FORTRAN for clusters
of IBM ES/3090
multiprocessors

IBM Clustered FORTRAN is a combination of
software and hardware that allows two IBM
Enterprise System/3090™ (ES/3090™)
multiprocessors to be physically connected as a
cluster and allows FORTRAN jobs to execute in
parallel across all of the processors of the
cluster. The FORTRAN compiler and library
provided as part of Clustered FORTRAN are used
for writing and executing the parallel programs in
this hybrid environment of distributed and
shared-memory systems. The compiler provides
language extensions for explicit programming in
parallel, as well as the ability to automatically
generate both parallel and vector code. The
Clustered FORTRAN language allows users to
write parallel applications that are independent of
the machine configuration and operating system.
This paper describes the execution environment,
compiler, and library, gives some variations of
programming matrix mulgplication, and shows
that performance of one GigaFLOPS can be
achieved using Clustered FORTRAN.

As applications are constructed for parallel
processing, there is a desire to apply more
processors to the application. Clustered FORTRAN
is a combination of hardware and software that
allows the connection of two IBM Enterprise
System/3090™ (ES/3090™) multiprocessors to form
a cluster of processors for execution of FORTRAN
programs. IBM ES/3090 multiprocessors are tightly-
coupled, shared-memory multiprocessor systems
that support up to six processors and share a
global memory; each of these processors may be

2906 SAHULKA ET AL.

by R. J. Sahulka
E. C. Plachy
L. J. Scarborough
R. G. Scarborough
S. W. White

equipped with the Vector Facility feature.'
VS FORTRAN’s Multitasking Facility (MTF),? IBM
Parallel FORTRAN,** and the parallel extensions
in VS FORTRAN Version 2, Release 5° allow a sin-
gle FORTRAN job to use all of the processors of
a single IBM 3090 multiprocessor. Clustered
FORTRAN extends the parallel processing capabil-
ities to allow a single FORTRAN job to use all of the
processors of two IBM 3090 multiprocessors.
Clustered FORTRAN provides a high-speed con-
nection between two IBM 3090 multiprocessors,
control program extensions for job control and
interprocessor communications, and a FORTRAN
compiler and library that allow FORTRAN jobs to
use all of the processors of the cluster.® These
two IBM 3090 multiprocessors are distributed,
since there is no shared memory between the two
multiprocessors.

Clustered FORTRAN has been superseded by IBM
Enhanced Clustered FORTRAN, announced in No-
vember 1990, which is an extension of Clustered
FORTRAN. Enhanced Clustered FORTRAN sup-
ports clusters of up to four IBM ES/9000™ multi-
processors with an additional global storage ac-

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

cessible by each multiprocessor in the cluster.
This paper describes the execution environment
and compiler for clusters of two IBM ES/3090s using
Clustered FORTRAN. However, many of the con-
cepts apply to clusters of four IBM ES/9000 multi-
processors using Enhanced Clustered FORTRAN.

Clustered FORTRAN

Clustered FORTRAN builds on the function in Par-
allel FORTRAN and continues the evolution by
providing additional enhancements, allowing pro-
grammers to exploit all of the processors in a dis-
tributed cluster of two IBM 3090 multiprocessors.
Announced in May 1989, Clustered FORTRAN has
been available on a limited basis since the second
quarter of 1990. It was developed for the Virtual
Machine/Extended Architecture™ Systems Prod-
uct (VM/XA™ SP) operating system by IBM at the
Data Systems Division in Kingston, New York, and
the Palo Alto Scientific Center and Programming
Systems Santa Teresa laboratory, in California.

The major reason for using Clustered FORTRAN is
to reduce the time required to execute a FORTRAN
program. The time reduction is achieved when
multiple processors of one or more computers of
a Clustered FORTRAN Complex simultancously
execute portions of a single application program.
Parallel execution does not reduce the total num-
ber of CPU (central processing unit) cycles re-
quired to execute a program and, in fact, an in-
crease in CPU cycles is normally required.
Clustered FORTRAN allows a program to be split
into multiple independent instruction streams.
When these instruction streams are executed
simultaneously by different processors on the
same or different computers, the program utilizes
cycles from each of the assigned processors. Thus
the program executes more CPU cycles in a given
span of real time, and it can complete its compu-
tation more quickly.

Different forms of parallelism can occur in a
FORTRAN program. An application may have sub-
routines that can execute concurrently on differ-
ent data. Loops may have iterations that can ex-
ecute at the same time. Independent sequences of
statements may be eligible for concurrent execu-
tion. Parallel work may occur nested within other
parallel work. To accommodate these different
forms of parallelism, Parallel FORTRAN has two
shared-memory programming models: (1) paral-
lelism where memory is shared by default, for

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

fine-grained tasks that need to work on the same
data, and (2) parallelism where memory is not
shared by default, for coarse-grained tasks that
are relatively independent and share no memory,
or only specified parts of memory.

An important feature of Parallel FORTRAN is the
separation of the specific execution environment
from both the user’s source and the object code

Clustered FORTRAN allows a
program to be split into muitiple
independent instruction streams.

generated by the compiler. At execution time, a
user specifies the number of processors for par-
allel execution. The user’s execution environ-
ment can be viewed by the user as a virtual mul-
tiprocessor.

Clustered FORTRAN builds on the Parallel
FORTRAN functions by extending the execution
environment from a single, virtual, multiproces-
sor computer to multiple, virtual, multiprocessor
computers. In addition to the two Parallel
FORTRAN programming models for shared-
memory mentioned above, Clustered FORTRAN
supports distributed, nonshared memory paral-
lelism where tasks communicate by sending and
receiving data. The extensions over Parallel
FORTRAN include:

* A high-speed connection that allows two

IBM ES/3090 multiprocessors to be connected as

a cluster

Control program extensions for communication

on the high-speed connection

FORTRAN run-time options for specifying a vir-

tual run-time configuration for executing the

program

System extensions to build and control the vir-

tual configurations required by Clustered

FORTRAN programs

» Additional language for parallel subroutine ex-
ecution to allow the scheduling of parallel work
across multiple, virtual computers

e Library routines for synchronizing parallel

SAHULKA ET AL. 297

pieces of work executing in the same or dif-
ferent virtual computers

* Several enhancements to the parallel language
constructs introduced by Parallel FORTRAN

Clustered FORTRAN maintains the execution envi-
ronment and functions of Parallel FORTRAN

A user of Clustered FORTRAN
specifies a virtual configuration that
suits the application.

within a single, virtual, multiprocessor computer.
These functions include:

s Automatic parallel execution for eligible DO
loops

e Automatic integration of parallel and vector
processing

» Language for parallel loop iterations

» Language for parallel statement sequences

» [anguage for parallel subroutine execution

e Library routines for synchronizing parallel
pieces of work

This paper discusses the execution environment,
compiler, and library provided by Clustered
FORTRAN to support parallelism, both for a single,
virtual multiprocessor and for multiple, virtual
multiprocessors. The paper concludes with sev-
eral examples of a matrix multiplication program
for both single and multiple, virtual computer en-
vironments, and includes performance results for
matrix multiplication using Clustered FORTRAN
with two IBM ES/3090 Model 600J computers.

