
Partial compilation 
of REXX 

A  comprehensive  set of compilation  techniques 
for coping with various  dynamic  features of the 
REXX programming  language are described. 
Among them are a  novel  symbol table structure, 
a  multiple  representation  method for type-free 
objects,  and  a  number  of  run-time  acceleration 
techniques. Most of the  work  can  be  unified 
under the general principle of delayed  execution, 
which  is  applicable  in  other  situations as well. 
Significant  performance gains were  observed  in 
an experimental  setting,  and  these  results  led to 
the decision to develop  IBM’s  recently 
announced REXX compiler  product, 

T he Restructured  Extended  Executor lan- 
guage, called REXX, is a personal program- 

ming language that  was originally designed as  a 
structured  command language. It offers the pro- 
grammer many degrees of freedom, deviating 
from many traditional language design principles, 
such as procedural  abstraction,  data typing, and 
structured  control flow. The  semantics of instruc- 
tion sequencing is rather liberal. The language has 
the ability to  interact with the  environment  and 
with external  programs. 

Until recently,  the only language processors 
available  for REXX were  interpreters, in a  variety 
of environments.  The  interpreters  are well suited 
to REXX’s highly dynamic  semantics. The lan- 
guage can be interpreted  straightforwardly, using 
an operational model induced  directly by its  se- 
mantics, which results in a  considerable perfor- 
mance  penalty.  Programmers like the  freedom 
permitted by the language mostly during initial 
program  development  and debugging. Many pro- 
grams  have  been  written in REXX and  run on the 
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various  interpreters.  The  authors  address  the 
problem of how to compile REXX programs so as 
to improve  their  run-time  performance when run 
in production mode. The study  reported in this 
paper  eventually led to  the development of the 
recently  announced REXX compiler  product. 

The  dynamic  nature of REXX presents  obstacles 
that inhibit the utilization of almost  every  com- 
mon compiling t e ~ h n i q u e . ~  The problems  come 
from three major sources: run-time requests  to 
change binding environments  (both with respect 
to  types  and  versions),  indeterminate  control 
flow, and  the  interaction with the  external  envi- 
ronment  (coprocesses  and  the  operating  system). 
Some of these  problems  come up in some other 
languages,  such as APL, LISP, and SNOBOL, but 
rarely is their  presence so intensive  under one 
framework as in REXX. The  authors  made a spe- 
cial effort to isolate  them  and  provide  orthogonal 
and  general  solutions. The new techniques  de- 
scribed  here to handle  dynamic  phenomena  can 
be applied to similar situations in other modern 
languages. 

REXX also  poses  several challenging syntactic 
problems. For example,  incomplete  constructs 
may not  be flagged by the  interpreter if an exit 
occurs  before  the  scan  is  complete, and some  se- 
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mantic  activities need to  be  performed during 
scanning.  These  issues,  however, are beyond the 
scope of this  paper  and  are not addressed  here. 

The following section  describes  the difficulties 
that REXX presents  to a compiler builder.  Subse- 
quent  sections  outline  solutions  to  the major 
problems with emphasis on their  generality,  de- 
scribe  experimental  results  and possible exten- 
sions,  and  discuss  relationships  to  other  work. 
We conclude with an overall  evaluation of this 
effort. 

Why is REXX hard to compile? 

REXX is an  “open” language. This  openness is 
manifested in more  ways  than  one. For example, 
the  semantics of instruction  sequencing is rather 
liberal,  there is no traditional block structure, 
there  are  no  declarations  or  types,  operations  are 
applicable on  the basis of instantaneous  values, 
arithmetic is performed with dynamic  precision, 
and  variables  can be shared with auxiliary proc- 
esses (written in other languages). In  this  section 
we explain these  features  and  analyze  the effect 
that  they  have on  the compilation  process. 

