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IBM Clustered FORTRAN is a combination of 
software and  hardware  that allows two ISM 
Enterprise System/3090"  (ES/3090TM) 
multiprocessors to be physically connected as a 
cluster and allows FORTRAN jobs  to execute in 
parallel across all of the processors of the 
cluster. The  FORTRAN compiler and library 
provided as part of Clustered FORTRAN are  used 
for writing and  executing  the  parallel  programs in 
this hybrid environment of distributed and 
shared-memory  systems. The compiler provides 
language  extensions for explicit programming in 
parallel, as well as the ability to automatically 
generate both parallel  and  vector  code. The 
Clustered FORTRAN language allows users to 
write parallel applications that  are  independent  of 
the  machine configuration and operating system. 
This paper describes the execution environment, 
compiler, and library, gives some variations of 
programming matrix multi lication, and shows 
that  performance of  one  &gaFLOPS can  be 
achieved using Clustered FORTRAN. 

A s applications are  constructed  for parallel 
processing,  there is a desire  to apply more 

processors  to  the application.  Clustered FORTRAN 
is a combination of hardware and software  that 
allows the  connection of two IBM Enterprise 
System/309OTM (ES/3090TM) multiprocessors  to form 
a cluster of processors  for  execution of FORTRAN 
programs. IBM ESi3090 multiprocessors are tightly- 
coupled,  shared-memory  multiprocessor  systems 
that  support  up to six processors and share  a 
global memory;  each of these  processors may  be 

equipped with the  Vector  Facility  feature. ' 
VS FORTRAN's Multitasking Facility (MTF),* IBM 
Parallel FORTRAN, 334 and the parallel  extensions 
in vs FORTRAN Version 2 ,  Release 5 5  allow a  sin- 
gle FORTRAN job  to use all of the  processors of 
a single IBM 3090 multiprocessor.  Clustered 
FORTRAN extends  the parallel processing  capabil- 
ities to allow a single FORTRAN job  to use all  of the 
processors of two IBM 3090 multiprocessors. 
Clustered FORTRAN provides a high-speed con- 
nection between  two IBM 3090 multiprocessors, 
control program extensions  for job control  and 
interprocessor  communications,  and  a FORTRAN 
compiler and  library  that allow FORTRAN jobs  to 
use all  of the  processors of the  cluster.6  These 
two IBM 3090 multiprocessors are  distributed, 
since  there is no shared memory between  the two 
multiprocessors. 

Clustered FORTRAN has  been  superseded by IBM 
Enhanced  Clustered FORTRAN, announced in No- 
vember 1990, which is an extension of Clustered 

ports  clusters of up  to  four IBM ES/YOOO" multi- 
processors with an additional global storage  ac- 

FORTRAN. Enhanced  Clustered FORTRAN Sup- 
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cessible by each  multiprocessor in the  cluster. 
This  paper  describes the execution  environment 
and  compiler for  clusters of two IBM ES/3090s using 
Clustered FORTRAN. However, many of the  con- 
cepts apply  to  clusters of four IBM ES/9000 multi- 
processors using Enhanced  Clustered FORTRAN. 

Clustered FORTRAN 

Clustered FORTRAN builds on  the  function in Par- 
allel FORTRAN and  continues  the evolution by 
providing additional  enhancements, allowing pro- 
grammers to exploit all of the  processors in a dis- 
tributed  cluster of two IBM 3090 multiprocessors. 
Announced in May 1989, Clustered FORTRAN has 
been available on  a limited basis since  the  second 
quarter of 1990. It was  developed  for  the Virtual 
Machine/Extended  ArchitectureTM  Systems  Prod- 
uct ( V M / X A ~ ~  s ~ )  operating  system by IBM at  the 
Data  Systems Division  in Kingston, New York, and 
the Palo Alto Scientific Center and Programming 
Systems Santa  Teresa laboratory, in California. 

The major reason  for using Clustered FORTRAN is 
to  reduce the time  required  to  execute  a FORTRAN 
program. The time reduction is achieved when 
multiple processors of one  or more computers of 
a  Clustered FORTRAN Complex simultaneously 
execute  portions of a single application  program. 
Parallel execution  does  not  reduce  the  total num- 
ber of CPU (central  processing unit) cycles  re- 
quired to  execute a  program and, in fact, an in- 
crease in CPU cycles is normally required. 
Clustered FORTRAN allows a program to be split 
into multiple independent  instruction  streams. 
When these  instruction  streams are executed 
simultaneously by different processors on the 
same  or different computers,  the program utilizes 
cycles  from  each of the assigned processors.  Thus 
the  program  executes  more CPU cycles in a given 
span of real time,  and it can  complete  its  compu- 
tation  more  quickly. 

Different forms of parallelism can  occur in a 
FORTRAN program. An application may have  sub- 
routines  that  can  execute  concurrently  on differ- 
ent  data.  Loops may have  iterations  that can ex- 
ecute  at  the same time. Independent  sequences of 
statements may be eligible for  concurrent  execu- 
tion. Parallel work may occur  nested within other 
parallel work.  To accommodate  these different 
forms of parallelism, Parallel FORTRAN has two 
shared-memory programming models: (1) paral- 
lelism where memory is shared by default,  for 
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pieces of work  executing in the  same or dif- 
ferent  virtual  computers 
Several  enhancements  to  the parallel language 
constructs  introduced by Parallel FORTRAN 

Clustered FORTRAN maintains  the  execution envi- 
ronment  and  functions of Parallel FORTRAN 

A user of Clustered FORTRAN 
specifies  a virtual configuration that 

suits the application. 

within a  single,  virtual,  multiprocessor  computer. 
These  functions include: 

Automatic parallel execution  for eligible DO 

Automatic  integration of parallel and  vector 

Language  for parallel loop  iterations 
Language for parallel statement  sequences 
Language for parallel subroutine  execution 
Library  routines for synchronizing parallel 

loops 

processing 

pieces of work 

This  paper  discusses  the  execution  environment, 
compiler,  and  library  provided by Clustered 
FORTRAN to  support parallelism,  both  for a single, 
virtual  multiprocessor  and for multiple, virtual 
multiprocessors.  The  paper  concludes with sev- 
eral  examples of a matrix multiplication program 
for  both single and multiple, virtual  computer  en- 
vironments,  and  includes  performance  results  for 
matrix multiplication using Clustered FORTRAN 
with two IBM ES/3090 Model 6005 computers. 