Clustered FORTRAN execution environment

A Clustered FORTRAN Complex consists of two
real computers grouped into a cluster by a high-
speed connection facility. Each computer must
be an IBM ES/3090 multiprocessor system with
four, five, or six processors. Both of the comput-
ers of the complex must operate under VM/XA,
and each computer must have the Clustered
FORTRAN hardware and software installed.

298 SAHULKA ET AL.

A Clustered FORTRAN application sees a virtual
configuration for its execution environment. The
virtual configuration consists of one or more vir-
tual computers that are connected together by a
virtual connection facility. A virtual computer is
mapped to a tightly-coupled multiprocessor. The
virtual computers share no memory; this mimics
the architecture of the collection of real comput-
ers in the complex. Communication between vir-
tual computers is done by copying data. Each of
the virtual computers may be a shared-memory
multiprocessor; this mimics the architecture of
any one of the real computers in the complex. A
virtual computer is implemented as an IBM VM/XA
virtual machine and the virtual processors in that
computer are implemented as virtual CPUs defined
in that virtual machine. A virtual processor is
within a virtual computer and is mapped to one of
the tightly-coupled multiprocessors by the oper-
ating system. A virtual configuration with two vir-
tual multiprocessors for a Clustered FORTRAN
application is shown in Figure 1.

A user of Clustered FORTRAN specifies a virtual
configuration that suits the application at hand. A
real cluster configuration consisting of two six-
way multiprocessor systems might be thought of
as 12 uniprocessor computers, as four computers
each with three processors, as two computers
each with six processors, or many other config-
urations. The number of virtual computers and
processors can be greater than the number of real
computers and processors. The virtual configura-
tion is specified at execution time by a file con-
taining COMPUTER statements, with one state-
ment for each virtual computer desired. When a
Clustered FORTRAN application is submitted for
execution, the system extensions create the vir-
tual configuration and map it onto the real con-
figuration for the duration of the job. An impor-
tant feature of Clustered FORTRAN is that the
application source and the object code generated
by the compiler are independent of the config-
uration used for execution. This means that an
application does not have to be recompiled when
the user changes the configuration file.

The FORTRAN main program obtains control after
the virtual configuration has been built and ini-
tialized. This program runs as a task in the first
virtual computer that is requested. This is known
as the root task and this virtual computer is
known as the root virtual computer (RVC). The
other virtual computers, known as cluster virtual

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 1 A virtual configuration for a Clustered FORTRAN application

ROOT VIRTUAL COMPUTER (RVC)

CLUSTERED FORTRAN APPLICATION PROGRAM
(ROOT AND PARALLEL TASKS)

L

CLUSTERED FORTRAN LIBRARY

vp VP | see WP

VIRTUAL CONNECTION FACILITY

CLUSTER VIRTUAL COMPUTER {CVC)

CLUSTERED FORTRAN APPLICATION PROGRAM
(PARALLEL TASKS ONLY)

CLUSTERED FORTRAN LIBRARY

..H_ ;

FT - FORTRAN TASK VP ~ VIRTUAL ?ﬁOGESSOR

computers (CVCs), are fully initialized and waiting
for work.

To achieve parallel execution among virtual com-
puters (RVC and CVCs), a FORTRAN program must
assign work to the cvCs. This is done by using
Clustered FORTRAN’s language for parallel tasks,
which allows tasks running in one virtual com-
puter to originate tasks in another virtual com-
puter and then assign work to these remote tasks.
Additional parallelism can be gained within a vir-
tual computer by using Clustered FORTRAN’s in-
line parallel constructs (automatic parallel DO
loops, parallel loops, parallel cases) or by origi-
nating tasks in the same virtual computer and as-
signing work to them. Parallelism within a virtual
computer allows a virtual computer, which was
defined to be a multiprocessor, to use its multiple
processors. The section on Clustered FORTRAN
parallel functions explains the parallel functions
provided by the Clustered FORTRAN compiler and
library.

Figure 2 shows a Clustered FORTRAN Complex

with two real computers. In this figure a Clustered
FORTRAN job has the RVC of its virtual configura-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

tion executing in one of the real computers and a
CVC executing in the other.

As can be seen from the preceding description,
the Clustered FORTRAN language, compiler, and
library are used to build a virtual configuration for
a run-time execution environment, identify the
parallel pieces of work, and map the parallel
pieces of work onto the logical resources pro-
vided by that configuration. The underlying Clus-
tered FORTRAN software support and the VM/XA
operating system map the logical resources of the
virtual configuration to the real resources of the
Clustered FORTRAN Complex.

Four conditions are required for a Clustered
FORTRAN program to be able to fully exploit the
processing capabilities of a Clustered FORTRAN
Complex. These conditions follow:

1. The virtual configuration for executing the
program should define one or more virtual
computers in each real computer of the com-
plex.

2. The virtual computers in each real computer
should be defined with sufficient virtual proc-

SAHULKA ET AL. 299

Figure 2 A Clustered FORTRAN Complex

. CLUSTERED FORTRAN REAL COMPUTER
IBM ES/8090 MULTIPROCESSOR

ROOTVIRTUAL COMPUTER (RVC)

REAL CONNECTION FAGILITY

CLUSTERED FORTRAN REAL COMPUTER
IBM ES/3090 MULTIPROCESSOR

CLUSTER VIRTUAL COMPUTER (CVC)

L T
Tl A ’,V’r"k see VP
It

essors (in total) to use all of the processors of
the real computer.

