Transaction Security
System extensions
to the Common
Cryptographic
Architecture

A well-designed application program Interface for
a line of cryptographic products simplifies
customer use of cryptographic services by
helping to ensure compliance with national and
International standards and by providing intuitive
high-level services that may be lmglemented on
disparate systems. The Common ryptogra/:hlc
Archlitecture Is IBM’s strategic cryptographic
archltecture. The Transaction Security System
Implements the Common Cryptographic
Archlitecture In full. Furthermore, the Transaction
Security System has implemented extenslons to
the architecture to address addltional customer
requirements. This paper gives the design
rationale for some of the additional cryptographic
functionality In the Transaction Securlty System
beyond that mandated by the Common
Cryptographic Architecture.

he companion paper on the Common Cryp-

tographic Architecture! in this issue men-
tions the many applications today for commercial
cryptography. Existing applications include file
confidentiality, communications confidentiality,
communications integrity, file integrity, and fi-
nancial transaction authorization via a personal
identification number (PIN).

Cryptographic services are implemented in vari-
ous products, tailored for the environment where
they operate. However, they should perform the
same operation, with the same results, regardless

230 JOHNSON AND DOLAN

by D. B. Johnson
G. M. Dolan

of the product or the environment. If a customer
uses a PC-based product for end-user crypto-
graphic services, it should be compatible with a
host-based product that provides the same serv-
ices.

Cryptographic API model. A model for the Trans-
action Security System Cryptographic Applica-
tion Programming Interface (Cryptographic API)
is shown in Figure 1. The customer (or system)
application (APPL) calls API services to provide
the cryptographic transformations. The applica-
tion typically transmits the cryptographically
processed information to an application on an-
other system, which in turn calls appropriate API
services to achieve the desired security objective.
The cryptographic subsystem consists of all cryp-
tographic functions below the Cryptographic API.
In the Transaction Security System, the crypto-
graphic subsystem is composed of system soft-
ware and a hardware cryptographic facility. The
cryptographic facility contains the core of all
cryptographic operations and provides zeroiza-

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1981

tion of the master key on tamper detection in or-
der to thwart physical threats to the system. See
the companion paper by D. G. Abraham, G. M.
Dolan, G. P. Double, and J. V. Stevens? for in-
formation on the design rationale of the Transac-
tion Security System implementation. The Trans-
action Security System Programming Guide and
Reference® gives details on the callable services
provided.

Terminology used in examples. In all examples in
this paper the following names are used. The
name Ann is used for the creator or sender of a
key or other output of a Cryptographic API ser-
vice. The name Bill is used for the intended re-
cipient of the key or other output. A user at an
intermediate node is Charles. The name used for
an arbitrary adversary trying to penetrate the se-
curity mechanisms is Eve.

Objectives

It was realized early in the design process that
macro level services that just externalize the
cryptographic facility instruction set were not ap-

A major goal was to support the
Common Cryptographic
Architecture Cryptographic
API definition.

propriate, as too much of the complexity would
reside with the user. An early paradigm that has
held up well over time is that the cryptographic
facility enforces security while the software pro-
vides an intuitive interface and provides security
enhancements inappropriate for the crypto-
graphic facility. To enhance the intuitiveness of
the design, one of the major goals was to be con-
sistent, by which is meant that externalization of
a certain functionality, as for example, a method
of encryption or a PIN block format, is done in the
same way in all relevant services. The goal of
having an orthogonal design meant that concep-
tually separate functionality was implemented via
separate services.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 1 Cryptographic subsystem model

Also, the services needed to be designed with the
idea that they could be implemented on different
products and be usable with many programming
languages. For these reasons, the general Sys-
tems Application Architecture™ (SAA™) guide-
lines on designing callable services that were
identified by John Ehrman at the Santa Teresa
laboratory were attempted to be followed as this
would give a level of assurance that these goals of
generality and usability would be met.

A major goal was to support the Common Cryp-
tographic Architecture Cryptographic API defini-
tion. See the companion paper in Reference 1 and
the Common Cryptographic Architecture publi-
cation in Reference 4 for more information. The
support is done in such a way that product spe-
cific extensions are often externalized as addi-
tional options for parameters in Common Cryp-
tographic Architecture services.

The breadth of functionality of the Transaction
Security System may be daunting for a first-time
user. For many IBM customers, it is likely that
there are few employees knowledgeable about
cryptography. It may often be the case that a pro-
grammer is issued an “‘edict” to incorporate se-
curity into a program and has neither the time nor
the inclination to delve into cryptography but
only wants to learn enough to get the job done.
This consideration led to the realization that a
design which is intuitive and allows a layered ex-
planation (for example, of the granularity of key
usage) was a necessity.

In the Transaction Security System architecture,
an encrypted cryptographic key is conceptually
associated with its control vector, as the value of
the encrypted key cannot be recovered to be used
in a service without specifying its associated con-

JOHNSON AND DOLAN 231

trol vector. In addition, the control vector defines
the allowed usage for a key. In the software, the
association is made explicit via the key token con-
cept. Most services require keys to be passed in a
data structure called a key token. To be used in
these services, the key token must contain at least
the encrypted key and its associated control vector.

