
Partial compilation
of REXX

A comprehensive set of compilation techniques
for coping with various dynamic features of the
REXX programming language are described.
Among them are a novel symbol table structure,
a multiple representation method for type-free
objects, and a number of run-time acceleration
techniques. Most of the work can be unified
under the general principle of delayed execution,
which is applicable in other situations as well.
Significant performance gains were observed in
an experimental setting, and these results led to
the decision to develop IBM’s recently
announced REXX compiler product,

T he Restructured Extended Executor lan-
guage, called REXX, is a personal program-

ming language that was originally designed as a
structured command language. It offers the pro-
grammer many degrees of freedom, deviating
from many traditional language design principles,
such as procedural abstraction, data typing, and
structured control flow. The semantics of instruc-
tion sequencing is rather liberal. The language has
the ability to interact with the environment and
with external programs.

Until recently, the only language processors
available for REXX were interpreters, in a variety
of environments. The interpreters are well suited
to REXX’s highly dynamic semantics. The lan-
guage can be interpreted straightforwardly, using
an operational model induced directly by its se-
mantics, which results in a considerable perfor-
mance penalty. Programmers like the freedom
permitted by the language mostly during initial
program development and debugging. Many pro-
grams have been written in REXX and run on the

by R. Y. Pinter
P. Vortman
Z. Weiss

various interpreters. The authors address the
problem of how to compile REXX programs so as
to improve their run-time performance when run
in production mode. The study reported in this
paper eventually led to the development of the
recently announced REXX compiler product.

The dynamic nature of REXX presents obstacles
that inhibit the utilization of almost every com-
mon compiling t e ~ h n i q u e . ~ The problems come
from three major sources: run-time requests to
change binding environments (both with respect
to types and versions), indeterminate control
flow, and the interaction with the external envi-
ronment (coprocesses and the operating system).
Some of these problems come up in some other
languages, such as APL, LISP, and SNOBOL, but
rarely is their presence so intensive under one
framework as in REXX. The authors made a spe-
cial effort to isolate them and provide orthogonal
and general solutions. The new techniques de-
scribed here to handle dynamic phenomena can
be applied to similar situations in other modern
languages.

REXX also poses several challenging syntactic
problems. For example, incomplete constructs
may not be flagged by the interpreter if an exit
occurs before the scan is complete, and some se-

Wopyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

312 PINTER, VORTMAN, AND WElSS IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

mantic activities need to be performed during
scanning. These issues, however, are beyond the
scope of this paper and are not addressed here.

The following section describes the difficulties
that REXX presents to a compiler builder. Subse-
quent sections outline solutions to the major
problems with emphasis on their generality, de-
scribe experimental results and possible exten-
sions, and discuss relationships to other work.
We conclude with an overall evaluation of this
effort.

Why is REXX hard to compile?

REXX is an “open” language. This openness is
manifested in more ways than one. For example,
the semantics of instruction sequencing is rather
liberal, there is no traditional block structure,
there are no declarations or types, operations are
applicable on the basis of instantaneous values,
arithmetic is performed with dynamic precision,
and variables can be shared with auxiliary proc-
esses (written in other languages). In this section
we explain these features and analyze the effect
that they have on the compilation process.

Undetermined scope. The language does not have
a traditional block structure for procedure defi-
nitions and program calls. The CALL and RETURN
statements merely transfer control (similar to
“Branch and Link” at the assembly level), but do
not hide the global environment from the local
one. The PROCEDURE statement is an executable
statement that takes effect only at run time; hence
it does not provide a syntactic boundary to the
definition of a procedure. The following example
displays several of the key problems with REXX’s
scoping rules:

1. if a = 1 then call pl
2. else call p2
3. call p3
4. if x = 3 then signal p3
5. else signal p2
6. pl: procedure
7. p2: x = a + 1
8. if x = 2 then return
9. p3: x = x + 1
10. return X

Since the execution of the PROCEDURE statement
can be made conditional (upon the entry point or
some predicate that is computed at run time, as in

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

lines 7-9), one cannot use the information during
compile time to resolve variable references.
Moreover, one can “fall through” (from lines 4
and 5) into the body of a procedure from the code
preceding its definition. Similarly, there is no ex-
plicit denotation to the end of a procedure; its
logical end is the frontier of RETURN statements
reachable from the entry point(s), but this de-
pends again on run-time behavior (see lines 8, 10).

