A key-management
scheme based
on control vectors

This paper presents a cryptographic key-
management scheme based on control vectors.
This is a new concept that permits cryptographic
keys belonging to a cryptographic system to be
easily, securely, and efficiently controlled. The
new key-management scheme—Dbuilt on the
cryptographic architecture and key management
implemented in a prior set of IBM cryptographic
products—has been implemented in the newly
announced IBM Transaction Security System.

In 1977, the National Bureau of Standards
adopted an encryption algorithm, termed the
Data Encryption Standard (DES),! as a federal
standard. Following this milestone in crypto-
graphic research and development, other ad-
vances in cryptography occurred in rapid succes-
sion, and many DES-based hardware and software
products emerged to support new encryption-
based protocols and cryptographic applications.
In 1980, the American National Standards Insti-
tute (ANSI) adopted the same algorithm as a na-
tional standard, calling it the Data Encryption Al-
gorithm (DEA).? The DEA enciphers a 64-bit
block of plaintext into a 64-bit block of ciphertext
under the control of a 64-bit cryptographic key.
Each 64-bit key consists of 56 independent key
bits and eight bits that may be used for error de-
tection. Because the DEA is a published algo-
rithm, data encrypted with the DEA are protected
by keeping the key secret. In all, there are
72 057 594 037 927 936, that is, 2% different cryp-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

tographic keys that may be used with the algo-
rithm.

Key-management concepts. For two crypto-
graphic devices to communicate using cryptog-
raphy, each device must implement the same
cryptographic algorithm and each device must be
initialized with the same secret key. Data en-
crypted at a sending device are transmitted via a
communications network to a receiving device,
where they are decrypted. Access to data is con-
trolled by the key, where possession or use of the
key implies the right to decrypt and receive the
clear data.

In a large network, data are transmitted among
devices on behalf of many application programs
and users. To protect these communications and
to keep application programs and users from in-
terfering with or reading the encrypted messages
of any other, messages transmitted from one com-
municator to another are protected with a unique
key shared by the communicators. Many keys are
needed to facilitate this kind of end-to-end enci-
pherment. Thus, cryptographic system services

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

MATYAS, LE, AND ABRAHAM 175

Figure 1 A cryptographic key hierarchy

" DATA~ A
ENCRYPTING §. /

KEY-
ENCRYPTING
KEYS ol KEYS
{ENCRYPTED) -

{ENCRYPTED) |

ENCRYPTS
MANY S EE
MESSAGES | .

are needed to securely generate, distribute, and
initialize these keys within the cryptographic sys-
tem.

Most cryptographic systems make use of many
different types of keys, so that information en-
crypted with a key of one type is not affected by
using a key of another type. A key is assigned a
type on the basis of the information the key en-
crypts or the use being made of the key. For ex-
ample, a data-encrypting key encrypts data. A
key-encrypting key encrypts keys. A PIN-en-
crypting key encrypts personal identification
numbers (PINs) used in electronic funds transfer
and point-of-sale applications. A MAC key is used
to generate and authenticate message authentica-
tion codes (MACs).

The use of encryption is based on a strategy of
protecting a large amount of information (a data
file or communications session) with a smaller ad-
ditional amount of information (a single key). So-
phisticated key hierarchies have been devised us-
ing this principle. The hierarchy discussed in this
paper is shown schematically in Figure 1. For ex-
ample, the keys belonging to a cryptographic de-
vice are encrypted with a single master key and
stored in a key data set. The master key is stored
in clear form within the cryptographic hardware.

176 MATYAS, LE, AND ABRAHAM

The concept of using a single master key to en-
crypt keys stored in a key data set is known as the
master key concept, In order to electronically dis-
tribute keys from one device to another, e.g., to
distribute a data-encrypting key as part of session
initiation, each pair of devices shares a unique
key-encrypting key under which all distributed
keys are encrypted. Thus, a data-encrypting key
encrypts many messages. A key-encrypting key
encrypts many electronically distributed data-en-
crypting keys. A master key encrypts many key-
encrypting and data-encrypting keys stored in a
single key data set.

In order for a cryptographic system to be made
operable, each device must first be initialized with
a master key and at least one key-encrypting key.
The master key permits keys stored in the key
data set to be encrypted, and the key-encrypting
key establishes a key-distribution channel with at
least one other network device. When key distri-
bution is performed in a peer-to-peer environ-
ment, each device is initialized with a key-en-
crypting key for each other device with which it
wishes to communicate. However, when key dis-
tribution is performed with the assistance of a
key-distribution center (KDC) or key-translation
center (KTC), each device is initialized with only
one key-encrypting key shared with the KDC or
KTC. Thereafter, additional key-encrypting keys
are distributed electronically and initialized au-
tomatically using the KDC or KTC. The key-dis-
tribution channel can also be made unidirectional.
That is, one key-encrypting key encrypts keys
transmitted from a first device to a second device
and another key-encrypting key encrypts keys
transmitted in the other direction.

Typically, the master key is generated and in-
stalled using manual entry techniques. Key-en-
crypting keys are generated as needed at desig-
nated generating devices and transported to
designated receiving devices where they are in-
stalled. Although key-encrypting keys may be
distributed by courier, the vast majority of all key
distribution—generation, transmission, and re-
ception of keys—is performed using automated,
electronic methods.

An important feature of the cryptographic system
is the method by which key separation is
achieved. Key separation guarantees that keys of
one type cannot be substituted and used as keys
of another type. If, for example, a key-manage-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

ment architecture defines two types of data keys,
one for encipherment and another for decipher-
ment, it must not be possible for a data-encipher-
ment key to be substituted and used as a data-
decipherment key. In the Kkey-management
scheme discussed in this paper, key separation
and key-usage control are provided by a control
vector.

Key management is concerned with the genera-
tion, distribution, installation, storage, mainte-
nance, and destruction of keys. This task includes
methods for initializing keys, changing keys, re-
enciphering keys kept in a system key data set
(e.g., re-encipherment from a current to a new
master key), and purging keys. The key genera-
tion, distribution, and installation processes may
involve either persons as couriers or automated
electronic procedures. The process includes tech-
niques for the manual entry of keys by one or
more persons or by electronic key distribution,
using automated key servers. In summary, key
management encompasses every aspect of the
handling of keys, from the time a key is created
until it ceases to exist.

Cryptographic architectural model. In the late
1970s, 1BM introduced a line of cryptographic
products based on the DES. The cryptographic
architecture and key-management scheme are
outlined in References 3 to S and are discussed in
greater detail in References 6 and 7. In the dis-
cussion that follows, we refer to this key-man-
agement scheme, as IBM-1.

The cryptographic architecture implemented in
this earlier line of cryptographic products defines
a cryptographic network consisting of multiple
cryptographic systems interconnected by a com-
munications network, as illustrated in Figure 2.
Each cryptographic system consists of a crypto-
graphic facility (CF), a cryptographic key data set
(CKDS), a cryptographic facility access program
(CFAP), and using application programs (APPL), as
illustrated in Figure 3.

