A base for portable
communications
software

The emerging international standards for
interconnecting computers will be important in
IBM’s future plans. The Open Systems
Interconnection (OSI) protocols are already part of
IBM’s Systems Application Architecture® (SAA™),
implying that they will be implemented across the
dissimilar SAA operating systems. Building these
complex OSI protocols is costly, and additional
expense is involved in verifying conformance and
interoperation with other systems. “Porting” a
common implementation of these protocols to all
SAA systems offers major cost savings, but the
differences between systems and the need for
high-performance, robust implementations poses
problems. The OSl/Communications Subsystem
Base solves many of these problems in a general
way that may apply to other layered protocols
and other systems. The Base provides all
necessary operating system services to support
the layered communications protocol machines
of OSl and allows access to the I/O services

of the native operating system as required.

This paper discusses the sophisticated
communications-oriented environment provided
by the OSl/Communications Subsystem Base,
which includes multiple threads, back-pressure
flow control, resource monitoring, layer
modularity, and steps to minimize process
switches and data copying. The paper is
addressed primarily to systems engineers and
communications architects interested in OSI and
portability in general.

odern communications protocols have a
layered architecture. Systems Network
Architecture (SNA), Transport Control Proto-
col/Internet Protocol (TCP/IP), and Open Systems
Interconnection (OSI) protocols are defined as
layers of protocol, each addressing a part of the
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overall communications function. 0SI is a family
of layered communications protocols defined by
international standards.! The o0sSI Reference
Model, used as a basis for development of OSI
standards, is a descriptive model of an arbitrary
communications system, including all required
functions. The model defines seven layers:

1. The Physical Layer, for physically connecting
communicating stations

2. The Data Link Layer, for structuring data on
a physical connection

3. The Network Layer, for routing and relaying
traffic worldwide

4. The Transport Layer, for guaranteeing end-
to-end data transmission

5. The Session Layer, for connecting applica-
tions and structuring the dialog between them

6. The Presentation Layer, for standardized data
representation

7. The Application Layer, for communicating
with specific applications

0sI is becoming internationally accepted as the
protocol of choice to interconnect computer sys-
tems in a multivendor environment. It is antici-
pated that most computer vendors will implement
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0SI protocols. IBM is a leader in this area and has
included 0OSI protocols as part of its Systems Ap-
plication Architecture® (SAA™).2

Software portability. Early efforts to implement
communications protocols usually produced
code specific to each target system. In all cases,

A basic concept used in modern
language compilers is that of a
run-time environment.

protocol implementations must ‘“‘interoperate”
with implementations in other systems in order to
be successful. Their main goal, after all, is to al-
low communication and useful sharing of work
with any other system implementing the same
protocol. With system-specific implementations,
differences in their operation at times led to fail-
ure of communication, especially in unusual cir-
cumstances. Additional testing and increased
development and maintenance costs were the re-
sult. This problem of interoperation is even
greater with 0SI. The basic purpose of OSI is to
allow interoperation of different vendors’ com-
puter systems. Since the number of 0SI imple-
mentations is potentially far greater than those for
a proprietary protocol, the costs of development
and maintenance could become prohibitive. IBM's
solution is to implement each required OSI pro-
tocol once and “port” (move in whole) these im-
plementations to all SAA systems.

The advantages of “‘porting” programs has been
recognized for many years. The development and
standardization of high-level languages which
were supported across different systems gave ap-
plication developers the ability to write programs
in such a way that they could be executed on
systems with different internal architectures with-
out major rework. A basic concept used in mod-
ern language compilers is that of a run-time envi-
ronment. The typical program written in COBOL
or C (for example) will consist of two components
when it runs:
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« Routines generated directly from the source file

« Routines of a general form that are supplied
with the compiler to perform broad, complex,
or system-specific operations

These latter routines make up the run-time envi-
ronment associated with the language itself. Pro-
grams written in a given language share the same
run-time routines, using only those that are re-
quired. The run-time environment presents a
standardized interface in any system—the same
language instructions are used to invoke them.
However, these routines have to be implemented
separately on each machine in a system-depen-
dent way.

Run-time routines supplied with standard com-
pilers are often very general and designed to sup-
port relatively simple applications that require
few system services. Applications needing spe-
cial functions of an operating system, such as
control of tasking operations, required system-
specific routines to be developed and used to anug-
ment the provided run-time environment.

Another important step in the history of porta-
bility is the development of the UNIX® operating
system. The UNIX system was designed to port
easily to different systems. Its portability is based
on the C language, and the kernel may in some
ways be considered an extension to the concept
of a run-time environment. The kernel is a small
component that includes all of the resource man-
agement routines of the operating system. The
kernel provides a defined interface to the UNIX
shell and application programs, the same inter-
face in any system to which the UNIX system is
ported. The kernel is implemented in a system-
specific way, and developing a kernel implemen-
tation is a key part of porting the UNIX system to
another system. The rest of the UNIX system is
developed in C, and sois portable to anew system
once the kernel interfaces have been provided.

Porting the protocol implementation is a key
concept in the design of the OSI/Communica-
tions Subsystem. The OSI/Communications
Subsystem is the IBM program product that
implements the middle layers of 0sI (the top of
Layer 3 through the bottom of Layer 7) on
IBM SAA systems—Multiple Virtual Storage/En-
terprise Systems Architecture (MVS/ESA™), Vir-
tual Machine/Enterprise Systems Architecture
(VM/ESA™), Operating System/400® (05/400®), and
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Operating System/2® (0s2®).? In the OSI/Com-
munications Subsystem the portability concepts
described above are used and enhanced through
the use of a system-dependent component called
the Base, which is described in this paper. The
OSI/Communications Subsystem is available for
MVS/ESA, VM/ESA, 0S/2, and 08/400.

The 1BM Communications Systems Programming
Development Laboratory—West Coast in Palo
Alto, California, has been developing portable
products for over 10 years. Before developing the
OSI/Communications Subsystem, it delivered
COBOL compilers, sort and merge programs, and
communications systems based on the concepts
of system-dependent and system-independent
components.