3. The virtual computers in each real computer
should have sufficient pieces of parallel work
ready for execution to keep all of the proces-
sors of the real computer busy.

4. In each real computer of the complex, the vir-
tual computers should be assigned a schedul-
ing priority high enough to allow them to ac-
quire real processors when needed.

The first two conditions can normally be satisfied
by specifying an appropriate virtual configuration
when the program is submitted for execution. Sat-
isfying the third condition is very dependent on
the nature of the program. Some programs may
be able to satisfy this condition for almost the full
duration of their execution; others may only be
able to partially satisfy this condition; and yet
others may not be suitable for use with Clustered
FORTRAN.

The fourth condition depends on the scheduling
policies set up for the Clustered FORTRAN Com-
plex in which the program is run. In general, if a
Clustered FORTRAN program is to see¢ perfor-

300 SAHULKA ET AL.

mance benefits over those it could see on a single
IBM 3090 multiprocessor, it must be allowed the
simultaneous use of more computational re-
sources than it could receive in any one of the IBM
3090 multiprocessors of the cluster. (Without the
simultaneous use of the resource, an application
may perform better on a single I1BM 3090 multi-
processor.)

Clustered FORTRAN parallel functions

Clustered FORTRAN supports a variety of pro-
gramming styles. To express concurrent exe-
cution, a user can choose to specify a parallel
SUBROUTINE, a parallel DO loop, or sections of
parallel code. Synchronization can be accom-
plished by waiting for a task or by using locks,
events, and synchronization counters. Commu-
nication is achieved by using shared variables or
by copying COMMON blocks and SUBROUTINE ar-
guments.

Parallel tasks. Clustered FORTRAN allows new and
distinct FORTRAN execution environments to be
created and permits the concurrent execution of
these distinct environments. A short-hand name

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

for these environments is zasks and their use is
referred to as out-of-line parallelism. Use of these
out-of-line tasks allows a programmer to encap-
sulate a subroutine for parallel execution with
varying and well-controlled degrees of sharing,
and to treat the tasks as objects that maintain a set
of data that is local and persistent to a task envi-
ronment. A task can be created that communi-
cates with the task that created it by using shared
memory. Alternatively, a task can be created that
shares no memory with the task that created it,
and that communicates with it by sending data.

A Clustered FORTRAN program begins execution in
the root task, which executes in a root virtual com-
puter (RVC). The ORIGINATE statement may be used
to create more tasks and to specify in which virtual
computer they run. The BINDING clause in an
ORIGINATE statement is used to specify the virtual
computer that will contain a task. If the BINDING
clause is omitted, then the task is originated in the
same virtual computer as the originating task. Any
task may originate a task in any virtual computer.
The originated task has its storage allocated in a
particular computer and it runs only in that com-
puter. Each task has a global identifier returned to
the program by the ORIGINATE statement. The
global identifier can be used in subsequent state-
ments to manipulate the task. When a task is no
longer needed it can be deleted with a TERMINATE
statement. The ORIGINATE and TERMINATE state-
ments are illustrated in Figure 3. The first
ORIGINATE statement in the figure causes a new
task to be originated. The new task may share mem-
ory with and will reside in the same virtual com-
puter as the originating task. The second and third
ORIGINATE statements use the BINDING clause to
specify that the task will not share memory with the
originating task and to indicate the target virtual
computer for the originated task. The virtual com-
puter may or may not be the same virtual computer
of the originating task. If the originated task is on a
different virtual computer than its originating task,
then these two tasks cannot share memory, and
they communicate by sending data. These
ORIGINATE statements show tasks being originated
in specific virtual computers, the second relative
computer in the virtual cluster and a virtual com-
puter that was assigned the name “cvc01” in its
COMPUTER statement. The use of a name provides
flexibility in defining the virtual cluster for the pro-
gram since virtual computers can be renamed in the
COMPUTER statements.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 3 ORIGINATE and TERMINATE statements

Figure 4 Sample DISPATCH and SCHEDULE statements

' DISPATCH ANY TASK itask, -
LLING. gubnam(argl,s

Work is assigned to a task with the SCHEDULE and
DISPATCH statements. These statements name a
subroutine to be executed, asynchronously, in the
invoked task and list the arguments to be passed to
the called subroutine. The user may request that a
specific task be used or may request that the library
choose any available task. SCHEDULE allows user
control over the detection of task completion and
the assignment of new work. DISPATCH allows the
run-time library to detect task completion and as-
sign new work to tasks.

Arguments to the called subroutine may be
passed by address or by copy. When the address
is used, the same copy of the argument is shared
between the scheduled task and the scheduling
task. Addresses can be used to identify arguments
only when the scheduled and scheduling tasks re-
side in the same virtual computer. When tasks
reside in different virtual computers, a copy of the
argument must be passed to the subroutine. When
an argument is passed by copy, a copy is made of
the value of the argument in the called task. Each
task is executed with its own copy of the argu-
ment. Sample statements are shown in Figure 4.
The CALLING clause in each of the three state-
ments specifies the name of the subroutine to be
executed asynchronously. The DISPATCH state-
ment in the figure shows arguments being passed
by address. The SCHEDULE statement shows the
arguments being passed by copy. The “=arg="
means that the value of the argument is to be

SAHULKA ET AL. 301

Figure 5 SCHEDULE statement—Options allowed for

tasks in the same or different virtual computers

Figure 6 SCHEDULE statement—Additional option
allowed for tasks originated without BINDING

copied into the scheduled task when work is as-
signed and copied out of the scheduled task when
the work is completed. The “=arg” means the
value is only copied into the scheduled task when
work is assigned, and the “‘arg="" means the value
is only copied out of the scheduled task when the
work is completed. A variable, array element, full
array, or array stripe may be passed by copy in
either or both directions; an expression or con-
stant may only be passed into the called subrou-
tine. An array stripe is a section of an array that
is contiguous in storage. It is specified by giving
a lower bound and upper bound in one dimension
of an array. For example, assuming an array spec-
ified by DIMENSION A(10,10,10), the notation
A(:,2:6,3) specifies an array stripe with A(1,2,3)
as its first element and A(10,6,3) as its last ele-
ment.

