A C programming model
for 0S/2 device drivers

The recent growth in the number of new and
different types of devices for use with personal
computers has challenged software engineers to
plan new and better ways of developing software
to run _the devices. For Operating System/2
(0S/2°) device drivers, an improvement would be
to code in a high-level language rather than to
use assembly language. A practical and proven
method of writing 0S/2 device drivers in the C
programming language is presented here. The C
language was chosen because of its documented
suitability as a systems programming language
and because of its universal availability for use
on small systems.

he software development process has

evolved over the years into a highly struc-
tured software engineering discipline. Early pro-
grammers manipulated switches on the computer
in order to perform useful work. Switches were
later replaced by binary code that could be fed
into the computer and executed. The use of as-
sembly language was a major breakthrough. As-
semblers were able to translate English-like
instructions into code that a computer could ex-
ecute. High-level languages introduced abstrac-
tion and machine-independence into the process.
Programs written in a high-level language more
closely follow human thought processes and
modes of expression. As a result, they are easier
to produce and maintain than assembly language
programs. In addition, the overall work effort is
reduced because a high-level language program
can be used on many different types of machines,
as long as a compiler is available for each machine
to which the program is targeted.

While application programmers have embraced
high-level languages with unbridled enthusiasm,

322 reRIOZI

by D. T. Feriozi

systems programmers have been slow to move
away from assembly language. The problem has
been that many programmers have perceived
most high-level languages as lacking the power
and efficiency of assembly language. In many cir-
cumstances, an appropriate high-level language is
not available that maps into the machine code.
The C programming language contains a rich set
of operators that closely correspond to the as-
sembly language operators common to most com-
puters. Compiler technology has advanced to the
point that modern optimizing compilers may ac-
tually generate code that, overall, is more efficient
than code produced by the average assembly pro-
grammer. This is not to say that assembly lan-
guage is obsolete. It is still required for certain
operations and in certain circumstances; for ex-
ample, certain real time, or machine-specific
tasks require assembly code. A mixed program-
ming model is the best choice for systems usage.
The bulk of the code is written in C, and assembly
language is used only where necessary.

The UNIX® operating system is perhaps the most
well-known example of system code that is writ-
ten in C. The UNIX kernel, device drivers, and
utilities are almost entirely written in C, with only
the lowest-level, machine-dependent code writ-
ten in assembly language. The wide acceptance
and success of UNIX is evidence that the C pro-
gramming language is suitable for use in the de-

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

velopment of device drivers and other system
programs.

The general outline for a C language programming
model for Operating System/2® (0512%) device
drivers is presented in this paper. The intention is
to provide broad concepts as well as the specific
details necessary to allow the development of 0S/2
device drivers using the C programming lan-
guage. This paper addresses only the implemen-
tation language specific issues of 0S/2 device driv-
ers. For a general introduction to the basic 082
device driver model, see A. M. Mizell.'! The
reader is also encouraged to refer to the 0S/2 tech-
nical reference? for more information about 0S/2
device drivers. Qur programming model was de-
veloped for use with the IBM ¢2™* compiler. It
should translate to the Microsoft® C compiler
with very little modification. The general con-
cepts should work with any C compiler; however,
specific details of implementation may vary
somewhat from one compiler to another. Consult
the specific compiler’s reference manual to re-
solve any discrepancies.

08S/2 device drivers

082 device drivers have traditionally been written
in assembly language. The model for 082 device
drivers is based on the DOS device driver model,
converted to a multitasking environment. This is
an oversimplification, but it does explain why the
structure of an 0S/2 device driver is not compat-
ible with the normal C program structure. At the
time DOS was being developed, the C program-
ming language was not a major force in personal
computers. As a result, the specification of the
model for DOS device drivers was planned for as-
sembly language, disregarding possible conflicts
with C programming models.

An 0872 device driver consists, primarily, of two
segments, the code segment and the data seg-
ment. The data segment must physically appear
first in the device driver load file so that its device
driver header will be conveniently accessible to
the 052 kernel. This causes a problem when writ-
ing a device driver in C because the normal or-
dering of C programs is code first, then data.