Layered implementations. Layered communica-
tions protocols have suggested layered imple-
mentations from the beginning. The layering of
protocol specification contributes to the simplic-
ity of each layer by separating functions cleanly.
The 0sI standards use this technique. A consid-
eration in developing OSI implementations is
whether to reflect layering in the implementation.

Implementing with cleanly separated protocol
layers has several advantages:

* A layer component is smaller and simpler than
a component that includes several layers, and
simpler components generally are easier to
build and less error-prone.

¢ Each protocol layer can be designed separately
without considering characteristics of the other
layers.

* 0OslI lends itself to providing interfaces at several
layers, and Transport, Session, Presentation,
and Application layer interfaces are in use to-
day; breaking into the middle of an unlayered
implementation to provide these interfaces can
be difficult.

e Some protocol conformance tests have been
formulated for individual layers, and perform-
ing these tests requires access to a layer without
use of layers above it.

* As changes in 0SI standards are made sepa-
rately on each layer, reflecting these changes as
they occur is easier when layers are separate.

¢ Separation of layers (including state informa-
tion) can allow implementations to better iso-
late the effects of failures.
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¢ A layered structure with isolated layer compo-
nents lends itself well to the concepts of soft-
ware engineering.

However, layered implementations are perceived
to provide worse performance characteristics
than implementations whose internal structure
does not reflect protocol layering. This percep-

Performance, reliability, and
serviceability are all desirable
features of good protocol
implementations.

tion is a result of the cost of the hard interfaces
between layers. The costs associated with a hard
interface might include the following:

Interfaces in which common data are not shared
among the modules require parameterization of
all passed data. Building and passing parameter
lists is more costly than referring to common
data areas.

Where layers cannot address the same storage
areas, all parameters (including the data buff-
ers) must be moved between the separate ad-
dress spaces in addition to being passed in pa-
rameter lists.

Where layers are implemented as separate proc-
esses, the parameters and data buffers are
passed using some type of interprocess signal
(such as message queuing) rather than by direct
procedure call.

Operating systems typically have a significant
cost associated with the process switching in
such a design.

Performance, reliability, and serviceability are all
desirable features of good protocol implementa-
tions. The performance advantages of unlayered
implementations often come at the cost of reli-
ability and serviceability. So rather than choosing
one approach against the other, a balance must be
struck between them. Modern multiprocessor
systems such as the System/390™ have thrown
another complication into this balance. In a mul-
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tiprocessor system, a single process may be lim-
ited in the amount of system power that can be
used; several processes are needed to take full
advantage of these systems. A tradeoff must be
made against the path length cost of supporting
several processes and the real performance gain
achieved by concurrent processing.

Several attempts at this balance have been made,
a notable one being D. Clark’s Swift operating
system.* Clark attempts to reduce the cost of in-
terlayer interfaces by defining them as procedure
calls, mostly “upcalls” from lower layers to their
clients. Layers are defined as groups of related
subroutines called “multitask modules,” with
specific procedures for interaction with other lay-
ers. Processes are freed from layer boundaries
and are used to carry work up and down the layers
in a synchronous way. Mapping of processes to
operations is performed by either the lower or
upper layer routines or both, and can be changed
at a late design stage. Common addressable stor-
age is used to hold shared state information, and
monitor locks are used to serialize access to these
data.

Clark’s approach reduces the cost of layer bound-
aries to a minimum, using pure procedure calls.
However, the sharing of data among all layers
loses some of the advantages of layer interfaces,
and he discusses the impacts of failures in one
layer that can affect the state of other layers.

With the Base, a layered structure has been im-
plemented using the techniques of software en-
gineering, and an attempt has been made to retain
most of the good characteristics of hard layer in-
terfaces while reducing the performance cost of
these interfaces. The parameterization of a clean
interface has been retained, but the Base has been
designed to reduce process switching and the
overhead of interprocess signaling and to elimi-
nate movement of buffered data between layers.
As in the Swift approach, the Base separates task-
ing considerations from layer implementation and
provides common control block and buffer stor-
age to reduce data movement. Compared to
Swift, the Base retains a harder layer interface
but still provides synchronous flow between the
layers whenever possible. Some performance is
traded for robustness and portability; however,
many of the performance problems Clark identi-
fies are solved.
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Several existing protocol implementations use a
layered approach. The 1/0 facilities of the 1BM Dis-
tributed Processing Programming Executive
(pPPX)® exemplify an early implementation of

With the Base, a layered
structure has been implemented
using the techniques
of software engineering.

SNA that mirrors SNA layering. Another example
is the STREAMS facility of UNIX System V Release
3.% STREAMS provides an environment for imple-
menting layered communications protocols in a
portable way within the UNIX environment.

As with many other communications protocols,
the 0SI protocols are specified as finite state ma-
chines. Finite state machines are conceptual en-
tities that support a finite set of possible internal
states, accept a predefined set of inputs, and have
a well-defined operation, output, and resulting in-
ternal state for each possible input received in
each possible state.

The term protocol machine is used in this paper
to refer to any implementation of a protocol finite
state machine as a component of a communica-
tions system.

This paper describes the techniques used by the
OSI/Communications Subsystem to provide a
portable 0SI solution for SAA environments. At-
tention is focused on the architecture and con-
cepts of the OSI/Communications Subsystem
Base (the Base), which provides the environment
to allow protocol machines to be ported. The
paper presents an overview of the Base, a de-
scription of its architectural concepts, and a dis-
cussion of its service categories. Finally, it out-
lines experiences in implementing the Base in the
OSI/Communications Subsystem products.