In addition to the lack of block structure, REXX
has a unique sequencing semantics for state-
ments. By using the SIGNAL statement, execution

REXX is an open language.

control can wander through various parts of the
source text, including the body of procedures.
More severely, there is a computed SIGNAL (using
all the power of expression evaluation in the lan-
guage) where the target of the jump is calculated
at run time; this is stronger than, for example, a

struct, since we do not know the possible range of
labels at compile time.

Thus, even though the execution of a PROCEDURE
statement automatically creates a local envi-
ronment, the statements that follow may be exe-
cuted in a different environment if reached
through CALL or SIGNAL without executing the
PROCEDURE statement. Consequently, it is often
impossible to know in which context an instruc-
tion will be executed, and the amount of work
required at run time to perform context resolution
and switching may be prohibitive, especially for
data-intensive programs.

Dynamic binding and creation of variables. The
language is declaration free. Variables come and
go (using the DROP statement) dynamically. One
cannot predict whether a variable exists or not at
a given point in a program without full-fledged
flow analysis, which is very difficult as noted
above. Hence no generation of symbol-table
pointers as part of the code produced by the com-
piler seems feasible.

FORTRAN- or a PL/I-like computed GOT0 con-

PINTER, VORTMAN, AND WEISS 313

As in SNOBOL,’ the binding of identifiers to var-
iables is dynamically dependent on the most re-
cent assignment to a variable with the given iden-
tifier. Unlike other languages, there are no

-

Another effect of the declaration-free
language is that its variables do not

have types.

.” _~_________

declarations, either explicit or implicit. A variable
is declared implicitly merely by assigning a value
to it (again, similar to SNOBOL).

If this is not enough, names of variables can be
generated at run time, using all the power of
expression evaluation of the language. As the
names cannot be known at compile time, there is
no way to arrange them in a static symbol table
and use pointers to them in the generated instruc-
tions.

The major instance of this is compound variables,
which are essentially associative arrays with ar-
bitrary (numeric or string) keys. From the user’s
point of view, the meaning of A.1.J may be similar
to that of A(I,J) in FORTRAN, but in REXX I and J can
be either numeric values or strings. This means
that the reference routine to derived names can-
not be generated at compile time. Notice that di-
mensions, lengths, or other attributes cannot be
used.

Since the PROCEDURE statement is an executable
statement and not a declaration, the lifetime of
variables is dynamic, depending on the calling se-
quence and the visibility, or exposure, of varia-
bles among procedures.6 Moreover, the fact that
a variable was exposed in a called procedure may
cause “reverse-inheritance,’’ namely that the
variable appears in the caller only after the call,
whereas it was not present in the first place.

No types. Another effect of the declaration-free
language is that its variables do not have types.
As a matter of fact, all variables are of type string,
but since certain operations are permitted only if

314 PINTER, VORTMAN, AND WEISS

the operands have values in a given range (e.g.,
numeric or Boolean), there is a considerable pen-
alty for checks, conversions, and simulations of
operations in an alien domain that creates a com-
putational burden on the interpreter. Naturally,
one is tempted to try to deduce the type of a vari-
able (in order to generate the code required to
implement the various operations as well as sym-
bol-table access mechanisms) at compile time,
but this can be done only to a very limited extent
due to the aforementioned problems with control-
flow analysis.

Moreover, arithmetic itself is a troublesome is-
sue. The language offers a dynamic precision set-
ting which has an effect on every intermediate
result of an expression. This makes the deduc-
tions pertaining to the applicability of operations
to arithmetic data even more complicated.