Tasks, like subroutines in traditional FORTRAN,
may communicate through common blocks of
storage as well as arguments. Figures 5 and 6
show the optional clauses for a SCHEDULE state-
ment. These clauses also apply to the DISPATCH
statement. Figure 5 shows the optional clauses
allowed in the SCHEDULE statement when the
task being invoked is in the same or different vir-
tual computers as the caller. Figure 6 shows the
additional clause allowed in the SCHEDULE state-

302 saHuLKA ET AL.

Figure 7 Example of WAIT FOR statements

ment when the task being invoked is in the same
virtual computer as the caller. The difference is
simply that SHARING of common blocks may be
specified only when the tasks are in the same vir-
tual computer. A SHARING clause may be used to
name the common blocks to be shared with the
task selected to execute the subroutine. Shared
common blocks are accessed in the same location
by both tasks. The scheduled or dispatched task
uses the same copy of the common block as the
task that invoked it. A COPYING clause may be
used to name common blocks that are to be cop-
ied into the invoked task when work is assigned
and copied out of the task when work is com-
pleted and waiting. Both the invoked and the in-
voking tasks have a private copy of these com-
mon blocks. COPYINGI and COPYINGO name
common blocks that are to be copied respectively
only into, or only out of, the invoked task.

Tasks can be assigned a variety of pieces of work.
A TAGGING clause is provided to allow the pro-
gram to name, or tag, a particular piece of work.
The values of the tags are saved when the task is
scheduled. When, subsequently, the program is-
sues a wait for a task, the values of tags for the
completing task may be retrieved. This makes it
easy for the program to determine what specific
piece of work was assigned to the task that was
just completed.

The WAIT FOR statement is used to detect when a
task has completed its assigned work. Three
types of WAIT FOR statements are available: wait
for a specific task, wait for any task, or wait for
all tasks. Figure 7 shows the variations of the
WAIT FOR statement, including its optional
TAGGING clause.

In-line parallel function. In addition to the out-of-
line extensions for parallel tasks, Clustered
FORTRAN also provides in-line parallelism. In-line

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

parallelism permits the code within a subroutine
to be dynamically parceled to more than one
processor for execution. Each of the processors
executes in its own logical environment. All the
array and scalar data known to the subroutine are
automatically shared. The sharing of data be-
tween these environments means that in-line par-
allelism is confined to the processors of the virtual
computer in which the owning subroutine was ex-
ecuting. Processors may also name their own pri-
vate data.

Clustered FORTRAN provides three forms of in-
line parallel function: automatic parallelism, par-
allel loops, and parallel cases.

Automatic parallelism. Automatic parallelism is
the simplest way to introduce in-line parallelism
into an application. A compiler option requests
that the compiler analyze nests of DO loops to
determine if they are eligible for parallel execu-
tion. Parallel code is generated only if parallel
execution would produce the same results as se-
rial execution. An extension of the data-depen-
dence algorithms used for vectorization deter-
mines whether loops, or selected statements
within loops, may be executed in parallel. If there
are no data dependences which prevent parallel
execution, the compiler determines if it is cost-
effective to execute the loop in parallel. If so,
parallel code is generated for the loop; otherwise
serial code is generated. Besides being a simple
way to introduce in-line parallelism, automatic
parallelism also allows a program to remain por-
table to other FORTRAN compilers.

The vector and parallel compiler options may
both be specified. In this case, the compiler will
analyze nests of DO loops for both parallel and
vector execution. Individual loops may be se-
lected for vector, for parallel, or for both vector
and parallel execution. A loop selected for par-
allel execution may contain inner parallel or vec-
tor loops. A loop selected for vector execution
may only contain inner scalar loops. If it is found
to be cost-effective, a loop may be broken into
two or more separate loops, each of which has the
same induction parameters as the original. The
new loops may be executed in different modes.
Directives are provided for users to indicate a
preference for parallel or serial code for a given
loop as well as a preference for scalar or vector
code. Thus the user can override the compiler’s

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

economic decisions for the type of code generated
for a loop.

Although automatic detection of parallelism is an
easy means to obtain in-line parallel execution, it
does not provide a complete answer for in-line

Clustered FORTRAN provides
three forms of in-line parallel
function: automatic parallelism,
parallel loops, and parallei
cases.

parallel programming. The primary reason for
this is the requirement that parallel execution
must produce the same results as serial execu-
tion. Some algorithms are able to run effectively
in parallel even though they contain data depen-
dences which may cause their results to change
from run to run. An example is chaotic relaxation.
The algorithms are designed to converge, and are
deemed to be successful when they converge
within some small tolerance. Any value that
meets this criterion is acceptable. When using au-
tomatic parallelization, the same results must be
produced as would be produced by the serial ex-
ecution of the program.

Clustered FORTRAN provides language extensions
with which the programmer may specify in-line
parallel execution. These extensions, which
define parallelism within a routine, identify loops
or blocks of statements that can be executed
concurrently.

Parallel loops. A parallel loop is one in which each
iteration of the loop may be executed concur-
rently. Some number of processors, possibly one
per iteration, may be used to execute the loop.
The number of processors is not specified. It will
be determined at run time and it can vary from
one to the number of virtual processors associ-
ated with the virtual computer. The order in
which iterations are executed is not guaranteed.
However, all iterations are completed before ex-
ecution continues beyond the end of the loop.

SAHULKA ET aL. 303

Figure 8 Simple form of PARALLEL LOOP

Figure 10 Extended form of PARALLEL LOOP

Figure 9 Example of PRIVATE statement

P&RALLEL LOOP . 10 I - 1,.
PRIVATE' CXTEMP) : .

The programmer is responsible for ensuring that the
loop is valid for parallel execution. Normally, each
iteration should be computationally independent of
other iterations. Alternatively, the user can ensure
that the proper synchronization is used between it-
erations or that the results are meaningful in the
absence of such synchronization.

A PARALLEL LOOP has a syntax which is similar
to a DO loop. A simple form is shown in Figure 8.

This simple form of a parallel loop permits iter-
ations to execute in parallel. But suppose a pro-
grammer needs to compute a temporary result,
such as XTEMP, within an iteration. A statement
like XTEMP=AD*B(I) will not work in parallel. If
several processors execute the statement simul-
taneously, each computing with a different value
of I, because there is only one copy of XTEMP, the
processors will try to update a single copy and
incorrect behavior may result. Therefore, each
processor needs its own private copy of XTEMP
for the program to operate correctly. Such private
variables may be declared with a PRIVATE state-
ment, as shown in Figure 9.