The CF is the hardware component of the cryp-
tographic system and contains storage for a clear
master key. All other keys belonging to the cryp-
tographic system are encrypted under the master
key and are stored in the CKDS. The CFAP is the
software component of the cryptographic system.
It interfaces with the APPL through an application
programming interface (API) and with the CKDS

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 2 Cryptographic network

oMb ”mc“ms 3 o

CRYPTO- | CRYPTO- CRYFTO-
GRAPHIC grapHic | .., GRAPHIC
SYSTEM 1] SYSTEM 2 SYSTEM N

and CF through architected system-level inter-
faces. In broad terms, the CFAP implements a set
of cryptographic functions, denoted F1, F2, ...,
Fm, that may be invoked by application programs
at the API, and the CF implements a set of cryp-
tographic instructions, denoted I1, 12, ..., In, that
may be invoked by the CFAP through a CF-level
programming interface. Except as noted, the el-
ements of the cryptographic system described
here are the same as those defined in Reference 6.
In that reference, the CFAP is called a key man-
ager, the CFAP cryptographic functions are called
programming macro instructions, and the CF in-
structions are called cryptographic operations.
Otherwise, the cryptographic architectural mod-
els are the same.

A typical request for cryptographic service is ini-
tiated by an APPL via a function call to the CFAP
at the API. The service request includes key and
data parameters. Also included are key identifiers
that the CFAP uses to access encrypted keys from
the CKDS. The CFAP processes the service request
by issuing one or more cryptographic instructions
to the CF at the CF-level interface. (The CF may
also have an optional physical interface for direct
entry of cryptographic variables into the CF, as
illustrated in Figure 3 by a right-directed arrow
toward the CF.) Each cryptographic instruction
invoked at the CF-level interface has a set of input
parameters processed by the CF to produce a set
of output parameters returned by the CF to the
CFAP. These outputs are processed by the CFAP in
several ways. The CFAP may return output pa-
rameters to the APPL or it may use the output
parameters as inputs to subsequently invoked in-

MATYAS, LE, AND ABRAHAM 177

Figure 3 Cryptographic system

CRYPTOGRAPHIC R CRYPTOGRAPHIC : . APPLICATION
KEY DATA SET el FACILITY L. (APPL)
{CKDS) ACCESS :
PROGRAM (CFAP) S
 fum——p
o “ CRYPTOGRAPHIC . .
iy FACILITY {CF} | s mmsmnmemmmesm—

structions. Encrypted-key outputs may be stored
in the CKDS.

The elements composing the cryptographic sys-
tem of Figure 3 permit the cryptographic system
to be implemented in two parts: (1) a first part
implemented within the cryptographic hardware,
or CF, in order to meet cryptographic security and
performance objectives, and (2) a second part
containing everything that does not need to be
implemented within the CF but which can be im-
plemented safely and efficiently in the crypto-
graphic software (i.e., the CFAP). By implement-
ing the cryptographic system in two parts, a CF
part and a CFAP part, the hardware component
can be minimized, thus in many instances leading
to a more cost-effective implementation.

The cF—the heart of the cryptographic system—
contains an instruction processor, a Data Encryp-
tion Algorithm (DEA), and a CF environment, as
illustrated in Figure 4. The instruction processor
is a functional element that decodes and executes
cryptographic instructions invoked by the CFAP at
the CF-level interface. For each instruction, the
CF-level interface defines (1) an operation code
used to select a particular instruction for execu-
tion, (2) a set of input parameters passed from the
CFAP to the CF, and (3) a set of output parameters
returned by the CF to the CFAP. The instruction
processor executes the selected instruction by
performing an instruction-specific sequence of
cryptographic processing steps whose control
flow and subsequent output depend on the values
of the input parameters and the contents of the CF
environment. The CF environment consists of a

178 MATYAS, LE, AND ABRAHAM

set of cryptographic variables (e.g., keys, flags,
counters, and CF configuration data) that collec-
tively initialize and configure the CF. Chief among
these is the 128-bit master key under which all
keys in the CKDS are encrypted. The CF environ-
ment variables are initialized by the CF-level in-
terface (i.e., by execution of certain CF instruc-
tions that read input parameters and load them
into the CF environment). Otherwise, the varia-
bles are initialized by an optional physical inter-
face that permits cryptographic variables to be
loaded directly into the CF environment (e.g., via
an attached key-entry device).

The cryptographic facility is implemented within
a secure boundary that ensures that the CF is ac-
cessed only through architected interfaces. These
interfaces are secure against intrusion, circum-
vention, and deception. This strategy ensures
that clear keys and results of intermediate steps of
encipherment and decipherment are kept secret.
The physical embodiment of the CF is protected
through the use of (1) tamper-resistant designs
that resist physical probing and intrusion, (2)
tamper-detection circuitry that detects attempted
physical intrusion, and (3) automatic zeroization
of keys if an attempted intrusion is detected.

The cryptographic instruction set must also be
secure against an insider adversary with access to
the CF-level interface. An adversary must not be
able to recover keys in the clear outside the CF or
subvert the intended security of the crypto-
graphic system by attacks that make use of re-
peated executions of the CF instructions in any
order, using intercepted or calculated informa-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 4 Cryptographic facility

SECURE BOUNDARY

PHYSICAL CRYPTOGRAPHIC
INTERFACE FACILITY
(OPTIONAL) ORYPTOGRAPHIC A v TO
FACILITY CRYPTOGRAPHIC
ENVIRONMENT FAGILITY
: INTERFACE
DATA INSTRUCTION OPERATION CODE:
ENCRYPTION PROCESSOR - INPUT
ALGORITHM PARAMETERS
{DEA) - QUTPUT
PARAMETERS

tion. That is, cryptographic security must not de-
pend on denying an adversary access to the CF
instruction interface merely because such denial
could be effected by access control software,
such as the 1BM Resource Access Control Facil-
ity. The role of such access control measures in
this model is more properly one of protecting ac-
cess to and use of the system-managed encrypted
keys stored in the CKDS. Access control measures
are used to control which application programs
have rights to use which encrypted keys in the
CKDS. The cryptographic model also permits ap-
plication programs to take possession of their
own encrypted keys, in which case, possession of
the key represents the right to use the key.

We now discuss the earlier cryptographic instruc-
tion set and key-management scheme imple-
mented in IBM-1.

IBM-1 key-management review. The CF instruc-
tion set implemented in IBM-1>°* makes use of the
following six cryptographic instructions:

¢ Encipher Data (ECPH)

e Decipher Data (DCPH)

¢ Set Master Key (SMK)

¢ Encipher Under Master Key (EMK)

¢ Re-Encipher From Master Key (RFMK)
¢ Re-Encipher To Master Key (RTMK)

Of these, the EMK, RFMK, and RTMK instructions
are used for electronic key management.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

The key-management scheme makes use of a 64-
bit master key KMO stored in clear form in the CF
and two 64-bit variant master keys KM1 and KM?2
derived from KM0. KM1 and KM2 are produced
within the CF by an exclusive-OR operation on
two 64-bit mask values vl and v2 with KMO,
respectively. That is, KM1 = KM0 @ vl and
KM2 = KMO @ v2, where & denotes the exclu-
sive-OR operation, and vl and v2 are 64-bit uni-
versal constants defined by the key-management
architecture.

To illustrate electronic key distribution, let K de-
note a 64-bit data key generated at device i and
electronically distributed to device j. Let KMOi
and KMO0j denote the 64-bit master keys installed
at devices i and j, respectively. Let KKij denote
a 64-bit key-encrypting key installed at devices i
and j, where KKijj is used by device i to encrypt
keys electronically transmitted to device j.