Another problem encountered when developing
device drivers in C is that a normal C program
includes many routines that establish an execut-
able environment. These startup routines are nei-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

ther desirable nor necessary in a device driver,
and must be eliminated. The C programming lan-
guage was originally developed for systems pro-
gramming. As such, it had few of the convenient
services that application programmers demand,

An 0S/2 device driver consists,
primarily, of two segments, the
code segment and the data
segment.

such as input/output, screen handling, and so
forth. As these features were added to standard
implementations of C, it became more difficult to
use C for some types of systems programming in
certain environments.

It is the purpose of this paper to show specifically
how the incompatibilities between the 05/2 device
driver model and the C programming model can
be resolved to allow 0872 device drivers to be writ-
ten in C. The concepts presented can be gener-
alized and used as a basis for developing C pro-
gramming models for any type of system code.

The C programming model

The current 05/2 model for device drivers is based
on the assumption that they will be written in
assembly language. As a result, it was not possi-
ble to write an 08/2 device driver completely in C,
using the 1IBM €2 compiler. The programming
model discussed in this paper provides the ability
to develop 0872 device drivers largely in C. The
exact ratio of C code to assembly code in the
device driver is unimportant. The primary con-
cern is that sections of code that require high-
level data and control structures are written in C,
whereas sections of code that require hardware
access or very high performance are written in
assembly.

Probiems to be solved

The C compiler creates object modules that are
linked together to form an executable program.

FERIOZI 323

The problem is that a device driver is not an ex-
ecutable program. It is a special type of file that
resembles what is referred to as a library module.
The programming model used for an 0s.2 device
driver must be able to do the following:

e Order the segments with data first, then code.

* Eliminate the C startup routines.

* Eliminate the C run time.

* Convert a register calling convention into a
stack calling convention.

¢ Discard the initialization code.

These tasks are accomplished by an assembly en-
try module in conjunction with a set of link and
compile flags.

Device driver structure

The device driver source code consists of the fol-
lowing modules, at a minimum:

* 0S2DD.ASM—main entry module

* COMMANDS.C—device driver commands
¢ IOCTL.C—generic ioctl commands

* INT.C—interrupt handler

* DEVHLP.ASM—device helper interface

* INIT.C—device driver initialize command

Each of these modules is described separately in
order to build a picture of the device driver from
its components.

OS2DD.ASM. This is the main module of the de-
vice driver. It performs the following functions:

¢ Declares, groups, and orders all segments
¢ Provides the device driver header

¢ Provides the main entry point

¢ Routes the device driver command

Théls module begins with the following assembly
code:

DGROUP group _DATA, _BSS, CONST, INIT_DATA
CGROUP group _TEXT, INIT_CODE
_DATA segment word PUBLIC 'DATA'
assume ds:DGROUP
.DATA ends
.BSS segment word PUBLIC 'BSS'
assume ds:DGROUP
_B35 ends
CONST segment word PUBLIC 'CONST'

assume ds:DGROUP

324 reRIOZI

CONST ends

INIT_DATA segment word PUBLIC 'INIT_DATA'
assume ds:DGROUP

INIT_DATA ends

_TEXT segment word PUBLIC 'CODE'
assume c¢s:CGROUP
_TEXT ends

INIT.CODE segment word PUBLIC 'INIT_CODE'
assume ¢s:CGROUP
INIT_CODE ends

The default compiler-produced segments are
grouped and ordered by this code. Two additional
segments are included to allow the initialization

A device driver is not an
executable program. It is a
special type of file.

code to be discarded. The INIT_DATA segment is
an assembly segment that contains the discard-
able data. The INIT_DATA segment is needed be-
cause the compiler splits the data into three seg-
ments, making it impossible to define a clear
cutoff point from the C code. The INIT_CODE seg-
ment contains any assembly code that is to be
discarded.

The address of the end of data is defined some-
where in the INIT_DATA segment. This segment is
a convenient place to define data objects that can
be sized at initialization time. In this case, the
end-of-data address would immediately follow
the last dynamically allocated data object. If no
data need to be defined at run time, the end of data
would simply be a label at the beginning of the
INIT_DATA segment. Additional discardable data
segments may be declared after INIT_DATA, if
needed.

The address of the end of code is defined in the
TEXT segment. This is because most of the
initialization code is written in C. Since the
INIT_CODE segment follows the TEXT segment, it
is discarded entirely. The INIT_CODE segment

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

may be empty if no assembly initialization rou-
tines are required.