Clustered FORTRAN execution  environment 

A  Clustered FORTRAN Complex consists of two 
real  computers  grouped  into  a  cluster by a high- 
speed  connection facility. Each computer must 
be  an IBM ES/3090 multiprocessor  system with 
four, five, or six processors. Both of the  comput- 
ers of the  complex  must  operate  under VM/XA, 
and  each  computer  must  have  the  Clustered 
FORTRAN hardware  and  software installed. 
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A  Clustered FORTRAN application  sees  a virtual 
configuration for  its  execution  environment.  The 
virtual configuration consists of one  or more vir- 
tual computers  that are connected  together by a 
virtual connection  facility.  A  virtual  computer is 
mapped to a tightly-coupled multiprocessor. The 
virtual computers  share no memory;  this mimics 
the  architecture of the  collection of real  comput- 
ers in the  complex.  Communication  between vir- 
tual computers is done by copying data.  Each of 
the virtual computers may be a  shared-memory 
multiprocessor;  this mimics the  architecture of 
any one of the  real  computers in the complex.  A 
virtual computer is implemented as  an IBM VM/XA 
virtual machine and  the virtual processors in that 
computer  are implemented as virtual CPUS defined 
in that virtual machine. A virtual  processor is 
within a  virtual  computer  and is mapped  to  one of 
the tightly-coupled multiprocessors by the  oper- 
ating system.  A virtual configuration with two vir- 
tual  multiprocessors  for  a  Clustered FORTRAN 
application is shown in Figure 1. 

A  user of Clustered FORTRAN specifies a virtual 
configuration that  suits  the  application  at  hand.  A 
real cluster configuration consisting of two six- 
way multiprocessor  systems might be thought of 
as 12 uniprocessor  computers, as  four  computers 
each with three  processors,  as  two  computers 
each with six processors,  or many  other config- 
urations.  The  number of virtual  computers  and 
processors  can be greater  than  the  number of real 
computers  and  processors. The virtual configura- 
tion is specified at  execution  time by a file con- 
taining COMPUTER statements, with one  state- 
ment for  each virtual computer  desired. When a 
Clustered FORTRAN application is submitted  for 
execution,  the  system  extensions  create  the vir- 
tual configuration and  map it onto  the real con- 
figuration for  the  duration of the  job. An impor- 
tant  feature of Clustered FORTRAN is that  the 
application source  and  the  object  code  generated 
by the  compiler are independent of the config- 
uration used for  execution.  This  means  that  an 
application  does not have to be recompiled when 
the  user  changes  the configuration file. 

The FORTRAN main program obtains  control  after 
the virtual configuration has  been built and ini- 
tialized. This program runs as a  task in the first 
virtual computer  that is requested.  This is known 
as  the root  task and  this  virtual  computer is 
known as the root  virtual computer (RvC). The 
other virtual computers, known as cluster virtual 
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ROOT VIRTUAL COMPUTER (RVC) 

CLUSTERED FORTRAN APPLICATION PROGRAM 
(ROOT AND PARALLEL TASKS) I 

Figure 1 A virtual configuration for a Clustered FORTRAN application 

- 

CLUSTERED FORTRAN LIBRARY I 

CLUSTER VIRTUAL COMPUTER (CVC) 

CLUSTERED FORTRAN APPLICATION PROGRAM 
(PARALLEL TASKS ONLY) I 

FT - FORTRAN TASK VP - VIRTUAL PROCESSOR 

1 

CLUSTERED FORTRAN LIBRARY I 

computers (CVCS), are fully initialized and waiting 
for  work. 

To achieve parallel execution among virtual com- 
puters  (RVC  and  CVCS),  a FORTRAN program must 
assign work to  the CVCS. This is done by using 
Clustered FORTRAN’s language for parallel tasks, 
which allows tasks running in one virtual com- 
puter  to  originate  tasks in another virtual com- 
puter  and  then assign work  to  these  remote  tasks. 
Additional parallelism can be gained within a vir- 
tual  computer by using Clustered FORTRAN’s in- 
line parallel constructs  (automatic parallel DO 
loops, parallel loops, parallel cases)  or by origi- 
nating tasks in the same virtual computer and as- 
signing work to them. Parallelism within a virtual 
computer allows a  virtual  computer, which was 
defined to be a  multiprocessor, to use its multiple 
processors.  The  section on Clustered FORTRAN 
parallel functions  explains the parallel functions 
provided by the  Clustered FORTRAN compiler and 
library. 

Figure 2 shows a Clustered FORTRAN Complex 
with two  real  computers.  In this figure a Clustered 
FORTRAN job has  the RVC of its virtual configura- 

tion executing in one of the  real  computers  and a 
cvc executing in the  other. 

As can be seen  from the preceding  description, 
the  Clustered FORTRAN language,  compiler,  and 
library are used to build a  virtual configuration for 
a run-time execution  environment, identify the 
parallel pieces of work,  and  map  the parallel 
pieces of work onto  the logical resources  pro- 
vided by that configuration. The underlying Clus- 
tered FORTRAN software  support  and  the VM/XA 
operating  system  map  the logical resources of the 
virtual configuration to  the real  resources of the 
Clustered FORTRAN Complex. 

Four  conditions are required for a Clustered 
FORTRAN program to  be able to fully exploit the 
processing  capabilities of a  Clustered FORTRAN 
Complex. These  conditions follow: 

1. The  virtual configuration for  executing the 
program should define one  or more  virtual 
computers in each  real  computer of the  com- 
plex. 