Furthermore, given such private variables, it is
sometimes desirable to initialize them before ex-
ecuting iterations of the loop, or to reference their
final value after all loop iterations are complete.
For this purpose, DOFIRST and DOFINAL state-

304 sAHULKA ET AL

ments are provided. These delimit, respectively,
a prologue and epilogue block for the loop; they
may specify, by a LOCK operand, that only one
processor at a time is to be permitted to execute
the prologue or epilogue. DOEVERY delimits the
body of the loop that is executed on each
iteration.

The example shown in Figure 10 shows how these
statements might be used to implement a sum re-
duction. This loop calculates a global sum, GSUM,
of a vector AVAL. A private variable, PSUM, ini-
tialized to zero for each processor, will be used in
each processor to accumulate a sum of the ele-
ments of the vector AVAL assigned to that proc-
essor. The number of elements accumulated in
each local PSUM is determined dynamically at run
time. After each processor has executed its last
iteration, it adds its private partial sum, PSUM, into
the global total sum, GSUM. This final addition will
be done under control of a lock so that GSUM is
updated by only one processor at a time. (It should
be noted that this example, written to illustrate the
parallel loop, may not contain enough processing
for profitable parallel execution.)

Parallel cases. Often it is possible to execute
blocks of statements in parallel. The blocks may
contain straight-line code, branches to other
statements in the same block, intrinsic functions,
calls to FORTRAN library subprograms, or loops;
the loops themselves may be parallel or vector.
What is significant is that the blocks may be proc-
essed concurrently. At the limit, each block could
be executed by a different processor. The number
of processors is not known; it may range from one
through the number of blocks; the exact number
will be determined at the time the blocks are ex-
ecuted. As with parallel loops, the programmer is

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

responsible for ensuring that such blocks are valid
for parallel execution—either that each block is
computationally independent of the others or that
the data interactions that arise between blocks are
controlled or intentional.

The PARALLEL CASES structure is provided to
simplify the programming of such parallel blocks
of statements. The example in Figure 11 shows
statements that may execute concurrently in the
first lexical CASE block, CASE 1t and CASE 2; there
is no guarantee of the order of their execution. A
WAITING clause is provided for situations where
an early case may compute data that would be
used by more than one subsequent case. In this
manner, a program containing an acyclic graph of
dependences may be translated into a series of
parallel cases. As with parallel loops, the cases
may employ private variables as needed. All
cases are completed before execution continues
beyond the END CASES statement.

Both parallel loops and parallel cases may contain
nested parallel loops and parallel cases. The
nested loops may be scalar or vector. Input and
output statements may be used within parallel
loops and parallel cases.

Clustered FORTRAN library. The Clustered FOR-
TRAN library also has extensions for parallelism.
Some of these extensions are internal, supporting
the parallel language and the automatic parallel
capabilities of the compiler. Other extensions are
external and may be used directly by the pro-
grammer.

Routines are provided for determining the con-
figuration of the virtual cluster. The program can
determine the number of virtual computers in the
virtual cluster and the location, system identifi-
cation, associated names, and the number of vir-
tual processors for each virtual computer.

Intrinsic functions are provided for protected up-
dates of shared variables by multiple tasks that
reside in the same virtual computer. Arithmetic
functions are provided to add, subtract, update if
smaller and update if larger to INTEGER*4, REAL*4
and REAL*8 variables or array elements. Logical

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 11 Example of PARALLEL CASES

PARALLEL CASES
CASE N
| statements
- CABE 1)
statements
CASE .2
" ‘statements
CASE 3, WAITING FOR CASE 1
. statements ‘
CASE 4, WAITING FOR CASES (1.2)
' ‘statements)
CASE 5, WAITING FOR CASES (2,3)
statements
END CASES

functions are provided to do AND, OR, and exclu-
sive-OR updates of INTEGER*4 variables or array
elements.

Routines are provided for the management of
locks, events, and synchronization counters.
Locks may be used to ensure that only one task
at a time gains access to a resource, such as a
shared table modified by multiple tasks. Events
may be used to make a task wait until another task
has reached some point in execution. Synchroni-
zation counters may be used to implement vari-
ous types of intertask signaling and waiting
schemes. Locks, events, and synchronization
counters may be used between tasks executing in
different virtual computers, as well as the same
virtual computer.

An optional trace of the parallel execution may be
requested via a run-time option. The trace may be
an aid in tuning or debugging a program that ex-
ecutes in parallel. A trace file can be produced for
each virtual computer in the virtual cluster. Each
trace record identifies the executing task, subrou-
tine, and statement. The system provides trace
records for such events as start and end of pro-
gram execution, origination and termination of
tasks, assignment and completion of work to
tasks, sharing and copying of common blocks,
start and end of parallel loops and parallel cases,
and uses of locks and events. Programmers may
also enter trace records into these files by calling
a library subroutine. The level of detail generated
in the trace file is controlled by the run-time op-
tion or by a library call.

SAHULKA ET AL. 305

Figure 12 Serial matrix multiplication

Figure 13 Vector report for matrix multiplication

VECT - Do]

SCAL [+-~- . DO 20 K = 1.
e, R = 0.0

SCAL H+--"~ 0 "
Hi) c(I X) = ch
= :

+B(J,K) E%Aicxz)

Figure 14 Matrix multiplication with automatically
parallelized DO loop

commn /AG/ ‘A(1000, woo). B(woo 1000);
C(lOOO men)
xm-a A, B,

DO 20 K = 1, 1000 . .

DO 20 I =1, 1000 = -
C(I,KY = 0.0 .

DO 30°J =1, 1000 :

30 - C({I,K) = €(I. K)+B(J K)' (T, 0) -
20 CONTINUE SR

Parallel programming example: matrix
multiplication

In the following examples, a matrix multiplication
problem is programmed using different methods

306 sAHULKA ET AL.

to illustrate the features of Clustered FORTRAN
and to explore issues in parallel and vector pro-
gramming. Most of these examples are for illus-
trative purposes only and do not necessarily pro-
vide the best parallel performance for the matrix
multiplication problem. The best parallel perfor-
mance for matrix multiplication on a single IBM
3090 multiprocessor can probably be obtained by
using the DGEMLP subroutine from the 1BM Engi-
neering and Scientific Subroutine Library
(ESSL).” The examples begin with those for a sin-
gle virtual computer and end with two for multiple
virtual computers. Performance results are given
for matrix multiplication on two ES/3090 Model
600J computers.

