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A  method  is  presented for controlling 
cryptographic  key  usage  based  on  control 
vectors.  Each  cryptographic  key  has an 
associated  control  vector  that  defines  the 
permitted  uses of the  key  within  the 
cryptographic  system.  At  key  generation,  the 
control  vector  is  cryptographically  coupled to the 
key  via a special  encryption  process.  Each 
encrypted  key  and  control  vector  is  stored  and 
distributed  within  the  cryptographic  system as a 
single  token.  Decryption of a key  requires 
respecification of the  control  vector. As  part of 
the  decryption  process,  the  cryptographic 
hardware also verifies  that  the  requested  use of 
the  key  is  authorized  by  the  control  vector.  This 
paper  focuses  mainly  on  the  use of control 
vectors  in  cryptosystems  based  on  the  Data 
Encryption  Algorithm. 

C ryptography is a  means  often  used  to  protect 
data  transmitted  through  a  communications 

network.  Data  are  encrypted  at a sending device 
using a cryptographic algorithm such as  the Data 
Encryption  Algorithm (DEA)'  and  are  decrypted 
at a receiving device.  The DEA enciphers a 64-bit 
block of plaintext  into a 64-bit block of ciphertext 
under  the  control of a 64-bit cryptographic  key. 
Each 64-bit key  consists of  56 independent  key 
bits and eight bits  that may be used for  error de- 
tection.  In all, there  are 256 different crypto- 
graphic  keys  that may be used with the DEA. 

Since  the DEA itself is a nonsecret  algorithm,  the 
degree of protection  provided by a DEA-based 
cryptographic  system  depends  on how well the 
secrecy of the  cryptographic  keys is maintained. 
Therefore,  an  important goal of sound key man- 
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agement is to  ensure that  cryptographic  keys 
never  occur in clear  (unencrypted)  form  outside 
the  cryptographic  hardware,  except  under  secure 
conditions when keys are first initialized within 
the  cryptographic  device. For  two  cryptographic 
devices to communicate,  the  devices  must  share 
a  common  cryptographic  key.  In fact, a key-man- 
agement scheme commonly uses  many different 
keys as  a  means to control  access  to the  data 
encrypted with those  keys.  The  key-management 
scheme  therefore  needs an efficient and  secure 
means to distribute  keys  from  one  cryptographic 
device to  another.  In  practice, this  means is 
ordinarily accomplished by first installing a com- 
mon key-encrypting  key  at  each  device  and  there- 
after using this  key-encrypting  key to electroni- 
cally distribute  keys  from  one  device to  another. 
Key  distribution  encompasses the  processes of 
key generation,  key  delivery,  and  key  importa- 
tion. The  process of installing the  first, or initial, 
key-encrypting key consists of generating  the key 
at  one  device  and  transporting  the  key  to  the  other 
device  (e.g., via courier)  where it is initialized 
within the cryptographic  hardware  (e.g.,  via man- 
ual entry).  Thereafter,  automated  electronic  pro- 
cedures  are followed. 

To date, cryptographers  and  implementers of 
cryptographic  standards  and  products  have 
evolved key-distribution  schemes  concerned 
mostly with protocols  for  the  exchange of keys 
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Figure 1 Control vector concept 
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and with strategies  for  encrypting  and  authenti- 
cating keys to  ensure  the integrity of the key-dis- 
tribution process itself. However, methods for 
controlling key usage, although not overlooked 
altogether, have been slow to develop, mainly  be- 
cause until now key-management designs have 
needed to handle only a few types and uses of keys. 

Cryptographic  systems being developed today 
must  support  an  increasing  variety of types  and 
uses of keys to meet the growing needs of an ex- 
panded  and  more  sophisticated  community of 
cryptographic  system  users.  In fact, it can  be said 
that a fundamental  element of electronic  key dis- 
tribution is the means  by which key-usage infor- 
mation is conveyed, with integrity, from a gener- 
ating device where keys are created, to one or more 
receiving devices where keys are used. Without 
such a capability, it  may be possible for an adver- 
sary to replace keys of one  type with those of an- 
other  type  and thereby cause a receiving device to 
import and use  these keys incorrectly. 

To illustrate the danger of importing a key of one 
type  as  a  key of another  type,  consider  the  case 
where  a  key-encrypting  key (i.e.,  type = ‘key- 
encrypting key’) is imported as a data-encrypting 
key  (i.e.,  type = ‘data-encrypting key’). A key- 
encrypting  key is used  by  the  cryptographic  hard- 
ware  to  encrypt and  decrypt  other  keys.  Keys 
encrypted  and  decrypted with a  key-encrypting 
key are maintained in the  secure  boundary of the 
cryptographic  hardware:  They may be used by 
authorized  application  programs,  but  the values 
of the  keys  are  kept  secret.  However,  the  data 
encrypted  and  decrypted with a  data-encrypting 
key are directly  available  to  the  application pro- 
gram. Thus, if a key-encrypting key could be 
changed  into a data-decrypting  key,  the  keys  en- 
crypted with that  key-encrypting key could be 
decrypted  and  recovered, in the same way that 
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data  are  decrypted  and  recovered, in clear  form 
outside  the  cryptographic  hardware. 

Within a  cryptographic  system,  software  access 
control  methods  can  be  used to  control key usage. 
The  permitted  uses of a key specified by a cryp- 
tographic application program to  the  crypto- 
graphic system  software,  i.e.,  across  the applica- 
tion program interface (API), can  be  checked  and 
enforced within the  cryptographic  system  soft- 
ware. Thus,  the software  can ensure  that a key 
with an  “encipher”  attribute  but  no  “decipher” 
attribute  can be used with an  encipher  instruction 
but not with a  decipher  instruction.  However, 
methods to achieve  greater  protection are possi- 
ble and may indeed  be  prudent, or  even manda- 
tory,  since an inside  adversary  who  bypasses  the 
cryptographic  system  software  and gains access 
to  the  cryptographic  hardware  interface  can  de- 
feat  security by executing  cryptographic  instruc- 
tions with keys of one  type  substituted  for  those 
of another  type. 

In older  systems  where  the  number of key  types 
and  uses is small, it has  been  common  practice  to 
infer key usage from the  context of the  key-ex- 
change  protocol  (e.g.,  that an  encrypted  data  key 
is transmitted as  the  third block of eight bytes in 
the  second message exchanged within the key- 
distribution  protocol).  But a more  general,  open- 
ended  approach is needed  for  present  and  near- 
term  systems,  where  the  number of key  types  and 
uses is certain to  be larger. To accomplish  this 
approach,  distributed  keys should carry with 
them a record of the  key-related  information  that 
spells out how and  under  what  conditions  these 
keys can  be  processed  by  a using cryptographic 
device.  This  key-related  information should be 
linked cryptographically to  the key such  that it is 
infeasible for an adversary  to  cause  the  crypto- 
graphic hardware  to  process a key  except  by 
specifying and using the  correct  key-related in- 
formation. 

This paper  describes a method  for  controlling  key 
usage through  the  use of a data  variable called the 
control vector. 

