
Preface

This issue contains nine papers and a technical
note on a variety of subjects, including commu-
nications technologies, compilers, program un-
derstanding, and expert systems for dump anal-
ysis.

The first paper, by Baade, discusses the use of the
Network Design and Analysis (NETDA) tool to
construct optimal computer network traffic
routes for use with complex Systems Network
Architecture (SNA) networks. The author has
taken advantage of features in NETDA that allow
for the use of actual network traffic data in the
design of the routings. This approach yields sig-
nificant reductions in network utilization without
reconfiguration of the underlying hardware.

The Open Systems Interconnection (OSI) proto-
cols have been made part of the Systems Appli-
cation Architecture@ (s A A ~ ~) and are expected to
be implemented across all SAA operating systems.
Goldberg and Mouton present the architecture of
the OSI/Communications Subsystem Base,
which provides a portable base for OSI implemen-
tations across diverse operating systems with dis-
similar architectures. The Base in turn supports the
OSI/Communications Subsystem and is capable of
supporting similar layered communications proto-
cols, especially if portability is of concern.

Multimedia instruction provides an opportunity
for industry and academia to move toward an ed-
ucational environment in which individualized in-
struction is the rule, rather than the exception.
Multimedia efforts at California State University
at Fullerton and at IBM are anticipating future ed-
ucational programs that are distributed, modular,
multisensory, portable, interruptible, nonlinear,
transferable, responsive, engrossing, and enjoy-
able. Reisman and Carr describe these efforts,
trace their history within the context of individ-
ualized instruction, provide a look at recent de-
velopments, and project a future educational
milieu.

248 PREFACE

Sahulka, Plachy, L. Scarborough, R. Scarbor-
ough, and White describe the capabilities of a new

that makes it possible to share all the resources of
two IBM ES/3090 Model 600 systems (up to 12
processors and Vector Facilities) executing one
FORTRAN program. These capabilities include dy-
namic allocation of real processors at execution
time, to make best use of available actual re-
sources and to make the compiled program inde-
pendent of resource availability. The authors
discuss the associated language extensions, com-
piler, library, and high-speed hardware connec-
tion between ES/3090 systems.

Turning to another programming language, the
next paper presents the foundations for partial
compilation of the Restructured Extended Exec-
utor (REXX) language, which has in turn led to the
new REXX compiler and could affect compilers for
other interpretive languages. Pinter, Vortman,
and Weiss describe the most important features of
partial compilation for REXX. These include def-
inition of an abstract machine and an intermediate
language to support execution, management of
bound variables through a unique symbol table
organization called lazy hiding, additional symbol
table support for compound variables, saving of
multiple representations of variable values to
avoid conversions, and the use of other delayed
execution techniques. Many of these features are
intended to improve execution efficiency in the
compiled REXX environment.

The dramatic increase in peripheral equipment
for personal computers has led to a need for ef-
ficient means to program their diverse device
drivers in Operating System/2@' (oS/2@). The tra-
ditional approach utilized assembler languages,
but the opportunity exists to use higher-level lan-
guages in support of device driver code. The au-
thor, Feriozi, constructs a model for device
drivers built on the C programming language.
Efficiency is always a concern with device drivers

level Of FORTRAN-IBM Clustered FORTRAN-

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

and with higher-level languages. The author ad-
dresses these concerns in several ways, including
the elimination of the C startup routines and the
C run-time library.

Lenz and Saelens show how expert systems and
knowledge-based technology can be beneficially
applied to the classic area of reading dumps from
the Multiple Virtual Storage (MVS) operating sys-
tem. Their approach also demonstrates how the
techniques learned in knowledge-based systems
for medical diagnostics, which are fairly ad-
vanced, can be reused to develop such systems
for another area. The data collected on use of this
expert system-the MVS Dump Analyzer-show
that many problems can be solved through the
system without having a human consult the dump
at all, and that the average saving in dump anal-
ysis is about one half hour. The authors also
present their experiences in building the expert
base and in educating people in the use of such
new technologies.

The IBM Rochester Programming Laboratory has
recently been in the public view because of its
high-quality environment and results, as evi-
denced by the 1990 Malcolm Baldrige National
Quality Award. Kan provides a look inside the
processes used to achieve the necessary quality
results by writing about the quality models used
to estimate software reliability and to manage
software development quality. There are five
models used, two that span the software devel-
opment life cycle and three that are for more spe-
cialized purposes. The author points out that the
largest obstacle to successful use of quality mod-
els is not the models themselves, but the avail-
ability of sufficient, relevant data to support the
use of the model. The history of Rochester’s qual-
ity achievements can be seen in a simple and un-
derstandable form through these models.

Brown shows how the two fundamental aspects
of software-documentation about the software
and analysis of the source code structure-can be
brought together through tools to aid software de-
velopers and maintainers during the life of a soft-
ware product. His approach utilizes and inte-
grates tools for program understanding and
hypertext documentation. The ability to move be-
tween these two sources of information and to
readily form the needed correspondences can be
of considerable help to those who must analyze

IBM SYSTEMS JOURNAL, VOL 30, NO 3, 1991