The OSl/Communications Subsystem Base

Overview of the Base. The Base may be viewed as
a special-purpose run-time environment which is
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Figure 1 Plugging layers into the Base
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itself portable to different operating systems en-
vironments on the same or different hardware.
One goal for the Base is to exploit the capabilities
of each system, not just to execute successfully in
each. The Base concentrates its key interactions
with the local operating system into a small
amount of code giving Base implementers signif-
icant freedom to capitalize on the capabilities of
the target systems, especially the tasking struc-
ture and storage utilization. Another goal is to
accommodate the 0SI Reference Model and layer
standards, as well as other layered communica-
tions protocols. The Base must be able to handle
the wide range of options and profiles supported
in 0SI as well as adapt to the changing environ-
ment of developing 0SI standards. A third goal is
to facilitate the use of common test tools and sce-
narios across OSI products. A final goal is to meet
the performance requirements of communica-
tions systems while implementing the other goals.

Architecture. An operating system may be viewed
as a service provider, offering services to its us-
ers, which are programs. Each operating system
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is characterized by its own interface to the pro-
vided services and in fact may be tailored to a
particular class of users or applications. As de-
picted in Figure 1, the OSI/Communications Sub-
system Base utilizes whatever services are of-
fered by the underlying operating system to in
turn provide uniform services to the OSI/Com-
munications Subsystem layers.” Different imple-
mentations of the Base provide the same layer
service interfaces so that the layers become in-
dependent of the operating system service inter-
faces. The layers implement the protocols of
osi—for example Presentation, Session, or
Transport—while the Base provides the indepen-
dent platform necessary to isolate the layers from
the idiosyncrasies of each operating system.

The services provided by the Base are tailored to
meet the special needs of communications pro-
tocols. OSI/Communications Subsystem layers
are transaction-oriented protocol machines. They
need to be invoked for execution, to maintain
control blocks, and to buffer data. They require
timer services, message logging, and tracing. Al-
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though most layers perform processing functions
only, certain layers need access to the operating
system I/O services and interprocess communica-
tion services to get at communications links, cli-
ent applications, or system disk storage.

Using an analogy of hardware components, we
can compare the Base to a “motherboard” and
the layers to “processing cards.” The Base serves
as the controller of all attached cards and pro-
vides them with a rich set of system services. The
layers in turn are like processing cards plugged
into the motherboard, where each processing
card is an implementation of an 0SI protocol ma-
chine. (To carry the analogy further, we could

The Base serves as the controller
of all attached cards and
provides them with a rich

set of system services.

consider the operating system as the “system en-
closure,” which provides power to the mother-
board and supports interface plugs to the cables
in the outside world.)

The Base supports as many layers as needed for
0SI or another protocol set and allows any layer
to obtain the services of any other layer. The Base
interfaces are general, not OSI-specific. The 0SI
implementation is isolated to the layers of the
OSI/Communications Subsystem, and SNA or
TCP/IP layers could be implemented as well within
the Base. In the OSI/Communications Subsystem,
the following OSI protocols are implemented as
layers:

* Management functions, including Common
Management Information Protocol (CMIP) and
X.500 Directory Access Protocol (DAP)

¢ Association Control Service Element (ACSE)
and Presentation (combined into one layer)

¢ Session

* Transport
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¢ Network, including Connectionless-Mode Net-
work Protocol (CLNP) and Connection-Oriented
Network Services (CONS)

The OSI/Communications Subsystem will need
access to the 1/0 and interprocess communication
services provided by the operating system. To
meet this requirement, one solution includes
these services in the Base. Another, based on
common operating system practice, separates
basic services from services provided by modular
“access methods.” The latter is a far more gen-
eral solution and was chosen for the OSI/Com-
munications Subsystem. This approach allows
Base implementers to concentrate on operating
system services and not have to deal with the
complexity of interfacing to network or LAN serv-
ices. Developers with communications experi-
ence can be assigned to implement these commu-
nications-oriented components of each system.

The OSI/Communications Subsystem architec-
ture includes a mechanism for adding system-
dependent components to provide a direct inter-
face to system services not already supplied by
the Base. This mechanism supports a special type
of layer known as a boundary layer. As the name
implies, a boundary layer sits on the boundary
between the environment established by the
OSI/Communications Subsystem Base and the
environment established by the underlying oper-
ating system and access methods. The part of the
boundary layer inside the Base environment (in-
ner half layer, or IHL) behaves as a regular layer,
whereas the part outside the Base environment
(outer half layer, or OHL) uses operating system
services as needed. Boundary layer support in
the Base includes a system-independent interface
mechanism supporting communication between
IHL and OHL. IHLs are provided with all of the
same services as other layers. OHLs may use a
subset of Base services and have additional spe-
cial services available to them.

Continuing the previous analogy, we can consider
a boundary layer as an “interface card” con-
nected to the “motherboard.” Part of the inter-
face card extends outside the Base to interact
with the “real” world while the other part of the
interface card is controlled by the Base as a
“processing card” (see Figure 2).

The OSI/Communications Subsystem uses this
capability to implement three interfaces to other
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Figure 2 Plugging boundary layers into the Base
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processes in the system and to communications
links:

1. The Open System Manager (OSM) boundary
layer provides management services to all
other layers within the subsystem and inter-
faces to system management processes such
as NetView®,

2. The application programming interface (API)
boundary layer enables the programming in-
terfaces between the user applications and the
communications subsystem, using the flex-
ibility provided by the Base to interface with
two different layers and provide both an
ACSE/Presentation and a Session interface.

3. The network boundary layer interfaces with
network access methods in a system-depen-
dent way.

It is possible to implement additional OSI stan-

dards as a combination of one or more layers or
boundary layers. This implementation is done,
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for example, by companion products to the
OSI/Communications Subsystem: OSI/File Serv-
ices implements the File Transfer, Access, and
Management (FTAM) Application Service Ele-
ment (ASE) of 0SI, and Open Network Distribu-
tion Services implements the International Tele-
graph and Telephone Consultative Committee
(cCITT) X.400 Message Handling System. These
products are represented by the ASE depicted in
Figure 3.

Figure 3 illustrates the Base and layers in Figure
2 from a perspective looking down onto the
“tops” of the layers to show the relationships
among them.