How control  vectors  work 

Within a  cryptographic  system,  each  key  has an 
associated  control  vector, as illustrated in Figure 
1. The  key is composed of a  randomly  generated 
string of 0 and 1 bits.  The  control  vector is com- 
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posed of a set of encoded fields representing  the 
authorized or permitted  uses of the  key. During 
key  generation,  the  key  and  control  vector are 
cryptographically  “locked,” or coupled,  to  pre- 
vent  information in the control  vector  from being 
changed.  This  process  involves  encrypting  the 
generated key K with a variant  key-encrypting 
key KK@C, where KK@C is produced  as the 
exclusive-OR product of key-encrypting key KK 
and  control  vector C. Upon  recovery,  the key- 
encrypting  key is again combined with the  control 
vector  to  produce  the same variant key KK@C, 
which is then used to  decrypt  the encrypted  key. 
Since the decryption of the key occurs entirely 
within the cryptographic  hardware,  use of a se- 
cret key-encrypting  key KK yields a  process  that 
the  user  cannot  perform  independently.  The  con- 
trol  vector  particularizes  the  process to one 
“type” of key, while maintaining key secrecy. 
The method  for  cryptographically coupling keys 
and  control  vectors is discussed in greater detail 
in the  section  entitled  Control  Vector. 

The key and  control  vector are cryptographic  var- 
iables  used to initialize, or personalize,  the  cryp- 
tographic  system.  Figure  2  illustrates this proc- 
ess.  The key  personalizes  the  cryptographic 
algorithm by selecting one of many possible map- 
ping functions.  The  control  vector  personalizes 
the  hardware  cryptographic  instruction  processor 
by selecting a set of possible  instructions,  instruc- 
tion modes,  and  instruction  processing  opera- 
tions  that may be  executed by the  cryptographic 
software. 

The  concept underlying the  control  vector  can be 
applied to key-management designs supporting 
both  symmetric algorithms such as  the DEA in 
which the decryption key is the  same as  the  en- 
cryption key,  and asymmetric  (“public-key”) al- 
gorithms in which the  keys  are different. How- 
ever,  the discussion  focuses mainly on showing 
how the  control  vector  can be implemented 
within a key-management  scheme  based on the 
DEA. The first part of the  paper,  up  to  the  section 
entitled  Control  Vector  Forms  and  Formats, dis- 
cusses  general  control  vector  concepts.  The  sec- 
ond  part  discusses  a  control  vector design imple- 
mented in the IBM Transaction  Security  System. 

Background 

The ways in which prior key-management designs 
have  achieved  key-usage  control  can be traced.  In 
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Figure 2 Personalization via the key and control vector 
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a key-management scheme  developed  by IBM, 
outlined in a group of papers  previously published 
in the IBM Systems  Journalz4 and implemented in 
a line of IBM cryptographic  products,  keys are 
separated  and  controlled  cryptographically 
through the  use of variants of a  master  key, called 
key variants. In  the  key  management, a 64-bit 
master  key KMO has  two  master key variants 
KM1 and KM2. In  the cryptographic  hardware, 
KM1 and KM2 are produced  from KMO by ex- 
clusive-ORing nonsecret mask values vl  and v2 
with KMO, i.e., KM1 = KMO @ v l  and KM2 = 
KMO @ v2,  where @ denotes  the  exclusive-OR 
operation.  Keys  stored within the  cryptographic 
system are  separated  into  three  distinct  and  cryp- 
tographically separate  classes,  where  the first 
class is encrypted with KMO, the second  class is 
encrypted with KM1,  and the third  class is en- 
crypted with KM2. Each of these  classes  has a 
different assigned key  usage.  (The  notation  KM is 
sometimes used in place of  KMO.) The IBM key- 
management scheme  has  also  been  extended to 
handle 128-bit master  keys.  In  that  case,  the mas- 
ter key variants KMl and KM2 are produced 
from 128-bit key KMO by exclusive-ORing non- 
secret mask values v l  and v2 with the  leftmost 
and rightmost 64-bit parts of  KMO, i.e., KM1 = 
KMO @ (v1,vl) and KM2 = KMO @ (v2,v2), 
where  the  comma  denotes  concatenation. The 
values vl  and v2 are 64-bit universal  constants 
defined by the key-management architecture. 



In a  key-management  scheme from Smid’ of the 
National  Institute of Standards  and Technology 
(NIST)-alSO incorporated in ANSI (American Na- 
tional Standards  Institute)  Standard X9.176 and 
ISO (International Organization for  Standardiza- 
tion) Standard 8732’“keys are separated  and 
controlled  cryptographically  through  the  use of 
key-manipulation processes called key  notariza- 
tion and key  offset .  Essentially, key notarization 
is a process  in which a key-encrypting  sender key 
(KKij) or a  key-encrypting  receiver key (KKji) is 
derived within the cryptographic  hardware from 
a key-encrypting  key  (KK)  shared  between  two 
communicating devices “i”  and  “j.”  The  keys 
KKij  and  KKji  are  functions of KK and identifiers 

Each pair of devices,  i  and j ,  also 
maintains a pair of synchronized incrementing 
counters CTRij and CTRji. Essentially,  key off- 
setting is a  process in which a unique time-variant 
key  (KKij 0 CTRij) or (KKji @ CTRji) is pro- 
duced within the cryptographic  hardware by ex- 
clusive-ORing a key value and  a  counter  value. 
After a counter  has  been used it is incremented by 
one. At device i,  the variant  key  KKij @ CTRij is 
used to  encrypt  keys in the  distribution  channel 
sent  to  device j ,  and  KKji @ CTRji is used to 
decrypt  keys in the  distribution  channel received 
from device j.  In  contrast  to  the method of key- 
usage control in the IBM key-management 
scheme,  where  key usage is  determined  accord- 
ing to  the key  variant  under which the key is en- 
crypted,  the ANSI X9.17 key-management scheme 
links the usage of a  key  to  the method used to 
derive  the key,  per  the notarization  and offset 
processes.  That  is,  the  use of the  key  depends  on 
how the  key  has  been  derived. 

Key tag. The  method of control  vectors is similar 
in many respects  to a method  based on key  tags 
originally proposed by Jones.8  (See also Dav- 
ies.’) In  Jones’  method, a 64-bit DEA key  consists 
of  56 independent  key  bits  and  an 8-bit key tag. 
That  is,  the eight nonkey  bits ordinarily used or 
reserved  for  error-detection  purposes  are used as 
a key  tag. Although not  contiguous,  the eight tag 
bits  (to, t l ,  .. ., t7) logically constitute a single 
field. The tag bits are defined as follows: Bit tO 
indicates  whether  the  key is a data-encrypting key 
(KD) or a  key-encrypting  key (KK) (0 = KD, 
1 = KK). Bit t l  indicates  whether the key can  be 
used  for  encipherment (0 = no, 1 = yes). Bit t2 
indicates  whether  the  key  can be used for deci- 
pherment (0 = no, 1 = yes).  Bits t3 through t7 are 
spares. (A similar technique is also used to en- 
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code key-usage information within the  control 
vector.) 

Keys are created by a function that  has  an input 
parameter with information necessary  to con- 
struct  a key tag. At key  creation,  bits tO through 
t2 of the tag are  encoded  as  follows.  For a KK 
sender  key,  the bits are  encoded as B‘llO’, indi- 
cating that  the key is a KK  key,  that it can  be  used 
to encipher KDs, and  that it cannot  be  used  to 
decipher  KDs. For a KK receiver key,  the bits are 
encoded as  B‘IOl’, indicating that  the  key is a K K  
key,  that it can be used to  decipher KDs,  and  that 
it cannot be used to  encipher  KDs. A KD key can 
be  encoded as (1)  B‘01 l’, indicating that  the  key 
can be used to encipher  and  decipher data, (2) 
B‘OlO’, indicating that  the key can  be used to  en- 
cipher  but  not  decipher data,  or (3)  B‘OOl’, indi- 
cating that  the key can be used to decipher  but  not 
encipher  data. Thus,  the same  key “typed” in one 
case  as  “encipherment  only”  and in the  other 
case  as  “decipherment  only” gives a kind of pub- 
lic-key cryptographic  system. (A public-key 
cryptographic  system is based  on  a public-key 
algorithm, where  one key is  used  for  encipher- 
ment and  another, different key is used  for  deci- 
pherment.)  Furthermore, a KK  “typed”  at  one 
installation as “encipherment  only”  can  be  used 
to  encipher  keys  to  be  used  at  another installa- 
tion.  The receiving installation  holds a copy of the 
same KK, but  “typed”  as  “decipherment  only,” 
which can  therefore  be  used to  receive  keys from 
the sending installation. 