The method for establishing a common data key
K between two devices i and j is to generate first
a pseudorandom number RN at device i, where RN
is defined as follows:

RN = expa(K)

That is, RN is defined as the encryption e of some
key value K under the master key of device i. It
can then be used directly in the ECPH and DCPH

MATYAS, LE, AND ABRAHAM 179

instructions at device i to encipher and decipher
data, as follows:

ECPH: (RN, data) — eg(data)
DCPH: (RN, eg(data)) — data

The ECPH and DCPH instructions assume that an
encrypted value of K of the form ey, (K) is spec-
ified as an input.

RN can also be used with the RFMK instruction to
transform K under the encipherment of key-en-
crypting key KKij belonging to device j. To send

The use of key variants
in achieving key separation and
key-usage control is the same
for all of key management.

K to device j, the RFMK instruction is used at
device i to produce ek;(K) by exercising

RFMK: (exy{(KKij), €xpei(K)) = exg(K)

where KKijj is stored encrypted under the first
variant of KMO0i, denoted KMIi.

The quantity egy;(K) is then transmitted to device
J, where the RTMK instruction is used to recover
exmo(K) by exercising

RTMK: (expy(KKij), exy;i(K)) = expug(K)

where KKjj is stored encrypted under the second
variant of KM(j, denoted KM?2j.

The quantity eyy;(K) can then be used directly in
the ECPH or DCPH instructions at device j, or it can
be used with an RFMK instruction to transform K
under the encipherment of a key-encrypting key
belonging to another device.

From the description of the RFMK and RTMK in-
structions, one can see that at device i KKijj is
encrypted using KMIi, i.e., the first variant of
KMOi. At device j, KKijj is encrypted using KM2j,
i.e., the second variant of KMO0j. By encrypting
KKijj in this manner at devices i and j, KKijj is
enabled for use with the RFMK instruction at de-

180 MATYAS, LE, AND ABRAHAM

vice i and the RTMK instruction at device j. In
effect, KKij is encrypted in a way that establishes
a unidirectional or one-way Kkey-distribution
channel from device i to device j, thus permitting
keys to be electronically distributed from device
ito device j. To send keys from device j to device
i requires a different KKji to be installed at both
devices, i.e., KKji is installed at device j as KKij
is installed at device i, and KXKji is installed at
device i as KKij is installed at device j.

The key-management scheme also provides for
the use of a 128-bit master key KMO and 128-bit
key-encrypting keys KKij. In that case, the mas-
ter key variants KM1 and KM2 are produced
from KMO by an exclusive-OR operation of non-
secret mask values vl and v2 with the leftmost
and rightmost 64-bit parts of KMO, i.e., KM1 =
KM0 @ (vl,vl) and KM2 = KMO @ (v2,v2),
where the symbol @ denotes the exclusive-OR
operation and a comma (,) denotes concatena-
tion. When 128-bit keys are incorporated into the
key-management scheme, the encrypted key
exwii(KKij) depicted in the RFMK instruction is
replaced by e*;(KKLij), e* i KKRij), where
KKLij and KKRjj are the leftmost and rightmost
64-bit parts of KKij, and e* denotes encryption
with a 128-bit key. Likewise, the encrypted key
exmy;(KKij) depicted in the RTMK instruction is
replaced by e*yy(KKLij), €*gym(KKRij). That
is, the RFMK and RTMK instructions are redefined
to accommodate 128-bit key-encrypting keys.

The CF instruction set implemented in IBM-1 sup-
ports other key-distribution and key-management
services for both communication security and file
security. However, the use of key variants in
achieving key separation and key-usage control,
as illustrated in the example of electronic key dis-
tribution, is basically the same for all of key man-
agement. In contrast, the underlying crypto-
graphic architecture and key-management
scheme implemented in the IBM Transaction Se-
curity System, based on control vectors, provides
many new and improved features and services. In
the remainder of the paper, we discuss a crypto-
graphic system design and key-management
scheme implemented in the Transaction Security
System. In the discussion that follows, we refer to
this key-management system as IBM-2. The Trans-
action Security System is discussed in a compan-
ion paper in this issue.® Key handling with control
vectors is discussed in another companion paper
in this issue.’

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Transaction Security Sysiem cryptographic
system design objectives

The Transaction Security System cryptographic
system design is based on the same cryptographic
architectural model and security rules imple-
mented in existing IBM cryptographic products
just outlined. It also embraces several high-level
strategic goals. It should be a general-purpose

The system should provide
product independence and
product interoperability.

system that is applicable to a wide range of com-
puting devices and should serve customer needs
through the 1990s and beyond. The system should
be open-ended, thereby allowing growth and ex-
tension to keep pace with new cryptographic
methods, services, and standards required by us-
ers. The Transaction Security System should pro-
vide a stable base that permits users to plan and
develop long-range cryptographic security strat-
egies and to design their own cryptographic ap-
plications and high-level cryptographic security
architectures. The system should provide prod-
uct independence and product interoperability, as
long as a product adheres to the architecture. It
should support appropriate ANSI and ISO crypto-
graphic standards, in whole or in part, so as to
free users from total dependence on the crypto-
graphic methods of a particular vendor. Compat-
ibility with present 1BM and non-IBM products is
important as is the provision of an application
programming interface (API) tailored for ease of
use. Such a system should provide strong cryp-
tographic protection consistent with commercial
computer and networking environments while
meeting industry requirements for performance.

Transaction Security System cryptographic
facility instruction set

The cryptographic facility (CF) instruction set
represents that part of the cryptographic system
that must be implemented within the crypto-
graphic hardware in order to achieve required se-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

curity and performance objectives. However,
other important objectives are achieved by the CF
instruction set.

The instruction set is comprehensive, in that it
provides a wide range of cryptographic services.
The instruction set can be divided into nine func-
tional categories, according to the cryptographic
services provided. The nine functional categories
are: (1) data management, (2) personal identifi-
cation number (PIN) management, (3) electronic
key management, (4) compatibility mode elec-
tronic key management, (5) ANSI X9.17 electronic
key management, (6) CF initialization, (7) CF con-
trol, (8) CF configuration, and (9) utility. Elec-
tronic key management and compatibility mode
electronic key management are the primary top-
ics discussed in this paper.

The instruction set is minimal in that each instruc-
tion provides a unique and necessary function.
Redundancy in the instruction set is reduced or
eliminated. The instruction set is consistent, mak-
ing it possible for one to infer how one instruction
works from a knowledge of the workings of an-
other. This helps in understanding how the in-
structions operate. The instructions that process
data are streamlined. The design seeks to mini-
mize the key-management overhead required to
process keys in these instructions. This ensures
that the most frequently used cryptographic in-
structions are the most efficient. The CF also
provides a capability for CF instructions to be
dynamically enabled and disabled. Enabling an
instruction for execution can also be made con-
tingent on proof of authorization via a password,
personal identification number (PIN), signature
verification, or some other such way. The I1BM
Transaction Security System cryptographic hard-
ware and authorization mechanisms are dis-
cussed in Reference 8.

Transaction Security System electronic key
management

The Transaction Security System cryptographic
system design includes the following CF instruc-
tions that support electronic key management:

¢ Generate Key Set (GKS)
* Generate Key Set Extended (GKS-E)
e Re-Encipher To Master Key (RTMK)
* Translate Key (XLTKEY)

MATYAS, LE, AND ABRAHAM

181

¢ Re-encipher From Master Key (RFMK)
¢ Replicate Key (REPK)
s Lower Export Authority (LEA)

Important differences exist between the first IBM

key management (IBM-1) and the key-manage-
ment scheme implemented in the Transaction Se-

Both IBM key-management
schemes permit 64-bit key-
encrypting keys to be stored
within the cryptographic system
as 128-bit keys.

curity System (IBM-2). We now discuss these dif-
ferences.