It should be clear at this point that the proper
definition and ordering of segments is crucial to
allowing the initialization code and data to be dis-
carded. In addition, it is necessary to specify the

The proper definition and
ordering of segments is crucial
to allowing the initialization code
and data to be discarded.

sequence of module linking in order to be able to
properly size the TEXT segment. The initialization
code is sequestered in the INIT.C module for this
reason. The link statement must specify INIT.OBJ
as the last link module so that no code will follow
it and be discarded by accident. The link state-
ment should be something like:

link 0S2DD.0OBJ COMMAND.OBJ INT.OBJ
DEVHLP.OBJ INIT.OBJ

The main module must be specified first, and the
init module must be specified last. The order of
the other modules is not important.

The second major function of the 0S2DD.ASM
module is to define the device header at the be-
ginning of the device driver. The device driver
header is defined as the first data object in the
DATA segment. Since the DATA segment is the first
segment of the DGROUP, and the DGROUP is the
first group of the device driver, and 0S2DD is the
first link module, the device header appears at
offset zero of the device driver, as required by the
0872 device driver model.

The strategy routine entry point is also defined in
the 082DD.ASM module. The entry point to the
device driver must be defined in an assembly
module in order to convert the 0S/2 register pa-
rameter passing protocol to a stack-based proto-
col that can be recognized by C functions. Since
the address of the request packet is contained in

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

the ES:BX register pair (microprocessor register
designation), pushing the ES register followed by
the BX register converts the request packet ad-
dress to afar pointer. If a C function is now called,
it will receive the far pointer to the request packet
as its parameter. The called function could then
route the request to a C worker routine to actually
process the request.

Actually, device driver command verification and
routing can be executed more efficiently in the
assembly module, without loss of code clarity. An
assembly call table is used to provide the param-
eter used to indirectly call the C routine that sat-
isfies the 0S/2 request. The strategy procedure of
082DD does the following:

Verify the 082 command code.

Push ES:BX onto the stack.

Indirectly call CommandTable[command].
Pop ES:BX.

Set the DONE bit of the status that was re-
turned.

Move the status code to the request packet.
Return to 0S/2.

s W N =

o

The 052DD.ASM module is almost entirely reus-
able as source code. Only minor changes would
be needed in the device header. For instance, the
device name and attribute bits may change from
one driver to another.

Refer to Appendix A for a sample copy of
0S2DD.ASM. Note the conditionally compiled
code that is marked as UNIT_TESTING. This code
enables the device driver to be unit tested* as a
normal executable program by using a symbolic
debugger.

COMMANDS.C. The COMMANDS.C file contains
C functions that correspond to the 0s/2 device
driver commands. These are the entry points that
are called indirectly by the strategy procedure
through its table of 0S/2 command codes. Exam-
ple function names are:

¢ MediaCheck (MediaReqBIlk far * RequestBlock)
* Read (ReadReqBIk far * RequestBlock)
* DeviceOpen (OpenReqBIk far * RequestBlock)

Each function can access its 0S/2 request block
through the far pointer that is passed to it from the
strategy procedure. The following duties are per-
formed:

FERIOZI 325

. Satisfy the 0S/2 request.

. Set any necessary values in the command-
specific part of the request header.

. Return the completion status code to the strat-
egy routine.

[\

W

The status code is returned to the routine con-
taining the strategy procedure, rather than being
set directly for two reasons. One is that it makes
for a clean interface, with the C function satisfy-

Extra care should be taken when
coding an interrupt handler.

ing a request and then returning the result of that
request to its caller. The other reason is that it is
more efficient to set the status from the assembly
module. Access through far pointers is somewhat
expensive from C routines.

IOCTL.C. The 10CTL.C module contains the entry
point for the Generic Ioctl command. This com-
mand and the Initialize command are the only two
082 device driver commands that are not in-
cluded in COMMANDS.C. A separate module is
used for the Generic loctl command because it
requires further routing to a worker routine. Also,
the Ioctls comprise a good functional unit that can
be separated from the rest of the code.

