similar way because the
process is consistent. This error description helps in
identifying already known problems.

Human expertise on the machine. Tools are avail-
able on MVS to help analyze dumps. We did not

The MVS Dump Analyzer can be
used in interactive or in batch mode.

want to build another tool. Rather we wanted to
provide a solution to the problem of analyzing
MVS dumps by building the system on top of the
tools.

The question of user acceptance has to be care-
fully addressed. After having studied what others
experienced in related projects, the following two
points seemed to be most important:

* The effort for a user to consult the system must
be minimal.

* The system must run at the location where the
problem data are located.

To ensure user acceptance of the MvS Dump An-
alyzer, the system must run so as to be integrated
with the MVS environment. All problem data
available on the machine must be accessed auto-
matically. In contrast to many other prototypes,
the MvS Dump Analyzer avoids user interactions
for obtaining data that are available on the sys-
tem. The MVS Dump Analyzer can be used in in-
teractive or in batch mode. Batch mode lets the
analyzer sequentially process several dumps in
the background or overnight.

We tried to automate the work of a human dump
analyzer and to imitate it on a computer as closely
as possible. Human experts use tools that often
provide their output only in human-readable form.
We decided to rely on the same tools as the human
experts do, even if the tools did not offer a machine-
readable interface. A considerable effort had to be
made to access the problem data and tool output.
This access is performed by keeping “‘syntax’ de-
scriptions of the output data structure in templates

LENZ AND SAELENS 339

Figure 1 MVS Dump Analyzer structure

| TEMPLATES

and then matching those templates against the cur-
rent text or printout. The result of this “reverse
engineering” is put into structured fields that are
then transformed into a format suitable for knowl-
edge-based system processing.

Structure of the MVS Dump Analyzer. The con-
siderations described in the previous subsection
led to the global system structure shown in Figure
1. The dashed line represents the former man—
machine interface for the human problem solver.
During his or her analysis, the human expert uses
the Interactive Problem Control System (IPCS)? to
format and summarize various parts of a machine-
readable dump. This process is interactive. The
expert looks at some pieces of information, then
draws conclusions and decides which piece of in-
formation is to be looked at next. The MvS Dump
Analyzer proceeds in the same way and uses the
same interface as represented by the dashed line.
Its structure is as follows:

» The front end of the MvS Dump Analyzer con-
sists of an EXEC (a program) written in REXX®

340 LENZ AND SAELENS

L)

and an input/output part. The MvS Dump An-
alyzer can be used interactively or in batch
mode. It can be invoked with the front-end
EXEC. The EXEC makes all of the necessary al-
locations, provides output data sets, and pre-
pares the setup of batch jobs. The input/output
part is written in KnowledgeTool™* and uses
the Interactive System Productivity Facility
(1sPF).> The flow of panels is controlled by
rules.

The heart of the system is the knowledge-based
dump analysis part, written in KnowledgeTool.
There are procedural parts and rule procedures.
The rules are executed with forward chaining.
The data are kept in structures called classes.
Instances of the data, called class members or
working memory elements, are described later
in this paper.

The data access part is written in REXX and sup-
plies the information required by the Knowl-
edgeTool rules from the MvS data sources.
IPCS is part of the MVS base operating system.
With 1pCS, dump data (for example, trace, stor-
age, control blocks, etc.) can be formatted and

1I8M SYSTEMS JOURNAL, VOL 30, NO 3, 1991

summarized. The output is captured in tempo-
rary data sets which are processed with the help
of “templates.” A REXX template interpreter
transforms the IPCS output into a structured
data format. Then the data are turned into class
members. These class members are directly
used by the KnowledgeTool rules.

Maodeling a software problem. The MVS Dump An-
alyzer handles many different types of software-
error situations such as those listed earlier. In
order to describe the variety of software prob-
lems, the Mvs Dump Analyzer uses a very simple
and general model shown in Figure 2. The parts
of the model and what they do are now described.

The requestor is the culprit causing a problem.
Information on the component, loadmodule, mod-
ule, date, and service level is most important for
a problem description.