Once created,  a key and tag remain  together for 
the  “life” of the  key. A tag appears in clear  form 
only when  the key is decrypted  and  processed 
within the  cryptographic  hardware. 

The key tag differs from the  control  vector in sev- 
eral  respects.  First,  the  control  vector  can  be im- 
plemented without affecting key  parity.  This in- 
dependence  permits the  control  vector  to  be  used 
with existing or “off the  shelf”  cryptographic 
hardware  that  accepts  keys only if they  have  cor- 
rect  key  parity.  Second,  practical  implementa- 
tions of the  control  vector are possible  where  con- 
trol  vector length is unbounded.  This  condition 
permits the control  vector specification to be ex- 
tended,  as  necessary,  to satisfy new requirements 
placed on  the  key  management.  Third,  the  control 
vector is a data variable stored  and  transmitted 
with the key in clear  form. Hence, options are 
available for  the  control  vector  to  be  processed 
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advantageously at different levels  and  points 
within the cryptographic  system. For example, 
the  control  vector  can  be  partitioned so that key 
usage can be controlled (1) in the  cryptographic 
hardware, (2)  in the  cryptographic  system soft- 
ware,  and (3) in the  cryptographic application 
program, using three  subvectors, which have 
been specified separately in an architecture. Ba- 
sically, the measure of integrity obtained with 
such a mechanism is as good as  the measure of 
integrity that  one has  over  the  process of ensuring 
that  the  control  vector is not  changed from the 
point in time when it is checked,  either by the 
application or by  the  software,  to  the point in time 
when it is read  into  the  cryptographic  hardware 
where it is processed.  Strategies  and methodol- 
ogies for implementing such  a  hierarchy of key- 
usage control  are  beyond  the  scope of this paper 
and  are  not  further  discussed. 

Control  vector 

The control vector is a  nonsecret  cryptographic 
variable used by a key-management scheme  to 
control  cryptographic  key  usage.  In principle, the 
control  vector  can  be  used  to  control  the usage of 
any  cryptographic  variable, although for  conve- 
nience the discussion is limited to keys. 

In a cryptographic  system,  each key K has an 
associated  control  vector C, where  K  and  C  con- 
stitute a logical 2-tuple (K,C).  Each crypto- 
graphic  device is designed so that  key  processing 
can be performed only if the  requested use of the 
key is authorized by the  control  vector.  In  effect, 
C  grants  processing rights to K.  The granularity 
of control  that  can  be  achieved with the  control 
vector,  although  somewhat  dependent on the in- 
genuity of the  designer,  depends  on  the  breadth 
and  sophistication of the key-management 
scheme  and the number  and kind of processing 
options  available within the  cryptographic in- 
struction  set. For a limited instruction set,  the 
degree of control  exercised via the  control  vector 
is likely to  be  very  simple;  for a comprehensive 
instruction  set  supporting  a wide range of cryp- 
tographic  processing  options,  the  degree of con- 
trol may indeed be highly refined. 

Cryptographic coupling of K and C. Implementa- 
tion of the control  vector concept requires  that 
the key  and  control  vector  (K,C) be coupled cryp- 
tographically.  Otherwise,  the key-usage at- 
tributes  granted  to  each  key could be changed by 
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merely replacing one  control  vector with another. 
Basically, there  are  two  approaches  for  crypto- 
graphically coupling K  and C. A first approach is 
based  on integrating C  into  the  functions  used to 
encrypt  and  decrypt  keys. A second  approach 
makes use of a special authentication  code (AC) 
calculated  directly or indirectly on  K  and C. 

The first approach  has  the  characteristic  that  K is 
recovered  correctly  at a using device only if the 
correct  control  vector  is specified. Conversely, 
specification of an  incorrect  control  vector  does 
not  prevent the decryption  and  recovery of a key, 
but  the  recovered  key K' is for all intents  and 
purposes a spurious  value  bearing  no  known re- 
lationship to  the real  key K.  It is the  task of a good 
architecture or design to  ensure  that recovered 
spurious values of K'  are of no cryptographic  use 
to  a would-be adversary.  The main advantage of 
the  approach is that  for  short C, where  the length 
of C is no  greater  than the length of the key-en- 
crypting key KK used to  encrypt  K, efficient en- 
cryption  and  decryption  functions  can be de- 
vised.  The  additional  processing  introduced by 
the  control  vector is negligible. 

The  second  approach  has  the  characteristic that 
both K  and  C are authenticated  before  K is proc- 
essed by the  cryptographic  device.  But  some  ad- 
ditional processing  overhead is needed to calcu- 
late  AC. For  instance, if AC is defined as a 32-bit 
message authentication  code (MAC), per ANSI 
Standard x9.9," one DEA encryption  step is 
needed to  process  each 64 bits of input. 

Because the first approach of integrating  C  into 
the  key-encryption  and  key-decryption  functions 
has more  favorable  performance  characteristics, 
the  approach is discussed in greater  detail in the 
next section. 

Control  vector encryption and decryption algo- 
rithms. The control  vector  encryption (CVE) and 
control  vector  decryption (CVD) algorithms used 
to  encrypt and  decrypt  a  key,  respectively,  are 
illustrated in Figure 3. In  the CVE algorithm in 
Figure 3,  C is an input control  vector  whose 
length is a multiple of eight bytes; KK is a 128-bit 
key-encrypting key consisting of a  leftmost 64-bit 
part KKL and  a rightmost 64-bit part  KKR,  i.e., 
KK = (KKL,KKR); K is a 64-bit key or  the left- 
most  or rightmost 64-bit part of a 128-bit key.  The 
inputs are processed  as follows. C is operated  on 
by hashing function  h  (described in the following 



Figure 3 CVE and CVD algorithms 
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subsection) to produce  the 128-bit output H. H  is 
exclusive-ORed with KK to  produce 128-bit out- 
put KKOH. Finally,  K is encrypted with KKOH 
to  produce  output e*KK@H(K), where e* indicates 
encryption with 128-bit key KK@H using an en- 
cryption-decryption-encryption (e-d-e) algorithm 
as defined in ANSI Standard X9.17-19S6 and ISO 
Standard 8732. 

An encrypted key of the form e*KK@H(K) is de- 
crypted with the CVD algorithm as depicted in Fig- 
ure 3. C is operated  on by hashing function  h to 

produce the 128-bit output H. H is exclusive-ORed 
with KK  to produce 128-bit output KKOH. Fi- 
nally, e*KK@H(K) is decrypted with KK@H using a 
decryption-encryption-decryption (d-e-d) algo- 
rithm to  produce  output K.  The d-e-d algorithm is 
just  the inverse of the  e-d-e  encryption  algorithm. 

Although the CVE and CVD algorithms in Figure 3 
are described using key-encrypting  key KK,  KK 
could be  replaced by a different key,  such  as  the 
master  key,  KM.  Since the CVE and CVD algo- 
rithms are implemented within the cryptographic 
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hardware, specification of KK is entirely under 
the control of the key  management. 

