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This  paper  presents  a  cryptographic  key- 
management  scheme  based  on  control  vectors. 
This is a  new  concept  that  permits  cryptographic 
keys  belonging to a  cryptographic  system  to  be 
easily,  securely,  and  efficiently  controlled.  The 
new  key-management schemebuilt on  the 
cryptographic  architecture  and key  management 
implemented  in  a  prior  set of IBM  cryptographic 
products-has  been  implemented in the  newly 
announced IBM Transaction  Security  System. 

I n 1977, the  National  Bureau of Standards 
adopted  an  encryption  algorithm,  termed  the 

Data  Encryption  Standard (DES),'  as a  federal 
standard. Following this milestone in crypto- 
graphic  research  and  development,  other ad- 
vances in cryptography  occurred in rapid succes- 
sion,  and many DES-based hardware  and  software 
products  emerged  to  support  new  encryption- 
based  protocols  and  cryptographic  applications. 
In 1980, the American  National  Standards  Insti- 
tute (ANSI) adopted the same algorithm as a na- 
tional standard, calling it the Data  Encryption Al- 
gorithm (DEA).' The DEA enciphers  a 64-bit 
block of plaintext  into  a 64-bit block of ciphertext 
under  the  control of a 64-bit cryptographic  key. 
Each 64-bit key  consists of  56 independent key 
bits  and eight bits that may be used for  error  de- 
tection.  Because  the DEA is a published algo- 
rithm, data  encrypted with the DEA are  protected 
by keeping the key  secret.  In  all,  there  are 
72 057  594  037 927 936, that  is, 256 different cryp- 
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tographic keys  that may be used with the algo- 
rithm. 

Key-management  concepts. For  two  crypto- 
graphic devices to communicate using cryptog- 
raphy,  each  device  must implement the  same 
cryptographic algorithm and  each  device  must  be 
initialized with the  same  secret  key.  Data  en- 
crypted  at  a sending device are transmitted  via a 
communications  network  to a receiving device, 
where  they are  decrypted.  Access  to  data is con- 
trolled by the  key, where  possession or use of the 
key implies the right to  decrypt  and receive  the 
clear data. 

In a large network,  data  are  transmitted  among 
devices on behalf of many  application  programs 
and  users. To protect  these  communications  and 
to  keep application  programs  and  users  from in- 
terfering with or reading the  encrypted  messages 
of any  other,  messages  transmitted  from  one  com- 
municator to  another  are  protected with a unique 
key shared by the  communicators. Many keys  are 
needed to facilitate  this kind of end-to-end enci- 
pherment. Thus, cryptographic  system  services 
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Figure 1 A cryptographic key hierarchy 

are needed  to  securely  generate,  distribute,  and 
initialize these  keys within the  cryptographic  sys- 
tem. 

Most cryptographic  systems make use of many 
different types of keys, so that information en- 
crypted with a key of one  type is not affected by 
using a  key  of  another  type. A key is assigned a 
type on  the  basis of the information the key en- 
crypts  or  the  use being made of the  key.  For  ex- 
ample,  a  data-encrypting key encrypts  data.  A 
key-encrypting  key  encrypts  keys. A PIN-en- 
crypting  key  encrypts  personal identification 
numbers (PINS) used in electronic  funds  transfer 
and point-of-sale applications.  A MAC key is used 
to generate  and  authenticate message authentica- 
tion codes  (MACS). 

The use of encryption is based  on a strategy of 
protecting a large amount of information (a  data 
file or communications  session) with a smaller ad- 
ditional  amount of information (a single key). So- 
phisticated  key  hierarchies  have been devised us- 
ing this principle. The hierarchy discussed in this 
paper is shown schematically in Figure 1 .  For ex- 
ample,  the  keys belonging to a  cryptographic  de- 
vice are  encrypted with a single master key and 
stored in a key  data  set.  The  master key is stored 
in clear form within the  cryptographic  hardware. 

176 MATYAS, LE, AND ABRAHAM 

The  concept of using a single master key to en- 
crypt keys stored in a key  data  set  is  known  as  the 
muster key concept. In  order  to electronically  dis- 
tribute  keys from one device to  another,  e.g.,  to 
distribute  a  data-encrypting key as part of session 
initiation,  each  pair of devices  shares a unique 
key-encrypting key under which all distributed 
keys are  encrypted.  Thus,  a  data-encrypting key 
encrypts many messages.  A  key-encrypting  key 
encrypts many electronically  distributed  data-en- 
crypting  keys. A master  key  encrypts many key- 
encrypting  and  data-encrypting  keys  stored in a 
single key data  set. 

In order  for  a  cryptographic  system to be made 
operable,  each  device  must first be initialized with 
a  master  key  and at least one key-encrypting  key. 
The  master  key  permits  keys  stored in the  key 
data  set  to be encrypted,  and  the  key-encrypting 
key establishes a key-distribution  channel with at 
least  one  other  network  device. When key  distri- 
bution is performed in a peer-to-peer  environ- 
ment,  each  device is initialized with a key-en- 
crypting key for  each  other  device  with which it 
wishes to  communicate.  However,  when key dis- 
tribution is performed with the  assistance of a 
key-distribution center (KDC) or key-translation 
center (KTC), each  device is initialized with only 
one  key-encrypting key shared with the KDC or 
KTC. Thereafter,  additional  key-encrypting  keys 
are distributed  electronically  and initialized au- 
tomatically using the KDC or KTC. The key-dis- 
tribution channel  can  also  be  made  unidirectional. 
That  is,  one  key-encrypting  key  encrypts  keys 
transmitted  from  a first device to a second  device 
and  another  key-encrypting key encrypts  keys 
transmitted in the  other  direction. 

Typically,  the  master key is  generated  and in- 
stalled using manual entry  techniques.  Key-en- 
crypting keys are generated as needed  at desig- 
nated generating  devices  and  transported to 
designated receiving devices  where  they are in- 
stalled. Although key-encrypting keys may be 
distributed by courier,  the  vast majority of  all key 
distribution-generation, transmission,  and  re- 
ception of  keys-is performed using automated, 
electronic  methods. 

An important  feature of the  cryptographic  system 
is the  method by which key separation is 
achieved.  Key  separation  guarantees  that  keys of 
one  type  cannot be substituted  and  used as keys 
of another  type.  If,  for  example, a key-manage- 
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ment architecture defines two  types of data  keys, 
one  for  encipherment  and  another  for  decipher- 
ment, it must  not be possible  for  a  data-encipher- 
ment key to  be  substituted  and used as a  data- 
decipherment  key.  In  the key-management 
scheme  discussed in this paper, key separation 
and key-usage control  are  provided by a control 
vector. 

Key  management is concerned with the  genera- 
tion,  distribution,  installation,  storage, mainte- 
nance,  and  destruction of keys.  This  task includes 
methods  for initializing keys, changing keys,  re- 
enciphering  keys  kept in a system  key  data  set 
(e.g.,  re-encipherment  from a current  to a new 
master  key),  and purging keys.  The key genera- 
tion,  distribution,  and installation processes may 
involve  either  persons as couriers or automated 
electronic  procedures.  The  process  includes  tech- 
niques  for the manual entry of keys by one  or 
more  persons  or by electronic  key  distribution, 
using automated key servers.  In summary, key 
management  encompasses  every  aspect of the 
handling of keys,  from  the time a key is created 
until it ceases  to  exist. 

Cryptographic  architectural  model. In  the  late 
1970s, IBM introduced a line of cryptographic 
products  based on the DES. The  cryptographic 
architecture  and key-management scheme  are 
outlined in References 3 to 5 and are discussed in 
greater  detail in References 6 and 7. In  the dis- 
cussion  that  follows,  we  refer to this key-man- 
agement  scheme, as IBM-1. 

The cryptographic  architecture implemented in 
this  earlier line of cryptographic  products defines 
a cryptographic  network consisting of multiple 
cryptographic  systems  interconnected by a com- 
munications  network, as illustrated in Figure 2. 
Each  cryptographic  system  consists of a  crypto- 
graphic facility (CF), a  cryptographic key data  set 
(CKDS), a  cryptographic facility access program 
(CFAP), and using application  programs (APPL), as 
illustrated in Figure 3. 