The situation may seem reminiscent of the prob-
lems that come up when trying to compile APL
programs, but unlike APL-where there are ex-
actly two types and the conversions between
them are explicit-here we must contend with the
dynamic precision feature that practically gener-
ates an unbounded number of types. Moreover,
the effect of a precision setting is total in the sense
that it affects all arithmetic operations in the cur-
rent environment, whereas the conversions in
APL are “local,” i.e., they happen per variable.
Since the semantics of arithmetic operations is
sensitive to the values involved and their relation
to the current precision setting, the generation of
efficient code to support dynamic precision is not
an easy task. Here we can draw some inspiration
from APL, because every implementation of APL
that we know of, represents numeric data in one
of three different forms, and conversions among
them are done spontaneously.

An important effect of all objects semantically be-
ing strings of unbounded length is that memory
must be allocated dynamically. This means that
the run-time support must include a fairly heavy
mechanism for maintaining all values, both tem-
porary and specified variables alike.

All in all, REXX displays two important dynamic
characteristics concerning variables and their val-
ues, (1) dynamic existence of variables and (2)
dynamic types and attributes of objects.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Solutions

The solutions presented here deal only with the
more difficult aspects of the language. We first
define the compiler’s target in terms of an abstract
machine, 7 9 8 then outline some of the specific tech-
niques used to overcome the problems described
in the previous section. This section concludes
with a discussion of the delayed execution prin-
ciple that is used throughout this work.

The abstract machine. Since explicit code cannot
be generated, due to all the uncertainties concern-
ing object types, versions of variables, and so on,
the authors have opted to describe the semantics
of a program in an intermediate representation
that is later interpreted during run time. To do this
a rather simplistic n + I-operand abstract ma-
chine is defined, where the opcode is an entry
point in a threaded-code interpreter. The n oper-
ands (where n varies according to the opcode) are
pointers to object descriptors or immediate op-
erands, and the n + 1st field contains target in-
formation.

The data types of the machine are character string,
numeric string, and binary (fixed-point) integers.
There are specialized fetch and allocation services
for literals, variables, and temporaries for these
types. These access routines are organized in a ta-
ble, and their invocation is triggered by the general-
purpose descriptors stored in the operand fields of
each instruction. To support operations on these
data items, routines are provided to handle arith-
metic (in binary representation) as well as string-
oriented interpretation of arithmetic.

One could ask why the authors did not use some-
thing more sophisticated than simply an n + 1
abstract machine. There are two answers to this
question: First, this seems to be the lowest level
possible in order to achieve both reasonable ef-
ficiency as well as portability. Second, a stack
machine was deemed inappropriate since no gains
are to be made by pushing value descriptors on a
stack, and pushing the values themselves will
cause unnecessary movement of data in memory
due to the dynamic nature of the sizes involved.

Variable binding management. In order to accel-
erate execution time, a unique symbol table
organization was used to provide fast hiding of
large environments upon the execution of a
PROCEDURE statement. A lazy hiding policy is

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

proposed for variables: instead of reallocating lo-
cal variables, the method waits until the first as-
signment to such a variable before it is allocated.

Following the execution of a PROCEDURE state-
ment, each variable should be initialized to its
literal name value, unless it was EXPOSEd explic-
itly, in which case it is bound to its latest (i.e.,
closest in the nesting sequence) creation.

An activation record (AR) is maintained for each
name. An AR consists of a static portion and a
dynamic portion. The dynamic parts are pushed
and popped on a stack during environment
changes only upon demand, as explained shortly.
The static part contains the identifier’s literal
name, which is also its initial value, per the REXX
semantics; the dynamic part contains a pair
(ver, ptr) where ver is the “version number” of
the variable (or how deep it should be in a virtual
run-time stack), and ptr points to the value cor-
responding to this version.

During run time, the following actions are taken:

1. Initially, the program sets up and then main-
tains a global version number corresponding to
the nesting level. At each instant, the current
version of a variable is the one whose version
number is equal to the global version number.

2. Every time a PROCEDURE instruction is exe-
cuted, the global version number is incre-
mented. The version numbers of all EXPOSEd
variables are incremented as well.

3. Every time a variable is being accessed, we
check whether the version number in the ver
field of the dynamic AR matches the global ver-
sion number. If it does, we use the pointer
(from the ptr field of the AR) as is; otherwise,
there are two cases to be considered:

a. If a new value is created, the pointer to the
previous value is pushed on the stack and
the involved variable is recorded in a log.

b. If no value is created, then the literal name
value is used (since it should be considered
uninitialized).