Hashing function h. The hashing function  h im- 
plemented in the CVE and CVD algorithms is  il- 
lustrated in Figure 4. Hashing  function  h  operates 
on  input  control  vector  C  (whose length is a mul- 
tiple of  64 bits) to produce  a 128-bit output H. 

If C is  64 bits, h(C) is set  equal  to  (C,C),  where  the 
comma  denotes  concatenation,  and  the  extension 
field (bits 45,46)  in h(C) is set  equal to B'OO'. That 
is, h acts like a  concatenation  function. If C is  128 
bits, h(C) is set  equal  to C, and  the  extension field 
in h(C) is  set  equal  to B'01'. That  is,  h  acts like an 
identity  function. If C is greater  than 128 bits, 
h(C) is set  equal  to a 128-bit modification detec- 
tion code  calculated by the MDC-2 algorithm 
shown  later in Figure 5 ,  and  the  extension field  in 
h(C) is set  equal  to B'10'. 

In  each of the  three  cases,  the eighth bit of each 
byte in h(C) is adjusted  such  that  each  byte  has 
even parity.  This  adjustment  ensures  that when 
h(C) is exclusive-ORed with KK, the variant key 
KK@h(C)  has the same  parity as  KK  (i.e., if KK 
has  odd  parity,  then  KK@h(C)  also  has odd par- 
ity). Adjusting bits 7, 15, 23, ..., etc.  (i.e.,  the 
parity bits) and  setting bits in the  extension field 
in h(C) have the following implications. For 64- 
and 128-bit control  vectors, it means  that  these bit 
positions in the control  vector must be  reserved 
for  use by hashing function  h. For control  vectors 
larger  than 128 bits, it means  that 110 bits in h(C) 
are  set  from  the  calculated MDC so that h(C) re- 
mains a cryptographically  strong "fingerprint" 
of c. 
The extension field in h(C) serves  to  ensure,  for 
a fixed KK, that  the  set of keys of the  form 
KK@h(C)  consists of three disjoint subsets  S1, 
S2,  and  S3,  where  S1  denotes  the  keys resulting 
from all 64-bit Cs, S2  denotes  the keys resulting 
from all 128-bit Cs, and S3 denotes  the keys re- 
sulting from all Cs larger than 128 bits.  This pre- 
vents  a form of cheating wherein the CVD algo- 
rithm is tricked  into  decrypting an encrypted  key 
e*KK@h(C)(K) by using a false  control  vector.  To 
illustrate,  suppose C1 is a  control  vector larger 
than 128 bits  and e*,K@h(cl)(K) is an encrypted key 
produced  from KK,  K, and C1. Instead of pre- 
senting e*KK@h(CI)(K) and C1 to  the CVD algorithm, 
e*KK@h(Cl)(K) and h(C1) are  presented.  That  is, 
one  cheats by claiming that h(C1) is a 128-bit con- 

Figure 4 Hashing  function h 
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trol vector.  Since, in that case, h(h(C1)) is just 
equal to h(C1), the CVD algorithm decrypts 
e*KK@h(cl,(K) with the key KK@h(Cl)  to  recover 
K. 

Hashing function  h  accomplishes  two  important 
design objectives. First, it handles  both  short  and 
long control  vectors,  thus  ensuring  that  a key- 
management scheme  based  on the  control  vector 
concept  is open-ended. Second,  the  processing 
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overhead  to handle  short  control  vectors (64 and 
128 bits) is minimized so as  to  have minimal im- 
pact  on the key  management.  A 128-bit control 

An MDC  has  a purpose 
similar to a MAC. 

vector is probably  more  than sufficient to handle 
the  key-usage  control  requirements of most  cur- 
rent  key-management  systems. 

Modification  detection code. A modiJication  de- 
tection  code (MDC) is a nonsecret  cryptographic 
variable of fixed, relatively short length used to 
authenticate a message or plaintext of arbitrary, 
much longer length. An MDC has a purpose similar 
to a message authentication  code (MAC). How- 
ever, unlike a MAC, which is calculated with a 
secret  key,  an MDC is calculated with a public 
one-way  function.  Thus, MDCs can be used ad- 
vantageously in places  where it  is impractical to 
share a secret  key.  More efficient digital signature 
procedures  can  be realized by signing MDCs cal- 
culated  on  messages  rather  than signing the mes- 
sages  themselves.  The  process of loading and  ex- 
ecuting  programs within a  secure memory can  be 
improved  by storing a list of authorized MDCs 
within the  secure  boundary of the  cryptographic 
hardware. When a program is loaded,  an MDC is 
calculated on  the program  and  compared  for 
equality against a specified entry in the MDC list. 
When applied to  control  vectors, MDCs permit 
long control  vectors to  be implemented with a 
cryptographic algorithm having relatively short, 
fixed-length keys. 

A  function  for calculating 128-bit MDC values, 
called the MDC-2 algorithm, is illustrated in Fig- 
ure 5. (MDCS are also  discussed by Meyer  and 
Schilling. 12) The MDC-2 algorithm is so-named be- 
cause  two DEA encryptions  are  performed  for 
each 64-bit block of input  plaintext  processed by 
the algorithm. In Figure 5 ,  K1  and L1  are  two 
64-bit nonsecret  constant  keys.  They  are used 
only to  process  the first 64-bit block of plaintext, 
Y1. Thereafter,  input  values  K2,  K3, ..., Kn are 
based  on  output values (Al,Dl), (A2,D2), ..., 
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(An-1 ,Dn-1),  and  input  values L2, L3, . . . , Ln  are 
based  on  output  values (Cl,Bl), (C2,B2), ..., 
(Cn-1,Bn-I).  That  is,  the  outputs of each  iteration 
are fed back  and  used as  the  keys  at  the  next 
iteration. The 32-bit swapping function merely re- 
places Bi with Di and Di with Bi. 

The MDC-2 algorithm processes  data in multiples 
of  64 bits, with a 128-bit minimum. No padding is 
performed by the  algorithm,  although  such  pad- 
ding could be  performed as a  service by either 
hardware or  software. When padding is required, 
a padding algorithm f should be  used  that is guar- 
anteed  not  to  produce  synonyms. That  is, if Y  and 
Y’ are  two different data  inputs,  the  padded  value 
of Y  must  not  equal  the  padded  value of Y‘ , or 
mathematically speaking, Y # Y’  guarantees  that 
f(Y) # f(Y’). A padding algorithm satisfying this 
requirement is given below. The  method, which 
requires  the input to consist of a whole number of 
bytes, is based  on a padding rule  described in 
ANSI X9.23. l3 (For  convenience,  the  rule is de- 
scribed in terms of bytes  not bits.) If the  data 
length is less  than eight bytes,  pad  bytes  are 
added  to  make  the  data length 16.  If the  data 
length is eight or more  bytes, pad bytes  are  added 
to make the  data length a multiple of eight bytes. 
Padding is done  even if the  current  data length is 
a multiple of eight bytes. All pad bytes  except  the 
last  contain  a  value of X‘FF’.  The  last pad byte  is 
a pad count (in hexadecimal) of the  total  number 
of pad bytes, including the pad byte  containing 
the pad count. 

To  illustrate the problem of synonyms,  suppose 
that  the  above padding rule is followed,  except 
that padding is not  performed  when  the  data 
length is already  a multiple of eight bytes.  Thus, 
an  input  Y  equal to  X‘FFFFFFFFFFFFFFFFF 
FFFFFFFFFFFFFOl’ is not  padded,  since  its 
length is already a multiple of eight bytes.  But  an 
input Y’ equal to  X‘FFFFFFFFFFFFFFFFFFF 
FFFFFFFFFFF’ is padded with X‘O1’ to  produce 
a value X‘FFFFFFFFFFFFFFFFFFFFFFFFF 
FFFFFOl’  equal  to  Y.  Thus,  inputs Y and  Y’  pro- 
duce  the  same MDC. 