The CF is the hardware  component of the  cryp- 
tographic  system  and  contains  storage  for  a  clear 
master  key. All other  keys belonging to the  cryp- 
tographic  system are  encrypted  under  the  master 
key and are stored in the CKDS. The CFAP is the 
software  component of the  cryptographic  system. 
It interfaces with the APPL through an application 
programming interface (API) and with the CKDS 
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Figure 2 Cryptographic  network 

CRYPTO- 
GRAPHIC 
SYSTEM 1 

CRYPTO- 
GRAPHIC 
SYSTEM 2 

e.e GRAPHIC 
CRYPTO- 

SYSTEM N J 
and CF through  architected  system-level  inter- 
faces.  In  broad  terms,  the CFAP implements  a  set 
of cryptographic  functions,  denoted F1, F2, ..., 
Fm,  that may be invoked by application  programs 
at  the API, and the CF implements a set of cryp- 
tographic instructions,  denoted I1 , 12, . . . , In, that 
may be invoked by the CFAP through  a CF-leVel 
programming interface.  Except as  noted,  the el- 
ements of the  cryptographic  system  described 
here are  the  same  as  those defined in Reference 6 .  
In  that  reference,  the CFAP is called a key man- 
ager, the CFAP cryptographic  functions are called 
programming  macro  instructions, and  the CF in- 
structions are called cryptographic  operations. 
Otherwise,  the  cryptographic  architectural mod- 
els are  the  same. 

A typical request  for  cryptographic  service is ini- 
tiated by an APPL via a function call to  the CFAP 
at  the  API.  The  service  request  includes  key  and 
data  parameters. Also included are key identifiers 
that  the CFAP uses to  access  encrypted  keys from 
the CKDS. The CFAP processes  the  service  request 
by issuing one  or more  cryptographic  instructions 
to the CF at  the CF-kVel interface. (The CF may 
also  have  an  optional physical interface  for  direct 
entry of cryptographic  variables  into  the CF, as 
illustrated in Figure 3 by a right-directed  arrow 
toward  the CF.) Each  cryptographic  instruction 
invoked at  the cF-level interface  has  a  set of input 
parameters  processed by the CF to  produce  a  set 
of output  parameters  returned by the CF to  the 
CFAP. These  outputs  are  processed by the CFAP in 
several  ways.  The CFAP may return  output  pa- 
rameters to  the APPL or it may use  the  output 
parameters as inputs  to  subsequently  invoked in- 
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Figure 3 Cryptographic  system 
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structions.  Encrypted-key  outputs may be stored 
in the CKDS. 

The elements  composing  the  cryptographic  sys- 
tem of Figure 3 permit the cryptographic  system 
to  be implemented in two  parts: (1) a first part 
implemented within the  cryptographic  hardware, 
or CF, in order  to meet  cryptographic  security  and 
performance  objectives,  and (2) a second  part 
containing  everything  that  does  not need to  be 
implemented within the CF but which can  be im- 
plemented safely and efficiently in the  crypto- 
graphic  software  (i.e.,  the CFAP). By implement- 
ing the cryptographic  system in two  parts,  a CF 
part  and a CFAP part,  the hardware  component 
can  be minimized, thus in many  instances leading 
to a more  cost-effective  implementation. 

The CF-the heart of the  cryptographic system- 
contains an instruction  processor, a Data  Encryp- 
tion Algorithm (DEA), and  a CF environment, as 
illustrated in Figure 4. The instruction  processor 
is a functional  element  that  decodes  and  executes 
cryptographic  instructions  invoked by the CFAP at 
the CF-leVel interface. For  each instruction,  the 
CF-level interface defines (1) an operation  code 
used to select a particular  instruction  for  execu- 
tion, (2) a set of input  parameters  passed from the 
CFAP to  the CF, and (3) a set of output  parameters 
returned  by  the CF to  the CFAP. The instruction 
processor  executes  the  selected  instruction by 
performing an instruction-specific sequence of 
cryptographic  processing  steps  whose  control 
flow and  subsequent  output  depend  on  the values 
of the  input  parameters  and the  contents of the CF 
environment.  The CF environment  consists of a 
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set of cryptographic  variables  (e.g.,  keys, flags, 
counters,  and CF configuration data)  that collec- 
tively initialize and configure the CF. Chief among 
these is the 128-bit master key under which all 
keys in the CKDS are  encrypted.  The CF environ- 
ment variables are initialized by the cF-level in- 
terface  (i.e.,  by  execution of certain CF instruc- 
tions that  read input parameters  and  load  them 
into  the CF environment).  Otherwise, the varia- 
bles are initialized by an optional  physical  inter- 
face  that  permits  cryptographic  variables to  be 
loaded directly  into  the CF environment  (e.g.,  via 
an  attached  key-entry  device). 

The  cryptographic facility is implemented within 
a secure  boundary  that  ensures that  the CF is ac- 
cessed only through  architected  interfaces.  These 
interfaces are  secure  against  intrusion,  circum- 
vention,  and  deception.  This  strategy  ensures 
that  clear  keys  and  results of intermediate  steps of 
encipherment  and  decipherment are kept  secret. 
The physical embodiment of the CF is  protected 
through the  use of (1) tamper-resistant  designs 
that  resist  physical probing and  intrusion, (2) 
tamper-detection circuitry that  detects  attempted 
physical intrusion,  and (3) automatic  zeroization 
of keys if an attempted  intrusion is detected. 

The  cryptographic  instruction  set  must  also  be 
secure against an insider  adversary with access  to 
the cF-level interface. An adversary  must  not  be 
able  to  recover  keys in the  clear  outside  the CF or 
subvert the intended  security of the  crypto- 
graphic system by attacks  that  make  use of re- 
peated  executions of the CF instructions in any 
order, using intercepted or calculated informa- 
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Figure 4 Cryptographic facility 
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tion.  That  is,  cryptographic  security  must not de- 
pend  on denying an  adversary  access  to  the CF 
instruction  interface merely because  such denial 
could be effected by  access  control  software, 
such as  the IBM Resource  Access  Control Facil- 
ity. The role of such  access  control  measures in 
this model is more  properly  one of protecting  ac- 
cess  to  and  use of the  system-managed  encrypted 
keys  stored in the CKDS. Access  control  measures 
are used to control which application  programs 
have rights to  use which encrypted  keys in the 
CKDS. The cryptographic model also  permits  ap- 
plication programs to  take possession of their 
own  encrypted  keys, in which case, possession of 
the key represents  the right to  use  the  key. 

We now discuss  the  earlier  cryptographic  instruc- 
tion set  and  key-management  scheme imple- 
mented in IBM-1. 

IBM-1 key-management  review. The CF instruc- 
tion set implemented in IBM-I 3-6 makes use of the 
following six cryptographic  instructions: 

Encipher Data (ECPH) 
Decipher Data (DCPH) 
Set  Master  Key (SMK) 
Encipher  Under  Master  Key  (EMK) 
Re-Encipher  From  Master  Key  (RFMK) 
Re-Encipher  To  Master  Key  (RTMK) 

Of these,  the EMK, RFMK, and RTMK instructions 
are used for  electronic key management. 
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The key-management scheme  makes  use of a 64- 
bit master key KMO stored in clear  form in the CF 
and  two 64-bit variant  master  keys KM1 and KM2 
derived from KMO. KM1 and KM2 are produced 
within the CF by an exclusive-OR  operation on 
two 64-bit mask values vl  and v2 with KMO, 
respectively.  That  is, KM1 = KMO @ vl and 
KM2 = KMO @ v2,  where @ denotes  the  exclu- 
sive-OR operation,  and vl and v2 are 64-bit uni- 
versal constants defined by the key-management 
architecture. 

To  illustrate  electronic key distribution, let K  de- 
note a 64-bit data  key  generated at device i and 
electronically distributed to device j.  Let KMOi 
and KMOj denote  the 64-bit master  keys installed 
at devices  i  and j ,  respectively. Let KKij  denote 
a 64-bit key-encrypting key installed at  devices  i 
and j ,  where  KKij is used by device  i  to  encrypt 
keys electronically transmitted  to  device j .  

The method for establishing a  common data key 
K  between  two  devices  i  and  j is to  generate first 
a pseudorandom  number RN at  device  i,  where RN 
is defined as follows: 

RN = eKMOi(K) 

That  is, RN is defined as  the  encryption  e of some 
key value K  under  the  master key of device i. It 
can  then be used directly in the ECPH and DCPH 
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instructions  at  device  i to encipher  and  decipher 
data,  as follows: 

ECPH: (RN, data) + eK(data) 

DCPH: (RN, eK(data)) + data 
The ECPH and DCPH instructions  assume  that  an 
encrypted  value of K of the  form  eKMoi(K) is spec- 
ified as  an input. 