Undetermined  scope. The language does not have 
a traditional block structure  for  procedure defi- 
nitions and program calls. The CALL and RETURN 
statements merely transfer  control (similar to 
“Branch  and  Link”  at  the  assembly  level),  but  do 
not hide the global environment from the local 
one.  The PROCEDURE statement is an executable 
statement  that  takes effect only at run  time;  hence 
it does  not  provide  a  syntactic  boundary  to  the 
definition of a procedure.  The following example 
displays  several of the key problems with REXX’s 
scoping  rules: 

1.  if  a = 1 then  call  pl 
2. else  call  p2 
3. call  p3 
4. if x = 3 then  signal  p3 
5. else  signal  p2 
6. pl: procedure 
7. p2: x = a + 1 
8. if x = 2 then  return 
9. p3: x = x + 1 
10. return X 

Since the execution of the PROCEDURE statement 
can be made  conditional  (upon  the  entry point or 
some  predicate  that is computed at run  time, as in 

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991 

lines 7-9), one  cannot  use  the  information  during 
compile time to resolve variable references. 
Moreover,  one  can “fall through”  (from lines 4 
and 5 )  into  the body of a  procedure  from  the  code 
preceding its definition. Similarly,  there is no  ex- 
plicit denotation to  the end of a  procedure;  its 
logical end is the  frontier of RETURN statements 
reachable  from  the  entry  point(s),  but  this  de- 
pends again on  run-time  behavior (see lines 8, 10). 

In  addition  to  the  lack of block structure, REXX 
has a unique sequencing  semantics  for  state- 
ments. By using the SIGNAL statement, execution 

REXX is an open language. 

control  can  wander  through  various  parts of the 
source  text, including the body of procedures. 
More  severely,  there is a  computed SIGNAL (using 
all the  power of expression  evaluation in the lan- 
guage) where  the  target of the  jump is calculated 
at run  time;  this is stronger  than,  for  example, a 

struct, since  we do not know the possible  range of 
labels at compile time. 

Thus,  even though the  execution of a PROCEDURE 
statement  automatically  creates a local envi- 
ronment,  the  statements  that follow may be exe- 
cuted in a different environment if reached 
through CALL or SIGNAL without  executing the 
PROCEDURE statement.  Consequently, it is often 
impossible to know in which context  an  instruc- 
tion will be executed,  and  the  amount of work 
required at run time to perform context  resolution 
and switching may be prohibitive,  especially  for 
data-intensive  programs. 

Dynamic  binding  and  creation of variables. The 
language is declaration  free.  Variables  come  and 
go (using the DROP statement)  dynamically.  One 
cannot  predict  whether  a variable exists  or not at 
a given point in a program without full-fledged 
flow analysis, which is very difficult as  noted 
above.  Hence no generation of symbol-table 
pointers as part of the  code  produced by the  com- 
piler seems  feasible. 

FORTRAN- or a  PL/I-like  computed GOT0 con- 
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As in SNOBOL,’ the binding of identifiers to var- 
iables is dynamically dependent on the most re- 
cent assignment to  a variable with the given iden- 
tifier. Unlike other  languages,  there are no 

- 

Another effect of the declaration-free 
language is that its  variables do not 

have types. 

.” _~_________ 

declarations,  either explicit or implicit. A variable 
is declared implicitly merely by assigning a value 
to it (again, similar to  SNOBOL). 

If this is not enough,  names of variables can be 
generated at run  time, using all the  power of 
expression  evaluation of the language. As the 
names  cannot be known at compile time,  there is 
no way to  arrange  them in a  static symbol table 
and  use  pointers  to  them in the  generated  instruc- 
tions. 

The major instance of this is compound  variables, 
which are essentially  associative  arrays with ar- 
bitrary  (numeric or string)  keys.  From  the  user’s 
point of view, the meaning of A.1.J may be similar 
to that of A(I,J) in FORTRAN, but in REXX I and J can 
be either  numeric values or strings. This means 
that  the  reference  routine  to derived names  can- 
not be generated  at compile time.  Notice  that di- 
mensions,  lengths, or  other  attributes  cannot be 
used. 

Since  the PROCEDURE statement is an executable 
statement  and  not  a  declaration,  the lifetime of 
variables is dynamic,  depending on the calling se- 
quence  and  the visibility, or  exposure, of varia- 
bles among procedures.6  Moreover,  the  fact  that 
a variable was  exposed in a called procedure may 
cause  “reverse-inheritance,’’ namely that  the 
variable appears in the  caller only after  the  call, 
whereas it was  not  present in the first place. 