2. The virtual computers in each  real  computer 
should be defined with sufficient virtual proc- 
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Figure 2 A Clustered FORTRAN Complex 

CLUSTERED FORTRAN REAL COMPUTER 
IBM ES/3090 MULTIPROCESSOR 

ROOTVIRTUAL COMPUTER IRVC) I 
CLUSTERED FORTRAN REAL COMPUTER 
IBM ES/3090 MULTIPROCESSOR 

CLUSTER VIRTUAL COMPUTER ICVC) I 

essors (in total) to use all of the  processors of 
the real  computer. 

3. The virtual  computers in each real computer 
should have sufficient pieces of parallel work 
ready  for  execution to keep all of the  proces- 
sors of the  real  computer  busy. 

4. In  each real computer of the  complex,  the vir- 
tual  computers should be assigned a  schedul- 
ing priority high enough to allow them  to  ac- 
quire  real  processors  when  needed. 

The first two conditions  can normally be satisfied 
by specifying an  appropriate virtual configuration 
when  the  program is submitted  for  execution.  Sat- 
isfying the  third  condition is very  dependent  on 
the  nature of the  program.  Some  programs may 
be  able  to satisfy this  condition  for  almost  the full 
duration of their  execution;  others may only be 
able to partially satisfy this  condition; and yet 
others may not  be  suitable  for use with Clustered 
FORTRAN. 

The  fourth  condition  depends  on  the scheduling 
policies set  up  for  the  Clustered FORTRAN Com- 
plex in which the program is run. In general, if a 
Clustered FORTRAN program is to  see perfor- 

mance benefits over  those it could see  on  a single 
IBM 3090 multiprocessor, it must  be allowed the 
simultaneous  use of more  computational  re- 
sources  than it could receive in any  one of the IBM 
3090 multiprocessors of the  cluster.  (Without  the 
simultaneous  use of the  resource,  an  application 
may perform better  on  a single IBM 3090 multi- 
processor.) 

Clustered FORTRAN parallel functions 

Clustered FORTRAN supports a variety of pro- 
gramming styles. To  express  concurrent  exe- 
cution,  a  user  can  choose  to specify a parallel 
SUBROUTINE, a parallel DO loop,  or sections of 
parallel code.  Synchronization  can  be  accom- 
plished by waiting for a task or by using locks, 
events,  and  synchronization  counters.  Commu- 
nication is achieved by using shared  variables or 
by copying COMMON blocks  and SUBROUTINE ar- 
guments. 

Parallel tasks. Clustered FORTRAN allows new and 
distinct FORTRAN execution  environments to be 
created  and  permits  the  concurrent  execution of 
these  distinct  environments. A short-hand  name 
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for  these  environments is tusks and  their use is 
referred to  as out-of-line parallelism. Use of these 
out-of-line tasks allows a  programmer  to  encap- 
sulate  a  subroutine  for parallel execution with 
varying and well-controlled degrees of sharing, 
and  to  treat  the  tasks  as objects  that maintain a  set 
of data  that is local and  persistent to a  task envi- 
ronment.  A  task  can  be  created  that communi- 
cates with the task  that  created it by using shared 
memory.  Alternatively,  a  task  can be created  that 
shares no memory with the  task  that  created  it, 
and  that  communicates with it by sending data. 

A Clustered FORTRAN program  begins execution in 
the root task, which executes in a root virtual com- 
puter (RVC). The ORIGINATE statement may be used 
to create more tasks and to specify  in  which  virtual 
computer they run.  The BINDING clause in an 
ORIGINATE statement is used to specify the virtual 
computer that will contain a  task. If the BINDING 
clause is omitted, then the task is originated in the 
same virtual computer as the originating task. Any 
task may originate a  task in any virtual computer. 
The originated task has its storage allocated in a 
particular computer and it runs only  in that com- 
puter.  Each  task has a global  identifier returned to 
the program by the ORIGINATE statement. The 
global  identifier can be used in subsequent state- 
ments to manipulate the  task. When a task is no 
longer needed it can be deleted with a TERMINATE 

ments are illustrated in Figure 3.  The first 
ORIGINATE statement in the figure causes  a new 
task to be originated. The new task may share mem- 
ory with and will reside in the same virtual com- 
puter as the originating task.  The second and  third 
ORIGINATE statements use the BINDING Clause to 
specify that  the task will not share memory  with the 
originating task and to indicate the target virtual 
computer for  the originated task.  The virtual com- 
puter may or may not be the same virtual computer 
of the originating task. If the originated task is on a 
different virtual computer than its originating task, 
then these  two tasks cannot share memory, and 
they communicate by sending data. These 
ORIGINATE statements show tasks being  originated 
in specific virtual computers, the second relative 
computer in the virtual cluster and a virtual com- 
puter  that was assigned the name “cvcOl” in its 
COMPUTER statement.  The use of a name provides 
flexibility in defining the virtual cluster for the pro- 
gram since virtual computers can be renamed in the 
COMPUTER statements. 

Statement. The ORIGINATE and TERMINATE State- 

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991 

Figure 3 ORIGINATE and TERMINATE statements 

Figure 4 Sample DISPATCH and SCHEDULE statements 

Work is assigned to a task with the SCHEDULE and 
DISPATCH statements.  These  statements  name  a 
subroutine to be executed, asynchronously, in the 
invoked task and  list the arguments to be passed to 
the called subroutine. The user may request that  a 
specific task be used or may request that  the library 
choose any available task. SCHEDULE allows user 
control over  the detection of task completion and 
the assignment of new work. DISPATCH allows the 
run-time library to  detect task completion and  as- 
sign  new  work to tasks. 