RN can  also  be  used with the RFMK instruction  to 
transform  K  under  the  encipherment of key-en- 
crypting key KKij belonging to device j.  To send 

The  use of key  variants 
in  achieving  key separation  and 
key-usage control is the same 

for all of key management. 

K  to  device j ,  the RFMK instruction is used at 
device  i to produce eKKij(K) by exercising 

RFMK: (eKMli(KKij), eKMOi(K)) + eKKij(K) 
where  KKij  is  stored  encrypted  under  the first 
variant of  KMOi, denoted KMli. 

The quantity eKKij(K) is  then  transmitted to device 
j ,  where  the RTMK instruction is used to  recover 
eKMOj(K) by exercising 

RTMK: (eKM2j(KKi), eKKij(K)) + eKMOj(K) 

where  KKij is stored  encrypted  under  the  second 
variant of  KMOj, denoted KM2j. 

The quantity eKM@(K) can  then  be used directly in 
the ECPH or DCPH instructions  at  device j ,   or it can 
be  used with an RFMK instruction  to  transform  K 
under the encipherment of a key-encrypting key 
belonging to  another device. 

From  the  description of the RFMK and RTMK in- 
structions,  one  can  see  that  at  device i KKij is 
encrypted using KMli, i.e.,  the first variant of 
KMOi. At device j ,  KKij is encrypted using KM2j, 
i.e.,  the second  variant of  KMOj.  By encrypting 
KKij in this  manner  at  devices  i  and j ,  KKij is 
enabled  for  use with the RFMK instruction  at  de- 
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vice i  and  the RTMK instruction  at  device j .  In 
effect, KKij is encrypted in a way  that  establishes 
a unidirectional or one-way  key-distribution 
channel  from  device  i to device j ,  thus permitting 
keys to be electronically  distributed  from  device 
i to device j.   To send keys  from  device  j  to  device 
i  requires a different KKji to  be installed at  both 
devices,  i.e.,  KKji is installed at  device j  as  KKij 
is installed at  device i,  and KKji  is installed at 
device  i as KKij is installed at  device j .  

The key-management scheme  also  provides  for 
the use of a 128-bit master  key KMO and 128-bit 
key-encrypting  keys  KKij. In that case,  the mas- 
ter key variants KMl and KM2 are produced 
from KMO by an exclusive-OR operation of non- 
secret mask values vl  and v2 with the leftmost 
and rightmost 64-bit parts of KMO, i.e., KMl = 
KMO @ (v1,vl) and KM2 = KMO @ (v2,v2), 
where  the symbol @ denotes  the  exclusive-OR 
operation  and  a  comma (,) denotes  concatena- 
tion. When 128-bit keys are incorporated  into the 
key-management scheme,  the  encrypted  key 
eKMli(KKij)  depicted in the RFMK instruction is 

KKLij  and KKRij are  the  leftmost  and rightmost 
64-bit parts of KKij,  and e* denotes  encryption 
with a 128-bit key.  Likewise, the  encrypted  key 
eKMZj(KKij)  depicted in the RTMK instruction  is 

is,  the RFMK and RTMK instructions are redefined 
to accommodate 128-bit key-encrypting  keys. 

replaced by e*KMl;(KKLij), e*KMli(KKRij), where 

replaced by e*KM2j(KKLij), e*KM2j(KKRij). That 

The CF instruction  set implemented in IBM-1 sup- 
ports  other  key-distribution  and  key-management 
services  for  both  communication  security  and file 
security.  However,  the  use of key  variants in 
achieving key separation  and  key-usage  control, 
as  illustrated in the  example of electronic key dis- 
tribution,  is basically the same for all of key man- 
agement.  In  contrast, the underlying crypto- 
graphic architecture  and  key-management 
scheme implemented in the IBM Transaction  Se- 
curity  System,  based  on  control  vectors,  provides 
many new and  improved  features  and  services.  In 
the  remainder of the  paper, we discuss a crypto- 
graphic  system design and  key-management 
scheme implemented in the  Transaction  Security 
System.  In  the  discussion  that  follows,  we  refer to 
this key-management system as 1BM-2. The  Trans- 
action  Security  System is discussed in a  compan- 
ion paper in this  issue. * Key handling with control 
vectors is discussed in another  companion  paper 
in this issue.’ 
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Transaction  Security  System  cryptographic 
system design objectives 

The Transaction  Security  System  cryptographic 
system design is based  on  the  same  cryptographic 
architectural model and  security  rules imple- 
mented in existing IBM cryptographic  products 
just outlined. It also embraces  several high-level 
strategic  goals.  It should be a general-purpose 

The system should provide 
product independence  and 

product interoperability. 

system  that is applicable to a wide range of com- 
puting devices  and should serve  customer  needs 
through the 1990s and  beyond.  The  system should 
be  open-ended,  thereby allowing growth  and  ex- 
tension to keep  pace with new cryptographic 
methods,  services,  and  standards required by us- 
ers.  The Transaction  Security  System should pro- 
vide a  stable  base  that  permits  users to plan and 
develop long-range cryptographic  security  strat- 
egies and  to design their  own  cryptographic  ap- 
plications  and high-level cryptographic  security 
architectures.  The  system should provide  prod- 
uct  independence  and  product  interoperability, as 
long as a product  adheres to  the  architecture. It 
should support  appropriate ANSI and ISO crypto- 
graphic  standards, in whole or in part, so as  to 
free  users from total  dependence  on  the  crypto- 
graphic  methods of a  particular  vendor.  Compat- 
ibility with present IBM and nOn-IBM products is 
important as is the provision of an application 
programming interface (API) tailored for  ease of 
use.  Such a system should provide  strong  cryp- 
tographic  protection  consistent with commercial 
computer  and  networking  environments while 
meeting industry  requirements  for  performance. 

Transaction  Security  System  cryptographic 
facility  instruction  set 

The cryptographic facility (CF) instruction  set 
represents  that  part of the  cryptographic  system 
that  must be implemented within the  crypto- 
graphic  hardware in order to achieve required se- 
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curity  and  performance  objectives.  However, 
other  important  objectives are achieved by the CF 
instruction set. 

The  instruction  set is comprehensive, in that it 
provides a wide range of cryptographic  services. 
The  instruction  set  can  be divided into nine func- 
tional categories,  according to  the cryptographic 
services  provided.  The nine functional  categories 
are: (1) data  management, (2) personal identifi- 
cation  number (PIN) management, (3) electronic 
key management, (4) compatibility mode  elec- 
tronic key management, ( 5 )  ANSI X9.17 electronic 
key management, (6) CF initialization, (7) CF con- 
trol, (8) CF configuration, and (9) utility. Elec- 
tronic key management and compatibility mode 
electronic key management are  the  primary  top- 
ics discussed in this  paper. 

The  instruction  set is minimal in that  each  instruc- 
tion provides a unique and  necessary  function. 
Redundancy in the instruction  set is reduced or 
eliminated.  The  instruction  set  is  consistent, mak- 
ing  it possible  for  one to infer how one  instruction 
works from a knowledge of the workings of an- 
other.  This helps in understanding how the in- 
structions  operate. The instructions  that  process 
data  are  streamlined.  The design seeks  to mini- 
mize the key-management overhead  required  to 
process  keys in these  instructions.  This  ensures 
that  the most frequently used cryptographic in- 
structions are  the  most efficient. The CF also 
provides a capability for CF instructions to  be 
dynamically enabled  and  disabled. Enabling an 
instruction  for  execution  can  also be made con- 
tingent on proof of authorization via a password, 
personal identification number (PIN), signature 
verification, or some  other  such  way.  The IBM 
Transaction  Security  System  cryptographic  hard- 
ware  and  authorization  mechanisms are dis- 
cussed in Reference 8. 