4. Every time a RETURN instruction is executed
and a PROCEDURE instruction was performed
since the last CALL, we decrement the global
version counter, and for each variable entered
in the log, we recover its pointer from the
stack.

PINTER. VORTMAN. AND WEISS 315

This scheme distributes the work load in such a
way that the method does not have to push any-

The name of a compound variable
depends on the values of its

components at the instance of
reference.

thing unless a value is assigned to the same name
in the new environment. Two comments are due:

As was implied from Step 3a of the algorithm,
a variable log is maintained for each internal
procedure. This log is used to record all varia-
bles whose previous generation was pushed on
the stack. The log is used to recover the vari-
ables on return to the caller.
Recall that a variable in REXX is EXPOSEd if it
was explicitly declared to be so in a given pro-
cedure; then its value in the calling sequence
can be accessed from within the procedure. An
additional log is maintained to keep track of the
EXPOSEd variables of each internal procedure.
This log is used to record the values of all ex-
posed variables in order to assign their new val-
ues in the global environment upon return. Spe-
cial care must be taken when a variable is
assigned a value in an internal procedure before
it is assigned a value in the enclosing environ-
ment.

In order to support the above algorithm, the fol-
lowing data structure is maintained. A symbol ta-
ble entry (STE) is created at set-up time for each
identifier. The initial AR is identical to this STE.
The AR always reflects the current variable and is
dynamically updated during the program’s exe-
cution. Since the STE is being used as the frame of
the current AR, the AR is physically static and can
always be referenced using the same address.

Specifically, efficiency is gained by the following:

316 PINTER, VORTMAN, AND WEISS

1 . Only one STE is created for each name. By
using only one STE we save dynamic alloca-
tions, overall storage, and the reinitialization
of STEs in each new environment.

2. Once an STE is created, its location is deter-
mined and can be used at any moment for suc-
cessive references.

3. Only the minimal required information is
pushed and popped.

4. Pushing and popping of variables is reduced
only to those which are actually active in an
internal procedure. (As a result of our study of
REXX programs, we found that internal proce-
dures use a very small subset of the entire
group of variables which are active in a REXX
program .)

5 . Hiding the global environment from the local
one is automatically performed using the fact
that the nesting level does not match the ver-
sion number of the variables. This fact assists
also on the return from the local environment,
as reviving the variables is automatically per-
formed.

6 . The STEs are arranged in a balanced binary
tree. This structure was found to be best as
compared to other alternatives such as hash-
ing.

An assisting structure for compound variable
access. Compound variables display many of the
dynamic characteristics of REXX: their names,
values, and environment are generated during run
time and cannot be predicted. The name of a com-
pound variable depends on the values of its com-
ponents at the instance of reference. Conse-
quently, STEs for compound variables are not
generated during compile time, because (1) the
names of the compound variables are not known
at compile time, as they are later derived using the
values of their components, and (2) it is difficult
to know whether they are global or local varia-
bles.

In order to reduce the cost of name derivation and
compound variable access, we define an assisting
symbol table entry (ASTE). An ASTE contains the
pointers to the constituent components of the
compound variable’s name. By the use of these
pointers, the name derivation cost is reduced.
Also, this structure is used to save a direct pointer
to the associated compound variable which can
be used on consecutive references, and hence
save access time.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

For example, the ASTE of A.1.J points to the STEs
of the variables A, I , and J. In case all the com-
ponents are literals, the name itself is stored in the

In REXX, operations are
applicable on the basis of

instantaneous values.

proper STE and no derivation is needed. Thus,
A.1.2 has an STE which holds the derived name as
is, and no pointers are necessary at all.

The structure of an ASTE is similar to that of a
regular STE, and all ASTEs are maintained in their
own structure, separate from the main symbol
table. The actual STES for compound variables are
created during execution, and are inserted into
the main symbol table dynamically.

In addition, a base anchor for each cluster of com-
pound variables is always created and has the
same access mechanism as any other variable.
The base anchor provides an initial point for
searching entries of the compound variable,
regardless of the search algorithm used. It also
contains the value of the stem, if defined. The
combination of the base anchor with the ASTE
yields the desired run-time efficiency.