An MDC-4 algorithm requiring four DEA encryp- 
tions  per 64-bit block of input  has  also  been  de- 
signed,”  but  its  details  are  not  discussed  here. 

Security of the  CVE and CVD algorithms. The 
method of encryption  and  decryption with de- 
rived keys of the  form  KK@H  provides  an effec- 
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Fiaure 5 MDC-2 alaorithm 
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Input  Y cons i s t s   o f   64 -b i t   b locks  Y1, 
Y2, . . ., Yn, where n must  be > 1. 

Output MDC := conca tena t ion   of  An,  Dn, Cn, 
and Bn. 

For i = 1, K1 and L 1  a r e   d e f i n e d :  
K1 := X‘5252525252525252’  
L l  := X’2525252525252525’  

For i = 2 , .  . . , n ,  K i  and L i  a r e   d e f i n e d :  
K i  := conca tena t ion  of A i - 1  and D i - 1  

e x c e p t   b i t s  1 and 2 a r e   s e t   e q u a l  
t o  B ’ 1 0 ’ .  

e x c e p t   b i t s  1 and 2 a r e   s e t   e q u a l  
t o   B ’ 0 1 ‘ .  

L i  := conca tena t ion   of  C i - 1  and B i - 1  

B i t s  a r e  numbered 0 ,  1, . . ., e tc .  from 
m o s t   s i g n i f i c a n t   t o   l e a s t  s i g n i f i c a n t .  

tive  means to couple  K  and C, since given 
e*KKgH(K)  and C, where h(C) = H, there is no 
apparent  computationally efficient means  to find 
alternative  values of e*KKOHf(K) and C’, where 
h(C’) = H’,  that give rise  to  the  same  recovered 
value of K. There is also  a  precedent  for using 
derived  keys  for key-management purposes.  The 
IBM and ANSI key-management schemes men- 
tioned in the  background  section of this  paper 
each make use of derived  keys  produced  as  the 
exclusive-OR product of a secret key and  a non- 
secret  cryptographic  variable.  In  the IBM key- 
management  scheme,  the  required  nonsecret 
cryptographic variable is formed  from  a 64-bit 
variant mask v. In the ANSI scheme,  the key-off- 
set  process  makes  use of a  nonsecret  crypto- 
graphic variable formed from a 56-bit counter CTR. 

It is noteworthy  that the CVE and CVD algorithms 
are such  that  the  leftmost 64 bits of KKOH may 
accidentally  equal  the rightmost 64 bits of 
KKOH, even  though  the  leftmost 64 bits of KK 
do not equal  the rightmost 64 bits of KK. How- 
ever,  the probability of such  a  random  event is 
about  equal  to 1/256 (i.e., no better  than guessing 
K). It  does  not  appear  that  an  adversary  can gain 

a practical advantage  from  such  a  property,  even 
using a direct  search or trial-and-error  method  by 
holding KK constant  and varying C  to  produce a 
different KKOH. Methods of exhaustive  search 
do not appear  to  be  improved,  nor  does it appear 
that  one  can  detect  when  the  leftmost 64 bits of 
KKOH equal  the rightmost 64 bits of KKOH, 
since K remains encrypted and has  no distinguish- 
ing feature or property that would  signal an adver- 
sary that such a  state has been reached. To prevent 
the leftmost 64 bits of KKOH from ever equaling 
the rightmost 64 bits,  the CVE and CVD algorithms 
could set a  bit,  say bit i, in the leftmost 64 bits of 
KKOH  to B‘O’ and  set  the same bit i in the right- 
most 64 bits to B‘l’.  In that  case, bit i in the 64-bit 
control vector and bits i and i + 64 in the 128-bit 
control vector would be specified in the architec- 
ture as reserved bits (i.e., unused for key manage- 
ment). However,  the  extra computation necessary 
to avoid this situation does not seem to be justified. 

The CVD algorithm is such  that a would-be  ad- 
versary  can  cause a spurious  key K‘  to  be recov- 
ered within the  cryptographic  hardware.  This  re- 
covery is done by replacing input e*KKoH(K) with 
an  arbitrary  value, called “value,” not  equal to 
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Figure 6 Generating  function G 

e*,,@”(K), i.e., by specifying inputs C,  KK, and 
“value”  to  the CVD algorithm instead of inputs C, 
KK, e*KK@H(K). However,  a good key-manage- 
ment design will ensure  that  such  spurious  keys 
are of no beneficial use to a would-be adversary. 
More is said about  spurious  keys in the  section 
entitled Controlling Key  Usage. 

Key  generation  and  distribution 

To make effective use of the  control  vector,  the 
key-management  scheme  must  provide  a gener- 
ating  function G for  the  generation of keys,  as 
illustrated in Figure 6. Function G produces  out- 
puts  e*key,OHI(K) and e*key2@H2(K) from an inter- 
nally generated  random key K and from  input val- 
ues  C 1, C2, key 1 , and key2. C1 and C2 are control 
vectors,  and key 1  and  key2 are 128-bit keys  spec- 
ified by the key management.  In  an  actual imple- 
mentation, keyl and key2 might represent  the 
master key of the generating  device “i,” key-en- 
crypting  keys  shared  between  the generating de- 

vice i  and  designated receiving device “j,” key- 
encrypting  keys  shared  between two designated 
receiving devices j and k,  or some  combination 
thereof.  The  values HI and  H2, in the  expressions 
e*keylgH1(K)  and  e*key20H2(K),  are  hash  values cal- 
culated within function G from the input  control 
vectors C1 and C2, respectively. Different key- 
generation modes and  their  uses within a key- 
management scheme are discussed  in  greater  de- 
tail in a  companion  paper in this  issue. l4 

The first Output e*keyl@H1(K) is produced by Op- 
erating  on  inputs keyl,  K, and C1 with encryption 
algorithm CVE. Likewise,  the  second  output 
e*key2@H2(K) is produced by operating  on  inputs 
key2, K, and C2 with encryption algorithm CVE. 
Function G also validates (Cl,C2)  to  ensure  that 
both control  vectors are  consistent with and  con- 
form to  the architectural specification (i.e., C1 
and C2 represent  a valid pair  permitted  by the key 
management).  This validation is called control 
vector  enforcement or  control  vector checking. 
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Figure 7 Key import with import function I 
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The  outputs e*keyl@HI(K> and are pro- 
duced  only  after (CI ,C2) has  been  validated;  oth- 
erwise  execution of function  G is aborted.  The 
valid control  vector  pairs (CI,C2) are  just those 
arrivedat  duringthe key-management designproc- 
ess. 

The key-usage attributes in C1 and C2 might be 
equal or different. For example, C1 could grant K 
the right to  generate MACS, whereas C2 could 
grant  K only the right to verify MACs. Thus,  one 
using device  can  generate MACs, whereas  a sec- 
ond using device  can only verify MACs. 