Transaction  Security  System  electronic  key 
management 

The  Transaction  Security  System  cryptographic 
system design includes  the following CF instruc- 
tions that  support  electronic key management: 

Generate  Key  Set (GKS) 
Generate  Key  Set  Extended (GKS-E) 
Re-Encipher To  Master Key (RTMK) 
Translate Key (XLTKEY) 
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Re-encipher  From  Master  Key (RFMK) 
Replicate  Key (REPK) 
Lower  Export Authority (LEA) 

Important differences exist  between  the first IBM 
key  management (IBM-I) and  the key-manage- 
ment scheme implemented in the  Transaction Se- 

Both IBM  key-management 
schemes permit  64-bit key- 
encrypting keys to be stored 

within the cryptographic system 
as  128-bit keys. 

curity  System (IBM-2). We now discuss  these dif- 
ferences. 

Key encryption/decryption. Basically, IBM-1 is 
based  on key variants  and IBM-2 is based  on  con- 
trol  vectors.  In IBM-1, data  keys  are  encrypted 
under  the  master  key KMO, and  they  are appli- 
cation-program-managed  keys.  Key-encrypting 
keys  are  encrypted  under  the first and  second var- 
iants of the  master  key,  and  they  are cFAP-man- 
aged keys  stored in the CKDS. Data  keys  trans- 
mitted in the  key-distribution  channel are 
encrypted  under a key-encrypting key (i.e., no 
key variants are used). In IBM-2, keys are en- 
crypted  and  decrypted with algorithms that make 
use of control  vectors.  The  control  vector  encryp- 
tion (CVE) and  control  vector  decryption (CVD) 
algorithms are described in Reference 9. 

Key-distribution  channel. In IBM-1, only data keys 
are transmitted in the  key-distribution  channel. 
Hence,  there is no  need  to define variants of a 
key-encrypting key in order  to maintain crypto- 
graphic  separation among key types in the key- 
distribution  channel.  However, in IBM-2, many 
key  types  are  distributed from one  device to an- 
other,  and hence the CVE and CVD algorithms are 
used  to  cipher  keys  transmitted in the key-distri- 
bution  channel.  The  exception is the  data com- 
patibility key, which is transmitted in the key- 
distribution  channel using a  vector of all zeros 
(i.e., no control  vector). 
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Encryption  of  128-bit  keys. In IBM-1, the leftmost 
and rightmost 64-bit parts of a 128-bit key-en- 
crypting key are  each  encrypted with the  same 
master key variant. In IBM-2, a form field in the 
control  vector  indicates  whether  the  encrypted 
64-bit key is a leftmost or rightmost 64-bit part of 
a 128-bit key.  Otherwise,  the  two  control  vectors 
are  the  same.  Thus, if C1 and C2 are  the  control 
vectors used to  encrypt  the leftmost  and right- 
most 64-bit parts of a 128-bit key,  then  C1  and C2 
differ only in the  encoded  values  stored in the 
form fields in C1 and C2. This  feature of IBM-2 
prevents  the  leftmost 64-bit part of a 128-bit key 
from being substituted  and used for  a  rightmost 
64-bit part of a 128-bit key,  and  vice  versa. 

Compatibility  support  for  64-bit  key-encrypting 
keys. Both IBM-1 and IBM-2 permit 64-bit key-en- 
crypting keys to  be  stored within the  crypto- 
graphic  system as 128-bit keys.  However,  this 
compatibility mode  feature is implemented dif- 
ferently in each  key-management  methodology. 
Because in IBM-1 the leftmost  and  rightmost 64-bit 
parts of a 128-bit key are interchangeable, 64-bit 
key-encrypting  keys are  supported by  creating 
and  encrypting  the  leftmost 64-bit part of a 128-bit 
key to  produce  a  value of the  form  e*KM,(KKL) 
and  then defining e*KMI(KKR)  to  be  equal  to 
e*KMI(KKL).  However, in IBM-2, where  the left- 
most and rightmost 64-bit parts of a 128-bit key 
are  encrypted with different control  vectors C1 
and C2, a  Replicate  Key (REPK) instruction is pro- 
vided that  transforms an  encrypted key of the 

where KKR equals KKL. C1 designates KKL  as 
the  leftmost 64-bit part of KK, and C2 designates 
KKR  as  the rightmost 64-bit part of KK. 

Key distribution  via  the GKS instruction. In IBM-1, 
key distribution is effected through the use of the 
RFMK and RTMK instructions.  A  key to  be dis- 
tributed is first produced in the  encrypted  form 
eKMoi(K). The  quantity eKMOi(K)  is then re-enci- 
phered  to  the  encrypted  form  eKKij(K) using the 
RFMK instruction. At the receiving device,  the 
received  quantity eKKij(K) is re-enciphered to  the 
encrypted form eKMOj(K) using the RTMK instruc- 
tion.  The  disadvantage in using the RFMK instruc- 
tion for key distribution is that all distributed  keys 
are first produced in the form eKM&). Thus, a 
key intended  for  use  at a receiving device is also 
available in usable  form  at  the sending device, 
thereby opening up the possibility that  the send- 
ing device may misuse the receiving device’s  key. 

form e*KMBCI(KKL) to  the form e*,,Bc*(KKR), 
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However, in IBM-2, this  threat is eliminated 
through  the  use of a GKs instruction, which en- 
crypts  the  generated key directly  under  a key- 
encrypting  sender key KESK of the receiving de- 
vice. Thus,  the key is not  exposed in an operable 
form  at the sending device,  and  the GKS and RTMK 
instructions  become  the  preferred  method  for 
generating  and distributing keys.  The GKS in- 
struction  generates  two  encrypted  copies of a 
key, where the  control  vectors  for  each of the 
encrypted  copies may be  equal or different. An 
instruction  mode  parameter  permits  the so-pro- 
duced  encrypted  keys  to  be  encrypted with a mas- 
ter key KM, a key-encrypting  sender key KESK, 
or a key-encrypting  receiver  key KERK. 

A GKS-E (extended mode) instruction  permits  spe- 
cial combinations of keys  to  be generated  that  are 
usually prohibited. 

Key-translation  capability. In IBM-1, key transla- 
tion could be performed  only  by first importing 
the key with the RTMK instruction  and  then  ex- 
porting it with the RFMK instruction.  However, 
the disadvantage of this method is that  the  device 
performing  the  key-translation  operation  has, by 
definition, an imported  copy of the key in a  form 
usable at  that  device. This might permit inter- 
cepted  encrypted  communications  to be de- 
crypted  by  the  device, although no explicit right 
to  do so may have  been  granted by the sending 
device.  In IBM-2, a  Translate  Key (XLTKEY) in- 
struction  permits  keys to  be translated within the 
CF from encryption  under  a first key-encrypting 
key to  encryption  under a second  key-encrypting 
key. During the key-translate  process,  the  control 
vectors  associated with the first and second key- 
encrypting  keys  are  checked  for  equality,  thus 
ensuring  that key usage is  propagated. 

Export  control  via  the  RFMK instruction. In IBM-1, 
any  data key of the  form e,,,(K) can be re-enci- 
phered  to  the form eKK(K), using the RFMK in- 
struction.  In IBM-2, an  export  control bit in the 
control  vector is interrogated by the RFMK in- 
struction to determine  whether  the  key may or 
may not be exported (B'l' indicates  export al- 
lowed and B'O' indicates  export  not  allowed.)  A 
Lower  Export  Authority (LEA) instruction  per- 
mits the  export  control bit to be reset  from  export 
allowed to  export not  allowed,  but not vice versa. 

Now  that  the  important new features of the 
Transaction  Security  System key-management 
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scheme (IBM-2) have been highlighted, the  topics 
of key generation  and key distribution in IBM-2 
can  be  discussed. 

Key generation  using  the  Generate  Key  Set  instruc- 
tion. The  Generate  Key  Set (GKS) instruction gen- 
erates  two  encrypted  copies of a  key,  where  the 
control  vectors  associated with each of the en- 
crypted  copies of the key may be equal or dif- 
ferent.  Each  encrypted  copy of the key may be 
encrypted with the master  key (called an  opera- 
tional key or op-key), with a key-encrypting 
sender key KESK (called an Ex-key for  export 
key), or with a key-encrypting  receiver  key KERK 
(called an IM-key for  import  key). The  terms OP- 
key,  Ex-key,  and IM-key  may  be abbreviated as 
OP, EX, and IM, respectively. An op-key is a key 
in an  encrypted  state  that  can  be  processed di- 
rectly by the cryptographic facility (CF). An EX- 
key is a key in an  encrypted  state  that  can  be 
exported to  another  device, where it is imported. 
An  IM-key is a key in an  encrypted  state  that  can 
be imported.  The  terms  op-key,  Ex-key,  and IM- 
key are often  convenient in explaining and un- 
derstanding how keys are processed by the key 
management. An op-key is exported by translat- 
ing  it to  an  Ex-key. An IM-key is imported by 
translating it to  an  op-key.  The  Translate  Key in- 
struction  translates  an  inbound IM-key to an out- 
bound Ex-key. A  key-distribution  channel  is es- 
tablished from device  i to device j by installing a 
KESK at  device  i  and installing a matching KERK 
at  device j. Thus, an Ex-key produced  at device i 
automatically becomes  an IM-key at device j .  