Multiple representations. Recall that in REXX, op-
erations are applicable on the basis of instanta-
neous values, and they cannot rely on previously
acquired knowledge about data types. Moreover,
as the precision setting is dynamic, objects can
have different values as a result of a change in the
precision setting.

Often values stay in one domain type from one
reference to another, while in other cases suc-
cessive references require different data repre-
sentations of the same object. The authors try to
improve the run-time efficiency by keeping mul-
tiple representations of objects’ values in such a
way that unnecessary conversions are avoided.

In order to achieve this goal, a value block struc-
ture is defined, which potentially holds all possi-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

ble representations of a value. A value block com-
prises a representation indication field to record
which representations exist at any given time, fol-
lowed by the values in the various representations
themselves. All the valid representations reflect
the same value in several different types. For ex-
ample, the numeric value 100 can coexist as the
character string ‘loo’, as the %bit integer
01100100, and as the floating-point number
1.00E2.

Using this multiple representation technique, an
object can be in one of the following states:

1. Only one of the representations is valid.
2. Some but not all of the representations are

3. All the representations are valid.

The rules governing the maintenance of value
blocks are as follows:

A value is stored in the same representation in
which it was created or as it was fetched. This
can save conversions for successive operations
that stay in the same domain.
Once a conversion is required from one data
type to another, both representations are kept.
The converted value is stored in the value block
and recorded accordingly in the representation
indication field.
Sometimes arithmetic operations invalidate the
last string value. In such cases, only one type
which is the target type is kept. No attempt is
made to revive other value types unless specif-
ically required.

valid.

To exemplify these rules, examine the case of
dual representation. The value of x is defined as
a pair of possible representations, (x , ~ , x,), where
x, is the string representation of x and x, is its
binary representation. A bottom denotes that a
representation is not available.

Then the value of x is defined as follows:

Val(X) = (x,, x,) when both representations

Val(X) = (x,, bottom) when only the string

Val(X) = (bottom, x,) when only the binary

exist,

representation exists, and

representation exists.

PINTER. VORTMAN, AND WEISS 317

Now consider the program fragment:

(l) A = B + C
(2) A = A 1 1 B
(3) D = C + A

The initial values are:

Val(B) = (b , , bottom)

V d C) = (cs, bottom)

In order to perform the first additions in (l), the
following conversions are invoked implicitly by
the fetch mechanism

b,, + convert-to_binary(b,)

c, +" convert-to-binary(c,) after which

Val(B) = (4 , b,J

V a f (C) = (c,, c , ,)

and now the operations are interpreted as follows
with one more conversion needed before each of
the statements (2) and (3):

(1) Val(A) + (bottom, b,, + c,,) = (bottom, a,)
(2) a, t convert-to-string(a,) V a f (A) +

(a,J b,, bottom) = (as , bottom)
(3) a,, + convert-to-binary(a,) V a f (D) +

(bottom, c, + a,,) = (bottom, d,,)

After (I) , only the numeric representation of A
becomes available, and the string representation
is invalidated. In order to use A in a string oper-
ation (concatenation), in (2) it must be converted.
Notice that B's representations are readily used;
they are not changed because B is not set. In (3)
again we can use the binary value of C which is
kept from (I) , but the new value of A must be
converted to binary again.

All in all, keeping multiple representations saves
conversions. Using this principle is similar in a
way to common subexpression detection tech-
niques for saving temporary results.

Delayed execution. As well as solving the prob-
lems which the dynamic features of the language
present, the authors had to think about the cost of
these solutions. Often it seemed profitable to
adopt an optimistic approach and postpone some
corrective operations until they were required.

318 PINTER. VORTMAN, AND WEISS

This attitude was carried out in several cases that
follow and is referred to as the delayed execution
principle.

1. Creation of the local environment for a pro-
cedure. Instead of pushing all the variables of
the previous environment on each procedure's
AR, the push operation is postponed until var-
iables are assigned values. The push is per-
formed on each variable specifically and acts
therefore only on those local variables which
are assigned new values in the local environ-
ment, while all other variables rest intact. The
pop operation on return from the procedure is
therefore performed only for those variables
which were pushed.