The Generic Ioctl function must first verify the re-
quest packet parameters and then route the loctl
request to another C routine. Routing can be done
by a SWITCH statement, a call table, or a combina-
tion of the two. A SWITCH statement alone is ap-
propriate if the driver only needs to handle a few
different Ioctl commands. A common occurrence is
to have only a few different Ioctl categories, with
each one containing many Ioctl codes. In this case,
a SWITCH statement on the Ioctl category combined
with call tables for the Ioctl codes of each Ioctl
category results in compact, efficient, clear code.
Call-table definition and indirect function calling
can of course be done directly in C.

Except for the additional level of indirection, the
IOCTL module performs exactly the same duties
as the COMMANDS module. That is:

326 Feriozi

1. Satisfy the 0S/2 request.

2. Set any necessary values in the command-
specific part of the request header.

3. Return the completion status code.

The extra function call means that the Generic
Ioctl routine must pass its argument along to the
Ioctl worker routine. In turn, the worker routine
must return the status completion code to the Ge-
neric Ioctl function, which passes it back to the
strategy routine. This may seem like a lot of shuf-
fling of the status code; however, the C compiler
handles function return values efficiently so that
very little penalty is incurred.

INT.C. The INT.C module contains the interrupt
handler required by the 0S/2 device driver model.
By convention, the 052 kernel takes care of all the
details of the context switch before passing control
to the interrupt handler. This means that the entry
point for the interrupt handler may be coded asa C
subroutine. The interrupt handler must:

1. Determine ownership of the interrupt.

2. Service the interrupt.

3. Issue an end-of-interrupt through a DevHIp
call.

4. Return ownership status to the 0S/2 kernel.

Since the interrupt handler must be very efficient
by its nature, the programmer may be tempted to
code it in assembly language rather than in C.
Experience has shown that in most cases this is
not necessary. In any case, extra care should be
taken when coding an interrupt handler. Restrict-
ing the functionality of the interrupt handler will
result in greater performance gains than those
that may be obtained by resorting to coding in
assembly language. The most important thing to
remember is that the interrupt handler should
only do what is absolutely necessary to dismiss
the interrupt. Usually this function is driven by a
performance requirement.

DEVHLP.ASM. The DEVHLP.ASM assembly mod-
ule is necessary because the Device Helper rou-
tines provided by the 0S/2 kernel use a register
parameter passing protocol. The 0S/2 DevHIp
routines provide services required by all device
drivers. This module contains short assembly
routines that are callable from the main body of
the C code. Their simple function is to:

1. Load stack-based parameters into registers.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

2. Make the indirect DevHlIp call to 0s/2.
3. Return the DevHlIp return value to the calling
C function.

Some of these routines may provide additional
services. For instance, when calling the BLOCK
DevHlp, it is usually necessary to disable inter-
rupts and verify that the condition that requires
blocking is still present. Before returning from the
BLOCK subroutine, it is also advisable to verify
that the blocking condition is no longer present.
That is, check to be sure that this is not a spurious
wakeup. The assembly subroutine can handle
these simple chores very easily.

The reference manual for specific C compilers
usually contains details on how to write assembly
subroutines that are callable from C routines.
Briefly, parameters are referenced indirectly
through the BP register. Word-size return values
are placed in the AX register and double-word size
return values are passed in the DX:AX register pair.

Figure 1 illustrates how the assembly code pro-
vides a bridge between the device driver and the
rest of the operating system.

INIT.C. The INIT.C module contains all of the C
language initialization code for the device driver.
The Initialize command is segregated in this module
so that it can be discarded after initialization time.
Any auxiliary routines used only during initializa-
tion are also placed in this module and discarded
after use. Some examples of INIT functions are:

* Display status and error messages.

¢ Find and register devices that are active.
e Initialize devices.

* Register the interrupt handler with 0s/2.
¢ Set the end address of code and data.

As is the case with all of the 0872 device driver
commands, the Initialize command is called in-
directly by the strategy routine, which passes it a
far pointer to the request block. The Initialize
command is required to return its status comple-
tion code to the strategy routine upon exit.