The GKS instruction  generates  two  encrypted 
copies of a 64-bit odd  parity  adjusted  random  key 
K, where K may be a 64-bit key,  the  leftmost 64 
bits of a 128-bit key,  or  the rightmost 64 bits of a 
128-bit key.  A  mode  parameter specified to  the 
instruction  permits  the  encrypted  copies of the 
key to be produced in the following pairwise 
States: OP-OP, OP-IM,  IM-IM, OP-EX, IM-EX, and EX- 
EX, as illustrated in Figure 5 .  A  pair of control 
vectors (C1 ,C2) is also  provided as  an input to  the 
GKS instruction,  where C1 specifies the  attributes 
granted  to  the first encrypted  copy of K, and C2 
specifies the  attributes  granted  to  the  second en- 
crypted  copy of K.  For example, GKS mode = 1 
produces  an op-key and Ex-key pair,  where  the 
op-key can be a data-privacy  key, with an enci- 
pher  attribute,  and  the Ex-key can  be a data-pri- 
vacy-translate  key, with a translate-in attribute. 
Definitions for  the  data-privacy  and  data-privacy- 
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Figure 5 Encrypted  states  produced  by  the GKS and GKS-E instructions  from  clear  key K 

IST 2N0 

translate  keys  are given in a companion  paper in 
this  issue.  The  translate-in  attribute  permits  the 
key to decipher data in the CF only for  the  purpose 
of immediately re-enciphering it under a different 
data-privacy-translate  key, with a translate-out 
attribute. A full discussion of the  control  vector 
pairs  (CI,C2)  that may be specified to  the GKS 
instruction is not  possible in this  short  paper. 

The GKS-E instruction  is functionally the  same as 
the GKS instruction,  except  that it accepts a dif- 
ferent  set of input  control  vector  pairs (C1 ,C2). 

The cryptographic facility access program (CFAP) 
uses the GKS and GKS-E instructions to generate 
64- and 128-bit keys. A 128-bit key is produced by 
executing the GKS instruction twice and  storing 
both  encrypted key outputs in a single key token. 
In  situations  where,  for  reasons of compatibility, 
it is necessary  to  generate  a 128-bit key with the 
leftmost 64 bits equal  to  the rightmost 64 bits,  a 
Replicate  Key  (REPK)  instruction  can  be used to 
generate an  encrypted  output  representing  the 
rightmost 64 bits of a key from an encrypted input 
representing  the  leftmost 64 bits of a  key.  In  that 
case,  the GKS or GKS-E instruction is used to gen- 
erate  the leftmost 64 bits of the key and  the REPK 
instruction is used to generate  the rightmost 64 
bits of the key  from  the  leftmost 64 bits of the  key. 

Key-distribution environments. The key-manage- 
ment  scheme in IBM-2 is purposely designed to 
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support different key-distribution environments. 
Of course,  these  key-distribution  features imple- 
mented within the CF require  supporting applica- 
tion program services,  e.g., a key server  program 
interfacing to  the CFAP with a capability to 
dynamically generate  and  serve  keys to network 
cryptographic  devices  and  application  programs. 
The key-management architecture  supports  end- 
to-end encryption in a (1) peer-to-peer environ- 
ment, (2) key-distribution-center environment, 
and (3) key-translation-center environment. 

Peer to  peer. A  peer-to-peer  environment  is  set 
up as follows: A  serves  keys  to B, as illustrated 
in Figure 6,  or B serves  keys  to A. A key-distri- 
bution channel is first established  from A to B, 
using nonelectronic  methods, by installing a key- 
encrypting  sender  key, KESKl , at  A  and matching 
key-encrypting receiver  key, KERKI, at B. Then 
A  generates  a matching pair, KERKZ, KESK2, as 
Op-key and  Ex-key,  respectively, keeping Op-key 
KERK2 and serving Ex-key KESK2 to B. A GKS 
instruction  operating in the OP-EX mode is used at 
A  to  generate  keys, as required by the  protocol. 
At B the EX-key KESKZ is imported  by  translating 
it to op-key KESK2, thus  establishing a key-dis- 
tribution  channel  from B to A. An RTMK instruc- 
tion is used at B to import  keys, as required by the 
protocol. 

Key-distribution  center. In  a  key-distribution- 
center  environment,  a  key-distribution  center  C 
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generates  keys  for  A  and B ,  as illustrated in Fig- 
ure 7. For example,  A  serves  a key to B by making 
a request  for  keys  from C. In  response, C gener- 
ates a  pair of keys  and  returns  them  to  A. Where- 
upon,  A  keeps  one of the  keys  and  serves  the 
other  to B. If C is permitted by the key-distribu- 
tion protocol to generate  key-encrypting  keys  for 
A and B, then C can  be  used  to  establish key- 
distribution  channels from A to B and from B to 
A.  Thereafter,  A and B can  use a peer-to-peer 
key-distribution  protocol,  provided  they  have  a 
key-generation  capability. 

To establish a key-distribution-center  environ- 
ment,  key-distribution  channels are established 
from C to A and from C to B using nonelectronic 
methods. That  is, a KESKI is installed at C and 
matching KERKl is installed at A. Likewise,  a 
KESK2 is installed at C and matching KERK2 is 
installed at B. A GKS instruction  operating in the 
Ex-Ex mode, is used at C to generate  keys  for  A 
and B,  as required by the  protocol.  The Ex-EX 
mode  generates  a  pair of keys as EX- and Ex-keys. 

Alternatively,  key-distribution  channels  are first 
established  from  A to C and B to C using non- 
electronic  methods.  Then  A  generates  a matching 
pair (KERKI, KESKI), as OP- and  Ex-key,  respec- 
tively, keeping op-key KERKl and serving Ex-key 
KESKl to C. At C, the Ex-key KESKl is imported 
by translating it to  op-key KESKl, thus  establish- 
ing a key-distribution  channel from C to A. In like 
manner, B generates  a matching pair (KERK2, 
KESK2) and follows the same  procedure to estab- 
lish a key-distribution  channel  from C to B. The 
advantage  here is that  the  attributes in the  control 
vectors  associated with KESKI and KESK2, which 
prescribe  the usage of KESKl and KESK2 at C, are 
entirely  under  the  control of A  and B, respec- 
tively. Thus, A  and B can  grant rights to C to use 
KESKl and KESK2 only for  generating key pairs  for 
A and B, as required by the  protocol.  Keys gen- 
erated  at C on behalf of A  and B, i.e., when C acts 
as a key-distribution center, could not also  exist 
as op-keys  at C. This,  for  example,  prevents C 
from  eavesdropping  on  encrypted  sessions be- 
tween  A  and B. 

Key-  translation  center. In a key-translation-cen- 
ter environment, A  cannot  serve keys to B directly. 
Instead,  A generates a pair of keys, keeps one and 
sends the  other to a key-translation center T, as 
illustrated in Figure 8. T translates the key into a 
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Figure 6 Peer  to  peer 

Figure 7 Key-distribution  center 
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form that can be imported at B and returns it to A. 
A then serves  the translated key to B. 

To  set up a  key-translation-center  environment  is 
a bit more  complicated.  Therefore,  the  example 
shows only how A, B, and  T  cooperate  to  set  up 
a  key-translation  channel  from  A to B. One  can 
see  that it  is fairly easy  to  extend the protocol to 
handle keys in the opposite  direction. 

To  establish  a  key-translation-center  environ- 
ment, key-distribution channels are established 
from A to  T  and from T to B using nonelectronic 
methods.  That  is,  a KESKI is installed at A and a 
matching KERKl is installed at  T.  Likewise,  a 
KESK2 is installed at T  and matching KERK2 is 
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Figure 8 Key-translation  center 

installed at B. A  Translate  Key (XLTKEY) instruc- 
tion is used at T to  translate received IM-keys to 
Ex-keys  (i.e., to re-encrypt  keys from encryption 
under KERKl to encryption under KESK2). This per- 
mits T  on behalf of A to translate keys so that A can 
serve them to B, as required by the protocol. 