Arguments to  the called subroutine may be 
passed by address  or by copy. When the  address 
is used,  the  same  copy of the  argument is shared 
between  the  scheduled  task  and the scheduling 
task.  Addresses  can  be used to identify arguments 
only when the  scheduled  and  scheduling  tasks  re- 
side in the  same virtual computer. When tasks 
reside in different virtual  computers,  a  copy of the 
argument must be passed to  the  subroutine. When 
an  argument is passed by copy, a copy is made of 
the value of the  argument in the called task.  Each 
task is executed with its own copy of the argu- 
ment.  Sample  statements are  shown in Figure 4. 
The CALLING clause in each of the  three  state- 
ments specifies the name of the  subroutine  to  be 
executed  asynchronously.  The DISPATCH state- 
ment in the figure shows  arguments being passed 
by address.  The SCHEDULE statement  shows  the 
arguments being passed by copy.  The “=arg=” 
means that  the  value of the  argument is to  be 
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Figure 5 SCHEDULE statement-Options  allowed for 
tasks  in  the  same or different  virtual  computers 

Figure 6 SCHEDULE statement-Additional  option 
~~ 

allowed for tasks  originated  without BINDING 

copied  into  the  scheduled  task when work is as- 
signed and  copied  out of the  scheduled  task when 
the work is completed.  The  “=arg” means  the 
value is only copied  into  the  scheduled  task when 
work is assigned,  and  the “arg=” means  the value 
is only copied  out of the  scheduled  task when the 
work is completed. A variable,  array  element, full 
array,  or  array stripe may be  passed by copy in 
either  or both  directions;  an  expression or con- 
stant may only be passed  into  the called subrou- 
tine. An array  stripe is a  section of an  array  that 
is contiguous in storage. It is specified by  giving 
a lower bound and  upper bound in one dimension 
of an  array.  For example, assuming an  array  spec- 
ified  by DIMENSION A(10,10,10), the  notation 
A(:,2:6,3) specifies an  array  stripe with A(1,2,3) 
as its first element  and A(10,6,3) as its last ele- 
ment. 

Tasks, like subroutines in traditional FORTRAN, 
may communicate  through  common blocks of 
storage as well as arguments.  Figures 5 and  6 
show  the  optional  clauses  for  a SCHEDULE state- 
ment.  These  clauses  also apply to  the DISPATCH 
statement.  Figure 5 shows  the  optional  clauses 
allowed in the SCHEDULE statement when the 
task being invoked is in the  same or different vir- 
tual  computers  as  the  caller.  Figure 6 shows  the 
additional  clause allowed in the SCHEDULE state- 
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Figure 7 Example of  WAIT  FOR statements 

ment when the  task being invoked is in the  same 
virtual computer  as  the  caller.  The difference is 
simply that SHARING of common  blocks may be 
specified only when the  tasks  are in the same vir- 
tual computer. A SHARING clause may be used to 
name the  common blocks to be shared with the 
task  selected to  execute  the  subroutine. Shared 
common blocks are  accessed in the same  location 
by both  tasks.  The  scheduled or dispatched  task 
uses  the  same  copy of the  common block as  the 
task  that invoked it. A COPYING clause may be 
used to name  common  blocks that  are  to  be cop- 
ied into  the  invoked  task when work is assigned 
and  copied  out of the  task  when  work is com- 
pleted and waiting. Both  the  invoked  and  the in- 
voking tasks  have  a  private  copy of these  com- 
mon blocks. COPYING1 and COPYING0 name 
common blocks  that are  to be copied  respectively 
only into,  or only out  of,  the  invoked  task. 

Tasks  can be assigned a variety of pieces of work. 
A TAGGING clause is provided to allow the  pro- 
gram to name, or  tag, a particular  piece of work. 
The values of the tags are saved  when  the  task is 
scheduled.  When,  subsequently, the program is- 
sues  a wait for  a  task,  the  values of tags for  the 
completing task may be  retrieved.  This  makes it 
easy  for  the  program to determine  what specific 
piece of work  was assigned to  the  task that  was 
just  completed. 

The WAIT FOR statement  is used to  detect when a 
task  has  completed  its assigned work.  Three 
types of WAIT FOR statements  are available: wait 
for  a specific task, wait for  any task,  or wait for 
all tasks.  Figure 7 shows  the  variations of the 
WAIT FOR statement, including its  optional 
TAGGING clause. 

In-line parallel function. In  addition to  the out-of- 
line extensions  for parallel tasks,  Clustered 
FORTRAN also  provides in-line parallelism. In-line 
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parallelism permits  the  code within a  subroutine 
to be dynamically parceled  to more than  one 
processor  for  execution.  Each of the  processors 
executes in its  own logical environment. All the 
array  and  scalar  data  known  to  the  subroutine  are 
automatically  shared.  The sharing of data be- 
tween  these  environments  means  that in-line par- 
allelism is confined to  the  processors of the virtual 
computer in which the owning subroutine was ex- 
ecuting.  Processors may also name their own pri- 
vate  data. 

Clustered FORTRAN provides  three  forms of in- 
line parallel function:  automatic parallelism, par- 
allel loops,  and parallel cases. 

Automatic  parallelism. Automatic parallelism is 
the simplest  way  to  introduce in-line parallelism 
into an application. A compiler option  requests 
that  the  compiler  analyze  nests of DO loops to 
determine if they  are eligible for parallel execu- 
tion. Parallel code is generated  only if parallel 
execution would produce  the  same  results as se- 
rial execution. An extension of the  data-depen- 
dence  algorithms  used  for  vectorization  deter- 
mines whether  loops,  or  selected  statements 
within loops, may be executed in parallel. If there 
are no data  dependences which prevent parallel 
execution,  the  compiler  determines if it is cost- 
effective to  execute  the loop in parallel. If so, 
parallel code is generated  for  the  loop;  otherwise 
serial  code is generated. Besides being a simple 
way to introduce in-line parallelism,  automatic 
parallelism also allows a program to remain por- 
table to  other FORTRAN compilers. 

The  vector  and parallel compiler options may 
both be specified. In this case,  the compiler will 
analyze  nests of DO loops  for  both parallel and 
vector  execution. Individual loops may be se- 
lected  for  vector,  for  parallel, or  for both vector 
and parallel execution. A loop  selected  for  par- 
allel execution may contain  inner parallel or vec- 
tor  loops. A loop  selected  for  vector  execution 
may only contain  inner  scalar  loops. If it  is found 
to  be  cost-effective,  a  loop may be broken  into 
two or more  separate  loops,  each of which has the 
same  induction  parameters as  the original. The 
new loops may be executed in different modes. 
Directives are provided for  users  to indicate  a 
preference for parallel or serial code  for  a given 
loop as well as a  preference  for  scalar or vector 
code.  Thus  the user  can  override  the compiler’s 
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economic  decisions  for  the  type of code generated 
for a loop. 