2. Creation of symbol-table entries for com-
pound variables. This activity is delayed until
the corresponding variable comes into exist-
ence. In this way, only keys that are actually
active cause space to be allocated. Since the
key may comprise several variables, the ref-
erence routine is partially compiled (up to the
actual key evaluation), leaving it necessary to
look up only the values at run time.

3. Maintaining several representations. The cost
of retrieving values for objects may increase.
In order to decrease the cost, retrieval of val-
ues is performed with ascending cost using the
fastest routine first, and the heavier routines
only in case the first one failed. Operations
which will need numeric values will check for
binary representation to accelerate execution.
Whenever possible, conversions will be post-
poned until required, and values will stay in
the same domain unless a change of domain is
needed.

4. Arithmetic operations performed on first trial
using binary (fixed-point) integer values. With
the hope that most arithmetic operations will
succeed using binary values, we delay the
heavier string arithmetic until we really need
them. The same strategy is used for logical
operations, which use only 0 and 1.

Results and extensions

The techniques described above were tested in an
experimental setting. We observed an improve-
ment in run time over the SPI interpreter of factors
ranging between 4 to 10, depending on the nature
of the source program. These results led to a de-
cision to develop a general availability REXX com-
piler which has been recently a n n o ~ n c e d , ~ using

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

(among others) the design and techniques de-
scribed in this paper. In our work, no attempt was
made to optimize the compiling routines them-
selves, therefore no measurements on compile
times were made; these issues were addressed by
the developers of the product.

There are three major areas in which further im-
provements can be expected.

1. In addition to saving the binary format of nu-
meric values when appropriate, the floating
point representation could also be saved, thus
speeding up scientific application programs.
(Such programs are being written in REXX!)
Another validity test per access would be nec-
essary, but the savings seem to justify it.

2. The range of keys for compound variables
could be analyzed to provide a better idea on
how to construct efficient referencing rou-
tines.

3. Flow analysis, as hard as it may be with REXX,
could lead-for well-structured programs- to
conclusions that may result in significant sim-
plifications to the generated code.

V

Relation to other work

Where to draw the line between compilation and
interpretation is a matter of semantics. Almost
every compiler produces some code which is
interpreted at run time (e.g., FORTRAN for the
FORMAT statement, PL/I on some bit manipulation
operations). For some languages, producing in-
termediate code that is interpreted during run
time is the only way the languages can be com-
piled.

The authors looked at the problems presented by
other dynamic languages, such as APL, LISP, and
SNOBOL. Different attempts to compile these lan-
guages usually used threaded code for the com-
piled output code. 839 Other compilation efforts
have made changes to the languages so as to make
them compilable to executable code. The most
notable change is to enforce lexical scoping rules
(as in the programming language, Scheme, vs
pure L I S P I ” . ~ ~ and the changes suggested to APL in
References 11 and 12), but other problematic is-
sues have also been ignored. These changes en-
abled the application of data flow analysis and
other types of deduction mechanisms.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Our effort was conducted under “real world”
constraints. Language restrictions were not al-
lowed (other than the insistence on complete con-
structs and not handling the INTERPRET instruc-
tion). Thus, most of the techniques that are
enabled by linguistic and semantic changes were
not applicable to the work discussed in this paper.
Still, the authors were able to achieve the four- to
ten-fold speedups reported above, which is com-
mensurate with the aforementioned efforts.

Moreover, the authors claim that REXX encom-
passes a wider spectrum of dynamic features
compared to the other languages. Most notable
are the rather unconventional block structure, dy-
namic precision, and compound variables. As ex-
plained in the section on solutions, the method
used indirect threaded code (in an n + 1 operand
abstract machine), based on solutions already
used for SNOBOL4 (SPITBOL) I 4 and APL. How-
ever, to solve the problems presented by some of
the dynamic features of REXX, we had to seek
additional solutions. Specifically, in APL and
SNOBOL all identifiers’ names can be deduced
from the source code, while in REXX they may be
computed only at run time. SNOBOL uses a way of
declaring arrays and tables (arrays for integer in-
dices, and tables for string indices), while REXX
uses the unified notion of compound variables-
generated dynamically during run time-for both
purposes. Some special characteristics of the lan-
guage, such as dynamic boundaries of procedures
and dynamic generation of code, are unique to
this language and required general solutions. (By
“general” we mean that it will handle these fea-
tures in the presence of the other dynamic fea-
tures as well.)