There are certain key-management controls con-
tained in the control vector that are not enforced
by the cryptographic facility instructions for rea-
sons either of simplicity of instruction design or
the fact that such controls are just not enforceable
at the cryptographic facility level. As an example
of the former case, the control vector contains
some fields that are now software-enforced but
could be migrated to cryptographic facility en-
forcement later, such as support for limiting cer-
tain parameter specifications by prohibition of
specification of certain options (for example,
those that may not be needed or those that might
be considered insecure by a customer). An ex-
ample of a control vector field that cannot be en-
forced by the cryptographic facility is the KEY-
STOR field which, when set, requires a caller to
access the cryptographic key indirectly via a label
in key storage and prohibits direct reference, that
is, via an internal key token. Ann, the creator of
the key, may set this field when it is desirable to
add a further level of assurance that Bill, the in-
tended user of the key, is required to go through
the cryptographic subsystem to resolve the value
of the key, as this allows key storage access con-
trol mechanisms to be invoked.

Of course, good architectural design must include
the possibility for future growth. Obviously, this
requirement may be met by adding new services,
as specified by the architecture.! However, in
many cases, the old service definition may almost
meet the new requirement, except that some new
option specification needs to be supported. This
ability is addressed by the definition of a rule ar-
ray in many services. The rule array length and
rule array parameter, in effect, support a variable
length method of passing information to the ser-
vice. For any particular level of the software,
there will be a defined maximum size of the rule
array in any particular service. However, a later
level of software may define more parameter op-
tions and/or support a larger rule array size to
accommodate increased functionality.

232 JOHNSON AND DOLAN

Data structures

Cryptographic key separation. An important con-
cept used in both the Common Cryptographic Ar-
chitecture Cryptographic API and the Transaction
Security System Cryptographic API is crypto-
graphic key separation. This concept allows the
creator of a cryptographic key to declare the in-
tended usage of the key via the specification of an
associated control vector. The cryptographic
subsystem then enforces this specification by de-
nying requested services that are inappropriate
for the declared control vector.

The mechanism for enforcing key separation for
keys is via the control vector mechanism. See the
paper by S. M. Matyas on control vectors® for
details on the cryptographic transformations.

Generic key types. The method by which the soft-
ware externalizes the functionality (which also
may be seen as the complexity) of the control
vector is a two-stage process. The first stage is for
the user to learn about the generic key types, and
the second stage is to utilize the power (and com-
plexity) of full control vectors via use of the Con-
trol Vector Generate service.

A customer’s desire or need for sophistication
may typically grow over time. Initially, a simple
operational system may be required. As experi-
ence is gained and knowledge increases, a cus-
tomer may desire to increase the granularity of
control of cryptographic key usage by the end
user. For example, initially Ann may decide to
distribute a key to Bill that can be used to gen-
erate a message authentication code (MAC) that is
used to authenticate the text of an electronic mes-
sage. This scenario likely entails electronic dis-
tribution of a MAC key. Later, Ann may decide
that Bill does not really need to be able to gen-
erate a MAC, rather he only needs to verify a MAC.
This suggests possible generation and distribution
of a MAC Verify (MACVER) key. Even later, Ann
may decide that Bill should be required to access
the key via a key label and that it is invalid for Bill
(or anyone else) to pass the key in an internal key
token. This entails specifying the KEY-STOR op-
tion in the control vector for the MACVER key.
With some coordination at Bill’s node, access of
the key record can be controlled so that only Bill
is able to use the key.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Table 1 Generic key extensions

KeyTyps ; ; Extended Use
DATA . May also be used in. MAC Generate and MAC Verify and can be used in Ciphertext Translate if both the
" inbound and outbonnd keys dre DATA keys.

MAC © May also be used in MAC Venfy

PINGEN May be used in any servwe where a PIN calculation is done, including Encrypted PIN Venfy

IPINENC hf’ay be used as the mbeu ’IN encryptmg key to any PIN-management extension service that uses
one

OPINENC sz be used as the' outbouf‘ PIN encrypting key to any ?IN-management extension service that uses
on

Each generic key type is defined according to the
service in which it can be used as input. Further
specification of the control vector in the Control
Vector Generate service results in restrictions on
parameter specification possibilities for a func-
tion. This exposes the control vector to a user in
a top-down method, rather than in a bottom-up
method, keeping in spirit with the design. This
frees the user from having to know all the details
of the control vector.

The Transaction Security System supports the
ten generic key types defined in the Common
Cryptographic Architecture in full. The Transac-
tion Security System defines certain additional
uses for the generic key types as extensions to the
Common Cryptographic Architecture defini-
tion.!* These extensions are shown in Table 1.

The Transaction Security System defines addi-
tional generic key types as extensions to the Com-
mon Cryptographic Architecture definition.
These additional generic key types are shown in
Table 2.

ENCIPHER and DECIPHER keys may be used to
simulate the public and private keys of a public
key algorithm, within a network composed of
Transaction Security System products and
trusted security administrators. Use of the Con-
trol Vector Generate service allows a very gran-
ular level of key-usage specification.

Control vector externalization. From the compan-
ion paper by S. M. Matyas’ it should be clear that
the control vector is a pivotal concept in the ar-
chitecture of the Transaction Security System.
The control vector concept is more flexible and

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

more intuitive than the variant concept used in
previous cryptographic systems. A control vector
on the Transaction Security System allows a very
detailed level of key-usage specification. From a
software viewpoint, some important facts about
the control vector need to be re-emphasized:

o It allows electronic key distribution without
misuse of the key by a normal user.

¢ It is a compact nonsecret data structure.

« It is conceptually associated with a key.

» It has a dual use: It enforces cryptographic sep-
aration, and it specifies key usage.