The categories of services provided by the Base
are:

Control block management—Manages control
blocks representing the 0SI concepts of (N)-
entity, Service Access Point, and Connection
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Figure 3 Basic system structure ~“top view”
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End Point. Both storage and queues associated
with these control blocks are managed by the
Base.

Finite state machine services—Performs finite
state machine transitions for the layers.

Work management—Includes a process model
flexible enough to run effectively on a large range
of processors (personal computers to multiproc-
essor main frames) with a built-in back pressure
mechanism.

Buffer management—Provides a physical buffer
management function across layers.
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Resource management—Provides early warning
of low storage conditions.

Timer management—Provides timer interrupts
required by OSI protocols.

Message logging and tracing—Provides logging
and tracing services required by communications
products.

Control block management. There are three key
concepts from the 0SI Reference Model which are
represented by the OSI/Communications Sub-
system as control blocks:
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Figure 4 LCBs, SAPs, and CCBs

LcB i E

R SAP
LAYER (N+1)

QCB ‘ ccgil ess

SAP

CGBi OQB’ XX}

1. (N)-entity—an instance of a protocol machine
of some OSI layer (Layer N) within the sub-
system. For example, a Transport protocol
machine in a subsystem is a Transport entity.
Layers supported by the Base are like (N)-
entities; however, several 0S1 (N)-entities may
be implemented in one layer of the OSI/Com-
munications Subsystem, and non-OSI compo-
nents may be implemented in layers. Layers
are represented by layer-entity control blocks
(LCBs).

2. Service Access Point (SAP)—the point at
which services are provided by an (N)-entity
to an (N+1)-entity. The SAP defines the con-
figuration of the system in terms of service-
provider to service-user relationships between
layers. It also defines the addresses of service-
user (N-+1)-entities within the 0OSI environ-
ment. In the OSI/Communications Sub-
system, SAP control blocks are used to
represent OSI SAPs, as well as other internal ser-
vice-user to service-provider relationships be-
tween OSI/Communications Subsystem layers.

3. Connection End Point (CEP)—the representa-
tion of one end of a connection between two
peer service-user (N)-entities within the 0OSI
environment. Connections are provided as
part of the service associated with a SAP,
so each CEP is related to a SAP. (Connection-
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less OSI services do not use CEPs.) OSI/Com-
munications Subsystem Connection Con-
trol Blocks (CCBs) represent CEPs.

The control blocks are most often used to repre-
sent these concepts, but it should be noted that
there are no restrictions. It is possible for these
control blocks to represent other OSI concepts or
to even represent concepts not found in 0SI. Fig-
ure 4 shows how the various control blocks relate
conceptually to layers in a normal subsystem.

In general, an OSI layer performs services for the
layer above it (a service-user) by using the serv-
ices of the layer below it (a service-provider). (In
Figure 4, Layer (N+1) is the service user of Layer
(N), and Layer (N—1) is its service provider.)
This method usually implies a relationship be-
tween CCBs to the service-users of a layer above
and CCBs to service-providers below. For exam-
ple, the Transport Layer supports its service-
users by providing transport connections to them
and uses network connections of the layer below.
The Transport protocol implies some relationship
between the transport connections above and the
network connections below. Such a relationship
may be simple and direct (data flowing in on one
CCB always flows through to the other CCB) or
more complex, involving multiplexing or splitting
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Figure 5 CCB/SAP control block structure

protocols or even combinations of both. Some
examples are depicted in Figure 4. CCB relation-
ships may be reflected in ties between user and
provider CCBs. The Base provides services that
allow a layer to tie CCBs together, untie them, and
locate tied CCBs quickly. Besides the layer use of
this tie information, the Base uses it in its dis-
patching algorithms as discussed later in the sub-
section on work management.

The OSI/Communications Subsystem architec-
ture implements strong data isolation required by
software engineering. The control blocks that
hold the system together are designed to ensure
that each component has access only to the data
necessary to its operation and cannot access or
change data of other components directly.

The existence of the LCB is known by the Base
and the layer associated with it. SAPs and CCBs
define relationships between pairs of layers, and
their existence is known to both layers in the re-
lationship. Each control block is split into sepa-
rate parts, which are conceptually and sometimes
physically isolated. Each has a Base part and one
layer part for each associated layer. A layer is
only given access to its part of a control block and
is not allowed to examine or modify parts belong-
ing to the Base or to another layer. Although the
Base allocates space and knows the whereabouts
of each layer part of a control block, it does not
examine or depend on the contents of any layer
part. The Base part is used by the Base for man-
aging the layer or relationship between layers.
The layer parts of all of the control blocks asso-
ciated with one layer make up the majority of the
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storage arca that is addressable by that layer. A
layer part is typically used to store state infor-
mation that pertains to the object (such as a con-
nection) that the control block represents. Layer
parts of LCBs generally contain more static con-
figuration data pertaining to the operation of the
whole layer.

Enforcement of data isolation varies from one im-
plementation of the Base to another, depending
on the facilities available in a host operating sys-
tem and the cost of using them. In some cases, all
control block parts are stored in contiguous stor-
age and are protected from access by nonassoci-
ated layers only because these layers do not know
the addresses or the structure of the parts of other
layers. Where a system provides protected data
spaces, the structure allows the Base to take ad-
vantage of different data spaces when appropri-
ate. For example, there could be unique data
spaces for each layer and the Base without any
impact to the common layer code (see Figure 5).
Since this design prohibits layers from sharing
data spaces, it isolates each layer from all of the
others. Such layers can be packaged as part of a
single processor system or be a part of systems
distributed across multiple processors (see the
subsection on future considerations for possible
implications).

Internally, each layer part of a control block is
assigned a unique control block identifier by the
Base, and the entire control block is given a single
external name. The Base provides services to
manage control blocks: to create and delete them,
to locate them by name or by identifier, and to
retrieve information about them.

