
A base for portable 
communications 
software 

The  emerging  international  standards  for 
interconnecting computers will be important in 
IBMs future plans.  The  Open  Systems 
Interconnection (OS0 protocols are  already  part of 
IBMs Systems  Application  Architecture@ (SAAm), 
implying that  they will be  implemented  across  the 
dissimilar SAA operating  systems. Building these 
complex OS1 protocols is costly, and additional 
expense is involved in verifying conformance and 
interoperation with other  systems. “Porting” a 
common  implementation of  these protocols to all 
SAA systems offers major cost savings, but the 
differences between systems  and  the need  for 
high-performance, robust implementations  poses 
problems. The  OSI/Communications  Subsystem 
Base solves many of these  problems in a  general 
way that may apply to other layered protocols 
and  other  systems.  The  Base  provides all 
necessary  operating  system  services to support 
the layered  communications protocol machines 
of OS1 and allows access to the  I/O  services 
of the native  operating  system as  required. 
This paper discusses  the  sophisticated 
communications-oriented  environment  provided 
by the OSI/Communications  Subsystem  Base, 
which includes multiple threads,  back-pressure 
flow control, resource monitoring, layer 
modularity,  and  steps to minimize  process 
switches  and  data copying, The  paper is 
addressed primarily to systems  engineers  and 
communications architects interested in OS1 and 
portability in general. 

M odern  communications  protocols  have a 
layered  architecture.  Systems  Network 

Architecture (SNA), Transport  Control  Proto- 
coVInternet Protocol (TCPIIP), and Open Systems 
Interconnection (OSI) protocols are defined as 
layers of protocol,  each  addressing  a  part of the 
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overall  communications  function. OSI is a family 
of layered  communications  protocols defined by 
international  standards. The OSI Reference 
Model,  used as a  basis  for  development of OS1 
standards, is a  descriptive  model of an  arbitrary 
communications  system, including all required 
functions. The model defines seven  layers: 

1. The Physical Layer,  for physically connecting 
communicating stations 

2. The  Data  Link Layer,  for structuring data  on 
a physical  connection 

3.  The  Network  Layer,  for  routing  and relaying 
traffic worldwide 

4. The  Transport  Layer,  for  guaranteeing  end- 
to-end data transmission 

5. The Session Layer,  for connecting  applica- 
tions  and  structuring the dialog between  them 

6 .  The Presentation Layer,  for  standardized  data 
representation 

7. The Application Layer,  for communicating 
with specific applications 

OSI is becoming internationally  accepted as  the 
protocol of choice  to  interconnect  computer  sys- 
tems in a  multivendor  environment. It is antici- 
pated  that  most  computer  vendors will implement 
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OS1 protocols. IBM is a leader in this  area  and  has 
included OS1 protocols as  part of its  Systems Ap- 
plication Architecture@ ( s A A ~ ~ ) .  

Software portability. Early  efforts to implement 
communications  protocols usually produced 
code specific to  each target  system. In all cases, 

A basic concept used in  modern 
language  compilers  is that of a 

run-time environment. 

protocol  implementations  must  “interoperate” 
with implementations  in  other  systems in order  to 
be  successful.  Their main goal,  after all, is to al- 
low communication  and useful sharing of work 
with any  other  system implementing the  same 
protocol. With system-specific implementations, 
differences in their  operation  at  times led to fail- 
ure of communication, especially in unusual cir- 
cumstances. Additional testing  and  increased 
development  and  maintenance  costs  were  the  re- 
sult.  This problem of interoperation is even 
greater with OSI. The  basic  purpose of OSI is to 
allow interoperation of different vendors’  com- 
puter  systems.  Since  the  number of os1 imple- 
mentations is potentially far  greater  than  those  for 
a proprietary  protocol,  the  costs of development 
and  maintenance  could  become prohibitive. IBM’S 
solution is to implement each  required OSI pro- 
tocol once  and  “port” (move in whole) these im- 
plementations to all SAA systems. 

The advantages of “porting”  programs  has  been 
recognized  for  many  years. The development  and 
standardization of high-level languages which 
were  supported  across different systems  gave  ap- 
plication developers  the ability to write  programs 
in such a way  that  they could be  executed on 
systems with different internal  architectures with- 
out major rework.  A  basic  concept  used in mod- 
ern language compilers is that of a run-time  envi- 
ronment. The typical  program  written in COBOL 
or C (for example) will consist of two  components 
when it runs: 
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Routines  generated  directly  from the  source file 
Routines of a general  form  that are supplied 
with the compiler to perform broad,  complex, 
or system-specific operations 

These  latter  routines  make  up  the  run-time  envi- 
ronment  associated with the language itself.  Pro- 
grams  written in a given language share  the  same 
run-time routines, using only  those  that  are  re- 
quired.  The run-time environment  presents a 
standardized  interface in any system-the same 
language instructions are used to invoke  them. 
However,  these  routines  have  to  be  implemented 
separately  on  each machine in a system-depen- 
dent  way. 

Run-time routines supplied with standard  com- 
pilers are often  very  general  and  designed to sup- 
port relatively simple applications  that  require 
few  system  services.  Applications needing spe- 
cial functions of an operating  system,  such as 
control of tasking operations,  required  system- 
specific routines to  be developed  and  used to aug- 
ment the  provided run-time environment. 

Another  important step in  the  history of porta- 
bility is the  development of the UNIX@ operating 
system.  The UNIX system  was  designed to  port 
easily to different systems.  Its  portability is based 
on  the  C language, and the kernel may in some 
ways be  considered an extension to  the  concept 
of a  run-time  environment. The  kernel is a small 
component  that  includes all of the  resource man- 
agement routines of the operating  system. The 
kernel provides a defined interface to  the UNIX 
shell and  application  programs, the  same  inter- 
face in any  system to which the UNIX system is 
ported. The kernel is implemented in a  system- 
specific way,  and  developing  a  kernel implemen- 
tation is a key part of porting the UNIX system to 
another  system. The  rest of the UNIX system  is 
developed in C, and so is portable  to a new system 
once  the  kernel  interfaces  have  been  provided. 

Porting the protocol  implementation is a  key 
concept in the design of the  OSI/Communica- 
tions  Subsystem.  The  OSI/Communications 
Subsystem is the IBM program  product  that 
implements the middle layers of OSI (the top of 
Layer 3 through the  bottom of Layer 7) on 
IBM SAA systems-Multiple Virtual  Storage/En- 
terprise  Systems  Architecture (MVSIESA~~) ,  Vir- 
tual  Machine/Enterprise  Systems  Architecture 
( v M / E s A ~ ~ ) ,  Operating System/400@ (OS/400@), and 
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Operating  System/2@   OS/^@).^ In  the OSI/Com- 
munications  Subsystem  the  portability  concepts 
described  above  are used and  enhanced through 
the use of a system-dependent  component called 
the  Base, which is described in this  paper.  The 
OSI/Communications  Subsystem is available for 
MVSiESA,  VMiESA, OSi2, and OSi400. 