Although automatic  detection of parallelism is an 
easy  means  to  obtain in-line parallel execution, it 
does  not  provide a complete  answer  for in-line 

Clustered FORTRAN provides 
three forms of in-line  parallel 

function: automatic  parallelism, 
parallel loops, and  parallel 

cases. 

parallel programming. The primary reason  for 
this is the  requirement  that parallel execution 
must produce  the  same  results as serial  execu- 
tion. Some algorithms are able to run effectively 
in parallel even though they  contain  data  depen- 
dences which may cause  their  results to change 
from run to  run. An example is chaotic  relaxation. 
The algorithms are designed to  converge,  and  are 
deemed to be successful  when  they  converge 
within some small tolerance. Any value that 
meets  this  criterion is acceptable. When using au- 
tomatic  parallelization,  the  same  results  must  be 
produced as would be produced by the serial ex- 
ecution of the  program. 

Clustered FORTRAN provides language extensions 
with which the  programmer may specify in-line 
parallel execution.  These  extensions, which 
define parallelism within a  routine, identify loops 
or blocks of statements  that  can  be  executed 
concurrently. 

Parallel  loops. A parallel loop is one in which each 
iteration of the  loop may be  executed  concur- 
rently.  Some  number of processors, possibly one 
per iteration, may be used to  execute  the  loop. 
The  number of processors is not specified. It will 
be  determined  at  run time and it can  vary  from 
one  to  the  number of virtual  processors  associ- 
ated with the virtual computer.  The  order in 
which iterations are  executed is not  guaranteed. 
However, all iterations are completed  before  ex- 
ecution  continues  beyond  the  end of the  loop. 
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Figure 8 Simple  form of PARALLEL  LOOP Figure 10 Extended  form of  PARALLEL  LOOP 

Figure 9 Example of  PRIVATE statement 

The programmer is responsible for ensuring that the 
loop is valid for parallel execution. Normally, each 
iteration should be computationally independent of 
other iterations. Alternatively, the  user can ensure 
that  the  proper synchronization is used between it- 
erations or that  the results are meaningful  in the 
absence of such synchronization. 

A PARALLEL LOOP has a syntax which is similar 
to a DO loop.  A simple form is shown in Figure 8. 

This simple form of a parallel loop  permits  iter- 
ations  to  execute in parallel. But suppose  a  pro- 
grammer  needs to  compute a temporary  result, 
such  as XTEMP, within an  iteration.  A  statement 
like XTEMP=A(I)*B(I) will not work in parallel. If 
several  processors  execute  the  statement simul- 
taneously,  each  computing with a different value 
of I, because  there is only  one  copy Of XTEMP, the 
processors will try  to  update  a single copy and 
incorrect  behavior may result.  Therefore,  each 
processor  needs  its  own  private  copy of XTEMP 
for  the program to  operate  correctly. Such  private 
variables may be declared with a PRIVATE state- 
ment,  as  shown in Figure 9. 

Furthermore, given such  private  variables, it is 
sometimes  desirable to initialize them  before  ex- 
ecuting  iterations of the  loop,  or  to reference  their 
final value after all loop  iterations  are  complete. 
For this  purpose, DOFIRST and DOFINAL state- 
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ments are provided.  These  delimit,  respectively, 
a prologue and epilogue block for  the  loop;  they 
may specify, by a LOCK operand,  that only one 
processor  at  a time is to  be permitted  to  execute 
the prologue or epilogue. DOEVERY delimits the 
body of the  loop  that is executed  on  each 
iteration. 

The  example  shown in Figure 10 shows how these 
statements might be used to implement a  sum  re- 
duction.  This  loop  calculates  a global sum, GSUM, 
of a vector AVAL. A  private  variable, PSUM, ini- 
tialized to  zero  for  each  processor, will be used in 
each  processor  to  accumulate a sum of the ele- 
ments of the  vector AVAL assigned to  that  proc- 
essor.  The  number of elements  accumulated in 
each local PSUM is determined dynamically at  run 
time. After  each  processor  has  executed  its  last 
iteration, it adds its private partial sum, PSUM, into 
the global total sum, GSuM. This final addition will 
be done under control of a lock so that GSUM is 
updated by only one processor at a time. (It should 
be noted that this example, written to illustrate the 
parallel loop, may not contain enough processing 
for profitable  parallel execution.) 

Parallel  cases. Often it is possible  to  execute 
blocks of statements in parallel. The blocks may 
contain straight-line code,  branches  to  other 
statements in the  same  block,  intrinsic  functions, 
calls to FORTRAN library  subprograms,  or  loops; 
the  loops  themselves may be  parallel or  vector. 
What is significant is that the blocks may be proc- 
essed  concurrently. At the limit, each block could 
be executed by a different processor.  The  number 
of processors is not  known; it may range  from one 
through  the  number of blocks; the  exact  number 
will be determined  at  the  time the blocks are ex- 
ecuted. As with parallel loops,  the  programmer is 
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responsible for ensuring  that  such blocks are valid 
for parallel execution-either that  each block is 
computationally  independent of the  others  or  that 
the  data  interactions  that  arise  between blocks are 
controlled or intentional. 

The PARALLEL  CASES structure is provided to 
simplify the programming of such parallel blocks 
of statements.  The  example in Figure 11 shows 
statements  that may execute  concurrently in the 
first lexical CASE block, CASE 1 and CASE 2; there 
is no  guarantee of the  order of their  execution.  A 
WAITING clause is provided  for  situations  where 
an early case may compute  data  that would be 
used by more  than  one  subsequent  case.  In  this 
manner, a program containing  an  acyclic graph of 
dependences may be  translated  into  a  series of 
parallel cases. As with parallel loops,  the  cases 
may employ private  variables as needed. All 
cases  are completed  before  execution  continues 
beyond the END  CASES statement. 