Initialization code is discarded by the 0S/2 kernel.
External data that are defined in this module are
not discardable. Data must be defined in the
INIT_DATA segment in order for the data to be
discarded after use.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 1 Device driver in relation to the system

08/2 KERNEL

1T

ASSEMBLY INTERFACE |

XTI Muo>»
UBMO—-<IMY JVrI<mo

ASSEMBLY INTERFACE

Discardable data that are defined in an assembly
module are made visible to C routines by the
PUBLIC declaration and by using the proper nam-
ing conventions. C compilers generally prefix an
underscore to all external names. Therefore, a
data object would be declared in the C file as:

extern int data_object

and defined as:

public
_data_object dw

_data_object

in the assembly module. This naming convention
also applies to assembly subroutines that are to be

FERIOZI 327

Figure 2 Device driver structure

- DATA
SEGMENT

DATA
GROUP ..8s88
SEGMENT

CONST
SEGMENT

INIT_DATA
SEGMENT

TEXT
SEGMENT

coDe
GROUP

INIT_CODE
SEGMENT

called from C code, and to C subroutines that are
called from assembly code.

Figure 2 summarizes the overall structure of the
device driver.

Structure summary. The developed device driver
is actually an assembly program with C language
subroutines. The normal C ordering of segments
is reversed so that the device header will appear
at the beginning of the device driver. The linkage
ordering is further controlled in order to allow the
initialization code to be discarded after use. This
is particularly important since the initialization

328 reRIOZI

code usually tends to be large, and low-end mem-
ory is at a premium in the 0S/2 environment.

Though the device driver is technically an assem-
bly program, it appears to be a C language pro-
gram to the programmer. Most of the code is writ-
ten in C. The logic of the assembly code is mainly
trivial, easy-to-understand bookkeeping. In addi-
tion, both assembly modules are reusable. The
assembly code command router never changes.
Unsupported commands can be handled in the
COMMANDS module as empty C functions that re-
turn UNKNOWN COMMAND to the strategy routine.
The only possible change to the DEVHLP module
would be to edit out unused DevHIp interface rou-
tines in order to conserve space.

Compile and link issues

The C startup routines as well as the C run time can
be eliminated by specifying that default libraries
should not be searched. With the 1BM C/2 compiler,
this is accomplished by using compile and link
control flags. The compile flag is /z1, and the link
flag is /NOD.

It should be apparent that the C startup routines
have no place in a device driver. They establish
the environment for an executable program,
which a device driver is not. The reason for not
using the C run time may not be so obvious. The
answer is that any library code that is used will be
linked after the main body of the program. This
means that it will be discarded along with the ini-
tialization code. Also, the library routines may
contain stack probes or system calls that will fail
in the device driver environment.

The only library that can safely be used is the 0S/2
application programming interface (API) library,
DOSCALLS.? The device driver uses a limited sub-
set of the 0S/2 API only during initialization. After
initialization, the DevHIp interface is used. This
works out well; the DOSCALLS information is dis-
carded along with the rest of the initialization code.

The other recommended compile flags for use
with the IBM C/2 compiler are: Gs, G2, Zp, and Ox.

The Gs option instructs the compiler not to gen-
erate stack probes with the code. The stack probe
code is designed to work with the stack that is
created by the C startup routines. The device
driver is linked without a stack segment, since

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

08/2 provides a stack for use at run time. Under
these conditions, the stack probes could not be
expected to work properly.

The G2 option causes the compiler to generate
Intel® 80286-specific code. This seems like a good
idea, since 0S72 is not designed for prior-level
processors.

The Zp option directs the compiler to pack data
structures. That is, structures are created with con-
tiguous members. If this option is not specified, the
compiler may generate structures that contain holes
in order to align data items on their boundary type.
Device driver data structures must be packed be-
cause the 0S”2 request packets are packed.

The Ox option causes the compiler to maximally
optimize the code. A good optimizing compiler
can produce surprisingly efficient code if given a
free rein to do so. For example, with this option
specified, the IBM C/2 compiler will convert a
data movement FOR loop statement in C to a
REP MOVSW assembly instruction.

It is also suggested that the /ML option be used
with the assembly modules, and that the /NOI link
option be used. Using these options will enforce
case sensitivity of names within the assembly
modules and across the link process. Case sen-
sitivity must be preserved in order to ensure com-
patibility with the C language modules, since
names in C are always case-sensitive.