Operational keys. Operational keys are defined
just as in the Common Cryptographic Architec-
ture. In addition, as a product-specific extension,
all key types may be kept in key storage. Besides
the Common Cryptographic Architecture defini-
tion of an internal key token containing an en-
crypted key and its associated control vector, the
Transaction Security System supports optional
specification of a crypto-period for the key (that
is, the time period a key is valid) and optional
parameter specifications such as the processing
rule or initialization vector to use with this key.
The rationale for the support for parameter spec-
ifications in the internal and external key token is
as follows: Given the existing situation of many
possibilities of cryptographic service parameter
specifications, knowing just the (encrypted) key
value is not necessarily enough to know how to
use the key. For example, when doing decryp-
tion, one must also know the initialization vector
to be used and the decryption process to be used.
In earlier systems this information was assumed
to be known by context or possibly there was only
one way of doing something (for example, the

JOHNSON AND DOLAN 233

Table 2 Additional generic key types

Doscrlp!tlon

' May be us

; Generatc

: f ’Translate table entry

May be used only in Bncxpher and Dempher
d m the Encipher service only
‘May be used in the Decxpher service uniy
‘l,[May be used m Clphcrtext Translate only and isp

L , fMay be used only as the inbound’ key in Caphertex ,T‘ ;
B an Encipher key in’ Key Generate :

Mak bez‘ used in Cryptovanable Enclpher, for exampie, to

IPHER key in Key'

aadﬂmay:befpﬁred‘w&hw '

nslate service,

Vector Translate table "

1 "ec'tqri",';lyffanslatestable ~

remote PIN

only key electronically distributed in some former
cryptographic systems was what is now termed a
DATA key), so that a constant in an earlier system
is now a variable. As the architecture was devel-
oped, methods were needed to support the ability
to relate the additional information to the key. To
restate the premise, if one is unsure how to use
the key, knowing just the key value is not enough.
The alternative is to know by context the param-
eters for using the key, but as the system func-
tionality increases, it is desirable to have a
method that can be used to allow an unambiguous
specification of correct parameters by the key
generator, so that the burden on Bill, the intended
user of the key, may be reduced.

234 JOHNSON AND DOLAN

For example, Ann may know that the DECIPHER
key she will send to Bill should use the CBC
method of decryption. The reason Ann knows
this fact is that she owns and will keep and use the
associated ENCIPHER key that is paired with Bill’s
DECIPHER key and she knows that she plans to use
CBC encryption. Also, she might know the value
of the initialization vector. Notice that both the
method of encryption and decryption and the ini-
tialization vector need to be known by Bill to be
able to use the DECIPHER Kkey correctly. This
means that Ann must, somehow, give Bill this
additional information along with the key. Ann
may decide it is simpler to bundle all this infor-
mation into the key token and send the contents

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

of the key token to Bill, rather than ensure Bill
gets this information piecemeal, possibly via dis-
parate channels (for example, via face-to-face
meetings, phone calls, electronic messages, etc.).
This additional information in the external key
token is propagated into the internal key token
when the key is imported.

Support for the additional optional parameters
and crypto-period will be termed the enhanced
key token in this paper.

External keys. An external key is a key encrypted
under a key-encrypting key (KEK). The KEK may
be either an IMPORTER Key or an EXPORTER Kkey.
Note that, as a product-specific extension, a vari-
ation of an IMPORTER key is an IKEYXLAT (In-
bound Key Translation) key and a variation of an
EXPORTER key is an OKEYXLAT (Outbound Key
Translation) key. The EXPORTER key on the send-
ing system is paired with an IMPORTER key on the
receiving system. External keys are kept in an
external key token which is the foundation for the
Transaction Security System external key distri-
bution.

External key token examples. In the Transaction
Security System, an arbitrary external key token
either contains or does not contain an encrypted
key and either has or does not have the key’s asso-
ciated control vector. There are four cases to cover:

1. No control vector and no key. This is the initial
form of a key token before it contains any val-
ues. This form is needed where a key token is
both an input and an output field, but Bill has
no input information to pass. This is supported
via use of the null key token, that is, 64 bytes
of zeros. Note that the TVV (Token Validation
Value) for a key token of all zeros is also zero
and that therefore a null key token passes the
TVV test. The user is responsible to zero the
location where a key token is the output of a
Cryptographic API service (for example, Key
Generate), as this helps prevent inadvertent
overlays of user storage and ensures that no
information in user storage is lost.

2. Control vector but no key. This is the form of
an external key token that may be used to send
a request for the generation of a certain key
type in a key-distribution center environment.
This is also the form of an external key token
that Ann may create to send to Bill on another
system so that he may generate a key.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1891

3. Key but no control vector. This is the form of
an external key token that supports tactical
(that is, customer-designed) key-distribution
protocols. For example, this is the form of a
key token that may be used by Bill if Ann tells
him the generic key type or other control vec-
tor information is known via some protocol
other than the external key token. This is a
method to consider if a customer defines key-
distribution protocols and decides that the
complete key token does not need to be sent.
For example, it is possible to have a protocol
where only the encrypted key is transmitted.
On receipt of the encrypted key, Bill stores the
key in an external key token of this form and
specifies the key type in the Key Import ser-
vice call. Alternately, Bill creates an appro-
priate key token via use of the Control Vector
Generate and Key Token Build services. Note
that Bill needs to know what key type (and
possibly key attributes) to specify but may
know this by context, etc. Clearly, this method
is most useful when using generic key types
and may not be practical if full control vector
support is needed.

4. Key and control vector. This form of the ex-
ternal key token supports the strategic key-
distribution protocol. By strategic is meant
that it is guaranteed to work on all systems that
conform to the Common Cryptographic Archi-
tecture Cryptographic API definition. Note that
it also supports the Transaction Security Sys-
tem extensions to the Common Cryptographic
Architecture and allows for future growth.
This form has two methods of use:

a. Bill calls a service specifying TOKEN. In this
case, the control vector in the external key
token is used as is, and any supported con-
trol vector will be processed. Bill might do
this if he just created the key token and
therefore knows the control vector is cor-
rect, or if he wants to process the external
key token regardless of its contents.

b. Bill calls a service specifying a key type.
The process is similar to that if TOKEN is
specified, but also the the API verifies that
the control vector is compatible with the
key type specified.