The IBM Communications  Systems Programming 
Development Laboratory-West Coast in Palo 
Alto,  California,  has been developing portable 
products  for  over 10 years. Before developing the 
OSI/Communications  Subsystem, it delivered 
COBOL compilers,  sort  and merge programs, and 
communications  systems  based  on  the  concepts 
of system-dependent  and  system-independent 
components. 

Layered implementations. Layered communica- 
tions  protocols  have suggested layered imple- 
mentations  from  the beginning. The layering of 
protocol specification contributes  to  the simplic- 
ity of each  layer by separating  functions cleanly. 
The OSI standards  use  this  technique.  A  consid- 
eration in developing OSI implementations is 
whether to reflect layering in the implementation. 

Implementing with cleanly separated  protocol 
layers  has  several  advantages: 

A layer  component is smaller  and simpler than 
a  component  that  includes  several  layers,  and 
simpler components generally are easier to 
build and  less  error-prone. 
Each protocol  layer  can be designed separately 
without  considering  characteristics of the  other 
layers. 
OSI lends itself to providing interfaces  at  several 
layers,  and  Transport,  Session,  Presentation, 
and Application layer  interfaces are in use to- 
day; breaking into  the middle of an unlayered 
implementation  to  provide  these  interfaces  can 
be difficult. 
Some  protocol  conformance  tests  have been 
formulated for individual layers,  and perform- 
ing these  tests  requires  access  to  a  layer without 
use of layers  above it. 
As changes in OSI standards  are made sepa- 
rately  on  each  layer, reflecting these changes as 
they  occur is easier when layers are  separate. 
Separation of layers (including state informa- 
tion)  can allow implementations  to  better iso- 
late  the effects of failures. 
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A  layered  structure with isolated  layer  compo- 
nents  lends itself well to  the  concepts of soft- 
ware engineering. 

However,  layered  implementations  are  perceived 
to  provide  worse  performance  characteristics 
than  implementations  whose  internal  structure 
does not reflect protocol  layering.  This  percep- 

Performance,  reliability,  and 
serviceability  are  all  desirable 

features of good protocol 
implementations. 

tion is a  result of the  cost of the  hard  interfaces 
between layers. The  costs  associated with a hard 
interface might include  the following: 

Interfaces in which common  data are not  shared 
among the modules require  parameterization of 
all passed data. Building and  passing  parameter 
lists is more costly  than referring to common 
data  areas. 
Where layers  cannot  address  the  same  storage 
areas, all parameters (including the  data buff- 
ers) must be moved between  the  separate  ad- 
dress  spaces in addition  to being passed in pa- 
rameter  lists. 
Where  layers are implemented as  separate  proc- 
esses,  the  parameters  and  data buffers are 
passed using some  type of interprocess signal 
(such as message queuing) rather  than by direct 
procedure call. 
Operating systems typically have a significant 
cost  associated with the  process  switching in 
such a design. 

Performance, reliability, and  serviceability are all 
desirable  features of good protocol  implementa- 
tions.  The  performance  advantages of unlayered 
implementations  often  come at  the  cost of reli- 
ability and  serviceability. So rather  than  choosing 
one  approach against the  other, a  balance  must  be 
struck  between  them.  Modern  multiprocessor 
systems  such as  the System/390'" have  thrown 
another  complication  into  this  balance.  In a mul- 
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tiprocessor  system, a single process may be lim- 
ited in the  amount of system  power  that  can be 
used;  several  processes  are  needed  to  take full 
advantage of these  systems.  A tradeoff must be 
made  against  the  path length cost of supporting 
several  processes  and  the  real  performance gain 
achieved  by  concurrent  processing. 

Several  attempts  at  this  balance  have  been  made, 
a notable one being D.  Clark’s Swift operating 
system.4  Clark  attempts  to  reduce  the  cost of in- 
terlayer  interfaces by defining them as procedure 
calls, mostly “upcalls”  from  lower  layers to their 
clients. Layers  are defined as groups of related 
subroutines called “multitask  modules,” with 
specific procedures  for  interaction with other lay- 
ers.  Processes  are  freed  from  layer  boundaries 
and  are  used  to  carry  work  up  and  down  the  layers 
in a synchronous  way. Mapping of processes to 
operations is performed by either  the  lower or 
upper  layer  routines  or  both,  and  can  be  changed 
at a late design stage.  Common  addressable  stor- 
age is used to hold shared  state  information,  and 
monitor  locks are used to serialize  access  to  these 
data. 

Clark’s  approach  reduces  the  cost of layer bound- 
aries  to a minimum, using pure  procedure calls. 
However,  the  sharing of data among all layers 
loses  some of the  advantages of layer  interfaces, 
and he discusses  the  impacts of failures in one 
layer  that  can affect the  state of other  layers. 

With the  Base, a layered  structure  has  been im- 
plemented using the  techniques of software  en- 
gineering,  and an  attempt  has  been made to  retain 
most of the good characteristics of hard  layer in- 
terfaces while reducing the performance  cost of 
these interfaces.  The  parameterization of a clean 
interface  has  been  retained,  but  the  Base  has  been 
designed to reduce  process switching and the 
overhead of interprocess signaling and to elimi- 
nate  movement of buffered data between  layers. 
As in the Swift approach,  the  Base  separates  task- 
ing considerations  from  layer implementation and 
provides  common  control block and buffer stor- 
age to  reduce  data movement.  Compared to 
Swift,  the  Base  retains a harder  layer  interface 
but still provides  synchronous flow between  the 
layers  whenever  possible.  Some  performance  is 
traded  for  robustness  and  portability;  however, 
many of the  performance  problems Clark identi- 
fies are solved. 
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Several  existing  protocol  implementations  use a 
layered  approach.  The I/O facilities of the IBM Dis- 
tributed  Processing Programming Executive 
(DPPX)5 exemplify an  early  implementation of 

With the Base, a layered 
structure has  been  implemented 

using  the  techniques 
of software engineering. 

SNA that  mirrors SNA layering.  Another  example 
is the STREAMS facility of UNIX System V Release 
3. STREAMS provides an environment  for imple- 
menting layered  communications  protocols in a 
portable way within the UNIX environment. 

As with many other  communications  protocols, 
the OSI protocols are specified asfinite state  ma- 
chines. Finite  state  machines are  conceptual  en- 
tities  that  support  a finite set of possible  internal 
states,  accept a predefined set of inputs,  and  have 
a well-defined operation,  output,  and resulting in- 
ternal  state  for  each  possible  input  received in 
each  possible state. 

The  term  protocol machine is used in this  paper 
to refer to any  implementation of a protocol finite 
state machine as a component of a communica- 
tions  system. 

This paper  describes  the  techniques  used  by  the 
OSI/Communications  Subsystem to provide a 
portable OS1 solution  for SAA environments.  At- 
tention is focused on  the  architecture  and con- 
cepts of the  OSI/Communications  Subsystem 
Base (the Base), which provides the environment 
to allow protocol  machines to  be  ported.  The 
paper  presents  an  overview of the  Base, a de- 
scription of its  architectural  concepts,  and a dis- 
cussion of its  service  categories.  Finally, it out- 
lines experiences in implementing the  Base in the 
OSI/Communications  Subsystem  products. 