No types. Another effect of the  declaration-free 
language is that  its  variables  do not have  types. 
As a  matter of fact, all variables are of type string, 
but since  certain  operations are permitted only if 
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the  operands  have  values in a given range (e.g., 
numeric or Boolean),  there is a considerable  pen- 
alty for  checks,  conversions,  and  simulations of 
operations in an alien domain that  creates a com- 
putational  burden  on the  interpreter.  Naturally, 
one is tempted to  try  to  deduce  the  type of a vari- 
able (in order  to  generate  the  code required to 
implement the  various  operations as well as sym- 
bol-table access  mechanisms) at compile time, 
but this  can be done  only to a very limited extent 
due  to  the  aforementioned  problems with control- 
flow analysis. 

Moreover,  arithmetic itself is a troublesome is- 
sue.  The language offers a dynamic  precision  set- 
ting which has  an effect on  every intermediate 
result of an expression.  This  makes  the  deduc- 
tions pertaining  to  the applicability of operations 
to arithmetic data  even  more  complicated. 

The  situation may seem  reminiscent of the  prob- 
lems that  come  up  when trying to compile APL 
programs,  but unlike APL-where there  are ex- 
actly two  types  and  the  conversions  between 
them are explicit-here  we must  contend with the 
dynamic precision  feature that practically  gener- 
ates  an unbounded  number of types.  Moreover, 
the effect of a  precision  setting  is  total in the  sense 
that it affects all arithmetic  operations in the  cur- 
rent  environment,  whereas the  conversions in 
APL are  “local,”  i.e.,  they  happen  per  variable. 
Since  the  semantics of arithmetic  operations is 
sensitive to the  values  involved and their  relation 
to  the  current  precision  setting, the generation of 
efficient code  to support  dynamic  precision is not 
an  easy  task.  Here we can  draw  some  inspiration 
from APL, because  every  implementation of APL 
that we know of,  represents  numeric  data in one 
of three different forms,  and  conversions  among 
them are  done  spontaneously. 

An important effect of  all objects  semantically be- 
ing strings of unbounded length is  that memory 
must be allocated  dynamically.  This  means  that 
the run-time support  must  include a fairly heavy 
mechanism for maintaining all values,  both  tem- 
porary  and specified variables  alike. 

All in all, REXX displays  two  important  dynamic 
characteristics  concerning  variables  and  their val- 
ues, (1) dynamic  existence of variables  and (2) 
dynamic  types  and  attributes of objects. 
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Solutions 

The solutions  presented  here  deal only with the 
more difficult aspects of the language. We first 
define the compiler’s  target in terms of an  abstract 
machine, 7 9 8  then  outline  some of the specific tech- 
niques  used to  overcome  the problems  described 
in the  previous  section.  This  section  concludes 
with a  discussion of the delayed  execution prin- 
ciple  that is used  throughout  this  work. 

The  abstract  machine. Since explicit code  cannot 
be  generated,  due to all the uncertainties  concern- 
ing object  types,  versions of variables,  and so on, 
the  authors  have  opted  to  describe  the  semantics 
of a program in an  intermediate  representation 
that is later  interpreted during run time. To  do this 
a  rather simplistic n + I-operand  abstract ma- 
chine  is  defined,  where the  opcode is an  entry 
point in a  threaded-code  interpreter.  The n oper- 
ands  (where n varies  according to the  opcode) are 
pointers  to object  descriptors or immediate op- 
erands,  and  the n + 1st field contains target in- 
formation. 

The  data  types of the machine are  character string, 
numeric string, and binary (fixed-point) integers. 
There  are specialized fetch  and allocation services 
for literals, variables, and temporaries for these 
types.  These  access routines are organized in a ta- 
ble, and their invocation is  triggered by the general- 
purpose descriptors stored in the operand fields of 
each instruction. To support operations on these 
data items, routines are provided to handle arith- 
metic (in binary representation) as well as string- 
oriented interpretation of arithmetic. 