The server usually appears as the module issuing,
for example, an abend SvC. Since it is only de-
tecting a bad situation and not causing it, it is of
less interest than the requestor.

As a resource there usually appears storage, a
module, a symbolic name, a data set, a device,
and so on.

In the context, information concerning the ad-
dress space and task is collected.

The request is some action against a resource,
usually an SVC or another System/390™ instruc-
tion. Examples are a load SvC for a module, a
branch into a module, or a getmain SvC for stor-
age.

The reply is the response of the server to the re-
quest. If the server cannot satisfy the request, the
reply describes the encountered problem, for ex-
ample, an abend SVC, a program check, or a mes-
sage.

Note that this model is recursive in the sense that
if a server itselfissues arequest, it changes its role
for that moment into the role of a requestor, being
served by another server governing some other
resource.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 2 Model for software problem situations

CONTEXT L
RESOURGE

b

'REQUESTOR

REQUEST
o % b REPLY : -

Figure 3 Heuristic classification

DATA

ABSTRACTION DATA

"ABSTRACTION

HEURISTIC |
MATCH :

o OLASSES

All problems handled by the MvS Dump Analyzer
are structured according to the model for soft-
ware problem situations. This setup is reflected in
the data structures discussed later and also in the
output of the system shown later in the sample
session.

Diagnostic approach

Diagnosis is one of the classical application do-
mains of knowledge-based system technology.
Many of the diagnostic knowledge-based systems
are based on an associative approach because a
functional model suited for deep reasoning is either
not available or too complex. A well-known asso-
ciative approach is “heuristic classification.”® The
basic idea is depicted in Figure 3.’

LENZ AND SAELENS 341

Figure 4 Diagnostic approach

PROBLEM DATA |

N) [IPCS FORMATTED
- PREPROCESSING DUMP

* STRUGTURED
FIELDS

STANDARD .
INVESTIGATION,
SYMPTOM

. GENERATION

SYMPTOM STRINGS
AND IMPORTANT
FIELD VALUES

HYPOTHESIS
GENERATION

~. SUSPECTED ERROR
© TYPE, A
~ MODULE START, SVC, -

HYPOTHESIS
TEST .

. ERROR TYPE,

... MODULE NAME, DATE,
. FMID, SQURCE OF
BAD REGISTER, ...

DIAGNOSES
AND RELATIONS

For more detailed investigations such as dump
analysis, it is necessary to employ a more detailed
approach. In References 8 and 9 the medical diag-
nostic shell MED? is described. We have adapted
some of the ideas developed there to our problem
domain.

Figure 4 illustrates a coarse outline of the diagnostic
approach. The right side shows in an exemplary
way the data items produced by the diagnostic steps
during dump analysis. Each diagnostic step is now
described.

Problem data preprocessing—Before any rules
can be applied, the problem data must be filtered

342 LENZ AND SAELENS

and transformed. This action is necessary to re-
duce the tremendous amount of data contained in
a dump. Only relevant information is passed to
the MVS Dump Analyzer. Earlier in the paper we
described how the data access part of the system
obtains the problem data and makes the data
available to the reasoning part in a structured
form, which is then mapped to class members.

Standard investigation and symptom genera-
tion—In medical diagnosis a physician starts an
examination with a standard set of questions.
Analogous to this situation, the MVS Dump An-
alyzer investigates a standard set of items first.
These items are, for example, traces and summa-
ries provided by the tool used to read the dump.
The goal of this investigation is to collect a set of
indications for problem areas and the correspond-
ing symptoms. The clues gathered in this step are
the basis of subsequent detailed analysis.

Hypothesis generation—The heart of the diag-
nostic approach is to “hypothesize and test,”
where hypotheses are generated in a first step and
tested in a second step. Hypotheses contain, for
example, the suspected error type, the suspected
request causing that error, and the suspected
module containing the request of a potential prob-
lem. Especially important is a good guess for the
start of the module, since in most cases a human-
readable text at the beginning of a module, called
the eyecatcher, contains valuable information.