Alternatively,  key-distribution  channels are first 
established  from  A  to  T  and B to T using non- 
electronic  methods.  Then  A  generates  a matching 
pair (KESKI, KERKI), as op-key  and  Ex-key,  re- 
spectively, keeping op-key KESKl and  serving EX- 
key KERKl to  T. At T the Ex-key KERKl is im- 
ported by translating it to op-key KERKI, thus 
establishing a key-distribution  channel from A to 
T. Similarly, B generates  a matching pair (KERK~, 
KESKZ), as OP- and  Ex-key,  respectively, keeping 
op-key KERK2 and  serving Ex-key KESK2 to  T. At 
T, the EX-key KESK2 is imported by translating it 
to op-key KESK2, thus establishing a key-distri- 
bution  channel  from  T  to B. The advantage  here 
is that  the  attributes in the control  vectors  asso- 
ciated with KERKl and KESK2, which prescribe 
the usage of KERKl and KESK2 at  T,  are entirely 
under  the  control of A  and B, respectively.  Thus, 
A  and B can  grant  rights  to  T  to  use KERKl and 
KESK2 only for  translating  keys from encryption 
under KERKI to  encryption  under KESK2, as re- 
quired by the  protocol. Keys translated  at  T on 
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behalf of A and B, i.e., when  T acts  as a key- 
translation  center, could not  also  exist  as  op-keys 
at  T. This  imposes  a  level of integrity on  the key- 
translation  process,  that is similar to that  de- 
scribed  above  for  the  key-distribution  center. 

KESK and KERK control vectors. The  control 
vector is the  means  whereby an installation im- 
plements  its own key-management policy and 
rules  for governing the generation,  manipulation, 
and  processing of keys.  The  granularity in the 
control  vector  permits an installation to  set up  its 
key-encrypting  keys  to  support  key  distribution 
in different key-distribution  environments  (i.e., 
peer to  peer, key-distribution center,  and key-trans- 
lation center). In effect, an installation selects the 
type of key distribution it wants  and then imple- 
ments that decision through selectable CFAP options 
that determine how the control vector is encoded. 

The usage control fields in the  key-encrypting 
sender  key  control  vector  and  key-encrypting  re- 
ceiver key control  vector  contain subfields for 
controlling key usage. The  usage subfields in the 
KESK control  vector are shown  in  Table 1. The 
usage subfields in the KERK control  vector  are 
shown in Table 2. For  convenience, usage at- 
tributes are listed using the following notation: 

KESK( ... attributes ...) 
KERK( ... attributes ...) 

Here  the  presence of an  attribute  name  means 
that it has  a value of 1 and  the  absence of an 
attribute name means  that it has  a  value of 0. 
Thus, (KESK(gks op-ex), KERK(rtmk)) denotes a 
(KESK, KERK) pair,  such  that: (a) the control  vec- 
tor  for KESK has  the gks op-ex  attribute  set  equal 
to 1 and the remainder of the  attributes  set  equal 
to  0;  and,  (b)  the  control  vector  for KERK has the 
rtmk attribute  set  equal  to 1 and the remainder of 
the  attributes  set  equal  to 0. 

The minimal configuration to  support  peer-to- 
peer key distribution,  e.g.,  between  cryptosys- 
terns A  and B, is this: 

A : KESKl(gks op-ex) B : KERKl(rtmk) 
KERK2(rtmk) KESK2(gks op-ex) 

The  pair (KESKI, KERKI) provides a key-distribu- 
tion channel  from  A to B and the pair (KERK2, 
KESK2) provides  a  key-distribution  channel  from 
B to A. To  serve a key, A  executes  the GKS in- 
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Table 1 The usage subfields in the KESK control vector 

GKS  IM-EX :: 1 : KESK  can be  used  with GKS  tM-EX to produce  the  EX-key. 

GKS  OP-EX :: 1 : KESK  can be  used  with GKS  OP-EX to  produce  the  EX-key. 

GKS  EX-EX :: 1 : KESK can  be used  with  GKS  EX-EX to produce  the  first 

0 : cannot 

0 : cannot 

EX-key  or  second  EX-key. 

RFMK :: 1 : KESK  can  be  used  with  RFMK to encrypt  an  intermediate 
clear  key  (CL  key) to produce  an  output  EX-key. 

0 : cannot 

0 : cannot 
XLTKEY  OUT :: 1 : KESK  can be used  with  XLTKEY to encrypt  an intermediate 

clear  key  (CL  key) to produce  an  output  EX-key. 
I 0 : cannot 

Table 2 The usage subfields In the KERK control vector 

GKS  IM-EX :: 1 : KERK  can be  used  with GKS  IM-EX to  produce  the  IM-key. 

GKS  OP-IM :: 1 : KERK  can  be  used  with  GKS  OP-IM to produce  the  IM-key. 

GKS IM-IM :: 1 : KERK  can be used  with  GKS IM-IM to produce  the  first 

0 : cannot 

0 : cannot 

IM-key or second  IM-key. 

RTMK :: 1 : KERK  can be used  with  RTMK to decrypt  an IM key  to 
0 : cannot 

recover  an  intermediate  clear  key  (CL  key). 
0 : cannot 

XLTKEY IN :: 1 : KERK  can be  used  with XLTKEY to decrypt  an  input  IM 
key  to  recover  an  intermediate  clear  key  (CL  key). 

0 : cannot 

struction in OP-EX mode to generate an op-key 
which it keeps  and  an Ex-key which it sends  to  B. 
B  executes  an RTMK instruction  to  re-encrypt  the 
received IM-key to  an  op-key. B serves  keys  to A 
in a like manner. 

The minimal configuration to  support a key-dis- 
tribution center, e.g.,  consisting of cryptosys- 
tems A and  B  and  key-distribution  center C, is 
this: 

A : KERKl(rtmk) C : KESKl(gks ex-ex) 
B : KERK2(rtmk) KESK2(gks  ex-ex) 

The pair (KERKI, KESKI) provides a key-distribu- 
tion channel  from C to A, and  the  pair (KERK2, 
KESK2) provides a key-distribution  channel  from 
C to B. In  response  to  a  request  for  keys,  e.g., 
from A, C executes  the GKS instruction in Ex-Ex 
mode to  generate a first Ex-key (encrypted  under 
KESKI) and  a  second Ex-key (encrypted  under 
KESK2). Upon  receipt of the  two  keys  at A, which 
are IM-keys from  the  standpoint of both A and B, 

A keeps  the IM-key encrypted  under KERKl and 
serves  the  other IM-key encrypted  under KERK2 to 
B. Both A and  B  import  their  respective IM-keys 
by executing an RTMK instruction. 

Since C is only granted rights to  use KESKl and 
KESKZ with mode EX-EX of the GKS instruction, 
there is no  opportunity for C to violate the integ- 
rity of the  key-distribution  protocol. In effect, it 
is not possible  for C to give A or B a key that C 
also  has  use of  in its  own  cryptosystem  (i.e., a key 
that C has  stored as  an op-key). Of course, this is 
not the  case if C is totally free  to select  the usage 
control  attributes of KESKl and KESK2. For ex- 
ample,  suppose  that C establishes a configuration 
that  looks like this: 

A : KERK1  (rtmk) C : KESKl(gks op-ex,  rfmk) 
B : KERKP(rtmk) KESK2(gks  op-ex,  rfmk) 

In that  case, in response  to a request  for  keys 
from A, C executes  the GKS instruction in OP-EX 
mode to  generate an op-key  and an Ex-key (en- 
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crypted  under KESK2). C  then  executes  the RFMK 
instruction to  translate  the op-key to  an Ex-key 
(encrypted  under KESKI). C  sends  the  two EX- 
keys  to  A, as before,  but  keeps  the  op-key. An- 
other  variation  on  this  theme is to generate an 
IM-key at c ,  use an RTMK instruction  to  import 
the IM-key, and  use a Translate  Key  instruction 
also  to  translate  the IM-key to  an Ex-key suitable 
to  be given to A. 