One could ask why the  authors did not use some- 
thing more  sophisticated  than simply an n + 1 
abstract  machine.  There are  two  answers to this 
question:  First,  this  seems  to  be  the  lowest level 
possible in order  to achieve  both  reasonable ef- 
ficiency as well as portability.  Second,  a  stack 
machine was  deemed  inappropriate  since no gains 
are  to  be made by pushing value  descriptors on a 
stack,  and pushing the values themselves will 
cause  unnecessary  movement of data in memory 
due  to  the dynamic  nature of the  sizes  involved. 

Variable  binding  management. In order  to  accel- 
erate execution  time, a unique symbol table 
organization  was used to  provide  fast hiding of 
large environments  upon  the  execution of a 
PROCEDURE statement.  A lazy hiding policy is 
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proposed  for variables: instead of reallocating lo- 
cal variables,  the  method waits until the first as- 
signment to such  a  variable  before it is allocated. 

Following the execution of a PROCEDURE state- 
ment,  each variable should be initialized to its 
literal name  value, unless it was EXPOSEd explic- 
itly, in which case it is bound to its  latest  (i.e., 
closest in the nesting sequence)  creation. 

An activation  record (AR) is maintained for  each 
name. An AR consists of a  static  portion  and  a 
dynamic  portion. The dynamic  parts are pushed 
and popped  on  a  stack during environment 
changes only upon demand,  as  explained  shortly. 
The  static  part  contains  the identifier’s literal 
name, which is also its initial value,  per  the REXX 
semantics;  the  dynamic  part  contains  a  pair 
(ver, ptr) where ver is the  “version  number” of 
the variable (or how deep it should be in a virtual 
run-time stack), and ptr points  to  the value cor- 
responding to this  version. 

During run  time,  the following actions  are  taken: 

1. Initially,  the program sets  up  and  then main- 
tains a global version  number  corresponding to 
the nesting level. At each  instant,  the  current 
version of a  variable is the  one  whose  version 
number is equal to  the global version  number. 

2. Every  time  a PROCEDURE instruction is exe- 
cuted,  the global version  number is incre- 
mented.  The  version  numbers of all EXPOSEd 
variables  are  incremented as well. 

3. Every  time  a variable is being accessed, we 
check  whether the version  number in the ver 
field  of the  dynamic AR matches  the global ver- 
sion number. If it does,  we use the  pointer 
(from the ptr field  of the AR) as  is;  otherwise, 
there  are  two  cases  to be considered: 

a. If a new value is created,  the pointer to  the 
previous value is pushed  on the  stack  and 
the involved variable is recorded in a log. 

b. If no value is created,  then  the literal name 
value is used (since it should be considered 
uninitialized). 

4. Every time a RETURN instruction is executed 
and a PROCEDURE instruction  was  performed 
since  the  last CALL, we decrement  the global 
version counter, and  for  each  variable  entered 
in the  log,  we  recover its pointer  from  the 
stack. 
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This  scheme  distributes  the  work load in such  a 
way that  the  method  does  not  have  to  push  any- 

The name of a compound variable 
depends on the values of its 

components at the  instance of 
reference. 

thing unless  a value is assigned to  the same name 
in the new environment.  Two  comments  are  due: 

As was implied from Step 3a of the algorithm, 
a variable log is maintained for  each  internal 
procedure.  This log is used to  record all varia- 
bles  whose  previous  generation was pushed  on 
the  stack.  The log is used to  recover  the vari- 
ables  on  return to  the caller. 
Recall that a variable in REXX is EXPOSEd if it 
was explicitly declared to be so in a given pro- 
cedure; then  its value in the calling sequence 
can  be  accessed from within the  procedure. An 
additional log is maintained to keep  track of the 
EXPOSEd variables of each  internal  procedure. 
This log is used to  record  the values of  all ex- 
posed  variables in order  to assign their new val- 
ues in the global environment upon return.  Spe- 
cial care  must  be  taken when a variable is 
assigned a value in an internal  procedure before 
it is assigned  a value in the enclosing environ- 
ment. 