Finite state machine. The components that oper-
ate within the Base environment (layers and inner
half layers) are designed to be event-driven; that
is, they are invoked to process events. Their de-
sign is often based on finite state machine con-
cepts. In a finite state machine, an event com-
bined with the current state (remembered from a
previous invocation) determines the action to be
performed and the resulting state. The relation-
ship of states, actions, and events are usually de-
fined by a state table. OSI protocols are specified
using state tables, so it is natural to implement
them as finite state machines.

Finite state machine design tends to break complex
functions into small, simple parts, and the state ta-
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ble design forces consideration of all possible com-
binations of state and input. The performance char-
acteristics of finite state machine designs are good,
since a well-designed machine can select the ap-
propriate action routine quickly.®

The Base provides a finite state machine service
to layers. Invoked with an event, the current
state, and a layer-defined state table, this service
efficiently finds and invokes the appropriate layer
routines and returns the next state. An event in
this environment is a request to perform a par-
ticular function, together with the parameters and
buffered data needed to perform it.

The Base also provides the layers with a good
environment for finite state machines. Layers are
invoked with a single event, given a single control
block to which this event applies. There are no
Base services that allow layers to wait for any
event without returning to the Base, so layers
must preserve state information between invoca-
tions. A typical layer when invoked performs an
action (which may or may not generate additional
events), places itself into an ending state (which
may or may not be different from the entry state),
and returns to the Base. A layer normally saves
its state information in the layer part of control
blocks. This action allows each layer, SAP, and
connection to maintain its own (different) state.

Work management. Work management consists
of three major parts: process model, flow control,
and error handling.

Process model. A layer is invoked by the Base via
a subroutine call to process an event for a par-
ticular control block. The event, control block
identifier, and related data are contained in a work
request. Work requests are issued by layers,
boundary layers, or the Base, and each work re-
quest is directed to a layer, for a control block,
with an event. Inside the Base environment, a
thread performs much the same role as a task or
process: It is the means by which the Base allo-
cates processing cycles to layers. Work requests
are associated with threads to schedule layer ex-
ecution. Several may be associated with a thread
in a last-in, first-out relationship. When a thread
is dispatched, the work request most recently as-
sociated with it is performed by invoking the
specified layer. Two different threads are consid-
ered to be asynchronous—and may be dispatched
concurrently in Bases implemented on multitask-
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ing systems. As work requests are performed,
their sequence of arrival on a control block is
maintained.

Since one layer normally uses the services of
another layer, a protocol operation in the
OSI/Communications Subsystem proceeds up or
down through the stack of layers, each layer is-

Inside the Base environment, a
thread performs much the same
role as a task or process.

suing work requests to its service-user or service-
provider and using the same thread for the new
work requests. Thus, each operation results in a
sequence of related work requests associated
with the same thread. When a layer issues a new
work request on a thread, it may choose to leave
the work request that invoked it on the thread or
to remove it. Such a work request becomes a re-
call work request when left on the thread, be-
cause it will cause the layer to be invoked again
after all processing related to the new work re-
quest has completed. A layer may also choose to
issue work requests associated with a different
thread to perform services asynchronous to the
main flow.

The Base uses the processing cycles allocated to
the OSI/Communications Subsystem by the host
operating system. One or more operating system
tasks or processes may be available for use by the
Base (depending on the Base implementation).
The Base controls the dispatching of its threads
by allocating threads to available operating sys-
tem tasks. If it has only one operating system task
at its disposal, it will alternate between the var-
ious threads and perform one work request at a
time. However, if more than one task is available,
the Base allocates active threads to the available
tasks for the duration of one or more work re-
quests, allowing a number of work requests to be
performed concurrently.

If multiple tasks are available, the possibility of a
collision (two different threads executing at the
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Figure 6 Multitasking example

same time with the same control block) arises.
For example, two protocol operations for the
same connection may be flowing in opposite di-
rections and meet at the same layer. In that case,
the Base will serialize the requests for the layer in
order to prevent multiple invocations for the same
control block. When multiple CCBs are tied to-
gether within a layer, they are serialized as a unit.
See Figure 6. For unrelated connections or SAPs,
two threads are allowed to execute within the
same layer concurrently, and threads may exe-
cute in different layers without restriction.

More traditional implementations of multitasking
in a layered communications subsystem might al-
locate a task to each layer or a task to each con-
nection.

The first solution imposes unnecessary task
switching as data flows from layer to layer. In
many systems, task switches are too costly for
good performance in a communications sub-
system. The second solution does not work well
for 0s1 when multiplexing and splitting protocols
are in use, since one connection becomes several
connections at some point in the stack. This ap-
proach may require more tasks than are available
in smaller operating systems. For multiprocessor
systems such as the System/390, one task at a
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time per connection may not make the best use of
system resources.

The Base work management approach over-
comes these limitations, and does not fix the num-
ber of tasks for each implementation. While al-
lowing implementations to assign tasks as above,
it also supports single-task-per-system operation,
use of invoking tasks, or use of several tasks in
parallel. Multiple threads may be executing con-
currently for the same connection, and multiple
threads may be executing concurrently in the
same layer (except for collisions as described
above). Note that each implementation of the
Base does fix its policy for assigning tasks—this
flexibility is given to Base implementers rather
than Base users.

Control blocks also have a role in work manage-
ment; each SAP or CCB can be thought of as a work
queue. When there is work to do on a connection,
the work request is queued to the control block,
and some task will come along and perform it. It
may be, but does not have to be, the same task
each time. Because of the finite state nature of the
layer code, layers do not require dedicated tasks,
and the Base model allows whatever tasks are
available to float to any pending work requests.
Once the Base has allocated a thread to a task,
however, the task continues to perform work re-
quests associated with the thread until there are
no more or serialization contention is encoun-
tered. This allows work to proceed through sev-
eral layers with minimal queuing overhead.

An additional feature of this approach is that, on
those operating systems where it makes sense (such
as 082), the Base allows user tasks to be borrowed
to dispatch Base threads, avoiding a task switch
between the user and the OSI/Communications
Subsystem. In this case a user task may process
related work requests as long as processing can
continue without being suspended. Once sus-
pended, the user task returns and processing con-
tinues when possible using a Base task.