Key encryption/decryption. Basically, IBM-1 is
based on key variants and IBM-2 is based on con-
trol vectors. In IBM-1, data keys are encrypted
under the master key KMO0, and they are appli-
cation-program-managed keys. Key-encrypting
keys are encrypted under the first and second var-
iants of the master key, and they are CFAP-man-
aged keys stored in the CKDS. Data keys trans-
mitted in the key-distribution channel are
encrypted under a key-encrypting key (i.e., no
key variants are used). In IBM-2, keys are en-
crypted and decrypted with algorithms that make
use of control vectors. The control vector encryp-
tion (CVE) and control vector decryption (CVD)
algorithms are described in Reference 9.

Key-distribution channel. In IBM-1, only data keys
are transmitted in the key-distribution channel.
Hence, there is no need to define variants of a
key-encrypting key in order to maintain crypto-
graphic separation among key types in the key-
distribution channel. However, in IBM-2, many
key types are distributed from one device to an-
other, and hence the CVE and CcvD algorithms are
used to cipher keys transmitted in the key-distri-
bution channel. The exception is the data com-
patibility key, which is transmitted in the key-
distribution channel using a vector of all zeros
(i.e., no control vector).

182 MATYAS, LE, AND ABRAHAM

Encryption of 128-bit keys. In IBM-1, the leftmost
and rightmost 64-bit parts of a 128-bit key-en-
crypting key are each encrypted with the same
master key variant. In IBM-2, a form field in the
control vector indicates whether the encrypted
64-bit key is a leftmost or rightmost 64-bit part of
a 128-bit key. Otherwise, the two control vectors
are the same. Thus, if C1 and C2 are the control
vectors used to encrypt the leftmost and right-
most 64-bit parts of a 128-bit key, then C1 and C2
differ only in the encoded values stored in the
form fields in C1 and C2. This feature of IBM-2
prevents the leftmost 64-bit part of a 128-bit key
from being substituted and used for a rightmost
64-bit part of a 128-bit key, and vice versa.

Compatibility support for 64-bit key-encrypting
keys. Both I1BM-1 and IBM-2 permit 64-bit key-en-
crypting keys to be stored within the crypto-
graphic system as 128-bit keys. However, this
compatibility mode feature is implemented dif-
ferently in each key-management methodology.
Because in IBM-1 the leftmost and rightmost 64-bit
parts of a 128-bit key are interchangeable, 64-bit
key-encrypting keys are supported by creating
and encrypting the leftmost 64-bit part of a 128-bit
key to produce a value of the form e*,,(KKL)
and then defining e*x,;(KKR) to be equal to
e*(KKL). However, in IBM-2, where the left-
most and rightmost 64-bit parts of a 128-bit key
are encrypted with different control vectors Cl1
and C2, a Replicate Key (REPK) instruction is pro-
vided that transforms an encrypted key of the
form e*yyqci(KKL) to the form e*yygc(KKR),
where KKR equals KKL. C1 designates KKL as
the leftmost 64-bit part of KK, and C2 designates
KKR as the rightmost 64-bit part of KK.

Key distribution via the GKS instruction. In IBM-1,
key distribution is effected through the use of the
RFMK and RTMK instructions. A key to be dis-
tributed is first produced in the encrypted form
exvni(K). The quantity egye(K) is then re-enci-
phered to the encrypted form ey;(K) using the
RFMK instruction. At the receiving device, the
received quantity eg;;(K) is re-enciphered to the
encrypted form ey;(K) using the RTMK instruc-
tion. The disadvantage in using the RFMK instruc-
tion for key distribution is that all distributed keys
are first produced in the form eyy,(K). Thus, a
key intended for use at a receiving device is also
available in usable form at the sending device,
thereby opening up the possibility that the send-
ing device may misuse the receiving device’s key.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

However, in IBM-2, this threat is eliminated
through the use of a GKS instruction, which en-
crypts the generated key directly under a key-
encrypting sender key KESK of the receiving de-
vice. Thus, the key is not exposed in an operable
form at the sending device, and the GKS and RTMK
instructions become the preferred method for
generating and distributing keys. The GKS in-
struction generates two encrypted copies of a
key, where the control vectors for each of the
encrypted copies may be equal or different. An
instruction mode parameter permits the so-pro-
duced encrypted keys to be encrypted with a mas-
ter key KM, a key-encrypting sender key KESK,
or a key-encrypting receiver key KERK.

A GKS-E (extended mode) instruction permits spe-
cial combinations of keys to be generated that are
usually prohibited.

Key-translation capability. In IBM-1, key transla-
tion could be performed only by first importing
the key with the RTMK instruction and then ex-
porting it with the RFMK instruction. However,
the disadvantage of this method is that the device
performing the key-translation operation has, by
definition, an imported copy of the key in a form
usable at that device. This might permit inter-
cepted encrypted communications to be de-
crypted by the device, although no explicit right
to do so may have been granted by the sending
device. In IBM-2, a Translate Key (XLTKEY) in-
struction permits keys to be translated within the
CF from encryption under a first key-encrypting
key to encryption under a second key-encrypting
key. During the key-translate process, the control
vectors associated with the first and second key-
encrypting keys are checked for equality, thus
ensuring that key usage is propagated.

Export control via the RFMK instruction. In IBM-1,
any data key of the form e y(K) can be re-enci-
phered to the form egx(K), using the RFMK in-
struction. In IBM-2, an export control bit in the
control vector is interrogated by the RFMK in-
struction to determine whether the key may or
may not be exported (B‘1’ indicates export al-
lowed and B‘0’ indicates export not allowed.) A
Lower Export Authority (LEA) instruction per-
mits the export control bit to be reset from export
allowed to export not allowed, but not vice versa.

Now that the important new features of the
Transaction Security System key-management

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

scheme (IBM-2) have been highlighted, the topics
of key generation and key distribution in IBM-2
can be discussed.

Key generation using the Generate Key Set instruc-
tion. The Generate Key Set (GKS) instruction gen-
erates two encrypted copies of a key, where the
control vectors associated with each of the en-
crypted copies of the key may be equal or dif-
ferent. Each encrypted copy of the key may be
encrypted with the master key (called an opera-
tional key or OP-key), with a key-encrypting
sender key KESK (calied an EX-key for export
key), or with a key-encrypting receiver key KERK
(called an IM-key for import key). The terms OP-
key, EX-key, and IM-key may be abbreviated as
OP, EX, and IM, respectively. An OP-key is a key
in an encrypted state that can be processed di-
rectly by the cryptographic facility (CF). An EX-
key is a key in an encrypted state that can be
exported to another device, where it is imported.
An IM-key is a key in an encrypted state that can
be imported. The terms OP-key, EX-key, and IM-
key are often convenient in explaining and un-
derstanding how keys are processed by the key
management. An OP-key is exported by translat-
ing it to an EX-key. An IM-key is imported by
translating it to an OP-key. The Translate Key in-
struction translates an inbound IM-key to an out-
bound EX-key. A key-distribution channel is es-
tablished from device i to device j by installing a
KESK at device i and installing a matching KERK
at device j. Thus, an EX-key produced at device i
automatically becomes an IM-key at device j.