Generating  function G, illustrated in Figure 6, can 
be used to  distribute  keys in a  variety of key- 
distribution  environments.  In  a  peer-to-peer envi- 
ronment,  key  distribution  from  one  device  to  an- 
other,  say device  i to device j ,  is handled by 
specifying inputs  (KMi, C1) and  (KKij, C2) to 
function G.  That  is, master key KMi of device  i 
is specified in place of key 1, and  key-encrypting 
key KKij (installed at devices  i  and j) is specified 
in place of key2. The  encrypted  key  outputs  are 

stored as key  tokens (~*KM~@H](K), C1) and 
(e*,~ij@~z(K), C2), respectively.  Key  token 
(~*KM~@H](K), C1) is stored  at  device  i  and key 
token (e*KKij@Hz(K), C2) is transmitted in a key- 
distribution  channel to device j .  

therefore ~*KM~@HI(K)  and e*KKij@HZ(K), which are 

At device j ,  an import  function I is executed to 
re-encipher e*KKij@H*(K) to  the form e*KMj@HZ(K), 
as illustrated in Figure 7, where KMj is the master 

key of device j.  Import  function I consists of two 
steps: ( I )  execution of the CVD algorithm to  de- 
crypt e * ~ ~ i j @ ~ z ( K )  with KKij  and C2 to  recover K 
and (2) execution of the CVE algorithm to  encrypt 

key token (e*KMj@H*(K), C2) is stored  at device j .  

Key tokens (e*K,i@Ht(K), Cl) and (e*KMj@H2(K), C2) 
are now of a form to  be  processed  by  the  cryp- 
tographic hardware at devices  i and j ,  respec- 
tively. 

Of course,  the  processes of key  generation  and 
key import are a bit more  complicated  than  rep- 
resented  here,  since  key-encrypting  keys are en- 
crypted  under the master key and  stored in a key 
data  set.  The only key  stored in clear  form in the 
cryptographic  hardware is the  master  key.  Thus, 
before  KKij  can  be  processed by import  function 
I or by generating  function G ,  it must be de- 
crypted.  This  extra  level of detail is omitted  from 
the  present  discussion. 

The  description of key generation  and key distri- 
bution illustrates  several  properties of key han- 
dling using the  control  vector. The usage of a key 
is determined by its creator,  where  one  encrypted 
copy of the key may have  one usage and  another 
encrypted  copy of the  key may have  another us- 
age. During key distribution,  keys  and  control 
vectors may be  translated  from  encryption with 
one key to encryption with another  key,  e.g., 
from KKij to KMj using import  function I. But the 
process  is  such  that  keys  and  control  vectors  re- 

K with KMj and C2 to  produce e*KMj@Hz(K). The 
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Table 1 instructions  and  encrypted  key  inputs i l :  lnstructlon  input  Parameter 

I3 
I4 

P3, P4 
P5, P6 

main linked or coupled  together so that  one  can- 
not  replace the  control  vector of one key with that 
of another. 

In  order  to  control key usage effectively, one 
must link the usage of a key to usage information 
encoded in the  control  vector. A method  for  ac- 
complishing this linkage is taken  up  next. 

Controlling key  usage 

The main features of key-usage  control  can be 
conveniently  illustrated with a toy,  or example, 
system.  Consider a cryptographic  system imple- 
menting a  set of cryptographic  instructions  I1,12, 
13, and 14, where  I1  and I2 each  have  one  en- 
crypted  key  input  and I3 and  I4  each  have  two 
encrypted  key  inputs.  For  convenience,  the six 
encrypted key inputs are designated P1, P2, . . . , 
P6. The  relationship among the  instructions 
and  the  encrypted key inputs is just  as given in 
Table  1. 

Within the  toy  system,  every  generated key can 
be  used or  processed in up  to six ways,  i.e.,  as P1 
in 11, as P2 in 12, as P3 or P4 in 13, and as P5 or 
P6 in 14. To control key processing  adequately, 
six key-usage fields U1, . . . , U6 are designed 
within the  control  vector  as  part of the architec- 
ture, viz . , 

U1 U2 U3 U4 U5  U6 ... 

Each Ui (for i = 1, ..., 6) is defined as follows: 

Ui = 1 : The  key  associated with this  control 
vector  can  be  processed  as  input 
parameter Pi. 

Ui = 0 : The key  associated with this  control 
vector  cannot  be  processed as input 
parameter Pi. 
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Thus,  the  natural  one-to-one  correspondence  be- 
tween  the  key  parameters  and the key-usage 
fields designed within the  control  vector  enables 
the key management to conveniently  control how 
a key is used  on  the  basis of where the key is used. 

As a notational  convenience,  let (ul,u2,~3,~4,u5,~6) 
represent  the encoding of the usage fields U1 
through U6. The remainder of the bits of the 
toy system in C  are  spares,  and  thus  are ignored 
by the  cryptographic  hardware. The encoding 
(100000) permits  K to  be  processed  as  input  key 
parameter P1 in cryptographic  instruction 11. The 
encoding (110000) permits K to  be  processed ei- 
ther as input  key  parameter P1 in cryptographic 
instruction I1 or  as input  key  parameter P2 in 
instruction 12. 

When an  instruction  has two  or  more execution 
modes controlled by an input  mode  parameter, 
the assignment of input  key  parameters  can be 
made on  the  basis of individual instruction 
modes. Thus,  better  granularity in key-usage con- 
trol is achieved. 

When encrypted  keys  and  control  vectors  are 
specified as inputs to a cryptographic  instruction, 
each  control  vector is checked to  ensure  that  the 
requested  use of the key is permitted,  as illus- 
trated in Figure 8. That  is,  control  vector check- 
ing ensures  that  the  key usage implied by the 
specification of a key as a particular  input  param- 
eter Pj  in a particular  instruction or instruction 
mode Ik, is permitted by the  control  vector. If 
checking succeeds,  the  key-recovery  process is 
enabled  and  processing  continues;  otherwise in- 
struction  processing is aborted.  The  key-recov- 
ery  process  decrypts the input  encrypted  keys. 
Where  necessary,  the  master  key KM is input to 
the  process,  thus  permitting  keys  encrypted un- 
der KM to be decrypted using the CVD algorithm 
previously described in Figure 3. Thereafter,  the 
decrypted  keys as well as additional  input infor- 
mation are processed  by the cryptographic in- 
struction to produce one  or more  outputs. 

If one  cheats by specifying e*KMOC1(K)  and C2 
instead of e*KMOCl(K)  and C1 (Le., a false  control 
vector C2 is specified instead of Cl),  one of two 
things will happen. If control  vector  checking 
fails, the  instruction is aborted. If control  vector 
checking succeeds,  the  key-recovery  process will 
recover a spurious  key K’ # K. As mentioned 
several  times  previously, it is the  task of the  key- 
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Figure 8 Control vector checking process 
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management  scheme to  ensure  that such  spurious 
keys  are of no beneficial use  to a would-be ad- 
versary.  In  practice, it is rather  easy  to  ensure, 
since  cryptographic  applications generally in- 
volve two communicating parties  who  must  each 
possess the same  cryptographic  key.  Thus,  for 
practical  purposes,  one communicating party 
cannot  cheat the  other, since  the  keys  recovered 
within the  cryptographic  hardware in that  case 
are K and K' (i.e.,  the first device  has K and  the 
second  device  has K', or vice versa). 

Instead of a  control  vector specification like the 
one shown at  the beginning of this  section,  where 
a single control  vector  contains  the usage at- 
tributes  for all instructions,  there may be multiple 
control  vectors. A more  intuitive  control  vector 
specification is achieved if separate  control  vec- 
tors  are  made a part of the  architecture  for  each 
broad  category or  type of key, such as  data  keys, 
key-handling keys,  and PIN-handling keys. For 
example, I1 and I2 might be  data  processing in- 
structions  and I3 and  I4 might be key-handling 

instructions, in which case it may be  advanta- 
geous  to  group I1 and I2 to form a first set called 
Type 1 and  to  group I3  and I4 to  form a second set 
called Type 2, as illustrated  below.  Control  vector 
checking is similar except  for  the  additional  type 
field which must  be  checked. 

Type 1 U1 U2 ... 