The goal is to carry the analysis as far as possible
toward determining the cause. If there is a cas-
cade of problem situations, not only is the most
recent one investigated, but the problems are
tracked back as far as possible. For example, if
there is an abend SvC and the situation causing
that abend SvC can be identified, it is preferable
to describe the latter situation rather than the
abend SvcC.

Hypothesis test—Each of the generated hypoth-
eses is tested. Alternative values for attributes
such as error type or module name are enumer-
ated, then evaluated heuristically, and the most
probable value is chosen. For each problem, suf-
ficient relevant evidence must be found; other-
wise the hypothesis is rejected. Performing the
hypothesis test may lead to gathering more symp-
toms and also to creating new hypotheses.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Differential diagnostics—After testing the hy-
potheses, questions such as “Is one problem a
follow-on problem of another?,” *“Are there two
different versions of one problem situation de-
scribed, and which should be merged?,” and
“Which problem is presumably the most impor-
tant one?” are resolved in the differential diag-
nostics step. In general, this can result in a tree of
problems with relations as arcs connecting the
problems.

implementation of the knowledge base

We implemented our knowledge base with Knowl-
edgeTool, which is a language extension of PL/I. It
offers the possibility of representing knowledge in
production rules and supports the forward-chaining
paradigm. It is a compiled language and uses the
efficient Rete match algorithm as in 0PS5." Rule
procedures and procedural code can be mixed.
KnowledgeTool is very well-suited for implement-
ing knowledge-based systems integrated into other
environments, since KnowledgeTool has all of the
connectivity offered by PL/I. See Reference 4 for a
detailed description of the KnowledgeTool lan-

guage.

Classes of data. In the MVS Dump Analyzer there
are three major classes of data:

1. On the lowest level, we have the dump symp-
tom class. Dump symptom class members rep-
resent single facts which are obtained from the
problem data preprocessing step. Examples
are a register value, a piece of memory, and
the program status word (PSW) at the time of
error. The dump symptom information may
also be combined into groups of facts that be-
long together. Examples are a trace table entry
or other summary information.

Dump symptom class members contain data
describing a specific field and its context.
These data include information on the address
space, task, job, control block, field name, and
value.

2. The problem symptom class describes a sus-
picion of a possible problem. Since suspicions
may arise from various sources, the symptom
information must be consolidated to allow fur-
ther common processing. A problem symptom
is a working hypothesis. It triggers a detailed
investigation. Either the possible problem is

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

recognized as a real problem and results in a
problem class member as described below, or
it is not a problem situation or just another
appearance of an existing problem, and the
problem symptom class member is deleted.

Problem symptom class members contain con-
text information (as described above for dump
symptom class members) and basic informa-
tion belonging to the potential problem. This
information includes a unique problem identi-
fier, an address of the failing instruction, a ref-
erence to register values at the time of failure,
load module information, chronological chain-
ing of the problem symptom class members,
and other more specific information.

3. The last class is the problem class. Each en-
countered problem is described in a problem
class member. It contains all of the informa-
tion that is displayed on the output screen at
the end of the analysis. The information is
structured according to the model for software
problem situations as shown in Figure 2. Ex-
amples of the data kept in problem class mem-
bers can be seen later in Figures 7, 8, and 9.
Furthermore, problem class members contain
information used to explain field values and
internal information such as the unique prob-
lem identifier and chronological chaining of the
problem class members.

Rule example. Figure 5 shows an example of a rule
in the MVS Dump Analyzer. The wHEN part is the
condition under which the rule will fire. If the rule
fires, the action part of the rule, which consists of
the statements between BEGIN and END, is exe-
cuted.

This specific rule checks to see if there exists a
dump symptom class member with an object name
tcbshsum, a control block name tcbshort,
and a field name cmp. If such a class member is
available, the rule is fired: A TcB summary (task
control block summary) class member is created,
its fields are initialized, and the status is marked
unprocessed.

The existence of the newly created TcB summary
class member will then cause another rule to fire
and start the investigation of the corresponding
task control block.