The OSI/Communications  Subsystem  Base 

Overview of the Base. The Base may be viewed as 
a special-purpose  run-time  environment which is 
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Figure 1 Plugging layers into the Base 
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itself portable to different operating  systems  en- 
vironments  on  the  same or different hardware. 
One goal for  the  Base  is  to exploit the capabilities 
of each  system, not just  to  execute successfully in 
each.  The  Base  concentrates  its key interactions 
with the local operating  system  into  a small 
amount of code giving Base  implementers signif- 
icant  freedom to capitalize on  the capabilities of 
the target  systems, especially the tasking struc- 
ture  and  storage utilization. Another goal is to 
accommodate  the OS1 Reference Model and  layer 
standards,  as well as other  layered communica- 
tions  protocols.  The  Base must be  able  to handle 
the wide range of options  and profiles supported 
in OSI as well as  adapt  to  the changing environ- 
ment of developing OS1 standards.  A third goal is 
to  facilitate  the use of common  test  tools  and  sce- 
narios  across OSI products. A final goal is to meet 
the  performance  requirements of communica- 
tions  systems while implementing the  other  goals. 

Architecture. An operating  system may be viewed 
as a  service  provider, offering services  to its us- 
ers, which are programs.  Each  operating  system 

is characterized by its own  interface to  the  pro- 
vided services  and in fact may be tailored to a 
particular  class of users  or applications. As de- 
picted in Figure l ,  the  OSI/Communications  Sub- 
system Base utilizes whatever  services are of- 
fered by the underlying operating  system to in 
turn  provide uniform services to  the OSI/Com- 
munications Subsystem layers.’ Different imple- 
mentations of the  Base  provide the same  layer 
service  interfaces so that  the  layers  become in- 
dependent of the  operating  system  service  inter- 
faces.  The  layers implement the protocols of 
osI-for example  Presentation,  Session,  or 
Transport-while the  Base  provides  the  indepen- 
dent platform necessary to isolate the  layers  from 
the  idiosyncrasies of each  operating  system. 

The  services  provided by the  Base are tailored to 
meet the special needs of communications  pro- 
tocols.  OSI/Communications  Subsystem  layers 
are  transaction-oriented  protocol  machines.  They 
need to  be invoked for  execution,  to maintain 
control  blocks,  and  to buffer data. They  require 
timer services, message logging, and  tracing. Al- 
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though  most  layers perform processing  functions 
only,  certain  layers  need  access to  the operating 
system I/O services  and  interprocess communica- 
tion services  to get at  communications  links, cli- 
ent applications, or system disk storage. 

Using an analogy of hardware  components, we 
can  compare the Base to a “motherboard”  and 
the  layers  to “processing cards.”  The Base  serves 
as the controller of all attached  cards  and  pro- 
vides  them with a rich set of system  services.  The 
layers in turn  are like processing cards plugged 
into  the  motherboard,  where  each  processing 
card is an implementation of an OSI protocol ma- 
chine. (To carry  the analogy further, we could 

The Base serves  as  the  controller 
of all attached cards and 
provides them  with a  rich 

set of system  services. 

consider  the  operating  system as  the  “system  en- 
closure,” which provides  power to  the mother- 
board  and  supports  interface plugs to  the cables 
in the  outside  world.) 

The Base  supports  as many layers as needed  for 
OS1 or  another protocol  set  and allows any layer 
to obtain the  services of any  other  layer.  The  Base 
interfaces are general,  not OSI-specific. The OSI 
implementation is isolated to  the layers of the 
OSI/Communications  Subsystem,  and SNA or 
TCP/IP layers could be implemented as well within 
the Base. In the OWCommunications Subsystem, 
the following OSI protocols are implemented as 
layers: 

Management  functions, including Common 
Management  Information  Protocol (CMIP) and 
X.500 Directory  Access  Protocol (DAP) 
Association  Control  Service  Element (ACSE) 
and  Presentation  (combined  into  one  layer) 
Session 
Transport 
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Network, including Connectionless-Mode  Net- 
work Protocol (CLNP) and  Connection-Oriented 
Network  Services (CONS) 

The  OSI/Communications  Subsystem will need 
access  to  the I/O and  interprocess  communication 
services  provided by the  operating  system. To 
meet this  requirement,  one  solution  includes 
these  services in the  Base.  Another,  based  on 
common operating  system  practice,  separates 
basic  services  from  services  provided by modular 
“access  methods.”  The  latter is a far more gen- 
eral solution and  was  chosen  for  the  OSI/Com- 
munications Subsystem.  This  approach allows 
Base  implementers to  concentrate  on operating 
system  services  and  not  have to  deal with the 
complexity of interfacing to network or LAN serv- 
ices.  Developers with communications  experi- 
ence  can  be assigned to implement these commu- 
nications-oriented  components of each  system. 

The  OSI/Communications  Subsystem  architec- 
ture  includes  a  mechanism  for adding system- 
dependent  components  to  provide a direct  inter- 
face to system  services  not  already supplied by 
the  Base.  This mechanism supports a special  type 
of layer  known  as a boundary  layer. As the name 
implies, a  boundary  layer  sits on  the boundary 
between  the  environment  established by the 
OSI/Communications Subsystem  Base  and  the 
environment  established  by  the underlying oper- 
ating system  and  access  methods. The  part of the 
boundary  layer inside the Base  environment (in- 
ner  halflayer, or IHL) behaves  as a regular  layer, 
whereas  the  part  outside the  Base  environment 
(outer  half  layer, or OHL) uses  operating  system 
services as  needed.  Boundary  layer  support in 
the Base includes  a  system-independent  interface 
mechanism supporting  communication  between 
IHL and OHL. IHLS are provided with all of the 
same  services  as  other  layers. OHLs may use  a 
subset of Base  services and have  additional  spe- 
cial services  available to them. 

Continuing the  previous  analogy,  we can  consider 
a  boundary  layer as  an  “interface  card”  con- 
nected  to  the  “motherboard.”  Part of the  inter- 
face  card  extends  outside  the  Base to  interact 
with the  “real” world while the  other  part of the 
interface  card is controlled by the Base as a 
“processing card”  (see Figure 2). 

The  OSI/Communications  Subsystem  uses  this 
capability to implement three  interfaces to  other 
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Figure 2 Plugging boundary layers into the Base 

processes in the  system  and to communications 
links: 

1. The Open  System  Manager (oSM)  boundary 
layer provides management services  to all 
other  layers within the  subsystem  and  inter- 
faces  to  system management  processes  such 
as Netview@. 

2. The application  programming  interface (API) 
boundary  layer enables  the programming in- 
terfaces  between  the  user  applications  and  the 
communications  subsystem, using the flex- 
ibility provided by the Base to interface with 
two different layers  and  provide  both  an 
ACSE/Presentation  and  a  Session  interface. 