Both parallel loops  and parallel cases may contain 
nested parallel loops  and parallel cases.  The 
nested  loops may be scalar or  vector. Input and 
output  statements may be used within parallel 
loops  and parallel cases. 

Clustered FORTRAN library. The  Clustered FOR- 
TRAN library  also  has  extensions  for parallelism. 
Some of these  extensions are internal,  supporting 
the parallel language and  the  automatic parallel 
capabilities of the  compiler.  Other  extensions are 
external  and may be used directly by the pro- 
grammer. 

Routines are provided  for determining the  con- 
figuration of the virtual cluster.  The program can 
determine  the  number of virtual computers in the 
virtual cluster  and  the  location,  system identifi- 
cation,  associated  names,  and  the  number of vir- 
tual  processors  for  each virtual computer. 

Intrinsic  functions are provided  for  protected up- 
dates of shared  variables by multiple tasks  that 
reside in the  same virtual computer. Arithmetic 
functions are provided to  add,  subtract,  update if 
smaller and  update if larger to INTEGER*4,  REAL*4 
and REAL*8 variables or  array elements. Logical 
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Figure 11 Example of PARALLEL CASES 

PARALLEL CASES 
CASE 

CASE 1 

CASE 2 

CASE 3. WAITING FOR CASE 1 

CASB 4. WAITING FOR CASES (1.2) 

CASE 5 .  WAITING FOR CASES (2.3) 

END CASES 

statements 

statements 

statements 

statemnts 

Statements, 

statements 

functions are provided to  do AND, OR, and  exclu- 
sive-OR updates of INTEGER*4 variables or  array 
elements. 

Routines are provided  for  the  management of 
locks,  events,  and  synchronization  counters. 
Locks may be used to  ensure  that  only  one  task 
at  a time gains access  to a  resource,  such  as a 
shared  table modified  by multiple tasks.  Events 
may be used to make a task wait until another  task 
has  reached some point in execution.  Synchroni- 
zation counters may be used to implement vari- 
ous types of intertask signaling and waiting 
schemes. Locks,  events, and  synchronization 
counters may be used between  tasks  executing in 
different virtual computers,  as well as  the  same 
virtual computer. 

An optional  trace of the parallel execution may be 
requested via a run-time option.  The trace may be 
an aid  in tuning or debugging a  program  that  ex- 
ecutes in parallel. A trace file can be produced  for 
each virtual computer in the  virtual  cluster.  Each 
trace  record identifies the executing task,  subrou- 
tine, and statement.  The  system  provides  trace 
records  for  such  events as  start  and  end of pro- 
gram execution, origination and  termination of 
tasks, assignment and  completion of work to 
tasks,  sharing  and copying of common  blocks, 
start and end of parallel loops  and parallel cases, 
and uses of locks  and  events.  Programmers may 
also  enter  trace  records  into  these files by calling 
a library subroutine.  The level of detail  generated 
in the  trace file  is controlled by the  run-time  op- 
tion or by a library call. 
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Figure 12 Serial  matrix  multiplication 

Figure 13 Vector report for matrix  multiplication 

l -  I [ " 

Figure 14 Matrix  multiplication  with  automatically 
parallelired DO loop 

COMMON /AC/ A~lOOO,1000~, B(1000.1000). 

REAL.8 A .  B, C 
c(looo,looo) 

DO 20 IC - 1, 1000 
DO 30 J - 1,  1000 C(1,Kl - 0.0 DO 20 I - 1,  1000 

30 
20 CONTINU% 

C(1,K) - C(f,K]+B[J.R)*A(I.J) 

Parallel programming example:  matrix 
multiplication 

In  the following examples,  a matrix multiplication 
problem is programmed using different methods 
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to  illustrate  the  features of Clustered FORTRAN 
and  to  explore  issues in parallel and  vector  pro- 
gramming. Most of these  examples are  for illus- 
trative  purposes only and  do  not  necessarily  pro- 
vide the  best parallel performance  for  the matrix 
multiplication problem. The best parallel perfor- 
mance for matrix multiplication on  a single IBM 
3090 multiprocessor  can  probably  be  obtained by 
using the DGEMLP subroutine  from  the IBM Engi- 
neering and Scientific Subroutine  Library 
(ESSL). The  examples begin with those  for  a sin- 
gle virtual computer  and  end with two  for multiple 
virtual computers.  Performance  results are given 
for matrix multiplication on two ES/3090 Model 
6005 computers. 

The first matrix multiplication program,  shown in 
Figure 12, is a  serial program that  has  been  op- 
timized for  use on the IBM 3090 Vector  Facility. 
This is the  code  that will be parallelized in the 
remaining examples. 

The  objective now is to parallelize the matrix mul- 
tiplication without degrading the  vector  perfor- 
mance.  The compiler report in Figure 13, which 
was generated by the  compiler when compiling 
Figure 12 using the  option  for  automatic  vector- 
ization,  shows  that  the matrix multiplication is 
vectorized  over  the I loop  and  that C(I,K) needs to 
be stored only after  the J loop  has  completed. 
This leaves  the K loop as  the prime candidate  for 
parallelization. 

Distribution of parallel pieces of work  (iterations 
of the K loop) among tasks  can  be  either  static  or 
dynamic. Dynamic balancing of work is likely to 
be preferable when systems  cannot be dedicated. 
The  next  example  shows how dynamic load bal- 
ancing can be accomplished.  The  example begins 
with the  observation  that the ordering of the I and 
K loops may be reversed. When this is done,  the 
K loop becomes  the  outermost  loop,  where it is 
suitable for  parallelization. Note  that  to  have  both 
a parallel loop  and  a  vector  loop in a nested  loop, 
the  vector  loop  must be at  a  nested level con- 
tained within the parallel loop. Also, generally 
performance will be  better when the parallel loop 
is the  outermost  loop.  The I and J loops, mean- 
while, maintain their  relationship to  each  other, 
allowing efficient vector  code. 