LENZ AND SAELENS 343

Figure 5 Rule example

Finding and interpreting module headers

Here we discuss the problem of how to identify
patterns in the dumped storage. These patterns
are module headers. In describing the hypothesis
generation and test, we already mentioned that
the module headers contain valuable information.
They are readily identified by the human expert.
Typically modules have at their beginning a so-
called “‘eyecatcher,” a comment containing the
name of the module, the date, the service level,
and possibly other information in human-read-
able form. There is no common structure for
these module headers and the code surrounding
them, but after some practice a human can iden-
tify the beginning of the module and the header
information. Identifying the module start address
and header information of the failing module is
especially important, since the offset of the failing
instruction in the module, module name, date,
and service level is key information for describing
or identifying a problem.

344 LENZ AND SAELENS

Usually a guess is made about the start address of
the module obtained by a heuristic analysis of
register contents. Some typical elements of a
module header such as a date are very easy to
identify. Other items are not as distinctive, for
example, the name. In a first approach we coded
a set of rules that worked on the hexadecimal
representation of storage and tried to decide
whether a header was there by identifying suffi-
cient plausible parts of the header. It turned out
that taking the raw hex dump as input for this kind
of investigation worked, but the reliability of the
identification was limited. New cases were al-
ways coming up that were not identified cor-
rectly. These cases then had to be covered by
additional rules.

An alternate approach was to modify the coding
of the input data. We built a rule-based tokenizer,
which splits up the investigated storage area into
tokens such as “name text,” “‘long text,” “date,”
“store multiple,”” and “‘other hex code.” As an

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

experiment we fed these token strings into a neu-
ral network (running on a personal computer un-
der DOS). The network was a three-layer percep-
tron with sigmoidal nonlinearities.!' It had five
inputs and was trained with back propagation to
identify the occurrence of a module name as the
middle token of the inputs. It turned out that the
network was able to identify all of the names in
the training and in the test set. Thus this kind of
pattern recognition can be solved with neural net-
work technology.

As an alternative to the neural network approach,
we developed a rule procedure working on the
token strings that separates relevant information
from irrelevant information. It turned out that this
rule procedure worked more reliably than the first
approach. The major reason was that many dis-
turbing side effects, which would have required
special handling in the original approach, were
filtered away by the tokenization step. For the
module header recognition and analysis, the key
question was in which way the input must be
coded to get optimal results. Here token strings
turned out to be the best way to code the input.
Attaining the optimal coding may require inten-
sive preprocessing of the input data.

Sample session

This section illustrates how the MVS Dump Ana-
lyzer appears to the user. The dump used in this
example shows how an analysis by the system
approaches the cause of a problem. The dump
must be available in machine-readable form. The
MVS Dump Analyzer can be invoked from any
ISPF panel. Then an input screen appears (see Fig-
ure 6) telling the user what information to pro-
vide:

1. In the interactive mode, the user wants the
result of the analysis to be displayed on the
screen. Then the user can get explanations on
field values or go into an IPCS session to do
further work on the dump. In batch mode, a
job will be started in the background, and the
result will be returned in a specified data set.

2. If the dump was recently obtained on the cur-
rent system, the MVS Dump Analyzer can take
advantage of information available in memory.
This applies, for example, to shared memory
containing the nucleus or link pack area. These
storage areas are often not available in the
dump, but the information in active memory
may still be valid for the analysis. If the answer

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

to this question is yes, this information will be
used by the MVS Dump Analyzer.

3. Ininteractive mode the name of the dump data
set must be entered. In batch mode there may
be a whole list of dumps; therefore, an ISPF
editor session is entered, where the dump
names can be specified in a data set. This is
taken as input in batch mode.

Between the input screen and the final diagnosis,
the user need not answer additional questions. All
needed information is retrieved automatically.
Depending on the complexity of the problem,
about 10 to 50 1PCS commands are issued during
the analysis, and about 300 to 2000 rules are fired.
The system starts with a standard investigation of
some summaries. Then it generates some hypoth-
eses and looks into memory areas and control
blocks.