The Base provides services that allow layers to
manipulate work requests and threads. One im-
portant service is the ability to suspend a thread.
When work cannot continue for a thread (because
of protocol flow control restrictions or the need to
perform some /O operation, for example), a layer
can cause the thread to be suspended as it returns
control to the Base. Such a thread is no longer
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dispatchable and is enqueued on the control block
of its topmost work request. The layer can cause
it to be resumed when performing a different work
request, normally one that frees flow control re-
strictions or indicates completion of /0 opera-
tions. The thread becomes dispatchable again,
and work requests associated with it are per-
formed when it is next dispatched.

Another service is the ability to hold a work re-
quest. This service effectively removes a work
request from a thread and enqueues it to its con-
trol block in such a way that the layer can refer to
the associated data through several invocations.
Held work requests become static data areas for
use only by the holding layer. A layer can cause

A layer or a Base service may
detect a condition that
should not happen.

a held work request to be redispatched at a later
time if necessary by placing it on an available
thread.

Layers usually process work requests once be-
fore holding them. For example, the Transport
Layer may have to guarantee delivery. After it
sends out a message, it will hold the work request
containing the message until an acknowledgment
is received. If the acknowledgment is not re-
ceived, the work request will be rescheduled. If
the acknowledgment is received, the work re-
quest will be deleted.

Flow control. One challenge a communications
subsystem faces is the ability to manage its data
flow requirements within available data storage
resources. This challenge cannot be satisfied un-
less the communications protocols contain flow
control functions. In 08I, the Transport Layer
and the Network Layer share responsibility for
flow control protocol. However, these functions
alone are not sufficient unless their effects are re-
fiected back to the local applications sending and
receiving data. For instance, if the Transport
Layer acknowledges data upon receipt but before
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passing it to the application, the local subsystem
has defeated the Transport Layer flow control
function and cannot control the amount of data to
buffer pending receipt by the application. If the
application may queue data to send without con-
trols, an application may send data faster than it
is transmitted and may exhaust the available re-
sources to buffer the data prior to transmission.

The OSI/Communications Subsystem has chosen
a solution that extends the available protocol flow
control function throughout the entire communi-
cations subsystem by relating it to the basic
threading mechanism. Feedback between users
and flow-control protocol is done by using a fea-
ture of the Base thread and work request mech-
anisms that allows more than one work request on
a thread at a time. The thread acts like a stack,
where the bottom work request will not be per-
formed until all above it have been performed.
Since new work requests are placed on top of the
stack, they are performed before the bottom one.

Normally, work requests are removed from a
thread after they are performed, but a layer may
choose to leave a recall work request on the
thread while adding a new work request above it.
Layers supporting a source of data such as a user
or the network can become aware of flow control
restrictions by using the recall function. Layers
needing to control the flow of data for any reason
can control the timing of recall invocations of
source layers by suspending threads until they are
ready for more data. Intermediate layers are not
aware of this function (they do not see the recall
work requests) but have a responsibility to ensure
that the same thread is used to pass work through.
The recall signals the originator that more data
may be sent. This mechanism works without re-
quiring any special functions in layer interfaces
and without affecting intermediate layers.

Error handling. There are cases when a layer or
a Base service may detect a condition that should
not happen. This detection is considered an error
in the software. There is a Base service to abnor-
mally terminate (abend) the execution of a thread
in these situations. This service also provides a
single point for collection of the information nec-
essary to identify and correct such errors.

This abend service allows the layer to end the
current invocation immediately. It simplifies the
code within a layer since much return code check-
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Figure 7 Layer view of buffer
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ing and passing may be avoided within the various
subroutines of a layer. In particular, a Base ser-
vice detecting a layer error will issue the abend
service directly and not even return to the layer.
For those situations where the Base cannot de-
termine whether the layer is in error, the Base will
invoke a special layer subroutine to separate un-
expected errors from others. Base services only
pass back return codes that the invoker is expect-
ing to handle. Layers need not have code to deal
with unexpected results after each Base service.

Buffer management. The Base provides buffer
management services to the layers. These serv-
ices allow the layers to treat a buffer as a contig-
uous byte-stream, without regard to the actual
physical location or makeup of the buffer. Layers
use these services to examine and modify the con-
tents of buffers. Direct addressing to the contents
of buffers is not normally provided. This scheme
allows the Base complete freedom to locate buff-
ers in small address-space machines. It also
allows a layer to perform logical, rather than
physical, operations on a buffer. For instance, a
layer may add a header to the contents of a buffer
without worrying about whether enough physical
space exists at the front for the header. This log-
ical view is depicted in Figure 7.
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The internal model of a Base buffer consists of a
buffer header and a chain of separate data blocks,
each with its own separate header record. Each
data block is composed of a physically contiguous
stream of bytes but is not necessarily contiguous
to the next data block or the same size. To min-
imize page references, it is useful to view the
buffer and block headers as physically separated
from the data blocks. Each buffer includes the
data blocks needed to hold the buffer contents.
This physical view is depicted in Figure 8.

Layers normally view buffers as logically contig-
uous streams of bytes and are not aware of their
physical view. However, there is a buffer service
that allows layers to get the direct address of a
segment. Use of the direct access service allows
layers to improve buffer access performance for
certain types of operations, such as repeatedly
accessing large data records saved in a buffer for
local use or examining all data octets in order to
generate a checksum. This service is not meant to
be used during normal data transfer when only
headers are being added or deleted to the buffer
as the data pass through the layers.

Boundary layers may access buffer blocks to per-
form 1/0 operations directly into them. Special
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Figure 8 Model of Base buffer
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services available to outer half layers provide ac-
cess for this purpose.

Buffers may be passed from one layer to another
by passing an identifier to the buffer without mak-
ing a copy of the buffer. When a layer adds a
protocol header, a block containing the header
may be added to the buffer. There is no need to
move the data within the buffer to make room for
the header.