Type 2 U3 U4 U5 U6 ... 

The toy system  provides  a  convenient  method  for 
introducing the  general principles of control vec- 
tor design. However,  the  power  and  versatility of 
the  control  vector are  best  understood  and  ap- 
preciated  from  the  study of an  actual implemen- 
tation.  Therefore,  the  remainder of the paper  dis- 
cusses  a  control  vector design implemented in 
IBM'S Transaction  Security  System. The key- 
management and  cryptographic  system design 
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Figure 9 Format of the  control  vector  base 
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pursued in the  Transaction  Security  System  are 
discussed in companion papers in this issue. ’” 
Control  vector  forms  and  formats 

The key-management scheme implemented in the 
IBM Transaction  Security  System  supports 64-bit 
control  vectors and, in a few cases, 128-bit con- 
trol  vectors. 

A 64-bit control  vector, or  the first 64 bits of a 
128-bit control  vector, are called a control  vector 
base. The  second 64 bits of a 128-bit control vec- 
tor  are called a control vector  extension. The  con- 
trol  vector  extension  supports special-purpose 
key management such as installation-specific 
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key-management controls  and  also  provides 
space  for  future  uses. 

Format of the  control  vector  base. Figure 9 illus- 
trates  the general format of the  control  vector 
base.  The  control  vector  base  consists of three 
primary subvectors:  a parity subvector,  a  cryp- 
tographic facility access program (CFAP) subvec- 
tor, and a  cryptographic facility (CF) subvector. 
The CF and CFAP are  the  hardware  and  software 
components of a  cryptographic  system (also see 
Reference 14). 

Parity subvector. The parity subvector (depicted 
as a single field)  is composed of eight parity bits 
whose bit locations are  structured  according  to 
the  architecture  to coincide with the eight parity 
bits in a 64-bit DEA key.  The parity subvector  has 
even  parity,  i.e.,  the parity bit in each  byte is 
adjusted so that  the  number of “1” bits in each 
byte is an even  number.  The parity bits are  set by 
the  cryptographic  software  and  are ignored by the 
cryptographic hardware. Maintaining even parity 
in the  control  vector  ensures  that  for  a given key 
all keys derived from that given key will have  the 
same parity as  the original key.  Even parity 
avoids potential hardware incompatibilities that 
may result during key processing,  e.g., if proc- 
essed by an  encryption or decryption  chip  that 
requires keys to have  odd  parity. 

CFAP  control subvector. A CFAP control subvec- 
tor is a collection of fields used by the CFAP for 
key-handling and key-management purposes. 
This subvector is not  processed by the CF, i.e., 
the  hardware ignores this field. A bit in the CFAP 
control  subvector  indicates  whether  the associ- 
ated  encrypted key may be specified as an input 
parameter to  the CFAP at  the  application program 
interface (API) or whether  the key must  be  stored 
in a  cryptographic key data  set  and  accessed  on 
the basis of a key label specified as  an input pa- 
rameter to the CFAP at the API. Greater integrity 
is achieved if keys are managed by the  system. In 
that  case,  a system-level access  control program 
such as  the IBM Resource  Access  Control Facility 
(RACF) can be the means to restrict  the  use of 
cryptographic keys to authorized  users only. 

CF  control subvector. The CF control subvector 
is a collection of  fields used by the  cryptographic 
facility for key-handling and key-management 
purposes. 
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CF control  subvector  field  descriptions. The CF 
control  subvector  contains  the following nine 
fields: antivariant,  extension,  key  part,  export 
control,  form,  type, usage control,  log, and re- 
served. 

Antivariant. The antivariant field is used to cryp- 
tographically distinguish control  vectors  from 
variants,  i.e.,  to  ensure  that an  encrypted key of 
the form e*,,&K), where V is the concatenation 

Encrypted keys conforming 
to one architecture cannot 
be substituted and used for 

keys of another  architecture. 

____ 

of a 64-bit variant mask v with itself (i.e., V = 
v,v),  cannot  be  substituted  and used in a mean- 
ingful way  for  an  encrypted key of the form 
e*,,@”(K), where  H is derived from a  control 
vector using hashing function h,  and vice versa. 
In  a key-management scheme  based  on key var- 
iants,  each  variant mask v is a 64-bit value formed 
by replicating a single eight-bit value eight times. 
Each eight-bit value  has  even  parity, and the val- 
ues  are  selected so that  no  two eight-bit values are 
complements of each  other.  The  antivariant bits 
are designed in an  architecture so that  at  least  two 
bytes in the  control  vector are unequal,  thus  en- 
suring that  the  set of all values of the form h(C) 
and  the  set of all 128-bit variant mask values (v,v) 
are disjoint.  This  permits  architectures based on 
control  vectors  and  variants  to  coexist without 
harmful side  effects, i.e.,  encrypted  keys  con- 
forming to  one  architecture  cannot be substituted 
and used for  keys of another  architecture. 

Extension. The extension field (not to be confused 
with the  control  vector  extension)  indicates  the 
length of C,  i.e., 64-bit, 128-bit, or greater  than 
128-bit. The extension field  in C is structured  to 
coincide with the extension field  in h(C), which 
was  discussed in the  subsection  on hashing func- 
tion h. 

Key  part .  The key-part field indicates  whether  the 
cryptographic variable associated with the  con- 
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trol  vector is (1) a  key or (2) an intermediate  key 
value. An intermediate key value consists of a 
single key  part  or  the  exclusive-OR  product of 
two  or more key parts.  The  key-part field in the 
control  vector  works in combination with the 
cryptographic  instructions to  control  the import- 
ing of keys.  The  cryptographic  instructions  per- 
form key installation via the  entry of two  or more 
key-part  values, which when combined within the 
cryptographic  hardware,  form the  key.  Thus, 
each  part of the key may be  entered  separately by 
different people. 

Export  control. The export  control field indicates 
whether  the key or cryptographic variable asso- 
ciated with the  control  vector (1) may be  exported 
or (2)  may not be exported.  The  term  “export” 
refers  to  a  key-management  process in which a 
key or cryptographic variable is translated  from 
encryption  under  the  master  key to encryption 
under a key-encrypting  sender key KESK, which 
permits the key to be transmitted to a receiving 
device  where it is imported. The  task of “export- 
ing” a  key is performed by a cryptographic in- 
struction which re-enciphers the key  from  enci- 
pherment  under the  master  key  to  encipherment 
under  a  key-encrypting  sender  key.  However, 
this operation is performed only if the  export  con- 
trol field  in the  control  vector of the key indicates 
that  the key may be  exported. A cryptographic 
instruction is also available to  reset  the  export 
control field from the  “export  allowed”  state  to 
the “export not allowed” state.  However,  the  ex- 
port control field cannot be changed from the  ex- 
port-not-allowed state to the export-allowed state. 

Form. The form field indicates  whether  the 64-bit 
variable associated with the  control  vector is (1) 
a  class 1 key, (2) the  leftmost 64 bits of a class  2 
key, (3) the  leftmost 64 bits of a  class 3 key, (4) the 
rightmost 64 bits of a  class  2 key,  or (5)  the right- 
most 64 bits of a  class 3 key.  The  term  “class” is 
used here only to help distinguish the five cases. 
A  class  1 key is a 64-bit key.  A  class 2 key is a 
128-bit key in which the leftmost  and rightmost 
64-bit parts of the key are independently  gener- 
ated. A class 3 key is  a 128-bit key in which the 
leftmost and rightmost 64-bit parts of the key are 
independently  generated or deliberately  set  equal 
for compatibility with 64-bit keys.  Figure 10  il- 
lustrates  the  three  supported  classes of keys. 