Cryptographic API services

The Transaction Security System supports the 18
callable services defined in the Common Crypto-
graphic Architecture Cryptographic API in full.
Transaction Security System extensions to the

JOHNSON AND DOLAN 235

Figure 2 Ciphertext translation center

lIAMN]I ;

c] ORIINAL
.| ceHerRTEXT

“cﬁhnl;és“' 1 Bl

RANSLATED
PHERTEXT

Common Cryptographic Architecture definition
are described in this section.

Data operations services. The Transaction Secur-
ity System supports in full the eight data opera-
tion services defined in the Common Crypto-
graphic Architecture.

Encipher and Decipher. The Transaction Secur-
ity System has the following product-specific ex-
tensions to the Encipher and Decipher services:
(1) Support for specification of the encryption or
decryption key via a key label, (2) segmenting
support, and (3) support for CIPHER keys.

The 1PS and CUSP encryption methods define a
method of record chaining. If such record chain-
ing is desired to be done when using the Common
Cryptographic Architecture Cryptographic API,
then the output chaining vector in the first eight
bytes of the chaining vector parameter needs to
be used as the initialization vector on each sub-
sequent call. The Transaction Security System
supports record chaining in a direct manner by
supporting an additional segmenting rule in the
rule array. A specification of INITIAL results in the
use of an initialization vector for the encryption or
decryption as specified in the initialization vector
parameter. Notice that the default segmenting

236 JOHNSON AND DOLAN

rule is INITIAL, so that if no segmenting rule is
specified the results are exactly the same as the
Common Cryptographic Architecture definition.
However, if CONTINUE is specified, the system
will use as an initialization vector the value that
was previously stored in the chaining vector pa-
rameter from the previous call.

A CIPHER or ENCIPHER key may be used in the
Encipher service and a CIPHER or DECIPHER key
may be used in the Decipher service. Use of
ENCIPHER and DECIPHER keys allows simulation
of aspects of public key cryptography. For ex-
ample, a mailbox application is possible where a
user distributes an ENCIPHER key throughout a
network and keeps a DECIPHER key private. Any
arbitrary user in the network may encrypt a mes-
sage and send it to the mailbox, but the intent is
that only the owner of the DECIPHER key can de-
crypt the messages in the mailbox. Another ex-
ample is a broadcast function, where a user keeps
an ENCIPHER key private and distributes a
DECIPHER key throughout the network. When the
user desires to broadcast a message, the user may
encrypt it with the ENCIPHER key. The user
knows that any arbitrary user in the network can
decrypt the message, but the intent is that any
arbitrary user knows that only the owner of the
ENCIPHER key could have encrypted this message.

Ciphertext Translate. The Transaction Security
System has the following product-specific exten-
sions to the Ciphertext Translate service: (1) Sup-
port for specification of the ciphertext translation
keys via key label and (2) support for CIPHERXL
keys.

The explanation of the use of CIPHERXL (Cipher
Translate) keys is best given by an example. (See
Figure 2.)

Ann and Bill do not share a CIPHER key. How-
ever, Charles has agreed to act as a ciphertext
translation center for the network. Ann and Bill
want Charles, at an intermediate node, to trans-
late the ciphertext of Ann to a form that Bill can
use. However, Ann and Bill do not want Charles,
the third party, to have direct access to the plain-
text, that is, the original message. Such a service
is supplied by the Ciphertext Translate service.
Charles is supplied with a CIPHERXL key by both
Ann and Bill, and Charles can then call the Ci-
phertext Translate service, but the plaintext mes-
sage never appears outside the cryptographic

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 19891

subsystem. Both Ann and Bill created the dif-
ferent CIPHERXL keys to send to Charles via use
of the Key Generate service, and they each kept
the operational CIPHER key for their own use. The
intent of using the Ciphertext Translate service is
to disallow recovery of the plaintext at the inter-
mediate node.

If Ann and Bill desire to use unidirectional ci-
phertext translation keys, then Ann could gener-
ate an ENCIPHER/CIPHERXI key pair in OPEX mode
and send the CIPHERXI (Ciphertext Translation
Inbound) key to Charles, and Bill could generate
a DECIPHER/CIPHERXO key pair in OPEX mode and
send the CIPHERXO (Ciphertext Translation Out-
bound) key to Charles.

As it is realized that this service may be desirable
to use with DATA keys that work with systems
that were designed before the Transaction Secur-
ity System, the Ciphertext Translate service also
supports DATAXLAT Keys that are paired with a
DATA key. However, if the keys are generated via
the Key Generate service, note that it is a user at
the intermediate node that must do the key gen-
eration and not the user at the terminal node. This
implies that additional procedural controls may
be appropriate when using DATAXLAT keys to en-
sure the expected security is achieved.

MAC Generate. The Transaction Security Sys-
tem has the following product-specific extensions
to the MAC Generate service: (1) Support for spec-
ification of the MAC generation key via key label
and (2) support for use of a DATA key to generate
a MAC.

Some systems generate a MAC today using a key
that is electronically distributed without a control
vector, that is, using what is termed a DATA key
in the Common Cryptographic Architecture.

If a user wants to obtain the most limitation on the
remote usage of the MAC Generate service, the
user should distribute a MAC key, as that key has
a more limited use when compared with a DATA
key.