Figure 14 shows how dynamic load balancing can 
be achieved using automatically  generated  paral- 
lel DO loops (using the AUTO option).  Figure 15 
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illustrates how the  compiler parallelized and vec- 
torized the program.  This is a very small refor- 
mulation of the original matrix multiplication. A 
user could also  have used the PARALLEL LOOP 
statement in place of the DO statement  for  the 
outermost  loop. 

When parallelizing code with many fine-grain 
loops, efficiency can  often  be improved by mov- 
ing to  coarser grain parallelism, which is the  sub- 
routine  level. Although the efficiency is obviously 
not  improved by moving a single loop  into  a sub- 
routine,  Figure 16 illustrates  subroutine-level  par- 
allelism using the SCHEDULE and WAIT FOR state- 
ments.  The core of the  matrix multiplication code 
is placed in a subroutine named MLT and modified 
so that it computes  one  Nth of the  matrix,  where 
N is the  number of tasks. Its arguments tell it how 
many tasks  there  are  and which block of columns 
of the  result matrix it is to  compute.  It is sched- 
uled for parallel execution with multiple execu- 
tions of the SCHEDULE statement.  Note  that  the 
compiler will automatically  create multiple copies 
of the  argument K, so that  each virtual process 
has  its own value of K. 

This  example  also  illustrates  a  static mapping of 
work to  tasks; each  task  receives  a predefined 
amount of work. It  can work well on  a  dedicated 
system  where  each  scheduled  task should have a 
real  processor immediately available. However, 
if the program is executing in an  environment 
where  there is competition  for  the real proces- 
sors,  the parallel performance actually achieved 
will be determined by the  task  that  receives  the 
lowest level of service. 

In all  of the preceding examples,  the matrix mul- 
tiplication was being performed in only one vir- 
tual  computer. In all cases, parallelism was 
achieved by having logically concurrent  tasks 
generate  independent  columns of the result ma- 
trix. (A column of the  result matrix corresponds 
to  one  iteration of the K loop.)  The  example in 
Figure 14 used dynamic load balancing with com- 
piler-generated  chunks of iterations being distrib- 
uted  among  the virtual processors  for  the K loop. 
In Figure 16, the  iterations were explicitly 
chunked  such  that  each  task  received  exactly  one 
chunk using static  load balancing. 

The following examples  show how the matrix 
multiplication may be  extended  across multiple 
virtual computers.  Figure 17 shows dynamic load 
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Figure 15 Parallel  report for matrix multiplication  with 
automatically  parallelired DO loop 

Figure 16 Matrix  multiplication  with SCHEDULE 

COMMON /AC/ A(1000,1000). B(lOOO~lOOO~, 

REAL*8 A, B, C 
* c(1000.1000) 

DO 20 K - 1, NTASK 
20 SCHEDULE ANY TASK ITASK, 

* SHARING (AC) , 
* CALLING M T  (K,NTASIC) 
WAIT FOR ALL TASKS 

END 

SUBROUTINE MLT (KN.KT) 
COMMON fAC/ A~1000,1000),  B(lOOO~lO00) 

REAL'8 A. E, C 
KUB - lOOO*KN[KT 
KLB - l+lOOO*(KN-l)fICT 
DO 20 I - 1. 1000 

c(1000.1000) 

DO 20 K - KLB. KUB 
C(1.K) - 0.0 
DO 30 J - 1, 1000 

30 C(1.K) - C(I.K)+B(J,KI*ACI.J) 
20 CONTINUE 

RETURN 
END 

balancing across  (up  to)  four  virtual  computers 
where the  chunk  size is defined by the  parameter 
KCHNK. Figure 18 uses  static load balancing and 
defines only two  chunks,  the left half and  the right 
half  of the result matrix.  In  both of these  last  two 
examples,  we  chose to use DGEMLP to illustrate 
the simplicity of using the parallel ESSL routines 
to  provide parallelism within the virtual  com- 
puter. 

Several  considerations  were  used in developing 
the  example  shown in Figure 17. They  included: 
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Figure 17 Dynamic  load  balancing  with DGEMLP Figure 18 Static load balancing  using DGEMLP 

@PROCESS  DCCAA,BBCC)  OPT(31 
REAL*& A.8,C 
PARAMETER (N-1000,KCHNK--2.5) 
COMMON /AA/ A(N,N?  /BBCCfB(N,N),C{N,N) 
INTEGER ID(4) 

NCHNK 1 + (N-l)/KCHNK 
M MIN(KCHNK,N) 
NCOMP - MINfNCOMPSO ,NCHNK.4) 
ORIOINATE ANY TASK ID(1) 
SCREDULE TASK ID(1). SHAz(INO(AA), 

C . * .  

* GAL.LING  MLT(B(:.l:M).  C(:.l:M),  -MI 

DO 20 I-2.NCHNK 
L - M + l  

1 O L  T ~ ~ I N A T E  TASK ID(1) 
STOP 
END 

'I?'.C,N.N.N.KJ 

END 

The program should be able to dynamically 
adapt  to  the  number of virtual computers  and 
virtual processors specified for  the run-time 
configuration. It was  assumed  that  a  user would 
want to specify a virtual  cluster  that would 
match the physical configuration of the Clus- 
tered FORTRAN Complex being used. 
The program would normally be run  on  a com- 
plex where  each  node would be fully populated 
with vector  facilities;  vector  performance 
should not be sacrificed to achieve parallelism. 
The program should be  able  to dynamically load 

balance  between  virtual  computers as well as 
within a virtual computer. 
The  synchronization  and moving of data  be- 
tween virtual computers should be minimized. 
This consideration, to  some  extent,  is in conflict 
with dynamic  load balancing between  virtual 
computers. 