Performance considerations

Since an 0872 device driver is system-level code in
a multitasking environment, every effort should
be made to ensure that the device driver code is
efficient, without sacrificing clarity in the source
code. The C programming language is very flex-
ible, providing many different ways to accomplish
the same task. This makes it incumbent on the
programmer to make the best choices for the ap-
plication at hand. Experienced C programmers
have learned many tricks; the following are some
tips for the beginner.

* Use register variables, especially for pointers
and counters.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

e Inspect the compiler assembly listing. This is
useful for finding possible inefficiencies in the
code. A knowledge of how the compiler handles
different constructs makes it easier to write ef-
ficient C code.

¢ Do a performance analysis of the code and re-
code any bottlenecks in assembly if it will help.
The original C code serves as pseudocode and
documentation.

e Pay particular attention to far-pointer usage.
Function calls will cause the compiler to forget
a selector, resulting in the reloading of a seg-
ment register. The use of local temporary var-
iables to store values until they can all be moved
through the same far pointer is sometimes help-
ful.

These really are minor optimization points that
have little effect on the overall performance of the
device driver. The choice of the algorithms that
are used always plays the major role in system
performance. The use of a high-level language al-
lows the programmer to concentrate on algorithm
development because the compiler keeps track of
so many of the low-level details of the code. In
many cases, code developed in the C language
will actually perform better than similar code that
was developed directly in assembly language.
The greater the size and complexity of the proj-
ect, the more likely it is that the compiler will
generate the more efficient code.

The C programming language combines the best
features of a high-level language with the best fea-
tures of a low-level language to produce a general-
purpose programming language. The high-level
data and control constructs make the structure
and function of the code visible, while relieving
the programmer of the tedious details associated
with assembly language programming. The close
correlation with machine-level instructions al-
lows the compiler to produce compact and effi-
cient code. These qualities make the C program-
ming language a good choice for 0S/2 device
driver development.

Operating System/2 and OS/2 are registered trademarks, and
C/2 is a trademark, of International Business Machines Cor-
poration.

UNIX is a registered trademark of UNIX Systems Labora-
tories, Inc.

Microsoft is a registered trademark of Microsoft Corporation.

Intel is a registered trademark of Intel Corporation.

FERIOZI 329

Appendix A: Sample OS2DD.ASM file

title Sample OS2 Device Driver
page 80,132

PEEREREEEREEEERXRRK X RH R RREEXRRRFRRERXLERERH KRR H K KRR REH KRR IR KN E RN R KWW HN* X"
»
. %

;* SOURCE FILE NAME: 0S2DD.asm

- %

»

Bk R bl L R R S R R RS R RS E R SRR LS A S EE S EEEESESEES SRS RS LR X S
»

.286p

.seq

rh struc ; 0S2 request header

rh_length db ?

rh_unit db ?

rh_command db ?

rh_status dw ?

rh_reserved dd ?

rh_queue_linkage dd ?

rh ends

PRIVATE macro ; dummy macro to
endm ; label private

DONE equ 0100h ; done bit in status

;¥ C functions to handle os2 requests

extrn _Initialize:near

extirn _MediaCheck:near

extrn _BuildBPB:near

extrn _Read:near

extirn _PeekInput:near

extrn _InputStatus:near

extrn _InputFlush:near

extrn _Write:near

extrn _OutputVerify:near

extrn _OutputStatus:near

extrn _OutputFlush:near

extrn _DeviceOpen:near

extrn _DeviceClose:near

extrn _RemovableMedia:near

extrn _Genericloctl:near

extrn _ResetMedia:near

extrn _GetLogicalDevice:near
extrn _SetlLogicalDevice:near
extrn _Deinstall:near

extrn _PortAccess:near

extrn _PartitionableFixedDisks:near
extrn _GetFixedDiskMap:near

extrn _NonCachingRead:near

extrn _NonCachingWrite:near

extrn _NonCachingWriteVerify:near
extrn _PrepareForSysShutdown:near

330 Feri0z) IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

extrn _UnknownCommand:near

DGROUP group _DATA, _BSS, CONST, INIT_DATA
CGROUP group _TEXT, INIT_CODE
_DATA segment word PUBLIC 'DATA'