3. The network  boundary  layer interfaces with 
network  access  methods in a  system-depen- 
dent  way. 

for  example, by companion  products to the 
OSI/Communications  Subsystem: OSZIFile Serv- 
ices implements the  File  Transfer,  Access,  and 
Management (FTAM) Application Service  Ele- 
ment (ASE) of OSI, and Open  Network Distribu- 
tion Services implements the  International  Tele- 
graph  and  Telephone  Consultative  Committee 
(CCITT) X.400 Message Handling System.  These 
products are  represented by the ASE depicted in 
Figure 3.  

Figure 3 illustrates the  Base  and  layers in Figure 
2 from a  perspective looking down onto  the 
“tops” of the  layers  to  show the relationships 
among them. 

The  categories of services  provided by the  Base 
are: 

It is possible to implement additional OSI stan- Control  block  management-Manages control 
dards  as  a  combination of one  or more layers or blocks representing the OSI concepts of (N)- 
boundary  layers. This implementation is done, entity,  Service  Access  Point,  and  Connection 
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Figure 3 Basic system structure -“top view” 

End  Point.  Both  storage  and  queues  associated  Resource management-Provides early warning 
with these  control  blocks  are managed by the of low storage  conditions. 
Base. 

Finite  state machine services-Performs finite required by osI protocols. 
state  machine  transitions  for  the  layers. 

Timer management-Provides timer  interrupts 

Work management-Includes a  process model 
flexible enough to run effectively on a large range 
of processors  (personal  computers  to multiproc- 
essor main frames) with a built-in back  pressure 
mechanism. 

Buffer management-Provides a physical buffer 
management  function  across  layers. 

Message logging and tracing-Provides logging 
and tracing services  required  by  communications 
products. 

Control block management. There  are  three  key 
concepts  from  the OSI Reference Model which are 
represented by the OSI/Communications  Sub- 
system as control  blocks: 
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Figure 4 LCBs, SAPs, and CCBs 

1.  (N)-entity-an instance of a  protocol machine 
of some OS1 layer  (Layer  N) within the  sub- 
system.  For  example,  a  Transport protocol 
machine in a  subsystem is a  Transport  entity. 
Layers  supported by the Base are like (N)- 
entities;  however,  several OSI (N)-entities may 
be implemented in one  layer of the OSI/Com- 
munications Subsystem, and non-OS1 compo- 
nents may be implemented in layers.  Layers 
are  represented by layer-entity control blocks 
(LCBS). 

2. Service Access  Point (SAP)-the point at 
which services  are provided by an (N)-entity 
to  an  (N+l)-entity.  The SAP defines the con- 
figuration of the system in terms of service- 
provider to service-user relationships between 
layers.  It  also defines the  addresses of service- 
user  (Nt-1)-entities within the OSI environ- 
ment.  In  the OSI/Communications Sub- 
system, SAP control blocks are used to 
represent OS1 SAPs, as well as other internal ser- 
vice-user to service-provider relationships be- 
tween OSUCommunications Subsystem layers. 

3. Connection End  Point (cEP)-the representa- 
tion of one  end of a  connection between two 
peer  service-user  (N)-entities within the OSI 
environment.  Connections  are provided as 
part of the  service  associated with a SAP, 
so each CEP is related to a SAP. (Connection- 
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less OS1 services do not use CEPs.) OSI/Com- 
munications Subsystem  Connection Con- 
trol Blocks (CCBs) represent CEPs. 

The  control blocks are  most  often  used  to  repre- 
sent  these  concepts, but it should be noted  that 
there  are no restrictions.  It is possible for  these 
control blocks to represent  other OSI concepts or 
to  even  represent  concepts not found in OSI. Fig- 
ure 4 shows how the various control blocks relate 
conceptually to layers in a normal subsystem. 

In  general,  an OSI layer performs services  for  the 
layer  above it (a  service-user) by using the  serv- 
ices of the layer below it (a service-provider). (In 
Figure 4, Layer (N+ 1) is the  service  user of Layer 
(N), and  Layer  (N-1) is its service  provider.) 
This method usually implies a relationship be- 
tween CCBS to  the  service-users of a  layer  above 
and CCBs to service-providers below. For exam- 
ple,  the  Transport  Layer  supports  its service- 
users by providing transport  connections to them 
and uses  network  connections of the  layer  below. 
The Transport  protocol implies some relationship 
between the  transport  connections  above  and  the 
network connections below. Such  a relationship 
may be simple and direct  (data flowing  in on one 
CCB always flows through to the  other CCB) or 
more complex, involving multiplexing or splitting 
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Figure 5 CCBlSAP control block structure 

protocols or  even combinations of both.  Some 
examples are depicted in Figure 4. CCB relation- 
ships may be reflected in ties between  user  and 
provider CCBS. The Base  provides  services  that 
allow a layer  to tie CCBs together,  untie  them,  and 
locate  tied CCBS quickly.  Besides  the  layer use of 
this tie information, the Base  uses it in its dis- 
patching algorithms as discussed  later in the  sub- 
section  on  work  management. 

The OSI/Communications  Subsystem  architec- 
ture  implements  strong  data isolation required by 
software engineering. The  control blocks that 
hold the system  together are designed to  ensure 
that  each  component  has  access only to  the  data 
necessary to its  operation  and  cannot  access or 
change  data of other  components  directly. 

The  existence of the LCB is known by the  Base 
and  the  layer  associated with it. SAPS and CCBS 
define relationships  between  pairs of layers,  and 
their  existence is known to  both layers in the  re- 
lationship.  Each  control block is split into  sepa- 
rate  parts, which are conceptually  and  sometimes 
physically isolated. Each has a Base  part  and  one 
layer  part  for  each  associated  layer.  A  layer is 
only given access  to  its  part of a  control block and 
is not allowed to  examine  or modify parts belong- 
ing to  the  Base or to  another  layer. Although the 
Base  allocates  space  and  knows  the  whereabouts 
of each  layer  part of a  control  block, it does  not 
examine or depend  on  the  contents of any  layer 
part.  The Base  part is used by the  Base  for man- 
aging the  layer  or relationship  between  layers. 
The layer  parts of all of the  control blocks asso- 
ciated with one layer  make  up  the majority of the 
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storage  area  that is addressable by that  layer. A 
layer  part is typically used to  store  state infor- 
mation that  pertains to  the object  (such as a  con- 
nection) that  the  control block represents.  Layer 
parts of LCBS generally contain  more  static  con- 
figuration data  pertaining to  the operation of the 
whole layer. 

Enforcement of data isolation varies  from  one im- 
plementation of the  Base  to  another, depending 
on  the facilities available in a  host  operating  sys- 
tem and  the  cost of using them.  In  some  cases, all 
control block parts  are  stored in contiguous  stor- 
age and are  protected  from  access by nonassoci- 
ated  layers only because  these  layers do not know 
the  addresses  or  the  structure of the  parts of other 
layers.  Where  a  system  provides  protected  data 
spaces,  the  structure allows the  Base  to  take ad- 
vantage of different data  spaces  when  appropri- 
ate.  For example,  there could be unique data 
spaces  for  each  layer  and  the  Base  without  any 
impact to  the common  layer code (see  Figure 5) .  
Since  this design prohibits  layers  from  sharing 
data  spaces, it isolates  each  layer  from all  of the 
others.  Such  layers  can  be  packaged  as  part of a 
single processor  system  or be a part of systems 
distributed  across multiple processors  (see  the 
subsection  on  future  considerations for possible 
implications). 