The  preceding  considerations led to  the adoption 
of the  approach  shown in Figure 17. The K loop 
is broken  into  chunks with each  chunk being dis- 
tributed dynamically to  the virtual  computers. 
The  chunk size (KCHNK) is parameterized  to  pro- 
vide a  control  over the tradeoffs  between load 
balancing among virtual  computers,  synchroni- 
zation among virtual computers,  and load balanc- 
ing among the virtual processors within each 
virtual computer.  The first ORIGINATE and 
SCHEDULE pair gives a  chunk of columns ( 1  
through M) of the B and C matrix to a task  on the 
RVC, sharing all arrays  to minimize communica- 
tions.  (The third argument in the CALLING clause 
specifies the  number of columns in the  chunk.) 
During the first (NCOMP-I) iterations of loop 20, if 
other virtual computers  exist,  chunks of columns 
are given to  a  task on each of the  CVCS. Array 
stripes allow a compact specification of the min- 
imal amount of data  that  must  be  exchanged. 
Once  an initial chunk is given to  each of the vir- 

ment returns  the  task identifier, ITKD, of the first 
completing task. If it was  the  task in the root vir- 
tual computer, (ID(1) = ITKD), another  chunk is 
given to it. Addressability to  the  A matrix is re- 
established each time with the SHARING clause. If 

tual Computers, the WAIT FOR ANY TASK State- 
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the  returning  task was from a  cluster virtual com- 
puter, then  another  chunk is given to  it.  Note that 
since  the  data of a task  environment are persis- 
tent,  the  read-only  data of the A matrix need not 
be  copied  after  the first schedule of each of the 
tasks in the  clustered virtual computers. After the 
last iteration of the  loop, all chunks  have been 
distributed  and  the  work will be complete  after 
the WAIT  FOR ALL  TASKS has  been satisfied. The 
parallelism within each virtual computer is ob- 
tained by using the parallel ESSL routine  for ma- 
trix multiply, DGEMLP. Dynamic load balancing 
within a virtual computer  for DGEMLP is achieved 
by requesting  additional virtual processors, 
which in turn will result in there being more 
pieces of work  than  there are real  processors. 

Figure 18 illustrates  a simple way to  obtain  ex- 
cellent performance from all 12 processors on a 
pair of dedicated  systems. The work is statically 
partitioned  between  computers;  the RVC calcu- 
lates  the left half of the result matrix while the 
right half is computed by the CVC. ESSL provides 
the parallel support within a  computer. Perfor- 
mance  measurements  for  this  code  are shown in 
Table 1. The  code was run on  the Cornel1 Na- 
tional Supercomputer  Facility, which consisted 
of two ES/3090 Model 6005 computers,  each with 
512 MB  of main memory and with six Vector Fa- 
cilities; VM/XA System  Product  Release 2; and the 
clustered FORTRAN hardware  and  software.  The 
execution times include all necessary data trans- 
fers  (input  and result matrices)  between  the com- 
puters. 

Performance of 1 GigaFLOPS  can be achieved on 
matrix multiplication using Clustered FORTRAN 
with two ES/3090 Model 6005 computers,  as  shown 
in Table 1 .  

Concluding remarks 

IBM Clustered FORTRAN is a  combination of soft- 
ware  and  hardware  that allows two IBM ESi3090 
multiprocessors  (selected  models),  to be physi- 
cally connected as a  cluster  and allows FORTRAN 
jobs  to  execute in parallel across all of the  proc- 
essors of the  cluster.  The FORTRAN compiler and 
library provided  as  part of Clustered FORTRAN are 
used for writing and  executing  the parallel pro- 
grams.  They  provide  a rich spectrum of function 
that  supports  a wide range of parallel application 
programming styles. 
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Table 1 MATRIX  MULTIPLY  using  DGEMLP  in  ESSL 

N MB Computation  and  Transfer 
T h e  (s) OFLOPS 

2000 96 20.03 0.798 
3000 216 49.76 1.085 
4000 384 108.79 
4400 465 

1.176 
148.68 1.145 

5000 600 221.48  1.128 

The parallelism in an application may be  ex- 
pressed in ways that  are  natural  to  the  applica- 
tion.  The SCHEDULE and DISPATCH statements 
may be used to  execute independent  subroutines 
in parallel, either in the  same  virtual  computer or 
in a different virtual computer.  The PARALLEL 
LOOP and PARALLEL  CASES statements may be 
used to parallelize the  statements within a rou- 
tine.  Automatic parallel and  automatic  vector 
may be used to gain faster  execution of nests of 
eligible DO loops. Parallel execution is not re- 
stricted to a single level but may be specified 
wherever it occurs.  Operating  system  and ma- 
chine configuration differences are not  exposed  to 
the  program. 

The  Clustered FORTRAN program identifies the 
pieces of work  that are eligible to  run in parallel 
and how the parallel work is to  be scheduled on 
each of its virtual computers. When the  program 
is compiled and  executed,  the  library in each of 
the virtual computers  puts  the parallel work  on a 
queue  and  distributes it to  the virtual  processors 
of the virtual computer. Real processors  are al- 
located dynamically by the  operating  system. As 
additional real  processors  are  allocated,  addi- 
tional virtual processors  can  execute  concur- 
rently.  Programs  that  partition  work  dynamically, 
employ multiple levels of parallelism, or use other 
strategies  to  keep  the  queues of parallel work full 
can take advantage of these additional real proces- 
sors as they become available during execution. 

Clustered FORTRAN applications  run  under  the 
VM/XA System  Product  operating  system. The de- 
gree of parallel execution  can  be  controlled at run 
time through the  number of virtual  computers  and 
virtual processors  requested. When parallel exe- 
cution is requested in a  cluster  consisting of two 
~ ~ 0 0 9 0  Model 600 systems  that  are fully equipped 
with Vector  Facilities,  Clustered FORTRAN makes 
it possible for  a single FORTRAN program  to  make 
simultaneous use of up to 12 processors and Vector 
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Facilities as a means of reducing its turnaround 
time, or increasing its performance. Performance of 
one GigaFLOPS has been achieved on matrix  mul- 
tiplication using Clustered FORTRAN with two 
ES/3090 Model 6005 computers. 
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