MAC Verify. The Transaction Security System
has the following product-specific extensions to
the MAC Verify service: (1) Support for specifi-
cation of the MAC verification key via key label,
(2) support for use of a MAC key to verify a MAC,

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

and (3) support for use of a DATA key to verify a
MAC.

The support for use of a MAC key to verify a MAC
is added to improve usability, as the ability to
generate a MAC certainly implies the ability to
verify a MAC.

Some existing systems verify a MAC using a key
that is electronically distributed without a control
vector, that is, using what is termed a DATA key
in the Common Cryptographic Architecture.

If a user wants to obtain the most limitation on the

remote usage of the MAC Verify service, the user
should distribute a MACVER Key, as that key has

Use of ENCIPHER and DECIPHER
keys allows simulation of
aspects of public key

cryptography.

the most limited use when compared with a MAC
key or a DATA key.

Key-management services. The Transaction Se-
curity System supports in full all seven key-man-
agement services defined in the Common Cryp-
tographic Architecture.

Secure Key Import. The Transaction Security
System, as a product-specific extension to the Se-
cure Key Import service, supports the enhanced
version of the key token and also supports the
option of specifying TOKEN, which means to get
the control vector value for the key from the sup-
plied key token.

Key Export and DATA Key Export. The Trans-
action Security System supports, as a product-
specific extension, the specification of an en-
hanced external key token to the Key Export and
DATA Key Export services.

Prohibit Export. In the Common Cryptographic
Architecture, all generic keys are defined to be

JOHNSON AND DOLAN 237

Figure 3 Peer to peer environment

“ANN® "BILLY

BILL'S KEY

ANN'S KEY

exportable, that is, an operational form of the key
may be input to the Key Export service. In the
Transaction Security System, as a product-spe-
cific extension, a key may be generated so that it
is not able to be transformed from operational to
exportable form via specification of the NO-XPORT
option for the key in the Control Vector Generate
service. If the key is created in exportable form,
then the creator of the key is assured that the key
cannot be further exported by a normal user.

Also, in the Transaction Security System, as a
product extension, a key that is currently export-
able is able to be made nonexportable via use of
the Prohibit Export service. This means that a call
to the Key Export service with such an opera-
tional key will fail and no exportable external key
token will be created.

Key Import and DATA Key Import. The Trans-
action Security System supports, as a product-
specific extension, the specification of an en-
hanced external key token to the Key Import
service. The DATA Key Import service is defined,
which does the same transformation as Key Im-
port, but only for a DATA key. The existence of
the latter service allows an installation to define a
higher level of authorization for the ability to im-
port any key type.

Key Generate. The Key Generate service pro-
vides support for a caller to generate a key or a
pair of keys in a peer-to-peer environment or in a
key-distribution center environment. This ser-
vice supports the full Common Cryptographic Ar-
chitecture definition. In addition, it supports the
enhanced external key token and this support in-
cludes the generation of keys as defined by the

238 JOHNSON AND DOLAN

Control Vector Generate service, which allows a
very granular specification of key usage.

The Key Generate service may be used in a peer-
to-peer key-distribution environment to generate
keys. The key type combinations defined by the
Common Cryptographic Architecture are sup-
ported as well as additional key type combina-
tions. Use of the Key Generate service may allow
an implementation to restrict usage of the Secure
Key Import service to initial installation of
EXPORTER and IMPORTER key-encrypting keys. It
may also allow an implementation to prohibit us-
age of the Key Export service or possibly use it
only for system backup purposes.

A typical peer-to-peer application occurs when a
key is generated that can be used on this system
(that is, one key is either operational or import-
able) and the same key value is used to generate
a key that can be used on another system (that is,
the key is exportable from this system and is im-
portable on another system). All output-gener-
ated keys are encrypted. The Key Generate ser-
vice is the standard method of creating keys in
both the Transaction Security System and a sys-
tem conforming to the Common Cryptographic
Architecture.

Peer-to-peer key distribution. A typical peer-to-
peer key-distribution scenario, which illustrates
the use of the Key Generate service, is illustrated
in Figure 3. Note that this example differs from
the example in the companion paper by D. B.
Johnson et al.! on the Common Cryptographic
Architecture. In that example, a MAC/MACVER
key pair was established, whereas in this exam-
ple, an ENCIPHER/DECIPHER key pair is estab-
lished. A typical process flow follows:

1. Ann calls Key Generate with a mode of OPEX,
key typel of ENCIPHER and key type2 of
DECIPHER, and also specifies via key label the
appropriate EXPORTER key associated with
Bill’s node.

2. Ann keeps the generated operational key to-
ken ENCIPHER,

3. Ann sends the generated exportable DECIPHER
key token to Bill.

4. Bill is expecting to receive a DECIPHER Key
from Ann, so on receipt of the external key
token Bill calls Key Import specifying the re-
ceived DECIPHER key token, a key type of
DECIPHER, and the IMPORTER key associated

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

with Ann’s node. This produces an operational
DECIPHER key token for Bill.

. Ann calls the Encipher service specifying the
ENCIPHER key token to encrypt a message and
sends the encrypted message to Bill.

. Bill receives the encrypted message and calls
the Decipher service specifying the opera-
tional DECIPHER key token to decrypt the mes-
sage. Bill can then read the message.

. Eve cannot read the message because she can-
not determine the value of the DECIPHER key
used as it is encrypted under the key-encrypt-
ing key for which she also cannot determine
the value.