The GKS instruction generates two encrypted
copies of a 64-bit odd parity adjusted random key
K, where K may be a 64-bit key, the leftmost 64
bits of a 128-bit key, or the rightmost 64 bits of a
128-bit key. A mode parameter specified to the
instruction permits the encrypted copies of the
key to be produced in the following pairwise
states: OP-OP, OP-IM, IM-IM, OP-EX, IM-EX, and EX-
EX, as illustrated in Figure 5. A pair of control
vectors (C1,C2) is also provided as an input to the
GKS instruction, where C1 specifies the attributes
granted to the first encrypted copy of K, and C2
specifies the attributes granted to the second en-
crypted copy of K. For example, GKS mode = 1
produces an OP-key and EX-key pair, where the
OP-key can be a data-privacy key, with an enci-
pher attribute, and the EX-key can be a data-pri-
vacy-translate key, with a translate-in attribute.
Definitions for the data-privacy and data-privacy-

MATYAS, LE, AND ABRAHAM 183

Figure 5 Encrypted states produced by the GKS and GKS-E instructions from clear key K

GENERATE KEY SET

18T
OPERATIONAL
OPERATIONAL |

IMPORT

GENERATE KEY SET~ EXTENDED MODE

_ OPERATIONAL |

weor

m—————
 S———————
————————
————————
o m—————————

EXPORT

£ T R A A el

translate keys are given in a companion paper in
this issue.’ The translate-in attribute permits the
key to decipher data in the CF only for the purpose
of immediately re-enciphering it under a different
data-privacy-translate key, with a translate-out
attribute. A full discussion of the control vector
pairs (C1,C2) that may be specified to the GKS
instruction is not possible in this short paper.

The GKS-E instruction is functionally the same as
the GKS instruction, except that it accepts a dif-
ferent set of input control vector pairs (C1,C2).

The cryptographic facility access program (CFAP)
uses the GKS and GKS-E instructions to generate
64- and 128-bit keys. A 128-bit key is produced by
executing the GKS instruction twice and storing
both encrypted key outputs in a single key token.
In situations where, for reasons of compatibility,
it is necessary to generate a 128-bit key with the
leftmost 64 bits equal to the rightmost 64 bits, a
Replicate Key (REPK) instruction can be used to
generate an encrypted output representing the
rightmost 64 bits of a key from an encrypted input
representing the leftmost 64 bits of a key. In that
case, the GKS or GKS-E instruction is used to gen-
erate the leftmost 64 bits of the key and the REPK
instruction is used to generate the rightmost 64
bits of the key from the leftmost 64 bits of the key.

Key-distribution environments. The key-manage-
ment scheme in IBM-2 is purposely designed to

184 MATYAS, LE, AND ABRAHAM

support different key-distribution environments.
Of course, these key-distribution features imple-
mented within the CF require supporting applica-
tion program services, €.g., a key server program
interfacing to the CFAP with a capability to
dynamically generate and serve keys to network
cryptographic devices and application programs.
The key-management architecture supports end-
to-end encryption in a (1) peer-to-peer environ-
ment, (2) key-distribution-center environment,
and (3) key-translation-center environment.

Peer to peer. A peer-to-peer environment is set
up as follows: A serves keys to B, as illustrated
in Figure 6, or B serves keys to A. A key-distri-
bution channel is first established from A to B,
using nonelectronic methods, by installing a key-
encrypting sender key, KESKI, at A and matching
key-encrypting receiver key, KERK1, at B. Then
A generates a matching pair, KERK2, KESK2, as
op-key and EX-key, respectively, keeping or-key
KERK? and serving EX-key KESK2 to B. A GKS
instruction operating in the OP-EX mode is used at
A to generate keys, as required by the protocol.
At B the EX-key KESK2 is imported by translating
it to OP-key KESK2, thus establishing a key-dis-
tribution channel from B to A. An RTMK instruc-
tion is used at B to import keys, as required by the
protocol.

Key-distribution center. In a key-distribution-
center environment, a key-distribution center C

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

generates keys for A and B, as illustrated in Fig-
ure 7. For example, A serves a key to B by making
a request for keys from C. In response, C gener-
ates a pair of keys and returns them to A. Where-
upon, A keeps one of the keys and serves the
other to B. If C is permitted by the key-distribu-
tion protocol to generate key-encrypting keys for
A and B, then C can be used to establish key-
distribution channels from A to B and from B to
A. Thereafter, A and B can use a peer-to-peer
key-distribution protocol, provided they have a
key-generation capability.

To establish a key-distribution-center environ-
ment, key-distribution channels are established
from C to A and from C to B using nonelectronic
methods. That is, a KESK1 is installed at C and
matching KERKI is installed at A. Likewise, a
KESK2 is installed at C and matching KERK?2 is
installed at B. A GKS instruction operating in the
EX-EX mode, is used at C to generate keys for A
and B, as required by the protocol. The EX-EX
mode generates a pair of keys as EX- and EX-keys.

Alternatively, key-distribution channels are first
established from A to C and B to C using non-
electronic methods. Then A generates a matching
pair (KERK1, KESK1), as OP- and EX-key, respec-
tively, keeping OP-key KERKI and serving EX-key
KESK1 to C. At C, the EX-key KESK1 is imported
by translating it to OP-key KESK!, thus establish-
ing a key-distribution channel from C to A. In like
manner, B generates a matching pair (KERK2,
KESK?2) and follows the same procedure to estab-
lish a key-distribution channel from C to B. The
advantage here is that the attributes in the control
vectors associated with KESK1 and KESK2, which
prescribe the usage of KESK1 and KESK?2 at C, are
entirely under the control of A and B, respec-
tively. Thus, A and B can grant rights to C to use
KESKI1 and KESK?2 only for generating key pairs for
A and B, as required by the protocol. Keys gen-
erated at C on behalf of A and B, i.e., when C acts
as a key-distribution center, could not also exist
as or-keys at C. This, for example, prevents C
from eavesdropping on encrypted sessions be-
tween A and B.

Key- translation center. In a key-translation-cen-
ter environment, A cannot serve keys to B directly.
Instead, A generates a pair of keys, keeps one and
sends the other to a key-translation center T, as
illustrated in Figure 8. T translates the key into a

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 6 Peer to peer

®

B8's COPY
OF KEY

Figure 7 Key-distribution center

©

GENERATE

REQUEST A's COPY OF KEY

B's COPY OF KEY

i 8's COPY .
.} OF KEY

form that can be imported at B and returns it to A.
A then serves the translated key to B.

To set up a key-translation-center environment is
a bit more complicated. Therefore, the example
shows only how A, B, and T cooperate to set up
a key-translation channel from A to B. One can
see that it is fairly easy to extend the protocol to
handle keys in the opposite direction.

To establish a key-translation-center environ-
ment, key-distribution channels are established
from A to T and from T to B using nonelectronic
methods. That is, a KESKI1 is installed at A and a
matching KERKI is installed at T. Likewise, a
KESK2 is installed at T and matching KERK? is

MATYAS, LE, AND ABRAHAM 185

Figure 8 Key-translation center

GENERATE IMPORT

installed at B. A Translate Key (XLTKEY) instruc-
tion is used at T to translate received IM-keys to
EX-keys (i.e., to re-encrypt keys from encryption
under KERK1 to encryption under KESK2). This per-
mits T on behalf of A to translate keys so that A can
serve them to B, as required by the protocol.