The concept of delayed execution was intended to
overcome some difficulties with minimal cost.
Unlike SPITBOL and APL, we do not stack the
environment on entry to a function (procedure),
but postpone it until explicitly required. As var-
iables that are not pushed on the stack need not
be popped, we save the stacking of local varia-
bles. Our concept of multiple representation of
values was formed to handle the difficulties with
dynamic precision and variable data types. While
SPITBOL and APL require conversions and valida-
tion of values, holding a multiple representation
saves some of the conversions and results in a
more efficient compiler. As data types are at-
tributes of the values and not of the variables, it

PINTER. VORTMAN. AND WEISS 319

allows another degree of freedom. The same ap-
plies to the service routines, such as fetch and
allocate. As they are attributes of the variables
and not part of the generated code, they can be
changed dynamically or use different routines ta-
bles corresponding to the instantaneous instruc-
tion requirements.

Summary

This paper presents several newly developed
techniques for compiling REXX programs, in face
of the language’s highly dynamic nature. These
techniques, summarized as follows, can be ap-
plied to a number of similar features in other dy-
namic languages, such as APL, SNOBOL, ICON,
and the UNIX@ Shell.

The multiple representation technique makes
typeless objects feasible, saving unnecessary
conversions.
Using indirect pointers to values solves the
problem of the dynamic length of variables.
By keeping a tree-like symbol table during ex-
ecution we allow changing, deleting, or adding
symbols at run time.
By using an access routines table, we can ac-
cess variables efficiently while keeping their dy-
namic features.
By delayed-execution techniques, we achieve
good performance of the compiled code while
sustaining dynamic boundaries to procedures
as well as dynamic binding of variables.
Finally, many traditional compilation tech-
niques concerning the allocation of temporary
values, compile time optimizations based on
flow analysis, and threaded-code are used.

Acknowledgment

The authors would like to thank Micky Rodeh and
Igal Golan for many helpful discussions.
UNIX is a registered trademark of UNIX Systems Labora-
tories, Inc.

Cited references and note

1 . M. F. Cowlishaw, “The Design of the REXX Language,”

2. M. F. Cowlishaw, The REXX Language, Prentice-Hall,

3. CMS REXX Compiler User’s Guide and Reference,

IBM Systems Journal 23, No. 4, 326-335 (1984).

Inc., Englewood Cliffs, NJ (1985).

320 PINTER. VORTMAN, AND WEISS

SH19-8120, IBM Corporation; available through IBM
branch offices.

4. A. V. Aho, R. Sethi, and J. D. Ullman, Compilers-Prin-
ciples, Techniques, and Tools, Addison-Wesley Publish-
ing Co., Reading, MA (1986).

5 . R. E. Griswold, J. F. Poage, and I. P. Polonsky, The
SNOBOL4 Programming Language, second edition,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1971).

6 . G. V. Cormack, “Extensions to Static Scoping,” Pro-
ceedings of the SIGPLAN83 Symposium on Program-
ming Language Issues in Software Systems (June 1983),

7. J. R. Bell, “Threaded Code,” Communications of the
ACM 16, No. 6 (June 1973), pp. 370-372.

8. R. B. K. Dewar, “Indirect Threaded Code,” Communi-
cations of the ACM 18, No. 6 (June 1975), pp. 330-331.

9. H. Glass, “Threaded Interpretive Systems and Func-
tional Programming Environments,” SIGPLAN Notices
20, No. 4 (April 1985), pp. 24-32.

10. R. A. Brooks, R. P. Gabriel, and G. L. Steele, Jr., “An
Optimizing Compiler for Lexically Scoped LISP,” Pro-
ceedings of the SIGPLAN’82 Symposium on Compiler
Construction (June 1982), pp. 261-275.