Resource management. The OSI/Communications
Subsystem environment makes it possible to set
an upper bound to use of resources based on the
number of SAPs and connections supported. The
flow control mechanism allows layers managing
sources or receivers of data to control the number
of buffers that may be outstanding at one time.
Rules for intermediate layers require them to set
upper bounds on the number of resources used.
When sufficient storage is available, storage de-
pletion should not occur. However, having suf-
ficient storage requires allocation of much storage
that will never be used in real operation, and in
practice it is not often feasible. In addition,
certain protocols do not include a flow control
function and have no reasonable means to control
incoming data (for example, Connectionless Net-
work Protocol when used as a relay). For this
reason the Base provides additional resource
management services.

IBM SYSTEMS JOURNAL, VOL 30 NO 3, 1991

The Base provides a service to aid the layers in
the proper utilization of system resources. The
only resource presently monitored is system stor-
age. System storage is obtained by the Base for
buffers, control blocks, and work requests.
Should system storage become exhausted, nor-
mal operations would be impossible, and recov-
ery would be quite difficult. Rather than trying to
recover from this condition, the philosophy is to
use early detection to prevent this condition from
happening.

The Base monitors available storage and main-
tains a storage condition state. The storage state
would change as the percentage of storage used
crosses certain preset values. The exact values
used could be an installation parameter, or they
could be determined some other way, depending
on the environment. To prevent frequent fluctu-
ations, a different deadband setting would be used
when returning to a previous state. For instance,
consider states such as All Clear, First Warning,
and Final Warning with the following state change
settings:

& All Clear to First Warning at 70 percent
s First Warning to Final Warning at 90 percent
* Final Warning to First Warning at 80 percent
s First Warning to All Clear at 60 percent

A layer may use a Base service to be notified
when a particular storage condition state is en-
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countered. Notification consists of a normal layer
invocation using a work request setup by the re-
questing layer when issuing the notification ser-
vice. The action taken by a layer depends on the
particular layer. Possible actions to lower storage
requirements include limiting new connections,
limiting incoming data, and reducing window
sizes at the Transport Layer.

Timer management. The Base provides timer
services to the layers. A layer may request that
timer services trigger an event (by performing a
work request provided by the layer) on a control
block after a specified time period and may cancel
outstanding requests if they are no longer needed.
If the time period expires while the timer request
is still outstanding, the Base schedules the work
request under a new thread of execution to the
layer. The work request indicates that a timer ex-
pired and is associated with the control block
specified by the layer. When invoked after a time
out, the layer may do whatever processing is nec-
essary, including starting or resuming other
threads.

The Base also provides time-of-day information in
the various forms specified by the 0SI standards.

Message logging and tracing. The Base provides
services to aid in logging messages and in tracing
activity within the communications subsystem.
The services provided are standard for this type
of activity. The system-dependent portion of the
Base uses the logging and tracing services of the
local operating system in the best way to satisfy
the normal operating system procedures.

Message services support the separation of mes-
sage text from the program code to allow for easy
translation. Layer code may supply filler infor-
mation in order to add dynamically determined
data to the message. A layer specifies the type of
filler data and an associated field number. The
message text indicates where in the message a
field is to be placed and how to format it for dis-

play.

On command, the Base will trace a layer invoca-
tion, including all of the pertinent information as-
sociated with the work request. Tracing may be
designated for an individual control block, a
group of control blocks, or for all contro] blocks.
When errors are detected, other services are

274 GOLDBERG AND MOUTON

available to trace additional information deter-
mined by the individual layer.

Layer developers’ view. To clarify the nature of
the Base environment, it helps to see it from the
perspective of its users—developers of portable
layers.

Before any code can be ported, it must be written
in a programming language supported by the
target systems. The OSI/Communications Sub-
system has chosen Pascal. In comparison to many
languages, Pascal is an easy-to-learn, highly
structured language that produces reliable code
and is widely available in current systems. How-
ever, several languages today meet this require-
ment. It is not the intent of this paper to address
the possible choices or advantages of one lan-
guage over another. It is important to choose
some programming language that has a reason-
able degree of standardization across different
systems.

Usage of the chosen language must be further
controlled through coding guidelines. Even in
standardized languages, there are features that do
not port well, and programmers must be re-
strained from using them. In the Base environ-
ment, Pascal is used only for generating in-line
code; all run-time support is provided by the
Base. The guidelines used in the OSI/Communi-
cations Subsystem ensure that no Pascal run-time
support is used.

Figure 9 shows the environment provided by the
Base from the perspective of the developer of a
layer. The environment has the following char-
acteristics:

s The layer is a subroutine of the Base—a called
Pascal procedure. It is called when there is a
work request to process. When the layer has
completed all of the work associated with the
single work request, it returns to the Base.

s The operation of layers is transaction-oriented,
that is, broken up into small atomic items of
work. Each invocation of a layer should result
in a relatively small operation, not a long proc-
ess. (There is no check on layers to enforce this
rule, however.)

s The layer has no way to access the data or pro-
grams of another layer. The addresses of other
layers are not provided.
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Figure 9 A layer’'s view of the Base
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¢ The Base provides the only persistent working
storage available to layers: LCB, SAPs, CCBs.

¢ Temporary working storage is also provided by
the Base: held or suspended work requests with
parameters and buffers.

¢ Base services provide the only interface to sys-
tem services. Layers do not have direct access
to system IO operations or other services.

¢ Base work management functions provide the
only interface to the other layers in a sub-
system. When a layer is processing a work re-
quest, it may need to invoke the services of
other layers. It handles this need by building
work requests for the other layers and sched-
uling them, not by calling the other layers.

¢ Layers have a consistent interface to common
management: the MSAP association to the Open
System Manager (OSM). These services are in-
voked via work requests, just as those of any
other layer. The MSAP is used to carry these
work requests.

Implementation experiences

We have now had five years of experience devel-
oping systems based on this architecture. Among
the results are:
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¢ Early implementations on System/370™ MVS
and Series/1 RPS were made available as limited
customized offerings (known as programming
requests for price quotation, or PRPQs) in 1987.