Alternatively, key-distribution channels are first
established from A to T and B to T using non-
electronic methods. Then A generates a matching
pair (KESKI, KERK1), as OP-key and EX-key, re-
spectively, keeping OP-key KESK1 and serving EX-
key KERK1 to T. At T the EX-key KERK] is im-
ported by translating it to OP-key KERKI, thus
establishing a key-distribution channel from A to
T. Similarly, B generates a matching pair (KERK2,
KESK2), as OP- and EX-key, respectively, keeping
OoP-key KERK? and serving EX-key KESK2to T. At
T, the EX-key KESK2 is imported by translating it
to op-key KESK2, thus establishing a key-distri-
bution channel from T to B. The advantage here
is that the attributes in the control vectors asso-
ciated with KERK1 and KESK2, which prescribe
the usage of KERK1 and KESK2 at T, are entirely
under the control of A and B, respectively. Thus,
A and B can grant rights to T to use KERKI1 and
KESK?2 only for translating keys from encryption
under KERK1 to encryption under KESK2, as re-
quired by the protocol. Keys translated at T on

186 MATYAS, LE, AND ABRAHAM

behalf of A and B, i.e., when T acts as a key-
translation center, could not also exist as OP-keys
at T. This imposes a level of integrity on the key-
translation process, that is similar to that de-
scribed above for the key-distribution center.

KESK and KERK control vectors. The control
vector is the means whereby an installation im-
plements its own key-management policy and
rules for governing the generation, manipulation,
and processing of keys. The granularity in the
control vector permits an installation to set up its
key-encrypting keys to support key distribution
in different key-distribution environments (i.e.,
peer to peer, key-distribution center, and key-trans-
lation center). In effect, an installation selects the
type of key distribution it wants and then imple-
ments that decision through selectable CFAP options
that determine how the control vector is encoded.

The usage control fields in the key-encrypting
sender key control vector and key-encrypting re-
ceiver key control vector contain subfields for
controlling key usage. The usage subfields in the
KESK control vector are shown in Table 1. The
usage subfields in the KERK control vector are
shown in Table 2. For convenience, usage at-
tributes are listed using the following notation:

KESK(...attributes...)
KERK({...attributes...)

Here the presence of an attribute name means
that it has a value of 1 and the absence of an
attribute name means that it has a value of 0.
Thus, (KESK{gks op-ex), KERK(rtmk)) denotes a
(KESK, KERK) pair, such that: (a) the control vec-
tor for KESK has the gks op-ex attribute set equal
to 1 and the remainder of the attributes set equal
to 0; and, (b) the control vector for KERK has the
rtmk attribute set equal to 1 and the remainder of
the attributes set equal to 0.

The minimal configuration to support peer-to-
peer key distribution, e.g., between cryptosys-
tems A and B, is this:

A : KESK1(gks op-ex)
KERK2(rtmk)

B : KERK1(rtmk)
KESK2(gks op-ex)

The pair (KESK1, KERK1) provides a key-distribu-
tion channel from A to B and the pair (KERK2,
KESK?2) provides a key-distribution channel from
B to A. To serve a key, A executes the GKS in-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Table 1 The usage subfields in the KESK control vector

GKS IM-EX
: cannot
: cannot
GKS EX-EX
0 : cannot
RFMK 1
0 : cannot
XLTKEY OUT 1
0 : cannot

1 : KESK can be used with GKS IM-EX to produce the EX-key.
0

GKS OP-EX 1 : KESK can be used with GKS OP-EX to produce the EX-key.
0
1

: KESK can be used with GKS EX-EX to produce the first
EX-key or second EX-key.

: KESK can be used with RFMK to encrypt an intermediate
clear key (CL key) to produce an output EX-key.

: KESK can be used with XLTKEY 1o encrypt an intermediate
clear key (CL key) to produce an output EX-key.

Table 2 The usage subfields in the KERK control vector

: KERK can be used with GKS IM-EX to produce the IM-key.

: KERK can be used with GKS OP-IM to produce the IM-key.

: KERK can be used with GKS IM-IM to produce the first

: KERK can be used with RTMK to decrypt an IM key to
recover an intermediate clear key (CL key).

: KERK can be used with XLTKEY to decrypt an input IM
key to recover an intermediate clear key (CL key).

GKS IM-EX 1

0 : cannot
GKS OP-IM 1

0 : cannot
GKS IM-IM 1

IM-key or second IM-key.

0 : cannot
RTMK 1

0 : cannot
XLTKEY IN 1

0 : cannot

struction in OP-EX mode to generate an Op-key
which it keeps and an EX-key which it sends to B.
B executes an RTMK instruction to re-encrypt the
received IM-key to an OP-key. B serves keys to A
in a like manner.

The minimal configuration to support a key-dis-
tribution center, e.g., consisting of cryptosys-
tems A and B and key-distribution center C, is
this:

A : KERK1(rtmk)
B : KERK2{rtmk)

C : KESK1(gks ex-ex)
KESK2(gks ex-ex)

The pair (KERK1, KESK1) provides a key-distribu-
tion channel from C to A, and the pair (KERK2,
KESK2) provides a key-distribution channel from
C to B. In response to a request for keys, e.g.,
from A, C executes the GKS instruction in EX-EX
mode to generate a first EX-key (encrypted under
KESK1) and a second EX-key (encrypted under
KESK?2). Upon receipt of the two keys at A, which
are IM-keys from the standpoint of both A and B,

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

A keeps the IM-Key encrypted under KERK1 and
serves the other IM-key encrypted under KERK2 to
B. Both A and B import their respective IM-keys
by executing an RTMK instruction.

Since C is only granted rights to use KESK1 and
KESK2 with mode EX-EX of the GKS instruction,
there is no opportunity for C to violate the integ-
rity of the key-distribution protocol. In effect, it
is not possible for C to give A or B a key that C
also has use of in its own cryptosystem (i.e., akey
that C has stored as an OP-key). Of course, this is
not the case if C is totally free to select the usage
control attributes of KESK1 and KESK2. For ex-
ample, suppose that C establishes a configuration
that looks like this:

A : KERK1(rtmk)
B : KERK2(rtmk)

C : KESK1(gks op-ex, rfmk)
KESK2(gks op-ex, rfmk)

In that case, in response to a request for keys
from A, C executes the GKS instruction in OP-EX
mode to generate an OP-key and an EX-key (en-

MATYAS, LE, AND ABRAHAM 187

crypted under KESK?2). C then executes the RFMK
instruction to translate the Op-key to an Ex-key
(encrypted under KESK1). C sends the two EX-
keys to A, as before, but keeps the Op-key. An-
other variation on this theme is to generate an
IM-key at C, use an RTMK instruction to import
the IM-key, and use a Translate Key instruction
also to translate the IM-key to an EX-key suitable
to be given to A.

The minimal configuration to support a key-trans-
lation center, e.g., consisting of cryptosystems A
and B and key-translation center T, is this:

A : KESK1{(gks op-ex) T : KERK1(xltkey in)

KERK2(rtmk) KESK2(xitkey out)
B : KESK3(gks op-ex) KERK3(xltkey in)
KERK4(rtmk) KESK4(xitkey out)

The reader can trace the steps necessary to serve
keys from A to B, and vice versa. 1BM-2 also pro-
vides a compatibility mode for electronic key dis-
tribution. This topic is discussed next.