Internally,  each  layer  part of a control block is 
assigned a unique control block identifier by the 
Base,  and  the  entire  control block is given a single 
external  name. The Base  provides  services to 
manage control blocks: to  create  and  delete  them, 
to  locate  them by name or by identifier, and  to 
retrieve information about  them. 

Finite  state  machine. The  components  that  oper- 
ate within the Base environment  (layers  and  inner 
half layers) are designed to be event-driven;  that 
is, they are invoked to  process  events. Their  de- 
sign is often  based on finite state machine  con- 
cepts.  In a finite state  machine, an  event  com- 
bined with the  current  state  (remembered  from a 
previous  invocation)  determines  the  action  to  be 
performed and  the resulting state.  The  relation- 
ship of states,  actions,  and  events  are usually de- 
fined  by a state  table. OSI protocols are specified 
using state  tables, so it  is natural  to implement 
them  as finite state  machines. 

Finite state machine design tends  to break complex 
functions into small, simple parts,  and  the  state ta- 
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ble  design forces consideration of all possible com- 
binations of state and input. The performance char- 
acteristics of finite state machine designs are good, 
since a well-designed machine can select the ap- 
propriate action routine quickly. 

The Base  provides a finite state machine service 
to  layers. Invoked with an  event,  the  current 
state, and a layer-defined state  table,  this  service 
efficiently finds and  invokes  the  appropriate  layer 
routines  and  returns  the  next  state. An event in 
this  environment is a  request  to perform a  par- 
ticular  function,  together with the  parameters  and 
buffered data needed to perform it. 

The Base  also  provides the layers with a good 
environment  for finite state  machines.  Layers are 
invoked with a single event, given a single control 
block to which this event  applies.  There  are  no 
Base  services  that allow layers  to wait for  any 
event  without  returning to  the  Base, so layers 
must  preserve  state information between  invoca- 
tions. A typical  layer  when invoked performs an 
action (which may or may not  generate additional 
events),  places itself into  an ending state (which 
may or may not be different from the  entry  state), 
and  returns  to the  Base. A layer normally saves 
its  state information in the  layer  part of control 
blocks.  This  action allows each  layer, SAP, and 
connection to maintain its own (different) state. 

Work management. Work management consists 
of three  major  parts:  process  model, flow control, 
and  error handling. 

Process  model. A layer is invoked by the Base via 
a subroutine call to  process an  event  for  a par- 
ticular  control  block. The  event, control block 
identifier, and  related data  are contained in a work 
request. Work  requests  are  issued by layers, 
boundary  layers, or  the  Base, and  each work re- 
quest is directed  to a layer,  for  a  control  block, 
with an  event.  Inside  the  Base  environment,  a 
thread performs much the  same role as a task or 
process: It is the means by which the Base allo- 
cates processing  cycles  to  layers. Work requests 
are associated with threads  to  schedule  layer ex- 
ecution.  Several may be  associated with a  thread 
in a  last-in, first-out relationship. When a  thread 
is dispatched,  the work request  most recently as- 
sociated with it  is performed by invoking the 
specified layer.  Two different threads  are consid- 
ered  to  be asynchronous-and may be dispatched 
concurrently in Bases implemented on multitask- 
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ing systems. As work  requests  are performed, 
their  sequence of arrival  on  a  control block is 
maintained. 

Since one layer normally uses the services of 
another  layer,  a  protocol  operation in the 
OSI/Communications Subsystem  proceeds  up  or 
down  through the  stack of layers,  each  layer is- 

Inside the Base environment, a 
thread performs  much  the same 

role  as a  task or process. 

suing work requests  to its  service-user or service- 
provider  and using the  same  thread  for  the new 
work requests.  Thus,  each  operation  results in a 
sequence of related  work  requests  associated 
with the  same  thread. When a  layer  issues a new 
work request  on  a thread, it may choose  to leave 
the  work  request  that invoked it on  the  thread  or 
to  remove it. Such a work  request  becomes  a re- 
call work  request  when left on  the  thread, be- 
cause it  will cause  the  layer  to  be  invoked again 
after all processing  related  to the new work  re- 
quest  has  completed.  A  layer may also  choose  to 
issue work requests  associated with a different 
thread to perform  services  asynchronous to  the 
main flow. 

The Base uses  the  processing  cycles  allocated to 
the  OSI/Communications  Subsystem by the host 
operating  system. One or more  operating  system 
tasks or processes may be  available  for  use by the 
Base (depending on  the Base  implementation). 
The Base controls  the  dispatching of its threads 
by allocating threads  to available  operating  sys- 
tem tasks. If  it has only one  operating  system  task 
at its disposal, it  will alternate  between  the  var- 
ious  threads  and perform one  work  request  at a 
time. However, if more  than  one  task is available, 
the  Base  allocates  active  threads to  the available 
tasks  for  the  duration of one  or more  work  re- 
quests, allowing a  number of work  requests  to  be 
performed concurrently. 

If multiple tasks  are  available, the possibility of a 
collision (two  different  threads  executing at  the 
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Figure 6 Multitasking example 

same time with the  same  control block) arises. 
For example, two protocol  operations  for  the 
same  connection may be flowing in opposite di- 
rections  and  meet at  the same  layer.  In  that  case, 
the  Base will serialize the  requests  for  the  layer in 
order  to  prevent multiple invocations  for  the  same 
control block. When multiple CCBS are tied to- 
gether within a  layer,  they  are serialized as a unit. 
See  Figure 6. For unrelated  connections or SAPS, 
two  threads  are allowed to  execute within the 
same  layer  concurrently,  and  threads may exe- 
cute in different layers  without  restriction. 

More  traditional  implementations of multitasking 
in a  layered  communications  subsystem might al- 
locate  a  task to  each  layer  or a task  to  each  con- 
nection. 

The first solution  imposes  unnecessary  task 
switching as data flows from  layer to  layer.  In 
many  systems,  task  switches  are  too  costly  for 
good performance in a  communications  sub- 
system.  The  second  solution  does not work well 
for OSI when multiplexing and splitting protocols 
are in use, since  one  connection  becomes  several 
connections  at  some  point in the  stack.  This ap- 
proach may require  more  tasks  than are available 
in smaller  operating  systems. For multiprocessor 
systems  such  as  the System/390, one  task at a 
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time per  connection may not  make the  best  use of 
system  resources. 

The  Base  work  management  approach  over- 
comes  these  limitations,  and  does  not fix the num- 
ber of tasks  for  each  implementation. While al- 
lowing implementations to assign tasks  as  above, 
it also  supports  single-task-per-system  operation, 
use of invoking tasks,  or  use of several  tasks in 
parallel. Multiple threads may be  executing  con- 
currently  for the same  connection,  and multiple 
threads may be  executing  concurrently in the 
same  layer  (except  for collisions as described 
above). Note that  each  implementation of the 
Base  does fix its policy for assigning tasks-this 
flexibility is given to  Base implementers  rather 
than  Base  users. 