assume ¢s:CGROUP, ds:DGROUP, ss:nothing, es:nothing
_DATA ends
_BSS segment word PUBLIC 'BSS'

assume ¢s:CGROUP, ds:DGROUP, ss:nothing, es:nothing
_BSS ends
CONST segment word PUBLIC 'CONST'

assume c¢s:CGROUP, ds:DGROUP, ss:nothing, es:nothing
CONST ends
INIT_DATA segment word PUBLIC 'INIT_DATA'

assume c¢s:CGROUP, ds:DGROUP, ss:nothing, es:nothing
INIT_DATA ends
_TEXT segment word PUBLIC 'CODE'

assume c¢s:CGROUP, ds:DGROUP, ss:nothing, es:nothing
-TEXT ends
INIT_CODE segment word PUBLIC 'INIT_CODE'

assume c¢s:CGROUP, ds:DGROUP, ss:nothing, es:nothing
INIT_CODE ends

;************************ DATA SEGMENT IZZE XX LS ST EE LSS R R R R R EEEEEREEE R SRS RS

_DATA segment
PUBLIC _Device_header, _Device_name
_Device_header label word
dd -1 ; next device
daw 1000000100000000b ; character DD, level 2
dw strategy ; entry point
dw 0 ; IDC entry point
_Device_name db '0S2DD$! ; device name or numberofunits
dd 0 ; reserved
dd 0 ; reserved

PUBLIC _DeviceHelp

_DeviceHelp dd CGROUP : dummy _DevHl1p ; ptr to DevHlp entry
; initialized to dummy for
; debugging
CommandTable label word ; call table for os2 commands
dw _Initialize
dw _MediaCheck
dw _BuildBPB

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991 FERIOZI 331

MAX_IN_TABLE

-DATA

R R R R T R T LR RS LR
s

dw _UnknownCommand
dw _Read

dw _PeekInput

dw _InputStatus

dw _InputFlush

dw _Write

dw _OutputVerify
dw _OutputStatus
dw _OutputFlush

dw _UnknownCommand
dw _DeviceQOpen

dw _DeviceClose

dw _RemovableMedia
dw _GenericIoctl
dw _ResetMedia

dw _GetLogicalDevice
dw _SetLogicalDevice

dw _Deinstall
dw _PortAccess

dw _PartitionableFixedDisks
dw _GetFixedDiskMap

dw _NonCachingRead

dw _NonCachingWrite
dw _NonCachingWriteVerify

dw _UnknownCommand

dw _PrepareForSysShutdown

dw _UnknownCommand
dw _UnknownCommand
dw _UnknownCommand
dw _UnknownCommand
dw _UnknownCommand

equ 33

ends

JREARKXXAKEXE XK AR XXX XX XX XXX TRYXT SEGMENT

_TEXT

entry_point:

segment

END DATA SEGMENT LR At S S RS AL AR EEE LR REEE SR E LR LR LR S TS

LA S AR R R AR R RS ELEALE L E R AR R SRS EE LR

SRR AL S R L AL A R R R R R L R IR LT R LR R R R R R R R R R R R R R R X L X]
>

- ¥

;¥ SUBROUTINE NAME: strategy

. %

;* FUNCTION:

. %

’

To call the C routine to process the request

R R R R St R L AR R R R R R R R R R R R T R R R R S L T R A TS
H

strategy

332 FeriOZ

PRIVATE
proc far

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

mov al, es:[bx].rh_command ; call request

cmp al, MAX_IN_TABLE
jbe cmd_in_range ; in the table
mov al, MAX_IN_TABLE ; unknown command
cmd_in_range: Xor ah, ah
shl ax, 1 ; for word offset in table
mov si, ax
push es ; fcn parameters on stack
push bx ; to C, far ptr to rh
call CommandTable[si] ; C function does command
pop bx
pop es
or ax, DONE
mov es:[bx].rh_status, ax ; set status
ret
strategy endp

;************************ dummy_Delep XX REKEEEXALER XXX R XXX XXX XA XXX XRRA R NN

ifdef UNIT_TEST
PUBLIC dummy_DevHlp

endif
dummy _DevHlp proc far ; mostly for debugging

ret

even ; to line up parts of _TEXT
dummy _DevH1p endp

RS XL E LSS SRS RS S TSR R EEE SRS RS SRR RS SRR R RS R RS TR RS R EEEEEEEEEERE S EEEEEEEEEE RS E T
»