The minimal configuration to  support a  key-trans- 
lation center,  e.g., consisting of cryptosystems  A 
and B and  key-translation  center T, is this: 

A : KESKl(gks op-ex) T : KERKl(x1tkey in) 

B : KESK3(gks op-ex) KERK3(xltkey in) 
KERK2(rtmk) KESK2(xltkey out) 

KERK4(rtmk) KESK4(xltkey out) 

The  reader  can  trace  the  steps  necessary  to  serve 
keys  from A to B, and  vice  versa. IBM-2 also  pro- 
vides a compatibility mode  for  electronic key dis- 
tribution.  This  topic is discussed  next. 

Compatibility 

The Transaction  Security  System  provides in- 
structions  for achieving levels of compatibility 
with other IBM and non-IBM systems  not imple- 
menting control  vectors. Chief among these is the 
Translate  Control  Vector (XLTCV) instruction, 
which provides a general mechanism for  adding, 
deleting,  and remapping control  vector  values. 
The XLTCV instruction  permits compatibility with 
any DEA-based key-management  scheme  where 
keys are distributed in one of the following forms: 

eKK(K) 

e* KKK) 

eKK&K) 

e* KK&K) 
where  K is a 64-bit key,  the  leftmost 64 bits of a 
128-bit key,  or  the rightmost 64 bits of a 128-bit 
key;  KK  is a 64-bit key (in the  forms eK,(K) and 
eKK@X(K)) or a 128-bit key (in the  forms e*KK(K) 
and e*KK@y(K)); X is any 64-bit value; Y is any 
128-bit value;  and 0 denotes  the exclusive-OR 
operation. Many existing IBM and non-IBM sys- 
tems implement key distribution using one of the 
listed forms.  (The  most  notable  exception is ANSI 
X9.17, which uses  a  form of key notarization  and 
key offsetting described in another  paper' in this 
issue.) 
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To  export  a  key  to a device  that  does  not imple- 
ment control  vectors, IBM-2 uses  the XLTCV in- 
struction to  translate  an  encrypted key of the 
form e*KK@c(K) to  one of the compatibility forms. 
That is, XLTCV remaps  C to a 64-bit vector of 
zeros,  a 128-bit vector of zeros, a 64-bit vector X, 
or  a 128-bit vector Y. To import  a  key originating 
with a  device  not  supporting  control  vectors, one 
uses  the  reverse  process.  In  the  expression 
e*,,@&), C is a 128-bit control  vector, lo KK is 
either a key-encrypting  sender key (KESK) or a 
key-encrypting  receiver key (KERK).  Also,  the 
XLTCV instruction  has a parity  adjust  option, so 
that  an input key  K  can  be  adjusted for odd  parity 
on  output. 

The mapping process is controlled  by a control 
vector  translation  table (CVTT) created in advance 
by authorized  installation  personnel and supplied 
to  the XLTCV instruction as  an instruction  input. 
The CVTT entries are partitioned  into the follow- 
ing two  groups: (1) those  associated with key- 
encrypting  sender  keys  and (2) those  associated 
with key-encrypting  receiver  keys. As part of the 
CVTT creation  process, the CVTT is encrypted 
with a cryptovariable-encrypting  key  available 
only to  authorized installation personnel.  That  is, 
the  operation of the XLTCV instruction is indi- 
rectly controlled  by  the  special  authorization 
needed to  create  the CVTT. Once  the CVTT has 
been created,  the XLTCV instruction  executes 
without  any special authorization.  This  means 
that  the XLTCV instruction  can  provide  routine 
compatibility support  for  electronic  key-distribu- 
tion protocols involving devices  that do not im- 
plement control  vectors. 

The XLTCV instruction  provides  great flexibility 
for achieving compatibility with devices  that do 
not implement control  vectors.  The  instruction is 
highly granular,  thus allowing an  installation to 
remap  control  vectors only of the  types needed- 
and no more.  However,  the  decision  to  use  the 
XLTCV instruction is one  that  each  installation  can 
make on its own, according to its  own  require- 
ment for compatibility with other  devices  not im- 
plementing control  vectors. 

Super keys. Compatibility among  Transaction  Se- 
curity  System  devices  and  other IBM and nOn-IBM 
devices  not implementing control  vectors is han- 
dled in the  Transaction  Security  System  through 
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the use of super keys. A super  key is a collection 
of encrypted  keys of the form (e*KK@CI(K), Cl), 
(e*KK@Cz(K), C2), (e*KKgcn(K), Cn),  where  the 
sum of the  permitted  uses  granted to K by control 
vectors C1 through Cn is equal to (or perhaps 
greater  than)  the  uses  otherwise  granted  to  K if it 
were  installed, as  usual, in a device  not imple- 
menting control  vectors.  A  super key is a key- 
management construct implemented within the 
CFAP, i.e.,  the CF is unaware of the  super  key.  The 
super key has  a single key name  or key label. 
Thus, from  the point of view of the application 
program,  the  super key is just a single key.  In 
practice,  the  number of different control  vectors 
needed to  cover  the permitted  uses of a key orig- 
inating with a device  not  supporting  control vec- 
tors is small. As a consequence,  storage  require- 
ments  for  super  keys are not burdensome  to  the 
CFAP. An application  program  can  use  a  super key 
in the same  way it uses  any  other  key, by making 
a service  request to  the CFAP and specifying a 
super  key  to  be used in satisfying that  request. 
The CFAP selects  the  appropriate (e*KK@Ci(K), Ci) 
from  the  super key and  executes  the  appropriate 
CF instruction, passing (e*KK@Ci(K), ci)  as  an in- 
put.  The  word  "appropriate" in this  case  means 
that CFAP must  select (e*KK@Ci(K), Ci) so that Ci 
grants to K the needed rights to  be used in the CF 
instruction  that CFAP must  execute in order  to 
satisfy  the  service  request  made by the applica- 
tion program.  Another  service  request involving 
the  same  super key may result in CFAP accessing 
(e*KK@Cj(K), Cj) and  executing a different CF in- 
struction.  Obviously, the intent  here is to keep  the 
CFAP-kVel complexity  associated with the  super 
key hidden from  the using application program. 

Installation of super  keys. The  same key-manage- 
ment instructions used to install Transaction  Se- 
curity  System keys can be used to install a  super 
key.  The difference is that with a  super key the 
process  must  be  repeated  for  each  super key el- 
ement (e*KK@Ci(K), Ci) to be created. Of course, 
one would use  a  method  that  does not require  K 
to  be manually re-entered  into  the CF multiple 
times.  One  acceptable  method is to prepare  super 
keys  at  an off-line device  where K,  KK, and (Cl, 
C2, . . . , Cn) are made available to  a utility program 
that  produces  the  super  key. If one installs KK  at 
the  Transaction  Security  System  device as a key- 
encrypting  receiver key KERK with usage at- 
tribute  (rtmk),  i.e., KERK(rtmk), the CFAP can im- 
port  the off-line prepared  super  key,  element by 
element, using the RTMK instruction. 

Table 3 Example  control  vector  translate table for 
KERK  and  KESK 

I For  KERK:  For  KESK: I 
I Input output Input output I - 

I : :  c1 
c2 

X 
O I  

Electronic  generation  and  export of super  keys. Let 
A  represent  a  Transaction  Security  System  de- 
vice and B a  device  not  supporting  control  vec- 
tors.  A  key-distribution  channel is first estab- 
lished from A to B, using nonelectronic  methods, 
by installing KESKl at  A  and installing match- 
ing KERKl at €3. We assume  that B can  import 
keys  encrypted in the form e*KERKl(K), where  K 
can  have  permitted  uses at B comparable  to a 
super key at A of the form ((e*~~@cl(K),   Cl),  
(e*KMOC2(K), C2)). (After  one  sees how to  handle 
a  super  key with two  elements,  the  method  can  be 
easily extended to handle  any  number of ele- 
ments.) We further  assume  that KESKl is stored  at 
A in the form (e*KM@c@ESKl), C3), possibly as 
part of a  super  key,  where C3 has  attribute  (xltkey 
out). We further  assume  that, in advance,  A gen- 
erates  a  key-encrypting  receiver  key K E R K ~  with 
attributes  (xltkey  in,  rtmk). No matching KESK2 is 
generated, as KERK2 is used only  by  A to send 
keys  to itself. We further  assume  that  a  control 
vector  translate  table (CVTT) is  prepared in ad- 
vance  to  permit  the cv mappings shown in Table 
3  to be made. 