Control blocks also  have a role in work manage- 
ment;  each SAP or CCB can  be  thought of as a  work 
queue. When there is work to  do  on a  connection, 
the  work  request is queued  to the  control  block, 
and  some  task will come along and perform  it. It 
may be, but  does  not  have  to  be,  the  same  task 
each  time.  Because of the finite state  nature of the 
layer  code,  layers  do  not  require  dedicated  tasks, 
and  the  Base model allows whatever  tasks  are 
available to float to any pending work  requests. 
Once  the Base has  allocated  a  thread  to a task, 
however,  the  task  continues  to  perform  work  re- 
quests  associated with the  thread until there  are 
no more or serialization  contention is encoun- 
tered.  This allows work to proceed  through  sev- 
eral  layers with minimal queuing overhead. 

An additional feature of this approach is that,  on 
those operating systems where it makes sense (such 
as OS/2), the Base allows user tasks to be borrowed 
to dispatch Base threads, avoiding a task switch 
between the  user  and  the OSUCommunications 
Subsystem. In this case a user  task may process 
related work requests as long as processing can 
continue without being suspended. Once sus- 
pended, the user task  returns  and processing con- 
tinues when possible using a Base task. 

The  Base  provides  services  that allow layers to 
manipulate work  requests  and  threads.  One im- 
portant  service is the ability to suspend a thread. 
When work  cannot  continue  for a thread  (because 
of protocol flow control  restrictions or  the need to 
perform some I/O operation,  for  example),  a  layer 
can  cause  the  thread to  be  suspended as it returns 
control  to  the  Base.  Such a thread is no longer 
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dispatchable  and is enqueued  on  the  control block 
of its  topmost work request.  The  layer  can  cause 
it to  be resumed when performing a different work 
request, normally one  that  frees flow control re- 
strictions or indicates  completion of I/O opera- 
tions.  The  thread  becomes  dispatchable  again, 
and  work  requests  associated with it are per- 
formed  when it is next  dispatched. 

Another  service is the ability to hold a work re- 
quest.  This  service effectively removes a work 
request  from  a  thread  and  enqueues it to its  con- 
trol block in such a way  that  the  layer  can  refer to 
the  associated  data  through  several  invocations. 
Held  work  requests  become  static  data  areas  for 
use only by the holding layer.  A  layer  can  cause 

A layer or a  Base  service may 
detect a condition that 

should not happen. 

a held work  request to  be redispatched  at  a  later 
time if necessary by placing it on  an available 
thread. 

Layers usually process  work  requests  once be- 
fore holding them. For example, the Transport 
Layer may have  to  guarantee  delivery. After it 
sends  out a message, it  will hold the work  request 
containing  the message until an acknowledgment 
is received. If the  acknowledgment is not re- 
ceived,  the  work  request will be  rescheduled. If 
the  acknowledgment is received,  the work re- 
quest will be  deleted. 

Flow control. One challenge a communications 
subsystem  faces is the ability to manage its data 
flow requirements within available data  storage 
resources.  This challenge cannot  be satisfied un- 
less  the  communications  protocols  contain flow 
control  functions.  In OSI, the  Transport  Layer 
and  the  Network  Layer  share responsibility for 
flow control  protocol.  However,  these  functions 
alone are not sufficient unless  their effects are re- 
flected back to  the local applications sending and 
receiving data.  For  instance, if the  Transport 
Layer acknowledges data upon  receipt  but  before 
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passing it to  the  application, the local subsystem 
has  defeated  the  Transport Layer flow control 
function  and  cannot  control  the  amount of data  to 
buffer pending receipt by the  application. If the 
application may queue  data  to send  without  con- 
trols,  an  application may send data  faster  than it 
is transmitted  and may exhaust  the  available  re- 
sources  to buffer the  data  prior  to  transmission. 

The  OSI/Communications  Subsystem  has  chosen 
a solution that  extends  the  available  protocol flow 
control  function  throughout  the  entire communi- 
cations  subsystem by relating it to  the basic 
threading  mechanism.  Feedback  between  users 
and flow-control protocol is done by using a fea- 
ture of the  Base  thread  and  work  request mech- 
anisms  that allows more  than one work  request  on 
a thread at a  time. The  thread  acts like a stack, 
where  the  bottom  work  request will not  be  per- 
formed until all above it have  been  performed. 
Since new work  requests  are placed  on  top of the 
stack, they are performed  before the  bottom  one. 

Normally,  work  requests are removed  from a 
thread  after  they are performed,  but a layer may 
choose  to leave  a  recall  work  request on  the 
thread while adding a new work  request  above  it. 
Layers  supporting a source of data such as a user 
or  the network  can  become  aware of flow control 
restrictions by using the  recall  function. Layers 
needing to  control the flow  of data  for  any  reason 
can  control  the timing of recall  invocations of 
source  layers by suspending  threads until they are 
ready for  more data.  Intermediate  layers  are  not 
aware of this  function  (they do not  see the recall 
work requests)  but  have a responsibility to  ensure 
that  the  same  thread is used  to  pass  work  through. 
The recall signals the originator  that  more data 
may be sent. This  mechanism  works  without  re- 
quiring any  special  functions in layer  interfaces 
and without affecting intermediate  layers. 

Error handling. There  are  cases when  a  layer or 
a Base  service may detect a condition  that should 
not happen.  This  detection is considered an  error 
in the  software.  There is a  Base  service  to  abnor- 
mally terminate (abend) the execution of a  thread 
in these  situations.  This  service  also  provides a 
single point for collection of the  information  nec- 
essary  to identify and  correct  such  errors. 

This  abend  service allows the  layer  to  end  the 
current  invocation  immediately. It simplifies the 
code within a layer  since  much  return  code  check- 
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Figure 7 Layer view of buffer 

ing and  passing may be avoided within the  various 
subroutines of a layer.  In  particular, a Base  ser- 
vice  detecting a layer  error will issue  the  abend 
service  directly  and  not  even  return  to  the  layer. 
For  those situations  where  the  Base  cannot  de- 
termine  whether  the  layer is in error,  the Base will 
invoke  a  special  layer  subroutine to  separate un- 
expected  errors  from  others.  Base  services only 
pass  back  return  codes  that  the  invoker is expect- 
ing to handle. Layers need  not  have  code  to  deal 
with unexpected  results  after  each  Base  service. 