For an example of the technical implementation
details needed to support a peer-to-peer key-dis-
tribution environment with control vectors, see
the companion paper by S. M. Matyas, A. V. Le,
and D. G. Abraham.*®

Key-distribution center. Use of the Key Generate
service in a key-distribution center (KDC) is sup-
ported as described in the companion paper by
D. B. Johnson et al.! The Key Generate service
supports the key-distribution center (KDC) envi-
ronment via generation of keys in EXEX (Export-
able-Exportable) mode. The additional Transac-
tion Security System generic key types beyond
those defined in the Common Cryptographic Ar-
chitecture and the additional granularity possible
by using the Control Vector Generate service are
fully supported.

Key Translate. Another method to accomplish
key distribution is via use of a key-translation
center (KTC). This ability is supported via the Key
Translate service and allows Charles, at an inter-
mediate node, to re-encipher an arbitrary key en-
crypted under one key-encrypting key to encryp-
tion under a different key-encrypting key, without
the value of the arbitrary key appearing either in
the clear or in a form that is usable at the key-
translation center. This service is a product-spe-
cific extension.

Key-translation center. A typical key-translation
center scenario which illustrates the use of an ex-
ternal key token is illustrated in in Figure 4. A
typical process flow follows:

1. Ann calls Key Generate with a mode of OPEX,

key typel of PINGEN (PIN Generation) and key
type2 of PINVER (PIN Verification), and also

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 4 Key translation center

"CHARLES"

KEY TRANSLATE

BILLS' KEY
{ORIGINAL)

BILL'S KEY
[TRANSLATED)

“ANN® “BILL

v
BILL'S KEY
(TRANSLATED) KEY IMPORT

_—

KEY GENERATE

specifies via key label the appropriate EX-
PORTER key associated with Charles’s node.

. Ann keeps the generated operational PINGEN
key token.

. Ann sends the generated exportable PINVER
key token to Charles.

. Charles, once he gets the key token, calls Key
Translate specifying an IKEYXLAT (Inbound
Key Translation) key. This key has the same
value as Ann’s EXPORTER key. Charles also
specifies an OKEYXLAT (Outbound Key Trans-
lation) key that has the same value as an
IMPORTER key on Bill’s system.

. Charles sends the translated external key to-
ken to Bill, in this example, by way of Ann.
Notice that Charles, as a normal user, does not
have an operational form of the PINVER key, so
he cannot use it on his system. He is acting
strictly as a servant for Ann.

. Bill is expecting to receive a PINVER key, so on
receipt of the external key token Bill calls Key
Import specifying the received PINVER key to-
ken, a key type of PINVER and the IMPORTER
key associated with Charles’s node. This pro-
duces an operational PINVER key token for
Bill.

. Ann calls the Clear PIN Generate service spec-
ifying the operational PINGEN key token and

JOHNSON AND DOLAN 239

creates PIN mailers for distribution to custom-
ers of her institution.

. Bill can serve as a PIN Verification node for
Ann, and yet Bill, as a normal user, cannot
generate clear PINs with the PINVER key.

. Eve cannot determine the value of the PINVER
key as she does not know the value of any of
the key-encrypting keys it was encrypted un-
der.

For an example of the technical implementation
details needed to support a key-translation center
key-distribution environment with control vec-
tors, see the companion paper by S. M. Matyas,
A. V. Le, and D. G. Abraham.®

Control Vector Translate. The Control Vector
Translate service can be thought of as a means to
allow an installation to selectively break down the
walls of key separation enforced via the control
vector mechanism. It is exclusively a product-
specific extension. Use of this service allows a
user to change the control vector (or key type)
associated with a key. The creation of a control
vector translate table entry via the Cryptovari-
able Encipher service allows a specified mapping
from one control vector to another. It requires
special authorization, but the use of a control vec-
tor translate table entry to translate the control
vector of a key from one control vector to another
does not require special authorization—that is, it
is available to a normal user. Control vector trans-
lation may be desirable when the ability to do two
unrelated services with the same key value is re-
quired. Such a key is called a bifunctional key. An
example where a bifunctional key may be needed
is where it is mandatory to be compatible with an
existing system that supports less key separation
than the Transaction Security System.

PIN-management services. The Transaction Se-
curity System supports the three Common Cryp-
tographic Architecture PIN-management services
in full and has implemented several product ex-
tensions.

Clear PIN Generate. The Transaction Security
System Clear PIN Generate service, as a product-
specific extension, supports the generation of a
PIN via the interbank PIN calculation method.

Encrypted PIN Translate. The Transaction Se-
curity System Encrypted PIN Translate service
supports, as a product-specific extension, the

240 JOHNSON AND DOLAN

OEM-1 PIN block format, which is compatible with
the PIN block format used in NCR®, Diebold®, and
Docutel® equipment. In addition to the Common
Cryptographic Architecture defined method of
PIN extraction for each supported PIN block, the
Transaction Security System defines some addi-
tional methods of PIN extraction for certain PIN
blocks. Also, the IPINENC (Inbound PIN Encrypt-
ing) and OPINENC (Outbound PIN Encrypting)
keys may be defined with additional granularity
via use of the Control Vector Generate service to
support the following:

1. Assurance of propagation of PIN block format
control throughout the network (that is, either
format control was used at all nodes or was
used at no nodes)

. Execution of a PIN sanity (reasonableness)
check to allow early detection of invalid PIN
blocks at a PIN translation node

. Caller specification of the sequence number in
the two PIN blocks that use sequence numbers
in their definition

Encrypted PIN Verify. The Transaction Security
System supports, as a product-specific extension,
the ability to verify a PIN that was calculated via
the interbank PIN method. Also, the OEM-1 PIN
block format is supported and the same additional
methods of PIN extraction are supported as are
supported in the Encrypted PIN Translate service.