After some minutes, depending on the dump size
and the computing power of the local CPU, the
MVS Dump Analyzer presents the result of the
diagnosis. In both batch and interactive mode the
result is written to a data set. For the interactive
mode the following screens are displayed. First,
a “primary diagnosis” screen is shown. It gives
global information about the analysis that will fol-
low, as there is dump-related information such as
name, title, date, time, type, the number of prob-
lems that were found, how many different address
spaces and tasks are involved, and which primary
symptoms the MVS operating system has assigned
to this problem.

In this dump example, the MVS Dump Analyzer
finds three problem situations. On the succeeding
panels each problem is presented according to the
model for software problem situations as shown
in Figure 2. Two different output formats are sup-
ported. For the novice user there is a descriptive
form, where a problem is presented on two
screens. For the experienced user a problem is
presented in condensed form on one screen.
Problems appear in time-reversed order so that
the latest problem is displayed first. Problems dis-
played next are problems preceding the last.

Figure 7 shows the most recent problem: The re-
questor is the loadmodule IKJEFT04. It was built
on day 012 in 1988 and has a maintenance level
(PTF level) of UY17336. At the address 01DA774C,
the requestor IKJEFT04 issued a request, which
is the System/390 instruction “Test under Mask”’

LENZ AND SAELENS 345

Figure 6 MVS Dump Analyzer input screen

MVS Dump Analyzer Input Panel

teractive mode

batch mode

p recently produced on the current system?

dump dataset (for interactive mode only):

(TM HO002(GRS),H01). The request ended with a
SYSTEM ABEND 0C4 and reason code 0010, which
is a segment-translation exception. It means that
the knowledge-based system found the System/390
instruction tried to access a storage segment that
does not exist. Indeed, the requested resource
storage is shown to be nonexistant. It was
referenced by general-purpose register 5 (GRS5),
which contained a bad address (040C0002). The con-
text information finally tells us that the problem
occurred under the user identification (userid)
BWOO in the address space 050 within the task
(TCB) 009D1B20.

The SYSTEM ABEND 0C4 problem was a follow-on
problem of the event described in Figure 8: Here
a SYSTEM ABEND 0C1 happened, which is an op-
eration exception. An operation exception occurs
when the processor tries to execute an invalid
instruction. The requested action was a branch.
The resource is a module to which an attempt
was made to give control. However, the branch
address 00000050 in general-purpose register 15
(GRF) is invalid. The difficult part here is to find
out where the branch came from. But the re-

3406 LENZ AND SAELENS

questor was identified to be a loadmodule named
CONTROL; it branched to the bad address.

There is another problem that caused all the trou-
ble (see Figure 9). It triggered the other follow-on
problems. Here the requestor CONTROL issued a
request LOAD that ended in a SYSTEM ABEND with
completion code 806. The message manual'? tells
us that the LOAD went wrong because of an
invalid parameter. And indeed, the name of the
desired resource is mutilated; it appears as
.. CONTRO. The fact that no module with that bad
name could be loaded into memory (problem 3)
led to the bad branch and SYSTEM ABEND 0C1
(problem 2). The recovery of problem 2 finally led
to problem 1.

The user can ““‘toggle’” with function key 10 (PF10)
between the condensed form (as shown in the ex-
amples) and the descriptive form, which presents
the same information fields in a more textual
form.

Besides this descriptive form, novice users can
use the explanation facility. For every output

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 7 MVS Dump Analyzer result: Problem 1

ning bad

ressing is

Condensed Form

address is GRS
nonexistent

TM HO002 (GR5) ,HO1

01DA774C

SYSTEM ABEND completion code(hex) is 0C4
0010

IKJEFT04 module name in loadmodule i
0000074C module start address is
31 bits

£ the module is : 88012

value there is an explanatory text. It can be
viewed by putting the cursor on the value field
and pressing WHAT (PF11). A panel is then shown
containing a description of the theoretical back-
ground of the field. Furthermore, it contains the
context-specific reason for the field value. This
reason is either a causal relationship or informa-
tion on where the value was retrieved.