In  order  to support  the  above  algorithm,  the fol- 
lowing data  structure is maintained.  A symbol ta- 
ble entry (STE) is created  at  set-up time for  each 
identifier. The initial AR is identical  to this STE. 
The AR always reflects the  current variable and is 
dynamically updated during the  program’s  exe- 
cution.  Since  the STE is being used as  the  frame of 
the  current AR, the AR is physically static  and  can 
always be referenced using the same  address. 

Specifically, efficiency is gained by the following: 
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1 .  Only one STE is created  for  each  name. By 
using only one STE we  save  dynamic alloca- 
tions,  overall  storage,  and the reinitialization 
of STEs in each new environment. 

2. Once an STE is created, its  location is deter- 
mined and  can be used at  any moment for  suc- 
cessive  references. 

3.  Only the minimal required information is 
pushed  and  popped. 

4. Pushing and popping of variables is reduced 
only to those which are actually  active in an 
internal  procedure.  (As a result of our study of 
REXX programs,  we  found that internal  proce- 
dures use a  very small subset of the  entire 
group of variables which are  active in a REXX 
program .) 

5 .  Hiding the global environment  from  the local 
one is automatically  performed using the  fact 
that  the nesting level does not  match  the  ver- 
sion number of the  variables.  This  fact  assists 
also  on  the  return  from  the local environment, 
as reviving the  variables is automatically  per- 
formed. 

6 .  The STEs are arranged in a balanced  binary 
tree.  This  structure  was  found  to  be  best as 
compared to  other  alternatives  such  as  hash- 
ing. 

An assisting  structure  for  compound  variable 
access. Compound  variables  display many of the 
dynamic  characteristics of REXX: their  names, 
values,  and  environment are generated during run 
time and  cannot be predicted. The name of a com- 
pound variable depends  on  the values of its  com- 
ponents at  the  instance of reference.  Conse- 
quently, STEs for  compound  variables are not 
generated during compile time,  because (1 )  the 
names of the  compound  variables are not  known 
at compile time, as they are  later  derived using the 
values of their  components,  and (2) it is difficult 
to know whether  they  are global or local varia- 
bles. 

In order  to  reduce  the  cost of name  derivation  and 
compound variable access, we define an assisting 
symbol table  entry (ASTE). An ASTE contains  the 
pointers  to  the  constituent  components of the 
compound  variable’s  name. By the use of these 
pointers,  the name derivation cost is reduced. 
Also,  this  structure is used to  save  a  direct  pointer 
to  the  associated  compound  variable which can 
be used on  consecutive  references,  and  hence 
save  access  time. 
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For example, the ASTE of A.1.J points to the STEs 
of the  variables A, I ,  and J. In  case all the com- 
ponents  are  literals,  the  name itself is stored in the 

In REXX, operations are 
applicable on the basis of 

instantaneous values. 

proper STE and no derivation is needed.  Thus, 
A.1.2 has  an STE which holds  the  derived name as 
is,  and  no  pointers are necessary at all. 

The  structure of an ASTE is similar to that of a 
regular STE, and all ASTEs are maintained in their 
own  structure,  separate  from  the main symbol 
table. The  actual STES for  compound variables are 
created during execution,  and  are  inserted  into 
the main symbol  table  dynamically. 

In  addition, a base  anchor  for  each  cluster of com- 
pound variables is always  created  and has the 
same  access mechanism as any  other  variable. 
The  base  anchor  provides  an initial point for 
searching  entries of the  compound  variable, 
regardless of the  search algorithm used.  It  also 
contains the value of the  stem, if defined. The 
combination of the  base  anchor with the ASTE 
yields the  desired  run-time efficiency. 

Multiple  representations. Recall that in REXX, op- 
erations  are applicable on  the  basis of instanta- 
neous  values,  and  they  cannot rely on previously 
acquired knowledge about  data  types.  Moreover, 
as  the  precision  setting is dynamic,  objects  can 
have different values as a  result of a  change in the 
precision  setting. 