Compatibility

The Transaction Security System provides in-
structions for achieving levels of compatibility
with other IBM and non-IBM systems not imple-
menting control vectors. Chief among these is the
Translate Control Vector (XLTCV) instruction,
which provides a general mechanism for adding,
deleting, and remapping control vector values.
The XLTCV instruction permits compatibility with
any DEA-based key-management scheme where
keys are distributed in one of the following forms:

exx(K)
e*xx(K)
< KK@X(K)

e*KK®Y(K)

where K is a 64-bit key, the leftmost 64 bits of a
128-bit key, or the rightmost 64 bits of a 128-bit
key; KK is a 64-bit key (in the forms e (K) and
exrax(K)) or a 128-bit key (in the forms e* g (K)
and e*yy+y(K)); X is any 64-bit value; Y is any
128-bit value; and @ denotes the exclusive-OR
operation. Many existing IBM and non-IBM sys-
tems implement key distribution using one of the
listed forms. (The most notable exception is ANSI
X9.17, which uses a form of key notarization and
key offsetting described in another paper’ in this
issue.)

188 MATYAS, LE, AND ABRAHAM

To export a key to a device that does not imple-
ment control vectors, IBM-2 uses the XLTCV in-
struction to translate an encrypted key of the
form e* ¢ (K) to one of the compatibility forms.
That is, XLTCV remaps C to a 64-bit vector of
zeros, a 128-bit vector of zeros, a 64-bit vector X,
or a 128-bit vector Y. To import a key originating
with a device not supporting control vectors, one
uses the reverse process. In the expression
e*kkac(K), C is a 128-bit control vector,'® KK is
either a key-encrypting sender key (KESK) or a
key-encrypting receiver key (KERK). Also, the
XLTCV instruction has a parity adjust option, so
that an input key K can be adjusted for odd parity
on output.

The mapping process is controlled by a control
vector translation table (CVTT) created in advance
by authorized installation personnel and supplied
to the XLTCV instruction as an instruction input.
The CVTT entries are partitioned into the follow-
ing two groups: (1) those associated with key-
encrypting sender keys and (2) those associated
with key-encrypting receiver keys. As part of the
CVTT creation process, the CVTT is encrypted
with a cryptovariable-encrypting key available
only to authorized installation personnel. That is,
the operation of the XLTCV instruction is indi-
rectly controlled by the special authorization
needed to create the CVTT. Once the CVTT has
been created, the XLTCV instruction executes
without any special authorization. This means
that the XLTCV instruction can provide routine
compatibility support for electronic key-distribu-
tion protocols involving devices that do not im-
plement control vectors.

The XLTCV instruction provides great flexibility
for achieving compatibility with devices that do
not implement control vectors. The instruction is
highly granular, thus allowing an installation to
remap control vectors only of the types needed—
and no more. However, the decision to use the
XLTCV instruction is one that each installation can
make on its own, according to its own require-
ment for compatibility with other devices not im-
plementing control vectors.

Super keys. Compatibility among Transaction Se-
curity System devices and other IBM and non-IBM
devices not implementing control vectors is han-
dled in the Transaction Security System through

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

the use of super keys. A super key is a collection
of encrypted keys of the form (e*xggc (K), C1),
(e*kkpe2(K), C2), ..., (€*kkeca(K), Cn), where the
sum of the permitted uses granted to K by control
vectors C1 through Cn is equal to (or perhaps
greater than) the uses otherwise granted to K if it
were installed, as usual, in a device not imple-
menting control vectors. A super Key is a key-
management construct implemented within the
CFAP, i.e., the CF is unaware of the super key. The
super key has a single key name or key label.
Thus, from the point of view of the application
program, the super key is just a single key. In
practice, the number of different control vectors
needed to cover the permitted uses of a key orig-
inating with a device not supporting control vec-
tors is small. As a consequence, storage require-
ments for super keys are not burdensome to the
CFAP. An application program can use a super key
in the same way it uses any other key, by making
a service request to the CFAP and specifying a
super key to be used in satisfying that request.
The CFAP selects the appropriate (e* g pc;(K), Ci)
from the super key and executes the appropriate
CF instruction, passing (€*xxqci(K), Ci) as an in-
put. The word “‘appropriate’ in this case means
that CFAP must select (e* kg ci(K), Ci) so that Ci
grants to K the needed rights to be used in the CF
instruction that CFAP must execute in order to
satisfy the service request made by the applica-
tion program. Another service request involving
the same super key may result in CFAP accessing
(e*kkaci(K), Cj) and executing a different CF in-
struction. Obviously, the intent here is to keep the
CFAP-level complexity associated with the super
key hidden from the using application program.

Installation of super keys. The same key-manage-
ment instructions used to install Transaction Se-
curity System keys can be used to install a super
key. The difference is that with a super key the
process must be repeated for each super key el-
ement (€*cxaci(K), Ci) to be created. Of course,
one would use a method that does not require K
to be manually re-entered into the CF multiple
times. One acceptable method is to prepare super
keys at an off-line device where K, KK, and (C1,
C2, ..., Cn) are made available to a utility program
that produces the super key. If one installs KK at
the Transaction Security System device as a key-
encrypting receiver key KERK with usage at-
tribute (rtmk), i.e., KERK(rtmk}), the CFAP can im-
port the off-line prepared super key, element by
element, using the RTMK instruction,

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Table 3 Example control vector translate table for
KERK and KESK

For KERK: For KESK:
Input Output Input Output
X Cl X 0
X C2

Electronic generation and export of super keys. Let
A represent a Transaction Security System de-
vice and B a device not supporting control vec-
tors. A key-distribution channel is first estab-
lished from A to B, using nonelectronic methods,
by installing KESK1 at A and installing match-
ing KERK1 at B. We assume that B can import
keys encrypted in the form e* g, (K), where K
can have permitted uses at B comparable to a
super key at A of the form ((e*gygci(K), Cl),
(e*kmac2(K), C2)). (After one sees how to handle
a super key with two elements, the method can be
easily extended to handle any number of ele-
ments.) We further assume that KESK1 is stored at
A in the form (e*gyqc;(KESK1), C3), possibly as
part of a super key, where C3 has attribute (xltkey
out). We further assume that, in advance, A gen-
erates a key-encrypting receiver key KERK2 with
attributes (xltkey in, rtmk). No matching KESK2 is
generated, as KERK?2 is used only by A to send
keys to itself. We further assume that a control
vector translate table (CVTT) is prepared in ad-
vance to permit the CV mappings shown in Table
3 to be made.

To generate and export a super key, a 64-bit ran-
dom number RN is generated at A and defined to
be equal to e*ggrirpx(K), where K is the key (un-
adjusted for odd parity) that happens to be re-
covered when RN is decrypted with KERK2 using
the CvD algorithm. The XLTCV instruction is now
executed (with the parity adjust option specified)
first to translate €*ggreapx(K) to €*gprxomer (K)
and second to translate e*ggpirpx(K) to
e*keropc2(K). The Translate Key instruction
is executed to translate e*ggrirex(K) to
e*keskipx(K). The XLTCV instruction is executed
to translate €*ypsxiex(K) t0 €*kpskigo(K). The
RTMK instruction is executed first to import
e*xer2pc1(K) as e*gyqci(K) and second to im-
port e*gprirge2(K) as €*gygeo(K). From this CFAP
can build the super key ((e*kxmgci(K), Cl),

MATYAS, LE, AND ABRAHAM 189

Table 4 Example control vector translate table for
KERK

KERK:

T owpm
a

(e*kmac2(K), C2)). The encrypted key e* sk ;00(K)
is sent to B where it is imported and initialized
using procedures and protocols in accordance
with the key-management rules implemented at
device B.