Clear PIN Generate Alternate. The Clear PIN
Generate Alternate service is an authorized ser-
vice that is a product-specific extension. It is sim-
ilar to the Clear PIN Generate service, except that
the service supports specification of the custom-
er-selected PIN being input in an encrypted PIN
block, rather than in the clear. This service sup-
ports conversion from a PIN database method of
PIN verification to a PIN calculation method of PIN
verification.

Clear PIN Encrypt. The Clear PIN Encrypt ser-
vice is an authorized service that is a product-
specific extension. Its purpose is to take as input
a given PIN value, put it into specified PIN block
format and encrypt the PIN block. This is a way
that an encrypted PIN block may be initially cre-
ated.

Clear PIN Verify. The Clear PIN Verify service is

an authorized service that is a product-specific
extension. Its purpose is to verify an unencrypted

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

PIN. This service is supplied for compatibility
with some existing applications, but is not rec-
ommended for use as a general solution because
it implies that the PINs to be verified are not en-
crypted (which may therefore imply a security
exposure), and because misuse of this service can
simulate the Clear PIN Generate service.

Encrypted PIN Generate. The Encrypted PIN
Generate service can be thought of as a Clear PIN
Generate service followed by a Clear PIN Encrypt
service, except that the Encrypted PIN Generate
service does not need special authorization. This
is a method of creating a PIN database directly.
This service is a product-specific extension.

Encrypted PIN Generate Alternate. The En-
crypted PIN Generate Alternate service generates
an encrypted 64-bit block that can be decrypted
by the Cryptovariable Decipher service to sup-
port remote PIN mailer creation. This service is a
product-specific extension.

Cryptovariable Decipher. The Cryptovariable
Decipher service is used to decrypt the encrypted
output of the Encrypted PIN Generate Alternate
service. Use of this service is expected to typi-
cally be done at a remote offline site to support
remote PIN mailer creation. This service is a prod-
uct-specific extension.

Key-token management services. All key-token
management services are product extensions to the
Common Cryptographic Architecture definition.

Control Vector Generate. The Control Vector
Generate service supports a very granular spec-
ification of key-usage attributes. This allows so-
phisticated security administrators to follow the
general security principle of limited function, that
is, defining keys that have only the absolutely re-
quired functionality to accomplish a certain task.

A user may view the Common Cryptographic Ar-
chitecture Cryptographic API as a subset of the
Transaction Security System Cryptographic API.
When a user goes between the Common Crypto-
graphic Architecture and the product extensions
supported by the Transaction Security System,
the mapping of key-usage attributes supported on
each system is made obvious via the control vec-
tor associated with each key. This is desirable
because it allows a consistent perception by the
user of the attributes of a key.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Control Vector generation is defined so that pa-
rameters can be ignored (that is, the defaults
make sense in the general case), and the user is
not required to learn the details of control vector
specification. Certain generic control vectors are
defined with attributes as defined by the Common
Cryptographic Architecture Cryptographic API
functionality. For example, if a user wants to gen-
erate the control vector for a MAC key and lets
everything else default, then the generic MAC con-
trol vector used in the Common Cryptographic
Architecture Cryptographic API definition is the
result. As another example, the default specifi-
cation of the control vector export control field is
XPORT-OK (that is, Key Export is allowed) and not
NO-XPORT (that is, Key Export is not allowed), as
the generic usage of keys in the Common Cryp-
tographic Architecture Cryptographic API is that
all keys are able to be exported. If a Common
Cryptographic Architecture- Cryptographic API
generic key (with an implied control vector export
control field specification of XPORT-OK) is sent to
a Transaction Security System (where the export
control field is supported), the user knows that on
the Transaction Security System this field may be
reset to NO-XPORT via use of the Prohibit Export
service.

Examples of key-usage granularity that is able to
be specified via the Control Vector Generate ser-
vice are as follows:

1. MAC and MACVER Kkey specification requires
that only a MAC with a length of 32 bits is to be
processed.

2. CIPHER, ENCIPHER, and DECIPHER key speci-
fication that the ciphertext must be a multiple
of eight. This might be specified when the cre-
ator of the key knows that the ciphertext will
be translated at an intermediate node.

3. IMPORTER and EXPORTER keys may detail what
services they may be used with and what types
of keys they may operate with—that is, what
key types they can encrypt.

4. PINGEN or PINVER keys may detail what serv-
ices they may be used with and which method
of PIN calculation algorithm they are to be used
with.

S. IPINENC and OPINENC keys may detail what
services they may be used with and what type
of PIN block they are to be used with. They
may also detail if PIN block format control
must be maintained throughout all PIN-trans-
lation nodes in a network and may detail if the

JOHNSON AND DOLAN 241

contents of a PIN block should be sanity-
checked before doing a PIN translation.

Key Token Build. The Key Token Build service is
the method to create an enhanced key token. The
Key Token Build service allows a user to prestore
a control vector value in a key token before gen-
eration of a key by Ann. It also allows both pre-
generation and postgeneration updates to speci-
fications of service parameters associated with
the key by Ann. This may be useful to ensure that
a complete specification of the service options
and parameter values is given to Bill, the intended
user of the key. The enhanced key token can be
thought of as defining a compact package of in-
formation that can help make Bill’s use of a key
more ‘“‘idiot-proof.”

Key Token Parse. The Key Token Parse service
can be considered the inverse of the Control Vec-
tor Generate and Key Token Build services, as it
takes the key token and outputs the parameters
specifications that were used in the key token’s
creation. This service is necessary because it can-
not be assumed that a caller will be able to easily
interrogate bits in the key token in all program-
ming languages.