Often values  stay in one domain type from one 
reference  to  another, while in other  cases  suc- 
cessive  references  require different data  repre- 
sentations of the same  object.  The  authors  try  to 
improve the run-time efficiency by keeping mul- 
tiple representations of objects’  values in such  a 
way that  unnecessary  conversions are avoided. 

In  order  to achieve  this  goal,  a value block struc- 
ture is defined, which potentially holds all possi- 
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ble representations of a value.  A  value block com- 
prises a representation  indication field to record 
which representations  exist at any given time, fol- 
lowed by the  values in the  various  representations 
themselves. All the valid representations reflect 
the  same value in several different types.  For  ex- 
ample,  the numeric value 100 can  coexist as  the 
character string ‘loo’, as  the %bit integer 
01100100, and as the floating-point number 
1.00E2. 

Using this multiple representation  technique,  an 
object  can  be in one of the following states: 

1. Only one of the  representations  is valid. 
2. Some  but not all of the  representations  are 

3.  All the  representations are valid. 

The  rules governing the  maintenance of value 
blocks are  as follows: 

A value is stored in the same  representation in 
which it was created  or  as it was  fetched.  This 
can  save  conversions  for  successive  operations 
that  stay in the  same  domain. 
Once a conversion is required  from  one  data 
type  to  another,  both  representations  are  kept. 
The converted  value is stored in the value block 
and  recorded accordingly in the  representation 
indication field. 
Sometimes  arithmetic  operations  invalidate  the 
last string value. In such  cases, only one  type 
which is the  target  type is kept. No attempt is 
made to  revive  other value types  unless specif- 
ically required. 

valid. 

To exemplify these  rules,  examine  the  case of 
dual representation. The value of x is defined as 
a  pair of possible  representations, ( x , ~ ,  x,), where 
x, is the  string  representation of x and x, is its 
binary representation. A bottom denotes  that  a 
representation is not  available. 

Then  the  value of x is defined as follows: 

Val(X) = (x,, x,) when  both  representations 

Val(X) = (x,, bottom) when only the string 

Val(X) = (bottom, x,) when only  the  binary 

exist, 

representation  exists,  and 

representation  exists. 
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Now consider  the program fragment: 

( l ) A = B + C  
( 2 )  A = A 1 1  B 
( 3 ) D = C + A  

The initial values are: 

Val(B) = ( b , ,  bottom) 

V d C )  = (cs, bottom) 

In  order  to perform the first additions in (l), the 
following conversions  are  invoked implicitly by 
the  fetch mechanism 

b,, + convert-to_binary(b,) 

c, +" convert-to-binary(c,) after which 

Val(B)  = ( 4 ,  b,J 

V a f ( C )  = (c,, c , , )  

and now the  operations  are  interpreted  as follows 
with one  more  conversion  needed  before  each of 
the  statements (2) and (3): 

(1) Val(A) + (bottom, b,, + c,,) = (bottom, a,) 
(2) a,  t convert-to-string(a,) V a f ( A )  + 

(a,J b,, bottom) = (as ,  bottom) 
(3) a,, + convert-to-binary(a,) V a f ( D )  + 

(bottom, c, + a,,) = (bottom, d,,) 

After (I) ,  only  the numeric representation of A 
becomes  available,  and  the string representation 
is invalidated. In  order  to use A in a string  oper- 
ation  (concatenation), in (2) it must be converted. 
Notice  that B's representations  are readily used; 
they are not changed because B is not set.  In (3) 
again we can  use  the binary value of C which is 
kept from ( I ) ,  but  the new value of A must be 
converted  to binary again. 

All in all, keeping multiple representations  saves 
conversions. Using this principle is similar in a 
way to common  subexpression  detection  tech- 
niques  for saving temporary  results. 

Delayed execution. As well as solving the prob- 
lems which the  dynamic  features of the language 
present,  the  authors had to think about  the  cost of 
these  solutions. Often it seemed profitable to 
adopt  an  optimistic  approach  and  postpone  some 
corrective  operations until they  were  required. 
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This attitude  was  carried  out in several  cases  that 
follow and is referred to as  the delayed execution 
principle. 