The first matrix multiplication program, shown in
Figure 12, is a serial program that has been op-
timized for use on the 1BM 3090 Vector Facility.
This is the code that will be parallelized in the
remaining examples.

The objective now is to parallelize the matrix mul-
tiplication without degrading the vector perfor-
mance. The compiler report in Figure 13, which
was generated by the compiler when compiling
Figure 12 using the option for automatic vector-
ization, shows that the matrix multiplication is
vectorized over the I loop and that C(,K) needs to
be stored only after the J loop has completed.
This leaves the K loop as the prime candidate for
parallelization.

Distribution of parallel pieces of work (iterations
of the K loop) among tasks can be either static or
dynamic. Dynamic balancing of work is likely to
be preferable when systems cannot be dedicated.
The next example shows how dynamic load bal-
ancing can be accomplished. The example begins
with the observation that the ordering of the I and
K loops may be reversed. When this is done, the
K loop becomes the outermost loop, where it is
suitable for parallelization. Note that to have both
a parallel loop and a vector loop in a nested loop,
the vector loop must be at a nested level con-
tained within the parallel loop. Also, generally
performance will be better when the parallel loop
is the outermost loop. The I and J loops, mean-
while, maintain their relationship to each other,
allowing efficient vector code.

Figure 14 shows how dynamic load balancing can

be achieved using automatically generated paral-
lel DO loops (using the AUTO option). Figure 15

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

illustrates how the compiler parallelized and vec-
torized the program. This is a very small refor-
mulation of the original matrix multiplication. A
user could also have used the PARALLEL LOOP
statement in place of the DO statement for the
outermost loop.

When parallelizing code with many fine-grain
loops, efficiency can often be improved by mov-
ing to coarser grain parallelism, which is the sub-
routine level. Although the efficiency is obviously
not improved by moving a single loop into a sub-
routine, Figure 16 illustrates subroutine-level par-
allelism using the SCHEDULE and WAIT FOR state-
ments. The core of the matrix multiplication code
is placed in a subroutine named MLT and modified
so that it computes one Nth of the matrix, where
N is the number of tasks. Its arguments tell it how
many tasks there are and which block of columns
of the result matrix it is to compute. It is sched-
uled for parallel execution with multiple execu-
tions of the SCHEDULE statement. Note that the
compiler will automatically create multiple copies
of the argument K, so that each virtual process
has its own value of K.

This example also illustrates a static mapping of
work to tasks; each task receives a predefined
amount of work. It can work well on a dedicated
system where each scheduled task should have a
real processor immediately available. However,
if the program is executing in an environment
where there is competition for the real proces-
sors, the parallel performance actually achieved
will be determined by the task that receives the
lowest level of service.

In all of the preceding examples, the matrix mul-
tiplication was being performed in only one vir-
tual computer. In all cases, parallelism was
achieved by having logically concurrent tasks
generate independent columns of the result ma-
trix. (A column of the result matrix corresponds
to one iteration of the K loop.} The example in
Figure 14 used dynamic load balancing with com-
piler-generated chunks of iterations being distrib-
uted among the virtual processors for the K loop.
In Figure 16, the iterations were explicitly
chunked such that each task received exactly one
chunk using static load balancing.

The following examples show how the matrix

multiplication may be extended across multiple
virtual computers. Figure 17 shows dynamic load

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Figure 15 Parallel report for matrix multiplication with
automatically paralielized DO loop

PARA +---- DO 20 K = 1, 1000

VECT |+--- Dp.20 I = 1, 1000
I -~ C(I,K) = 0.0 ;

4. DO 30 J =1, 2000 -
30 -~ ¢{1I,R) = C(I, K)+B(J K)‘A(I J)

Figure 16 Matrix multiplication with SCHEDULE

' COMMON /AC/ A(1000,1000), B(1000,1000),
* ¢{1000, 1000) o -
REAL*S 4, B, C o

. DO 20 K = 1, NTASK
20 o SCHEDULE ANY. TASK ITASK,:
* SHARING (AC),
* CALLING MLT (K,NTASK)
WAIT FOR ALL TASKS'

END

SUBROUTINE MLT (KN,KT) SRR
COMMON /AC/ A(1000,1000), B(1000,1000),
» ~ €(1000,1000) o
REAL*8 A, B, C
KUB = 1000*KN/KT
KLB = 1+1000* (KN-1) /KT
DO 20 I = 1, 1000
DO 20 X = KLB, KUB
C(I.K) = 0.0 ,
DO 30 J = 1, 1000 . :
30 “G(I.K) = C(I,K)+B(J, K)'A(I J)
20 GONTINUE o
RETURN
END

balancing across (up to) four virtual computers
where the chunk size is defined by the parameter
KCHNK. Figure 18 uses static load balancing and
defines only two chunks, the left half and the right
half of the result matrix. In both of these last two
examples, we chose to use DGEMLP to illustrate
the simplicity of using the parallel ESSL routines
to provide parallelism within the virtual com-
puter.

Several considerations were used in developing
the example shown in Figure 17. They included:

SAHULKA ET AL. 307

Figure 17 Dynamic load balancing with DGEMLP

Figure 18 Static load balancing using DGEMLP

@PROCESS DC(AA,BBCC) OPT(B)
" REAL*8 A.B.C

" COMMON /&A7. A(N Ny
: IN’I‘EGER In(a)

.

. GALI.ING MLT(B(W1 M),

. DO 20 I=2,NCHNK
L= M1
M o= MIN(M+KCHNK. N)

EAL*8 A, B(N.K).C(N.K) -
OMMON. /AA/ A(N.N)
‘LykDGEMLP(A N. N B N, N C,

e The program should be able to dynamically
adapt to the number of virtual computers and
virtual processors specified for the run-time
configuration. It was assumed that a user would
want to specify a virtual cluster that would
match the physical configuration of the Clus-
tered FORTRAN Complex being used.