To  generate  and  export a super  key, a 64-bit ran- 
dom number RN is generated at A  and defined to 
be equal  to e*KERKz@x(K), where  K  is the key (un- 
adjusted  for  odd  parity)  that  happens to  be re- 
covered when RN is decrypted with KERK2 using 
the CVD algorithm. The XLTCV instruction  is now 
executed (with the  parity  adjust  option specified) 

and  second to translate e*KERKZ@X(K) to 
e*KERKZ@CZ(K). The  Translate  Key  instruction 
is executed  to  translate e*,,RKz@x(K) to 
e*KEs,l@x(K). The XLTCV instruction is executed 

RTMK instruction is executed first to  import 

first to translate e*KERKz@x(K) to  ~*KERK~@c](K) 

to  translate e*KESKI@X(K) to e*K,sKI@o(K). The 

~*KERKz@c](K)  as e*KM@cl(K) and  second to im- 
port e*KER,Z@cz(K) as e*KM@cZ(K). From  this CFAP 
can build the  super  key ((e*KM@CI(K), Cl), 
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Table 4 Example  control  vector  translate  table for 
KERK 

I a C1 
0 C2 

(e*KM@C2(K)7 c2))* The encqptedkey e*KEsKl@(K) 
is sent to B where it is imported  and lnltlallzed 
using procedures  and  protocols in accordance 
with the  key-management  rules implemented at 
device B. 

Electronic import of super keys. Again, let  A rep- 
resent  a  Transaction  Security  System  device  and 
B a device  not  supporting  control  vectors.  A key- 
distribution  channel is first established from B to 
A using non-electronic  methods, by installing 
KESKl at B and installing matching KERKl at A. 
We assume  that B can  export  keys  encrypted in 
the form e*KE,K1(K), where  K  can  have  permitted 
uses at B comparable to a super  key of the form 
((~*KM@c~(K), C4), (e*~M@cdK), C5)) at  A. We 
further  assume  that KERKl is stored  at  A in the 
form (e*KM@c6(KERKl), C6), possibly aS part Of a 
super  key,  where C6 has  attribute  (rtmk). We fur- 
ther  assume  that a control  vector  translate  table 
(CVTT) is prepared in advance  to  permit  the cv 
mappings to  be made as shown in Table 4. 

Summary 

A key-management  scheme  based on  the control 
vector  has  been  described in which the complex- 
ity associated with key management is associated 
with the  control  vector (i.e., in data  structures). 
This  technique  greatly simplifies the key-manage- 
ment  functions  and  processing  steps. Thus, a ro- 
bust  key-management  scheme is obtained  that 
can grow to provide new and  improved  crypto- 
graphic  services. 

Acknowledgments 

The  authors wish to acknowledge D. B. Johnson, 
R. K.  Karne, R. Prymak,  and  J. D. Wilkins for 
their efforts in codeveloping  the  key-management 
design in the  Transaction  Security  System. 

Cited  references  and note 
1. Data  Encryption  Standard, Federal Information Process- 

ing Standard (FIPS) Publication 46, National Bureau of 
Standards, U.S. Department of Commerce, Washington 
(January 1977). 

2. American National Standard X3.92-1981, Data  Encryp- 
tion  Algorithm, American National Standards  Institute, 
New  York (December 31,  1981). 

3. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L. 
Tuchman, “A Cryptographic Key Management Scheme 
for Implementing the Data Encryption Standard,” ZBM 
Systems Journal 17, No. 2,  106-125  (1978). 

4. S. M. Matyas and C .  X. Meyer, “Generation, Distribu- 
tion, and Installation of Cryptographic Keys,” IBM Sys- 
tems Journal 17, No. 2, 126-137 (1978). 

5. R. E. Lemon, “Cryptography Architecture for Informa- 
tion Security,” ZBM Systems Journal 17, No. 2, 138-150 
(1978). 

6. C. H. Meyer and S. M. Matyas, Cryptography:  A  New 
Dimension in Computer  Data  Security, John Wiley & 
Sons, Inc., New  York  (1982). 

7.  D. W. Davies and W. L. Price, Security for Computer 
Networks, Second Edition, John Wiley & Sons, Inc., 
New  York  (1989). 

8. D. G .  Abraham et al., “Transaction Security System,” 
ZBM Systems Journal 30, No. 2, 206-229  (1991, this is- 
sue). 

9. S. M. Matyas, “Key Handling with Control Vectors,” 
ZBM Systems Journal 30, No. 2, 151-174  (1991, this is- 
sue). 

10. In a companion paper on control vectors appearing in this 
issue,9 the more general expression e*,,@,&) is used, 
where h is a hashing function applied to control vector C. 
However, for 128-bit control vectors,  the more conve- 
nient expression e*,,@&) can be used in place of 
~*KK~Mc)(K) .  

Stephen M. Matyas IBM Federal  Sector  Division, 9500 God- 
win Drive,  Manassas,  Virginia 22110. Formerly a member of 
the Cryptography Center of Competence at the IBM Kingston 
Development Laboratory,  Dr. Matyas is currently a member 
of the Secure Products and Systems department at Manassas, 
Virginia. He has participated in the design and development 
of all major IBM cryptographic products, including the IBM 
Cryptographic Subsystem, and recently he has had the lead 
role in the design of the cryptographic architecture for IBM’s 
recently announced Transaction Security System. Dr. Matyas 
holds 26 patents and has published numerous technical arti- 
cles on all aspects of cryptographic system design. He is the 
coauthor of an award-winning book entitled Cryptography-A 
New Dimension in Computer  Data  Security, published by 
John Wiley & Sons, Inc.  He is a contributing author to the 
Encyclopedia of Science  and  Technology, and Telecommu- 
nications in the US.-Trends  and  Policies. Dr. Matyas re- 
ceived a B.S. in mathematics from Western Michigan Uni- 
versity and a Ph.D. in computer science from the University 

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991 190 MATYAS, LE, AND  ABRAHAM 



of Iowa. He is the recipient of an Outstanding Innovation 
Award for his part in the development of the Common Cryp- 
tographic Architecture. He is presently an IBM Senior Tech- 
nical Staff Member. 

An V. Le IBM Federal  Sector  Division, 9500 Godwin  Drive, 
Manassas,  Virginia  22110. Mr. Le is a staff engineer in the 
Cryptography Center of Competence in the IBM Manassas 
laboratory. He received a master’s degree in electrical engi- 
neering from the University of Utah, Salt Lake City, Utah, in 
1982. He joined IBM in 1983 at Boca Raton, Florida, where he 
worked as  a computer designer in a reduced instruction set 
computer project for several years. In 1986, he joined the 
Cryptography Center of Competence in Manassas, and has 
since been working in the area of cryptographic algorithms 
and  architectures. Mr. Le holds four issued patents, four 
patent applications on file, and has published several technical 
disclosures in the  area of computer design and cryptography. 
He has received two IBM Invention Achievement Awards. 

Dennis G. Abraham IBM US Marketing & Services, 1001 
W. T. Harris  Boulevard,  Charlotte,  North  Carolina  28257. 
Mr. Abraham is a Senior Technical Staff Member in the se- 
curity system architecture area where he has been a leader in 
establishing the architecture and function definitions for the 
IBM Transaction Security System. He attended Fairleigh 
Dickinson University, Rutherford, New Jersey, where he re- 
ceived his B.S.E.E. degree in 1964. He joined IBM  in June 
1964 at  Endicott, New York, where he  held assignments in 
various product and service groups, including circuit design, 
logic design, and a strong speciality in servomechanisms in- 
cluding a special expertise in stepper motor control and de- 
sign. He received his M.S.E.E. from Syracuse University in 
1972. He was the lead architect of the IBM 3890 optical char- 
acter recognition machine. After moving to Charlotte in 1979, 
he has worked in developing image technology as it applies to 
check processing. After an assignment in the National Mar- 
keting Division headquarters, where he provided technical 
expertise for the marketing force, Mr. Abraham joined the 
advanced technology group and was assigned to develop a 
security strategy and architecture for the Consumer Systems 
Business Unit. This work lead to the development of the IBM 
Transaction Security System and the Common Cryptographic 
Architecture. He holds nine issued patents, ten patent appli- 
cations on file, and 23 published invention disclosures. 

Reprint Order No. G321-5429. 

IBM  SYSTEMS  JOURNAL, VOL 30, NO 2, 1991 MATYAS, LE, AND  ABRAHAM 191 