Buffer  management. The  Base  provides buffer 
management  services to  the layers.  These  serv- 
ices allow the layers to  treat a buffer as a contig- 
uous byte-stream,  without regard to  the actual 
physical  location or makeup of the buffer. Layers 
use  these  services  to  examine  and modify the  con- 
tents of buffers. Direct  addressing to  the  contents 
of buffers is not normally provided.  This  scheme 
allows the  Base  complete  freedom  to  locate buff- 
ers in small address-space  machines.  It  also 
allows a  layer  to  perform logical, rather  than 
physical,  operations  on  a buffer. For  instance, a 
layer may add  a  header  to  the  contents of a buffer 
without  worrying  about  whether enough physical 
space  exists at  the  front for  the  header. This log- 
ical view is depicted in Figure 7. 
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The  internal model of a  Base buffer consists of a 
buffer header  and  a  chain of separate  data  blocks, 
each with its own separate  header  record.  Each 
data block is composed of a physically contiguous 
stream of bytes  but is not  necessarily  contiguous 
to  the  next  data block or  the same  size.  To min- 
imize page references, it is useful to view the 
buffer and block headers  as physically separated 
from the  data blocks.  Each buffer includes  the 
data blocks needed to hold the buffer contents. 
This physical view is depicted in Figure 8.  

Layers normally view buffers as logically contig- 
uous streams of bytes  and are not  aware of their 
physical view. However,  there is a buffer service 
that allows layers  to get the  direct  address of a 
segment.  Use of the  direct  access  service allows 
layers to improve buffer access  performance  for 
certain  types of operations,  such  as  repeatedly 
accessing large data  records  saved in a buffer for 
local use or examining all data  octets in order  to 
generate  a  checksum.  This  service is not meant to 
be used during normal data  transfer  when  only 
headers  are being added or deleted to  the buffer 
as the  data  pass  through  the  layers. 

Boundary  layers may access buffer blocks to per- 
form I/O operations  directly  into  them.  Special 
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Figure 8 Model of Base buffer 

services  available  to  outer half layers  provide  ac- 
cess  for this  purpose. 

Buffers may be passed from one  layer  to  another 
by passing an identifier to  the buffer without mak- 
ing a  copy of the buffer. When a  layer  adds a 
protocol  header,  a block containing  the  header 
may be  added  to the buffer. There is no need to 
move the  data within the buffer to make room for 
the  header. 

Resource management. The  OSI/Communications 
Subsystem  environment  makes it possible to  set 
an  upper  bound to use of resources based on the 
number of SAPS and  connections  supported.  The 
flow control  mechanism allows layers managing 
sources  or receivers of data  to control  the number 
of buffers that may be outstanding  at  one  time. 
Rules  for  intermediate  layers  require  them  to  set 
upper  bounds  on  the  number of resources  used. 
When sufficient storage is available,  storage de- 
pletion should not occur.  However, having suf- 
ficient storage  requires allocation of much storage 
that will never  be used in real operation, and in 
practice it is not often  feasible. In addition, 
certain  protocols do not include a flow control 
function  and  have no reasonable  means  to  control 
incoming data (for example,  Connectionless  Net- 
work  Protocol when used as a  relay).  For this 
reason  the  Base  provides additional resource 
management  services. 
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The Base provides  a  service  to  aid the layers in 
the  proper utilization of system  resources.  The 
only resource  presently  monitored is system  stor- 
age. System  storage is obtained by the  Base  for 
buffers, control  blocks,  and  work  requests. 
Should system  storage  become exhausted, nor- 
mal operations would be  impossible,  and  recov- 
ery would be quite difficult. Rather  than trying to 
recover  from  this  condition,  the  philosophy is to 
use early detection  to  prevent  this  condition  from 
happening. 

The Base monitors available storage  and main- 
tains  a  storage  condition state.  The storage  state 
would change as  the percentage of storage  used 
crosses  certain  preset  values.  The  exact  values 
used could be an installation parameter,  or they 
could be determined  some  other way, depending 
on the  environment. To prevent  frequent fluctu- 
ations,  a different deadband  setting would be  used 
when returning to a  previous state.  For  instance, 
consider  states  such as All Clear,  First  Warning, 
and Final Warning with the following state  change 
settings: 

All Clear  to  First Warning at 70 percent 
First Warning to Final Warning at 90 percent . Final Warning to First Warning at 80 percent 
First Warning to All Clear at 60 percent 

A  layer may use a  Base  service to be notified 
when a  particular  storage  condition  state is en- 
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countered. Notification consists of a normal layer 
invocation using a work  request  setup by the  re- 
questing  layer  when issuing the notification ser- 
vice. The  action  taken by a layer  depends  on  the 
particular  layer.  Possible  actions  to  lower  storage 
requirements include limiting new connections, 
limiting incoming data,  and reducing window 
sizes at  the  Transport  Layer. 

Timer  management. The Base  provides timer 
services  to  the  layers. A layer may request  that 
timer  services trigger an  event (by performing a 
work  request  provided by the layer) on  a  control 
block after  a specified time period and may cancel 
outstanding  requests if they are no longer needed. 
If the time period expires while the timer request 
is still outstanding,  the  Base  schedules  the  work 
request  under  a new thread of execution  to  the 
layer.  The  work  request  indicates  that a timer ex- 
pired and is associated with the  control block 
specified by the  layer. When invoked after a time 
out,  the  layer may do  whatever processing is nec- 
essary, including starting or resuming other 
threads. 

The Base also provides time-of-day information in 
the various forms specified by the OSI standards. 

Message  logging  and tracing. The Base  provides 
services  to aid in logging messages  and in tracing 
activity within the  communications  subsystem. 
The  services provided are  standard  for  this  type 
of activity. The system-dependent  portion of the 
Base  uses the logging and tracing services of the 
local  operating  system  in the  best way to satisfy 
the normal operating  system  procedures. 

Message  services  support  the  separation of mes- 
sage text from the program code  to allow for  easy 
translation. Layer  code may supply filler infor- 
mation in order  to  add dynamically determined 
data  to  the message. A layer specifies the  type of 
filler data  and  an  associated field number.  The 
message text  indicates  where in the message a 
field  is to  be  placed  and how to format it for dis- 
play f 

On  command,  the  Base will trace  a  layer invoca- 
tion, including all of the pertinent information as- 
sociated with the  work  request. Tracing may be 
designated  for an individual control  block, a 
group of control  blocks, or  for all control  blocks. 
When errors  are  detected,  other  services  are 
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available to  trace additional  information  deter- 
mined by the individual layer. 

Layer  developers’ view. To clarify the  nature of 
the Base environment, it helps to  see it from  the 
perspective of its users-developers of portable 
layers. 

Before any  code  can  be  ported, it must  be  written 
in a programming language supported by the 
target  systems.  The  OSI/Communications  Sub- 
system  has  chosen  Pascal. In  comparison  to many 
languages,  Pascal is an  easy-to-learn, highly 
structured language that  produces reliable code 
and is widely available in current  systems.  How- 
ever, several languages today  meet  this  require- 
ment. It  is  not  the  intent of this  paper to address 
the possible choices or advantages of one lan- 
guage over  another.  It is important to  choose 
some programming language that  has a reason- 
able  degree of standardization  across different 
systems. 

Usage of the  chosen language must  be  further 
controlled through coding guidelines. Even in 
standardized  languages,  there are  features  that  do 
not port well, and  programmers  must be re- 
strained from using them.  In  the  Base  environ- 
ment,  Pascal is used only for  generating in-line 
code; all run-time  support is provided  by the 
Base.  The guidelines used in the OSI/Communi- 
cations  Subsystem  ensure that  no Pascal  run-time 
support is used. 