¢ The program would normally be run on a com-
plex where each node would be fully populated
with vector facilities; vector performance
should not be sacrificed to achieve parallelism.

¢ The program should be able to dynamically load

308 sAHULKA ET AL.

ORIGINATE
" DISPATCH
: *. CALL

LEI{’Q‘D: .

balance between virtual computers as well as
within a virtual computer.

e The synchronization and moving of data be-
tween virtual computers should be minimized.
This consideration, to some extent, is in conflict
with dynamic load balancing between virtual
computers.

The preceding considerations led to the adoption
of the approach shown in Figure 17. The K loop
is broken into chunks with each chunk being dis-
tributed dynamically to the virtual computers.
The chunk size (KCHNK) is parameterized to pro-
vide a control over the tradeoffs between load
balancing among virtual computers, synchroni-
zation among virtual computers, and load balanc-
ing among the virtual processors within each
virtual computer. The first ORIGINATE and
SCHEDULE pair gives a chunk of columns (1
through M) of the B and C matrix to a task on the
RVC, sharing all arrays to minimize communica-
tions. (The third argument in the CALLING clause
specifies the number of columns in the chunk.)
During the first (NCOMP-1) iterations of loop 20, if
other virtual computers exist, chunks of columns
are given to a task on each of the CVCs. Array
stripes allow a compact specification of the min-
imal amount of data that must be exchanged.
Once an initial chunk is given to each of the vir-
tual computers, the WAIT FOR ANY TASK state-
ment returns the task identifier, ITKD, of the first
completing task. If it was the task in the root vir-
tual computer, (ID(1) = ITKD), another chunk is
given to it. Addressability to the A matrix is re-
established each time with the SHARING clause. If

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

the returning task was from a cluster virtual com-
puter, then another chunk is given to it. Note that
since the data of a task environment are persis-
tent, the read-only data of the A matrix need not
be copied after the first schedule of each of the
tasks in the clustered virtual computers. After the
last iteration of the loop, all chunks have been
distributed and the work will be complete after
the WAIT FOR ALL TASKS has been satisfied. The
parallelism within each virtual computer is ob-
tained by using the parallel ESSL routine for ma-
trix multiply, DGEMLP. Dynamic load balancing
within a virtual computer for DGEMLP is achieved
by requesting additional virtual processors,
which in turn will result in there being more
pieces of work than there are real processors.

Figure 18 illustrates a simple way to obtain ex-
cellent performance from all 12 processors on a
pair of dedicated systems. The work is statically
partitioned between computers; the RVC calcu-
lates the left half of the result matrix while the
right half is computed by the CvVC. ESSL provides
the parallel support within a computer. Perfor-
mance measurements for this code are shown in
Table 1. The code was run on the Cornell Na-
tional Supercomputer Facility, which consisted
of two ES/3090 Model 600J computers, each with
512 MB of main memory and with six Vector Fa-
cilities; VM/XA System Product Release 2; and the
clustered FORTRAN hardware and software. The
execution times include all necessary data trans-
fers (input and result matrices) between the com-
puters.

Performance of 1 GigaFLOPS can be achieved on
matrix multiplication using Clustered FORTRAN
with two ES/3090 Model 600J computers, as shown
in Table 1.

Concluding remarks

IBM Clustered FORTRAN is a combination of soft-
ware and hardware that allows two IBM ES/3090
multiprocessors (selected models), to be physi-
cally connected as a cluster and allows FORTRAN
jobs to execute in parallel across all of the proc-
essors of the cluster. The FORTRAN compiler and
library provided as part of Clustered FORTRAN are
used for writing and executing the parallel pro-
grams. They provide a rich spectrum of function
that supports a wide range of parallel application
programming styles.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

Table 1 MATRIX MULTIPLY using DGEMLP in ESSL

N MB Computation and Transfer
Time (s) GFLOPS
2000 96 20.03 0.798
3000 216 49.76 1.085
4000 384 108.79 1.176
4400 465 148.68 1.145
-5000 600 221.48 1.128

The parallelism in an application may be ex-
pressed in ways that are natural to the applica-
tion. The SCHEDULE and DISPATCH statements
may be used to execute independent subroutines
in parallel, either in the same virtual computer or
in a different virtual computer. The PARALLEL
LOOP and PARALLEL CASES statements may be
used to parallelize the statements within a rou-
tine. Automatic parallel and automatic vector
may be used to gain faster execution of nests of
eligible DO loops. Parallel execution is not re-
stricted to a single level but may be specified
wherever it occurs. Operating system and ma-
chine configuration differences are not exposed to
the program.

The Clustered FORTRAN program identifies the
pieces of work that are eligible to run in parallel
and how the parallel work is to be scheduled on
each of its virtual computers. When the program
is compiled and executed, the library in each of
the virtual computers puts the parallel work on a
queue and distributes it to the virtual processors
of the virtual computer. Real processors are al-
located dynamically by the operating system. As
additional real processors are allocated, addi-
tional virtual processors can execute concur-
rently. Programs that partition work dynamically,
employ multiple levels of parallelism, or use other
strategies to keep the queues of parallel work full
can take advantage of these additional real proces-
sors as they become available during execution,

Clustered FORTRAN applications run under the
VM/XA System Product operating system. The de-
gree of parallel execution can be controlled at run
time through the number of virtual computers and
virtual processors requested. When parallel exe-
cution is requested in a cluster consisting of two
ES/3090 Model 600 systems that are fully equipped
with Vector Facilities, Clustered FORTRAN makes
it possible for a single FORTRAN program to make
simultaneous use of up to 12 processors and Vector

SAHULKA ET AL. 309

Facilities as a means of reducing its turnaround
time, or increasing its performance. Performance of
one GigaFLOPS has been achieved on matrix mul-
tiplication using Clustered FORTRAN with two
ES/3090 Model 600J computers.

Acknowledgments

IBM Clustered FORTRAN was developed as part of
ajoint study with the Cornell National Supercom-
puter Facility (CNSF). In addition to providing in-
put on the requirements for Clustered FORTRAN,
the CNSF provided an environment where scien-
tists could explore parallelism in their applica-
tions and give valuable feedback on Clustered
FORTRAN.