1. Creation of the  local  environment  for a pro- 
cedure.  Instead of pushing all the variables of 
the  previous  environment on  each  procedure's 
AR, the  push  operation is postponed until var- 
iables are assigned values. The push is per- 
formed on  each  variable specifically and acts 
therefore only on  those local variables which 
are assigned new values in the local environ- 
ment, while all other  variables  rest  intact.  The 
pop operation  on  return  from the  procedure is 
therefore  performed only for  those  variables 
which were  pushed. 

2. Creation of symbol-table  entries  for  com- 
pound variables.  This  activity is delayed until 
the  corresponding variable comes  into  exist- 
ence. In this  way, only keys  that are actually 
active  cause  space to  be allocated.  Since  the 
key may comprise  several  variables,  the ref- 
erence  routine is partially compiled (up to  the 
actual key evaluation), leaving it necessary  to 
look up only the  values  at  run  time. 

3. Maintaining several  representations.  The  cost 
of retrieving values for  objects may increase. 
In order  to  decrease  the  cost, retrieval of val- 
ues is performed with ascending  cost using the 
fastest  routine  first,  and  the  heavier  routines 
only in case  the first one  failed.  Operations 
which will need numeric  values will check  for 
binary representation to  accelerate  execution. 
Whenever  possible,  conversions will be  post- 
poned until required,  and  values will stay in 
the  same  domain  unless  a  change of domain  is 
needed. 

4. Arithmetic  operations  performed  on first trial 
using binary (fixed-point) integer  values. With 
the  hope  that  most  arithmetic  operations will 
succeed using binary values,  we  delay  the 
heavier  string  arithmetic until we really need 
them.  The  same  strategy is used  for logical 
operations, which use only 0 and 1. 

Results and extensions 

The  techniques  described  above  were  tested in an 
experimental  setting. We observed  an  improve- 
ment in run time over  the SPI interpreter of factors 
ranging between 4 to 10, depending on  the nature 
of the  source  program.  These  results led to a de- 
cision to  develop a  general availability REXX com- 
piler which has been recently a n n o ~ n c e d , ~  using 
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(among others)  the design and  techniques de- 
scribed in this  paper. In our  work, no attempt was 
made to  optimize  the compiling routines them- 
selves,  therefore no measurements  on compile 
times  were  made;  these  issues  were  addressed by 
the  developers of the  product. 

There  are  three major areas in which further im- 
provements  can be expected. 

1. In  addition  to saving the binary format of nu- 
meric values when appropriate,  the floating 
point representation could also  be  saved,  thus 
speeding  up scientific application  programs. 
(Such  programs are being written in REXX!) 
Another validity test  per  access would be nec- 
essary, but  the savings seem  to  justify  it. 

2. The  range of keys  for  compound variables 
could be  analyzed to provide  a  better idea on 
how to  construct efficient referencing rou- 
tines. 

3. Flow  analysis,  as hard as it  may be with REXX, 
could lead-for well-structured programs- to 
conclusions  that may result in significant sim- 
plifications to  the  generated  code. 

V 

Relation to other work 

Where  to  draw  the line between compilation and 
interpretation is a  matter of semantics. Almost 
every  compiler  produces some code which is 
interpreted at run time (e.g., FORTRAN for  the 
FORMAT statement, PL/I on some bit manipulation 
operations).  For  some  languages, producing in- 
termediate code that is interpreted during run 
time is the only way the languages can be com- 
piled. 