Project history

We started working on the MVS Dump Analyzer
in April 1988. Considerable time was spent to
carefully position the project. Knowledge acqui-
sition started in July and coding in September
1988. A first prototype was finished in April 1989.
The prototype used the Expert System Environ-
ment product as front end and covered only parts
of the functions, but we obtained the proof that
the concept worked. During the rest of 1989 we
had several test installations available for proto-
type evaluation. Work was resumed on the MVS
Dump Analyzer in 1990. An ISPF front end and
batch mode were provided, the performance en-
hanced, and the functions improved to cover a
larger variety of problem types.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Two to three developers have been working on
the system, two of them concerned with knowl-
edge engineering. One expert helped on dump
analysis for about four months in total; another
expert helped with MvS problem-solving knowl-
edge.

The current version has 5000 instructions of pro-
cedural PL/I code, 5000 instructions of Knowl-
edgeTool code distributed among 350 rules, and
7000 lines of REXX code. Note that more than 50
percent of the code produced is conventional. It
covers mainly the problem data preprocessing
part. For integrated solutions a fair amount of
traditional coding is necessary.

Evaluation

The prototype has been evaluated with hundreds
of dumps. More than 90 percent of the not-com-
ponent-specific dumps are analyzed successfully.
The success ratio for component-specific dumps
is lower because they often contain only very spe-
cial and limited information, which cannot be an-
alyzed by an approach based on general MvS

LENZ AND SAELENS 347

Figure 8 MVS Dump Analyzer result: Problem 2

knowledge. The human expert calls for the com-
ponent specialist in these cases. '

According to one of our experts, the experienced
problem solver saves about 30 minutes of time per
dump. Often the problem description resulting
from the analysis is sufficient to identify a known
problem immediately. In such cases, the problem
solvers need not look into the dump at all.

Conclusion

Knowledge acquisition is probably the most dif-
ficult part in the development of the system. It is
time-consuming and hard to plan. It is not easy to
get an expert’s time and commitment for coop-
eration. Experts are not all alike: some are artic-
ulate; some are more example-driven. We had the
best experiences when iterating many examples.
But this method works only if the expert supports
decisions on the general approach after having
worked on the examples. If the expert claims that
there are always exceptions, the example-driven
approach does not lead to the goal.

348 LENZ AND SAELENS

nstruction is BALR GRE,GRF
Q0058E1E
problem is SYSTEM ABEND completion code(hex) is
0001

CONTROL
is 00000296
3 24 bits

Condensed Form

00000050

requested action is

loadmodule start addres

The programming productivity for the 10 000 in-
structions of KnowledgeTool code was 310 in-
structions per person-month. This productivity
number includes the ongoing knowledge engi-
neering effort and various other development ac-
tivities, but not the data access part. Since the
total KnowledgeTool code consists of procedural
parts and rule parts of about equal size, a devel-
oper produced about 150 PL/ instructions and 10
KnowledgeTool rules per month.

From our experience, a rule-based approach im-
proves programming productivity overall as well
as for the knowledge-based parts. For example,
control of the user dialog can be implemented
very efficiently with rules. The effort spent for
coding the procedural parts of a knowledge-based
system is often underestimated. A further diffi-
culty is getting sufficient test data and testing the
system. Tests for efficiency or optimality may be
necessary.

In order to get user acceptance, a careful posi-
tioning of the application and some user educa-
tion is necessary. A number of common misun-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 8 MVS Dump Analyzer result: Problem 3

24 bit

00058C3E requested action is
SYSTEM ABEND completion code(hex) is
00000004

CONTROL
0000C0B6 loadmodule start addre

derstandings have to be overcome. For example,
there is the expectation that an “‘expert” system
especially helps in solving the most difficult prob-
lems. Users must have a realistic view of what a
knowledge-based system can do for them. Rou-
tine problems can be solved automatically with a
knowledge-based system, thus giving the expert
the time to concentrate on the difficult problems.

Novice users typically are more willing to accept
a new technology. Since heuristics may not work
correctly in all cases, there is no guarantee that
every single output field value must be correct. In
rare cases it can happen that a field contains a
false value. Users must be educated to under-
stand that the result of a problem analysis has to
be treated as a whole set of information. In most
cases the result is still a valuable description of a
problem, even if one of the field values is obvi-
ously false.