Electronic import of super keys. Again, let A rep-
resent a Transaction Security System device and
B a device not supporting control vectors. A key-
distribution channel is first established from B to
A using non-electronic methods, by installing
KESKI1 at B and installing matching KERK1 at A.
We assume that B can export keys encrypted in
the form e* ok (K), where K can have permitted
uses at B comparable to a super key of the form
((e*kmeca(K), C4), (e*kmacs(K), C5)) at A. We
further assume that KERK1 is stored at A in the
form (e*xmgcs(KERK1), C6), possibly as part of a
super key, where C6 has attribute (rtmk). We fur-
ther assume that a control vector translate table
(cvTT) is prepared in advance to permit the CV
mappings to be made as shown in Table 4.

To import a super key, the XLTCV instruction
is executed first to translate e*ygpiigo(K)
to e*xeriiget(K) and second to translate
e*kerk1@0(K) 10 €*kprii@c2(K). The RTMK instruc-
tion is executed first to import e* gy gc1(K) as
e*xmeci(K) and second to import e*ypryiger(K)
as €*xu@c2(K). From this CFAP can build the super
key (e*kmaci(K), C1), (€*xmapc(K), C2)).

Summary

A key-management scheme based on the control
vector has been described in which the complex-
ity associated with key management is associated
with the control vector (i.e., in data structures).
This technique greatly simplifies the key-manage-
ment functions and processing steps. Thus, a ro-
bust key-management scheme is obtained that
can grow to provide new and improved crypto-
graphic services.

190 MATYAS, LE, AND ABRAHAM

Acknowledgments

The authors wish to acknowledge D. B. Johnson,
R. K. Karne, R. Prymak, and J. D. Wilkins for
their efforts in codeveloping the key-management
design in the Transaction Security System.

Cited references and note

1. Data Encryption Standard, Federal Information Process-
ing Standard (FIPS) Publication 46, National Bureau of
Standards, U.S. Department of Commerce, Washington
(January 1977).

2. American National Standard X3.92-1981, Data Encryp-
tion Algorithm, American National Standards Institute,
New York (December 31, 1981).

3. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L.
Tuchman, “A Cryptographic Key Management Scheme
for Implementing the Data Encryption Standard,” IBM
Systems Journal 17, No. 2, 106-125 (1978).

4. S. M. Matyas and C. H. Meyer, “Generation, Distribu-
tion, and Installation of Cryptographic Keys,” IBM Sys-
tems Journal 17, No. 2, 126-137 (1978).

5. R. E. Lennon, “Cryptography Architecture for Informa-
tion Security,” IBM Systems Journal 17, No. 2, 138-150
(1978).

6. C. H. Meyer and S. M. Matyas, Cryptography: A New
Dimension in Computer Data Security, John Wiley &
Sons, Inc., New York (1982).

7. D. W. Davies and W. L. Price, Security for Computer
Networks, Second Edition, John Wiley & Sons, Inc.,
New York (1989).

8. D. G. Abraham et al., “Transaction Security System,”
IBM Systems Journal 30, No. 2, 206-229 (1991, this is-
sue).

9. S. M. Matyas, “Key Handling with Control Vectors,”
IBM Systems Journal 30, No. 2, 151-174 (1991, this is-
sue).

10. In a companion paper on control vectors appearing in this
issue,’ the more general expression e* g c)(K) is used,
where h is a hashing function applied to control vector C.
However, for 128-bit control vectors, the more conve-
nient expression e*xxac(K) can be used in place of
e*kkano(K).

Stephen M. Matyas IBM Federal Sector Division, 9500 God-
win Drive, Manassas, Virginia 22110. Formerly a member of
the Cryptography Center of Competence at the IBM Kingston
Development Laboratory, Dr. Matyas is currently a member
of the Secure Products and Systems department at Manassas,
Virginia. He has participated in the design and development
of all major IBM cryptographic products, including the IBM
Cryptographic Subsystem, and recently he has had the lead
role in the design of the cryptographic architecture for IBM’s
recently announced Transaction Security System. Dr. Matyas
holds 26 patents and has published numerous technical arti-
cles on all aspects of cryptographic system design. He is the
coauthor of an award-winning book entitled Cryptography—A
New Dimension in Computer Data Security, published by
John Wiley & Sons, Inc. He is a contributing author to the
Encyclopedia of Science and Technology, and Telecommu-
nications in the U.S.—Trends and Policies. Dr. Matyas re-
ceived a B.S. in mathematics from Western Michigan Uni-
versity and a Ph.D. in computer science from the University

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

of Iowa. He is the recipient of an Outstanding Innovation
Award for his part in the development of the Common Cryp-
tographic Architecture. He is presently an IBM Senior Tech-
nical Staff Member.

An V. Le IBM Federal Sector Division, 9500 Godwin Drive,
Manassas, Virginia 22110. Mr. Le is a staff engineer in the
Cryptography Center of Competence in the IBM Manassas
laboratory. He received a master’s degree in electrical engi-
neering from the University of Utah, Salt Lake City, Utah, in
1982. He joined IBM in 1983 at Boca Raton, Florida, where he
worked as a computer designer in a reduced instruction set
computer project for several years. In 1986, he joined the
Cryptography Center of Competence in Manassas, and has
since been working in the area of cryptographic algorithms
and architectures. Mr. Le holds four issued patents, four
patent applications on file, and has published several technical
disclosures in the area of computer design and cryptography.
He has received two IBM Invention Achievement Awards.

Dennis G. Abraham IBM US Marketing & Services, 1001
W. T. Harris Boulevard, Charlotte, North Carolina 28257.
Mr. Abraham is a Senior Technical Staff Member in the se-
curity system architecture area where he has been a leader in
establishing the architecture and function definitions for the
IBM Transaction Security System. He attended Fairleigh
Dickinson University, Rutherford, New Jersey, where he re-
ceived his B.S.E.E. degree in 1964. He joined IBM in June
1964 at Endicott, New York, where he held assignments in
various product and service groups, including circuit design,
logic design, and a strong speciality in servomechanisms in-
cluding a special expertise in stepper motor control and de-
sign. He received his M.S.E.E. from Syracuse University in
1972. He was the lead architect of the IBM 3890 optical char-
acter recognition machine. After moving to Charlotte in 1979,
he has worked in developing image technology as it applies to
check processing. After an assignment in the National Mar-
keting Division headquarters, where he provided technical
expertise for the marketing force, Mr. Abraham joined the
advanced technology group and was assigned to develop a
security strategy and architecture for the Consumer Systems
Business Unit. This work lead to the development of the IBM
Transaction Security System and the Common Cryptographic
Architecture. He holds nine issued patents, ten patent appli-
cations on file, and 23 published invention disclosures.

Reprint Order No. G321-5429.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

MATYAS, LE, AND ABRAHAM 101