The  authors looked at  the  problems  presented by 
other  dynamic  languages,  such as APL, LISP, and 
SNOBOL. Different attempts  to compile these lan- 
guages usually used threaded  code  for  the com- 
piled output  code. 839 Other compilation efforts 
have made changes to  the languages so as  to make 
them compilable to executable  code.  The most 
notable  change is to  enforce lexical scoping rules 
(as in the programming language, Scheme, vs 
pure L I S P I ” . ~ ~  and  the  changes suggested to APL in 
References 11 and 12), but  other  problematic is- 
sues  have  also  been  ignored.  These  changes  en- 
abled  the  application of data flow analysis and 
other  types of deduction  mechanisms. 
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Our effort was  conducted  under  “real  world” 
constraints.  Language  restrictions  were  not al- 
lowed (other  than  the  insistence  on  complete  con- 
structs  and  not handling the INTERPRET instruc- 
tion). Thus, most of the  techniques  that  are 
enabled by linguistic and  semantic  changes  were 
not applicable to  the  work  discussed in this paper. 
Still, the  authors  were  able  to  achieve  the  four-  to 
ten-fold speedups  reported  above, which is com- 
mensurate with the  aforementioned  efforts. 

Moreover,  the  authors claim that REXX encom- 
passes  a wider spectrum of dynamic  features 
compared  to  the  other languages. Most  notable 
are the  rather  unconventional block structure,  dy- 
namic precision,  and  compound  variables. As ex- 
plained in the  section  on  solutions, the method 
used indirect  threaded  code (in an n + 1 operand 
abstract  machine),  based on solutions  already 
used for SNOBOL4 (SPITBOL) I 4  and APL. How- 
ever,  to solve  the  problems  presented by some of 
the  dynamic  features of REXX, we had to  seek 
additional solutions. Specifically, in APL and 
SNOBOL all identifiers’ names  can be deduced 
from the  source  code, while in REXX they may be 
computed only at run  time. SNOBOL uses  a way of 
declaring arrays and tables (arrays  for  integer in- 
dices,  and  tables  for  string  indices), while REXX 
uses  the unified notion of compound variables- 
generated dynamically during run time-for both 
purposes.  Some special characteristics of the lan- 
guage, such as dynamic  boundaries of procedures 
and  dynamic  generation of code,  are unique to 
this language and  required  general  solutions. (By 
“general”  we mean that it will handle  these  fea- 
tures in the  presence of the  other dynamic  fea- 
tures  as well.) 

The  concept of delayed  execution  was  intended  to 
overcome  some difficulties with minimal cost. 
Unlike SPITBOL and APL, we do not  stack  the 
environment  on  entry to a  function  (procedure), 
but  postpone it until explicitly required. As var- 
iables that  are  not  pushed  on  the  stack need not 
be popped, we save  the  stacking of local varia- 
bles. Our  concept of multiple representation of 
values was formed to  handle  the difficulties with 
dynamic  precision  and variable data  types. While 
SPITBOL and APL require  conversions  and valida- 
tion of values, holding a multiple representation 
saves  some of the  conversions  and  results in a 
more efficient compiler. As data  types  are  at- 
tributes of the  values  and not of the  variables, it 
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allows  another  degree of freedom.  The  same  ap- 
plies to  the service  routines,  such  as  fetch  and 
allocate. As they are  attributes of the  variables 
and  not  part of the generated code, they  can be 
changed dynamically or use different routines ta- 
bles  corresponding to  the instantaneous  instruc- 
tion requirements. 

Summary 

This  paper  presents  several newly developed 
techniques  for compiling REXX programs, in face 
of the language’s highly dynamic  nature.  These 
techniques,  summarized  as  follows,  can  be  ap- 
plied to a number of similar features in other  dy- 
namic languages,  such as APL, SNOBOL, ICON, 
and  the UNIX@ Shell. 

The multiple representation  technique  makes 
typeless  objects  feasible, saving unnecessary 
conversions. 
Using indirect  pointers to values  solves  the 
problem of the dynamic length of variables. 
By keeping a  tree-like  symbol  table during ex- 
ecution we allow changing,  deleting, or adding 
symbols  at  run time. 
By using an  access  routines  table, we can  ac- 
cess variables efficiently while keeping their  dy- 
namic features. 
By delayed-execution  techniques,  we  achieve 
good performance of the compiled code while 
sustaining  dynamic  boundaries to procedures 
as well as dynamic binding of variables. 
Finally,  many  traditional compilation tech- 
niques  concerning  the  allocation of temporary 
values, compile time  optimizations  based  on 
flow analysis,  and  threaded-code  are  used. 
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