_TEXT ends

;************************ END TEXT SEGMENT LR R L E ST R E L EEEEEEEE R RS S SRR EEEEEE RS LTS

;************************ INIT CODE SEGMENT XK KR XXX RHXEXRXXEXRXREXEREX R XXX RN

INIT_CODE segment ; init segment code is discarded
; assembly init functions go here
; they are linked after init.obj
; init.obj forward is discarded

CHEEREEREEREERERRE KRR KRR R R LRI LR R R EHREERHREERE LR R AR RER AR AR EEERXERE AKX KR
;
- %

;¥ SUBROUTINE NAME: AllocGDTselector

¥

;* FUNCTION: Allocate an array of GDT selectors

. *

»

;********************************-)(--)(-**
PUBLIC _AllocGDTselector
_AllocGDTselector proc near

push bp

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991 FERIOZI 333

mov bp, sp

push di
push ds
pop es ; selector of array
mov di, [bp+4] ; offset of array
mov cx, [bp+6] ; number of selectors
mov dl, 2Dh ; AllocGDTselector
call [_DeviceHelp]
pop di
pop bp
ret

-AllocGDTselector endp

INIT_CODE ends

;************************** END INIT CODE HEREEEXX KX EFFREXAEXERHRXEX R AKX XERE XXX XN

;************************** INIT DATA SEGMENT LR kR L R R L X EE R E R RS RS R XYY

INIT_DATA segment ; any init data can be put here
; and referenced from C
; this segment is discarded

PUBLIC _End_of_data, _Init_message, _Init_message_length

PUBLIC __acrtused
_End_of_data label byte
__acrtused dw 1 ; for the MS compiler
-Init_message db 'Bad or missing DEV.MSG', ODh, 0Ah, O
db 256 dup (?) ; space for DOSGETMESSAGE
-Init_message_length dw 256

ifdef UNIT_TEST
PUBLIC local_stack

local_stack dw 2000 dup ('s') ; stack for using codeview
; Sp is set to TOS
automatically
endif
INIT_DATA ends

;************************ END INIT DATA HEEEKK KRR EREHXKERRRRERHRRF XX RN N RN HNN®®X

end entry_point

334 rerioz IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Cited references and note

1. A.M. Mizell, “Understanding Device Drivers in Operating
System/2,” IBM Systems Journal 27, No. 2, 170-184
(1988).

2. IBM Operating System/2 Programming Tools and Infor-
mation Version 1.2, IBM Corporation (1991); available
through IBM branch offices.

3. IBM C/2 Version 1.10 Reference Manual, IBM Corpora-
tion (1988); available through IBM branch offices.

4. Unit testing is the earliest phase of testing. It occurs in a
scaffolded environment, testing the logic of the code in
isolation from the rest of the system.

General references

IBM MASM/2 Version 1.10 Reference Manual, IBM Corpo-
ration (1988); available through IBM branch offices.

IBM Operating System/2 Technical Reference Version 1.1,
Volume I, IBM Corporation (1988); available through IBM
branch offices.

Kernighan and Ritchie, The C Programming Language, Sec-
ond Edition, Prentice-Hall, Inc., Englewood Cliffs, NJ (1988).

Dan T. Feriozi IBM Entry Systems Division, 1000 N.W. 51st
Street, Boca Raton, Florida 33429. Mr. Feriozi is a program-
mer in the Engineering Software Development Laboratory in
Boca Raton. He is currently responsible for the design and
development of SCSI device drivers for OS/2 as well as for
DOS. Mr. Feriozi is widely recognized within IBM for his
expertise in the field of device driver development. His models
are currently being used on IBM sites in Japan, Canada, and
Europe as well as in the United States. He has received sev-
eral awards including a Division Award in recognition of ex-
cellence and achievement from the Entry Systems Division of
IBM. Mr. Feriozi received his B.S. degree in chemistry from
Georgetown University in Washington, D. C. He also holds a
master’s degree in computer science from Florida Atlantic
University in Boca Raton, and is currently working toward a
Ph.D. in computer science.

Reprint Order No. G321-5438.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

FERIOZ 335