* Implementations on the SAA systems are avail-
able.

¢ Work to prove feasibility has been done to var-
ious stages of completion on the Advanced In-
teractive Executive™ (AIX®) and several other
IBM systems and components.

Our experience with these systems has estab-
lished that the Base can support successful im-
plementations of 0SI protocols. The layers of the
OSI/Communications Subsystem are all portable
with the exception of small modules containing
system-specific constants and routines.

OSI/Communications Subsystem developers
working in Pascal in the Base environment have
achieved high productivity rates and excellent
code quality. The Base environment is a rela-
tively complex one for developers, however, and
new developers require time to learn it before
they can begin to be productive. Once it is famil-
iar, programmers gain productivity because the
Base takes care of many of the worrisome func-
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assembler or a native system programmm
ratherthan in Pascal.

mo “eﬁ;meﬁcy in the very lowest level Base functions

bier {anguage macros or C language header files, and to
be able to use tables of layer branch points that require
the type “pointer to function.” Therefore, the porting team
need d tosolve the problems inherent in any two-lan-
guage system: synchronizing changes to two versions of
declarations of data, and accounting for language differ-
inthe representation and alignment of data types.
Half—layer services and structure—The
Base' architecture for half-layer services as-
$ that communication between all outer half layers
and their.corresponding inner half layers can be done in
the same way. In the porting to AIX; the network otiter half
layers were part of the kernel of the operating system,
whereas the AP! and system management outer half
layers were user applications. Thus a half-layer service
needed to call one set of system services for network
OHLs and a very different set for user-space OHLs.

mong these reasons are: to obtain -
s changad) are shown in blue.
" rguchas locking, tomake system calls that require assem-

2 management architecture—in’
-the Base resource management

has déwc:e drivers. In this sntuaﬂon no
vent overrun.of this heap, since the '
‘ controt over the other users. sharmg

" ‘The experimental porting to AIX was aocomphshed ina |
location remote from the Base ‘developers, without their
fuli-time support. Out of the total amount of code needed
for a complete OSI system including Base and layers, only
about 10 percent had to be changed or newly written (this |
number does not include code for the outer half layers and -
the OS! applications, which were not attempted for AiX).
Thus, for a relatively small amount of effort, and with |
almost no expertise in OSI protocols, a complete OS!
system can be produced. Despite the difficulties encoun- -
tered, the overall experience in the experimental porting
of OSI/CS to AIX demonstrated that the design was well-. |
structured, portable, and flexible. It resulted in a system .}
that exploited the unique features and capabilities of AlX,
took advantage of sophisticated communications tech-
niques, and reqwred a smali amount of new code to be |
written.

- Nancy Crowther, Joyce Graham

Registered trademarks are those of International Business Machines Corporation
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Figure 10 Overview of split 0SI/Communications
Subsystem architecture
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tions needed for a communications product. The
early maintenance on the SAA products indicates
that the portability of the code has reduced cost.
A problem found on one system and fixed there
has provided a portable fix to the other systems,
usually before it was reported by users.

The portable layers and other ported components
in our product have resulted in a significant
leverage on development cost. The products we
have shipped included two and one half times
more lines of code than our developers have pro-
duced and will maintain. Although this advantage
is significant, it may be less than expected con-
sidering the size of the Base and relative size of
the layers. The cost of building a subsystem into
another operating system, so that it takes on the
characteristics of the system environment, re-
quires a significant amount of code that is specific
to that system. Especially expensive are the OHL
components that map system access methods and
management functions into the standardized func-
tions of the Base and layers.
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Path length measurements in similar situations
have indicated that the Base model can produce
improvements when compared to task-per-layer
implementations. Comparison to a predecessor
0sI product on the System/370 (Open Systems
Transport and Session Support) has shown that
path lengths for the OSI/Communications Sub-
system are significantly smaller than that of the
old products for a sample configuration. How-
ever, experience shows that careful design is nec-
essary to achieve good performance.

Placement of the Base within a system is espe-
cially important for performance. Since the Base
and layers are portable and written in a high-level
language, they would appear to be suitable for
execution in an application environment. How-
ever, they still implement a communications sub-
system and must have fast, direct access to sys-
tem services in order to achieve their potential
performance.

Future considerations. Many extensions to the
Base may be possible in the future. One such
possibility is the split OSI/Communications
Subsystem. It allows multiple Bases to operate
in a uniform manner so as to comprise a single
OSI/Communications Subsystem. Figure 10 pro-
vides an overview of what such a system might
be. The Base control block structure and process
model allow this configuration to take place with-
out an impact to most of the OSI/Communica-
tions Subsystem. Only the management layer (la-
beled 0SM) and the Base would know about the
split configuration. 0SM would have a counterpart
(labeled O0SM-D) to help manage in a split config-
uration.

One possible use for a split OSI/Communications
Subsystem would be to allow part of the 0OSI stack
to reside within an operating system kernel and
part outside. Another possible use might be to
place part of the 0SI stack within a front-end proc-
essor and part within the main processor.

Summary and conclusions

The Base architecture, as used in the IBM OSI/Com-
munications Subsystem, provides a method of im-
plementing portable layered 0SI implementations.
The Base provides services to support the special
needs of communications protocols and allows
porting of protocol machines across systems. It in-
cludes techniques to access system-dependent
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functions of the underlying system. Special archi-
tectural support is provided for management, ap-
plication interfaces, and connectivity interfaces
into the portable protocol machines. Layer imple-
menters are provided with an environment that iso-
lates their component from the other layers in a
subsystem and automatically ties state information
to relevant events. Services allow representation of
the complex relationships among connections and
service access points at various layers.

The work management services of the Base are
designed to give implementers flexibility in how
system processes are used and mapped to Base
functions. The buffer services eliminate move-
ment of buffered data between layers.

The architecture has been used successfully to
port implementations of OSI layers across several
different systems with quite different internal ar-
chitectures. The concepts can be extended in the
future to provide support for these protocols in
new environments, including those implemented
in a distributed manner.
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