Experienced problem solvers are proud of their
capabilities and tend to claim that they are better
than the “expert” system. Therefore, they do not
immediately see the value of such a system. The

IBM SYSTEMS JOUHNAL, VOL 30, NO 3, 1991

MVS Dump Analyzer can relieve them from rou-
tine tasks and allow them to analyze dumps that
otherwise would not have been looked at because
of a lack of time. The performance of a new and
often complex application can be a further prob-
lem. Offering an integrated and easy-to-use solu-
tion is the key to success.

Acknowledgment

Many people have contributed to the success of
the MVS Dump Analyzer project. We would es-
pecially like to acknowledge the cooperation of
our experts, J. Antholz and B. Pierce. Further-
more, H. Bublitz, V. Schoelles, C. Mueller, and
J. Woods have contributed substantially to the
system.

KnowledgeTool and System/390 are trademarks of Interna-
tional Business Machines Corporation.

Cited references

i. O. E. Laske, “A Three-Phase Approach to Building
Knowledge-Based Systems,” CCAI (Communication and

LENZ AND SAELENS 349

Cognition) 5.2, Babbage Institute for Knowledge and In-
formation Technology, Ghent, Belgium (1988), pp. 19-30.

2. MVS/ESA Interactive Problem Control System (IPCS)
User’s Guide, GC28-1833, 1BM Corporation (1988); avail-
able through IBM branch offices.

3, TSO Extensions Version 2, REXX User’s Guide, SC28-
1882, IBM Corpkeporation (1988); available through IBM
branch offices.

4. KnowledgeTool Application Development Guide, SH20-
9262, IBM Corporation (1989); available through IBM
branch offices.

S. Interactive System Productivity Facility, Version 2 Re-
lease 3, Dialog Management Guide, MVS, SC34-4112,
IBM Corporation (1987); available through IBM branch
offices.

6. W. J. Clancey, “Heuristic Classification,” Artificial In-
telligence 27, 289-350 (1985).

7. T. F. Thompson, W. J. Clancey, Applying a Qualitative
Modeling Shell to Process Diagnosis: The Caster System,
Department of Computer Science, Report No. STAN-
CS-87-1169, Stanford University, Stanford, CA (1986).

8. F. Puppe, Diagnostisches Problemlésen mit Expertensys-
temen, Springer, Berlin (1987).

9. F. Puppe, “Diagnostik—Expertensysteme,” Informatik
Spektrum 10, Springer, Berlin (1987), pp. 293-308.

10. L. Brownston, R. Farrell, E. Kant, N. Martin, Program-
ming Expert Systems in OPS5, An Introduction to Rule-
Based Programming, Addison-Wesley Publishing Co.,
Reading, MA (1985).

11. R. P. Lippmann, “An Introduction to Computing with
Neural Nets,” IEEE ASSP Magazine (April 1987).

12. MVS/XA Message Library: System Codes, GC28-1157,
IBM Corporation (1987); available through IBM branch
offices. '

Norbert G. Lenz IBM Germany, P.O. Box 1380, 7030 Boe-
blingen 1, Germany. Dr. Lenz is a staff programmer in the
Advanced Software Development department of the IBM lab-
oratories in Boeblingen. Before working on the MVS Dump
Analyzer knowledge-based system he was concerned with
knowledge-based system technology transfer and with the de-
velopment of advanced operating system structures. He re-
ceived his doctor’s degree in mathematics at the University of
Mainz in 1982 and joined IBM in the same year.

Serge F. L. Saelens IBM Germany, P.O. Box 1380, 7030
Boeblingen 1, Germany. Mr. Saelens is a staff programmer in
the IBM laboratories in Boeblingen. Since 1988 he has worked
in the Advanced Software Development department on the
MVS Dump Analyzer knowledge-based system. He joined
IBM in 1983 and worked until 1988 in the European Banking
Systems organization. Mr. Saelens obtained his *‘Burgerlijk
Elektrotechnisch Ingenieur” diploma at the University of
Ghent, Belgium, in 1982.

Reprint Order No. G321-5439.

350 LENZ AND SAELENS IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