Enterprise System/3090, ES/3090, ES/9000, Virtual Machine/
Extended Architecture, and VM/XA are trademarks of Inter-
national Business Machines Corporation.

Cited references

1. S. G. Tucker, “The IBM 3090 System: An Overview,”
IBM Systems Journal 25, No. 1, 4-20 (1986).

2, IBM VS FORTRAN Version 2, Release 3 Language and
Library Reference, SC26-4221-3, IBM Corporation; avail-
able through IBM branch offices.

3. IBM Parallel FORTRAN Language and Library Refer-
ence, SC23-0431-0, IBM Corporation; available through
IBM branch offices.

4. L. J. Toomey, E. C. Plachy, R. G. Scarborough, R. J.
Sahulka, J. F. Shaw, and A. W. Shannon, “IBM Parallel
FORTRAN,” IBM Systems Journal 27, No. 4, 416425
(1988).

5. IBM VS FORTRAN Version 2, Release 5 Language and
Library Reference, SC26-4221-5, IBM Corporation; avail-
able through IBM branch offices.

6. IBM Clustered FORTRAN Language and Library Refer-
ence, SC23-0523-0, IBM Corporation; available through
IBM branch offices.

7. IBM Engineering and Scientific Subroutine Library Guide
and Reference, Release 3, SC23-0184-3, IBM Corporation;
available through IBM branch offices.

Richard J. Sahulka 30 Bluestone Road, Woodstock, New
York 12498. Mr. Sahulka retired from IBM Data Systems Di-
vision in 1990 after nearly 33 years of service. Prior to his
retirement, Mr. Sahulka was a member of the engineering and
scientific systems development and technology organization
in Kingston where he had overall design responsibility for the
system software for Clustered FORTRAN. Mr. Sahulka led
the team which designed and developed the VS FORTRAN
Multitasking Facility and received an IBM Qutstanding Tech-
nical Achievement Award for that effort. Mr. Sahulka has
extensive experience in multiprocessing and multitasking,
having worked on both the TSS and MVS operating systems.
He received his Sc.B. degree in electrical engineering from
Brown University, Rhode Island, in 1951. After service in the
U.S. Navy during the Korean war he returned to Brown Uni-
versity to continue his studies. He joined IBM in Poughkeep-
sie in 1957.

310 SAHULKA ET AL

Emily C. Plachy IBM Thomas J. Watson Research Center,
P.O. Box 704, Yorktown Heights, New York 10598. Dr. Plachy
is a research staff member in the computer sciences depart-
ment at the T. J. Watson Research Center. Her primary in-
terests are parallel compilers and parallel programming envi-
ronments. After working for Exxon Production Research
Company in Houston, Texas, as a seismic applications pro-
grammer, she joined IBM in 1982 to work on engineering and
scientific compiler development. Dr. Plachy provided the
overall project management for the Paraliel FORTRAN pro-
totype. She managed the software development for both IBM
Clustered FORTRAN and the IBM High-Performance Paral-
lel Interface. She received a B.S. degree in applied mathe-
matics and computer science from Washington University,
St. Louis, Missouri, in 1970, an M.S. degree in computer
science from the University of Waterloo, Waterloo, Ontario,
in 1971, and a D.Sc. degree in computer science from Wash-
ington University in 1980.

Leslie J. Scarborough IBM Palo Alto Scientific Center, 1530
Page Mill Road, Palo Alto, California 94304. Ms. Scarbor-
ough is a member of the IBM Palo Alto Scientific Center
where she works on software for parallel computer systems.
She joined IBM’s East Fishkill facility in 1978 as an applica-
tion programmer. Her assignment involved numeric comput-
ing with FORTRAN for graphics postprocessing. In 1983
Ms. Scarborough joined the IBM Kingston laboratory to work
on engineering and scientific compiler development. She led
the design and implementation of the Parallel FORTRAN In-
terface for VM/XA, and she received an Outstanding Inno-
vation Award for her contributions to IBM’s Parallel FOR-
TRAN. Ms. Scarborough then worked on the definition of the
FORTRAN language and library extensions for IBM’s Clus-
tered FORTRAN. She represents IBM on the ANSI X3HS
committee, a group formed to define a standard model for
parallel programming in FORTRAN and other high-level lan-
guages. Ms. Scarborough received a B.S. degree in mathe-
matics from the State University of New York at Albany in
1977 and an M.S. degree in computer science from Syracuse
University in 1984.

Randolph G. Scarborough IBM Palo Alto Scientific Center,
1530 Page Mill Road, Palo Alto, California 94304. Mr. Scar-
borough is an IBM Fellow at the Palo Alto Scientific Center.
His primary interests are FORTRAN and new machine ar-
chitectures, especially parallel and distributed systems. He
joined IBM in 1969 as a systems engineer in Trenton, New
Jersey, to work on large scientific and state government ac-
counts. In 1973 he joined the Palo Alto Scientific Center to
develop the APL microcode for the System/370™ Model 135.
In 1978 he produced the FORTRAN H Extended Optimiza-
tion Enhancement. In 1983 this work was augmented to
include the new expanded-exponent extended-precision
(XEXP) number format. Between 1982 and 1985 he produced
the vectorizer incorporated into VS FORTRAN Version 2.
Since then he has produced the compiler and library for Par-
allel and Clustered FORTRAN. Mr. Scarborough received a
B.A. from Princeton University in 1968. He has received
many IBM awards, including four Outstanding Innovation
Awards (one for Clustered FORTRAN) and two Corporate
Awards.

Steven W. White IBM Advanced Workstations Division,
11400 Burnet Road, Austin, Texas 78758. Dr. White received
his Ph.D. from Texas A&M University where he also taught

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

in the electrical engineering department for three years. In
1982, he joined IBM in Poughkeepsie to work on large system,
scientific and engineering processor development, archi-
tecture, and system design. In 1986, he started a two-year
assignment with the Computational Physics Group at Liver-
more National Laboratory. In 1989, he joined the High-
Performance/Supercomputing Systems Development Labora-
tory in Kingston, New York, to work on Clustered
FORTRAN/HIPPI development. He currently works in the
processor architecture group defining and evaluating potential
members to the RISC System/6000™ product family. His pri-
mary interests are parallel and distributed architectures and
memory hierarchies.

Reprint Order No. G321-5436.

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

SAHULKA ET AL. 311