Key Token Change. The Key Token Change ser-
vice supports re-encrypting a key from encryp-
tion under the old master key to encryption under
the current master key. It can also be used to note
if the key is activated or deactivated.

Key record management services. The Transac-
tion Security System defines the following key
record management services: Key Record Cre-
ate, Key Token Change, Key Record Read, Key
Record Write, and Key Record List. All key
record management services are extensions to the
Common Cryptographic Architecture definition.

The Transaction Security System key record
management services provide an interface that
allows an application to manage key storage. The
intent of the design is that the only method by
which a key record may be created is via the Key
Record Create service, and the only method by
which a key record may be deleted from key stor-
age completely is via the Key Token Change ser-
vice. However, once a key record exists, it can be
reused. This allows the system administrator to
restrict access to the services that could fill up or
completely erase key storage, while giving nor-

242 JOHNSON AND DOLAN

mal users the ability to, in effect, own a specific
key record and process their own updates to the
key record when needed.

Summary

The Transaction Security System supports much
more functionality and granularity than previous
DEA-based cryptographic systems. The design of
the software architecture seeks to externalize this
power by using a layered approach that masks
much of the cryptographic complexity and re-
quires users to learn only what they need to meet
a specific security requirement. It conforms to
SAA callable service guidelines. The software, by
design, adheres to the Common Cryptographic
Architecture Cryptographic APIL. It pursues the
goals of generality, orthogonality, propriety, and
consistency’ as well as usability, interoperability,
and program portability. Perhaps most important,
the Transaction Security System was designed
with the expectation that new functionality and
security requirements will continue to emerge
over time.

Acknowledgments

The author would like to thank the following peo-
ple: Dennis (““Abe’’) Abraham of Transaction Se-
curity System Design, Charlotte, for the idea of a
comprehensive cryptographic function set and
his continuing input to the definition of the same,
Stephen M. Matyas of the Cryptography Center
of Competence, Manassas, for the pivotal archi-
tectural solutions, Mike Kelly, Gina Bourbeau,
and Lucina Green of ICSF Design, Kingston, for
providing models of callable services that follow
SAA guidelines and their continuing comments,
and Russ Prymak, An Le, and John Wilkins of the
Cryptography Center of Competence, Manassas,
for their constructive comments and help.

Systems Application Architecture and SAA are trademarks of
International Business Machines Corporation.

NCR s aregistered trademark of National Cash Register Cor-
poration.

Diebold is a registered trademark of Diebold, Incorporated.
Docutel is a registered trademark of Docutel/Olivetti Corpo-

ration.

Cited references
1. D. B. Johnson et al., “Common Cryptographic Architec-

ture Cryptographic Application Programming Interface,”
IBM Systems Journal 30, No. 2, 130-150 (1991, this issue).

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

2. D. G. Abraham, G. M. Dolan, G. P. Double and J. V.
Stevens, “Transaction Security System,” IBM Systems
Journal 30, No. 2, 206-229 (1991, this issue).

3. Transaction Security System Programming Guide and
Reference, SC31-2934, IBM Corporation (1991); available
through IBM branch offices.

4. Common Cryptographic Architecture Cryptographic Ap-
plication Programming Interface, SC40-1675, IBM Cor-
poration (1991); available through IBM branch offices.

5. S. M. Matyas, ‘“Key Handling with Control Vectors,’’ IBM
Systems Journal 30, No. 2, 151-174 (1991, this issue).

6. S. M. Matyas, A. V. Le, and D. G. Abraham, “A Key-
Management Scheme Based on Control Vectors,”” IBM
Systems Journal 30, No. 2, 175-191 (1991, this issue).

7. A.J. Van de Goor, Computer Architecture & Design, Ad-
dison-Wesley Publishing Company, Inc., Reading, MA
(1989), pp. 3-17.

Don B. Johnson IBM Federal Sector Division, 9500 Godwin
Drive, Manassas, Virginia 22110. In 1974, Mr. Johnson re-
ceived a B. A in mathematics from Oakland University, Roch-
ester, Michigan. He subsequently joined the IBM Field En-
gineering Division where he worked as a program support
representative on MVS systems, mainly at the General Mo-
tors Technical Center in Warren, Michigan. In 1978, he joined
the 8100/DPPX Change Team in Kingston, New York. In
1982, he worked on DPPX/APL development in Lidingoe,
Sweden. Since 1987 he has worked in the Cryptography Cen-
ter of Competence in Manassas, Virginia. He holds four pat-
ents because of his contributions to the Common Crypto-
graphic Architecture and the Transaction Security System
product architecture. He is currently an advisory programmer
and will soon complete the requirements for a master’s degree
in computer science from Union College, Schenectady, New
York.

George M. Dolan IBM Services Sector Division, 1001 W. T.
Harris Boulevard, Charlotte, North Carolina 28257. Mr. Do-
lan graduated from Lehigh University with a B.S. in electrical
engineering. Since joining IBM at Endicott, New York, in
1961, he has had design responsibilities for various commu-
nications hardware and software products, which in recent
years have been principally for the worldwide finance indus-
try. Mr. Dolan is a senior engineer in the IBM Secure Work-
station Development department. His work on the Transac-
tion Security System has involved integrating cryptographic
processors into IBM PS/2 and MVS systems, and integrating
the result into customer applications for the protection of data
and user identification. His responsibilities include specifying
the user programming interface and software structure in sup-
port of the Transaction Security System.

Reprint Order No. G321-5432.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

JOHNSON AND DOLAN 243