Figure 9 shows  the  environment  provided  by  the 
Base from the  perspective of the  developer of a 
layer.  The  environment  has  the following char- 
acteristics: 

The  layer is a subroutine of the Base-a called 
Pascal  procedure.  It is called when  there is a 
work request to  process. When the  layer  has 
completed all of the  work  associated with the 
single work request, it returns  to  the  Base. 
The  operation of layers is transaction-oriented, 
that  is,  broken  up  into small atomic  items of 
work.  Each  invocation of a layer  should  result 
in a relatively small operation,  not a long proc- 
ess. (There is no check  on  layers  to  enforce  this 
rule,  however.) 
The  layer  has no way to  access  the  data  or  pro- 
grams of another  layer.  The  addresses of other 
layers are not  provided. 
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Figure 9 A layer's view of the Base 

The  Base  provides  the only persistent working 
storage  available to layers: LCB, SAPS, CCBs. 
Temporary working storage is also  provided by 
the Base: held or suspended  work  requests with 
parameters  and buffers. 
Base  services  provide  the only interface  to  sys- 
tem  services.  Layers  do not have  direct  access 
to system I/O operations or other  services. 
Base  work management functions  provide  the 
only interface  to  the  other  layers in a  sub- 
system.  When  a  layer is processing a work re- 
quest, it may need to invoke the services of 
other  layers.  It  handles  this need by building 
work  requests  for  the  other  layers  and  sched- 
uling them,  not by calling the  other  layers. 
Layers  have a consistent  interface to common 
management:  the MSAP association to  the Open 
System  Manager (OSM). These  services are in- 
voked via  work  requests, just  as  those of any 
other  layer.  The MSAP is used to  carry  these 
work  requests. 

Implementation  experiences 

We  have now had five years of experience  devel- 
oping systems  based  on  this  architecture. Among 
the results are: 
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Early  implementations  on System/370TM MVS 
and  Series/l RPS were made available as limited 
customized offerings (known as programming 
requests  for price quotation,  or PRPQS) in 1987. 
Implementations  on  the SAA systems  are avail- 
able. 
Work to prove feasibility has  been  done  to  var- 
ious  stages of completion  on the Advanced  In- 
teractive  ExecutiveTM (AIX@) and  several  other 
IBM systems  and  components. 

Our  experience with these  systems  has  estab- 
lished that  the  Base  can  support  successful im- 
plementations of OSI protocols. The layers of the 
OWCommunications  Subsystem  are all portable 
with the  exception of small modules  containing 
system-specific constants  and  routines. 

OSI/Communications Subsystem  developers 
working in Pascal in the Base environment  have 
achieved high productivity  rates  and  excellent 
code  quality.  The  Base  environment is a rela- 
tively complex one  for  developers,  however,  and 
new developers  require time to  learn it before 
they  can begin to  be  productive.  Once it is famil- 
iar,  programmers gain productivity  because the 
Base  takes  care of many of the worrisome  func- 
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Figure 10 Overview of split OSI/Communications 
Subsystem architecture 

SESSION LAYER 1 

tions  needed  for a communications  product.  The 
early  maintenance  on  the SAA products  indicates 
that  the  portability of the  code  has  reduced  cost. 
A problem found  on one system  and fixed there 
has  provided  a  portable fix to  the  other  systems, 
usually before it was  reported by users. 

The portable  layers  and  other  ported  components 
in our product  have  resulted in a significant 
leverage on development cost.  The  products we 
have  shipped included two  and  one half times 
more lines of code  than  our  developers  have  pro- 
duced  and will maintain. Although this  advantage 
is significant, it  may be  less  than  expected  con- 
sidering the  size of the Base  and  relative size of 
the  layers.  The  cost of building a  subsystem  into 
another  operating  system, so that it takes  on  the 
characteristics of the  system  environment,  re- 
quires a significant amount of code  that is specific 
to  that  system. Especially  expensive are  the OHL 
components that map  system  access  methods  and 
management functions  into the standardized  func- 
tions of the  Base  and  layers. 
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Path length measurements in similar situations 
have indicated that  the  Base  model  can  produce 
improvements when compared to task-per-layer 
implementations.  Comparison to a predecessor 
OSI product  on the System/370 (Open  Systems 
Transport  and  Session  Support)  has  shown  that 
path  lengths  for  the  OSI/Communications  Sub- 
system are significantly smaller  than  that of the 
old products  for  a  sample  configuration.  How- 
ever, experience  shows  that  careful design is nec- 
essary  to  achieve good performance. 

Placement of the  Base within a system is espe- 
cially important  for  performance.  Since  the  Base 
and  layers are portable  and  written in a high-level 
language, they would appear  to  be  suitable  for 
execution in an application  environment.  How- 
ever, they still implement a communications  sub- 
system  and  must  have fast,  direct  access  to  sys- 
tem services in order  to achieve  their  potential 
performance. 

Future considerations. Many extensions  to  the 
Base may be  possible in the  future.  One  such 
possibility is the split OSI/Communications 
Subsystem. It allows multiple Bases  to  operate 
in a uniform manner so as to  comprise a single 
OSI/Communications Subsystem.  Figure 10 pro- 
vides an overview of what  such a system might 
be.  The  Base  control block structure  and  process 
model allow this configuration to  take place with- 
out  an  impact  to  most of the  OSI/Communica- 
tions Subsystem. Only the  management  layer (la- 
beled OSM) and  the  Base would know  about  the 
split configuration. OSM would have a counterpart 
(labeled OSM-D) to help manage in a split config- 
uration. 

One possible  use  for a split OSI/Communications 
Subsystem would be  to allow part of the OSI stack 
to reside within an  operating  system  kernel  and 
part  outside.  Another  possible  use might be to 
place part of the OSI stack within a  front-end  proc- 
essor  and  part within the main processor. 

Summary and conclusions 

The Base architecture, as used in the IBM OSVCom- 
munications Subsystem, provides a method of  im- 
plementing portable layered OSI implementations. 
The Base provides services to support the special 
needs of communications protocols and allows 
porting of protocol machines across systems. It in- 
cludes techniques to  access system-dependent 
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functions of the underlying system. Special archi- 
tectural support is provided for management, ap- 
plication interfaces, and connectivity interfaces 
into the portable protocol machines. Layer imple- 
menters are provided with an environment that iso- 
lates their component from the other layers in a 
subsystem and automatically ties state information 
to relevant events. Services allow representation of 
the complex relationships among connections and 
service access points at various layers. 

The work management services of the Base are 
designed to give implementers flexibility in  how 
system  processes  are used and mapped to Base 
functions.  The buffer services eliminate move- 
ment of buffered data  between  layers. 

The  architecture  has  been used successfully to 
port  implementations of os1 layers  across  several 
different systems with quite different internal ar- 
chitectures.  The  concepts  can be extended in the 
future  to  provide  support  for  these  protocols in 
new environments, including those implemented 
in a  distributed  manner. 
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