1 1 . T. Budd, An APL Compiler, Springer-Verlag, Inc., NY
(1988).

12. W.-M. Ching, “An APL/370 Compiler and Some Per-
formance Comparisons with APL Interpreter and
FORTRAN,” Proceedings of the APL’86 Conference,

13. D. Krantz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and
N. Adams, “ORBIT: An Optimizing Compiler for
Scheme,” Proceedings of the SIGPLAN’86 Symposium
on Compiler Construction (June 1986), pp. 219-233.

14. SNOBOL is an acronym for StriNg Oriented and sym-
BOlic Logic; SPITBOL is used to indicate speedy
SNOBOL.

15. Z. Weiss, An Adaptive APL Machine, Doctoral disserta-
tion, Technion, Israel Institute of Technology, Haifa, Is-
rael (1978).

16. H. Saal and Z. Weiss, “Compile Time Syntax Analysis of
APL,” Proceedings of the APL’81 Conference (October
1981).

pp. 187-191.

ACM (July 1986), pp. 143-147.

Ron Y. Pinter IBM Science and Technology, Technion City,
Haqa 32000, Israel. Dr. Pinter received the B.Sc. degree in
computer science from the Technion-Israel Institute of Tech-
nology, Haifa, in 1975, and the S.M. and Ph.D. degrees in
electrical engineering and computer science from the Massa-
chusetts Institute of Technology, Cambridge, in 1980 and
1982, respectively. During 1982-1983 he was a member of the
technical staff in the Computing Sciences Research Center,
AT&T Bell Laboratories, Murray Hill, New Jersey. In De-
cember 1983 he joined the IBM Israel Scientific Center, where
he is currently the manager of the Programming Languages,
Compilers, and Environments department. He is also a Senior
Research Affiliate with the electrical engineering department
at the Technion, he has taught at the Hebrew University,
Jerusalem, and spent the academic year 1988-89 as a Visiting
Scientist at the Department of Computer Science, Yale Uni-
versity, New Haven, Connecticut. His research interests in-
clude parallel programming techniques, code generation al-
gorithms, and layout for integrated circuits. Dr. Pinter is a
member of the Association for Computing Machinery, ACM
SIGPLAN, and the IEEE Computer Society.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Pnina Vortrnan IBM Science and Technology, Technion City,
Haifa32000, Israel. Mrs. Vortman received the B.Sc. inmath-
ematics and physics from the Hebrew University, Jerusalem,
in 1969. Shejoined IBM Israel in 1970 as a systems analyst and
later became a systems engineer. She specialized in database
applications and database tuning, and subsequently became a
specialist in large systems performance and tuning for VM and
MVS. During 1984-86 Mrs. Vortman was on assignment with
the IBM Israel Scientific Center, working in the areas of
DASD simulation and REXX compilation. She is currently on
leave of absence from IBM Israel, working in the editors area
of the IBM Application Systems Division, Bethesda, Mary-
land. Her main interests remain the performance and storage
management of applications and systems, as well as database
management systems.

Zvi Weiss IBM Research Division, Thomas J . Watson Re-
search Center, P .O. Box 704, Yorktown Heights, New York
10598. Dr. Weiss received the B.Sc. degree in physics from
the Technion-Israel Institute of Technology, Haifa, in 1968,
and the M.Sc. and D.Sc. degrees in computer science from the
Technion in 1972 and 1978, respectively. From 1974 to 1985 he
was a research staff member with the IBM Israel Scientific
Center, where he was the manager of the programming lan-
guages group in 1984-85. During that period he was also a
Research Affiliate with the computer science department at
the Technion. From 1985 to 1990 he was senior research staff
member and Deputy Program Director of the Software Tech-
nology Program at MCC, Austin, Texas. In April 1990 he
joined the IBM T. J . Watson Research Center in Hawthorne,
New York. His research interests include optimization tech-
niques for very high-level programming languages, coopera-
tive debugging systems, and software engineering environ-
ments.

Reprint Order No. G321-5437.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991 PINTER. VORTMAN, P ~ N D WEISS 321