The  form field provides  cryptographic  separation 
among the  three  classes of keys and,  for  class 2 
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Figure10 Classes of keys 
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and  class 3 keys,  between  the  leftmost  and right- 
most 64-bit parts of the  key.  In effect, it ensures 
that  the  class of the key specified at  the instruc- 
tion interface is permitted by the instruction,  and 
it ensures  that  the  leftmost 64 bits  and rightmost 
64 bits of 128-bit keys  cannot  be  interchanged  and 
used  incorrectly. 

Control  vector  type. The control  vector  type field 
indicates  what  type of 64-bit variable is associated 
with the  control  vector.  The  control  vector  type 
field consists of a main-type and  a sub-type. The 
main-type defines broad  types of keys  and  cryp- 
tographic  variables,  whereas  the  sub-type defines 
particular  types of keys within each  main-type. 
Together,  the main-type and  sub-type fields fa- 
cilitate the definition of a set of generic key and 
cryptographic  variable  types using a  hierarchical 
naming structure.  Figure 11 shows  the  control 
vector  main-types  and  sub-types. 

Keys  and  cryptographic variable names are 
formed as a  concatenation of the main-type name 
and  the  sub-type  name,  except  that  the word 
“key” appearing in main-type is moved to the 
end.  Thus, main-type = “data  key,”  and sub-type 
= “compatibility,’  becomes  data compatibility 
key. A short  description of the  use of each key 
and  cryptographic variable type is provided be- 
low. In  the specification of names  for  main-type, 
the  term  “cryptovariable” is used as an  abbrevi- 
ation  for  cryptographic  variable. 

The data  compatibility  key is used to maintain 
compatibility with devices  not implementing the 
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control  vector.  Usage  control  bits  permit the  key 
to  encipher data, decipher data, generate MACS, 
and verify MACs. 

The data  privacy  key is used to  support  crypto- 
graphic applications  requiring  encipherment  and 
decipherment of data. Usage  control bits permit 
encipher-only and  decipher-only  operations. 

The data MAC key is used  to  support  crypto- 
graphic  applications requiring the  generation  and 
verification of MACs. Usage  control  bits  permit 
generation-only and verification-only of MACs. 

The data  privacy-translate  key is used to  support 
cryptographic  applications requiring ciphertext 
translation.  Usage  control  bits  permit  decrypt- 
only or encrypt-only  operations in the  ciphertext 
translate  instruction. A data  privacy-translate 
key operates  together with a data privacy  key. A 
data  privacy-translate  key  can  only  decrypt ci- 
phertext originally encrypted with a data privacy 
key. Likewise,  plaintext  re-encrypted with a data 
privacy-translate  key  can  only  be  decrypted with 
a  data privacy key. 

The data  compatibility-translate  key, like the 
data  privacy-translate  key, is used  to  support 
cryptographic  applications requiring ciphertext 
translation. Usage control bits permit  decrypt- 
only or encrypt-only  operations in the  ciphertext 
translate  instruction. A data compatibility-trans- 
late key operates  together with a data compati- 
bility key. A data compatibility-translate  key  can 
only decrypt  ciphertext originally encrypted with 
a  data compatibility key.  Likewise,  plaintext  re- 
encrypted with a  data  compatibility-translate  key 
can only be  decrypted with a data compatibility 
key. 

The data ANSI key is used to  support ANSI X9.17 
key management.  Usage  control  bits  permit the 
key to  encipher data, decipher data, generate 
MACS, and verify MACS. 

The PIN-generating  key is  used to  support finan- 
cial transactions requiring dynamic  user PIN (per- 
sonal identification number) verification. Usage 
control  bits  permit the key to  generate clear  and 
encrypted PINs and  to generate  reference PINs 
used in PIN verification. 

The PZN-encrypting-in  key is used to  decrypt in- 
bound PINS processed  by the PIN instructions. Us- 
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Figure11 Control vector hierarchy 
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age  control bits permit the key to be used in CF 
instructions  for verifying encrypted PINs, gener- 
ating clear  offsets,  translating PINS, and reformat- 
ting PINS. 

The PIN-encrypting-out  key is used to  encrypt 
outbound PINS processed by PIN instructions.  Us- 
age  control  bits permit the key to  be used in CF 
instructions  for  formatting  and  encrypting PINs, 
generating  formatted  and  encrypted PINS, trans- 
lating PINS, and  reformatting PINS. 

The  attributes  “in”  and  “out”  associated with the 
PIN-encrypting key cut  down  the  amount of free- 
dom  a would-be adversary would have  to manip- 
ulate  the  cryptographic  instruction  interfaces in 
an attempt  to  subvert  security.  In  effect,  they  per- 
mit a finer degree of control  to be achieved in the 
management  and  processing of PINs. 

The key-encrypting  sender  key is used at a send- 
ing device to  encrypt keys  transmitted  to a re- 
ceiving device.  Usage  control bits permit the key 
to be used in CF instructions  for  generating  keys, 
exporting  keys,  and  translating  keys. 

The key-encrypting  receiver  key is used at a  re- 
ceiving device  to  decrypt  keys  received from a 

sending device.  Usage  control  bits  permit  the key 
to be used in CF instructions  for  generating keys, 
importing keys,  and  translating  keys. 

The  key-encrypting  sender  key  and  key-encrypt- 
ing receiver  key  control  vectors  permit  establish- 
ment of a  unidirectional, or  one-way, key-distri- 
bution channel  between  two  devices. 

The key-encrypting  terminal  key is used to main- 
tain compatibility with terminal  devices  not im- 
plementing the  control  vector.  Usage  control  bits 
permit certain key types  to  be  encrypted  under 
this key for  electronic  distribution to a terminal. 

The key-encrypting ANSI  key is used in support of 
ANSI X9.17 key management to electronically 
transmit  and  receive  keys. 

The cryptovariable-encrypting key is used to en- 
crypt  and  decrypt  cryptographic  variables  proc- 
essed by certain  cryptographic  instructions. 

The PIN block,  cryptovariable  token,  cryptovari- 
able  intermediate ICV,  and unspeciJied control 
vectors are not defined here. 

The  architectural  advantages of multiple types of 
control  vectors,  as specified by the  control  vector 
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type field, are  these.  First, shorter control  vectors 
are possible,  since  each  key  type is processed by 
fewer  cryptographic  instructions. Thus, fewer 
usage control  bits  are  required  to  control key 
processing.  Second, if the  control  vector  type  and 
usage control fields are designed with key  gener- 
ation in mind,  the  control  vector  type field can be 
used  advantageously to simplify control  vector 
checking  during  key  generation.  The  idea is to 
define the  control  vector  type  and usage control 
fields in such a way  that  generating  function  G  can 
validate  each  input  control  vector  pair (C1 ,C2) on 
the  basis of checking the control  vector  type fields 
in C1 and  C2,  but  not  checking  the usage control 
fields. To do  this, function  G  must  store a list of 
valid pairs of control  vector  types.  The usage con- 
trol fields are designed so that  any  combination of 
usage bits, in either C1 or C2, is permitted.  That 
is,  no specification of the usage control field leads 
to a conflict in consistency or security.  Third,  the 
specification of keys  and  cryptographic variables 
via the  control  vector  type field, where  control 
vector  types  indicate  broad application areas 
served by these  keys  and cryptographic varia- 
bles,  leads to  an intuitive specification. Also, the 
key types  are  consistent with key types defined 
for existing cryptographic  products.  In  addition, 
key  types  are  chosen  to closely parallel the ge- 
neric  uses of keys  from  the  perspective of the  user 
and  application  program.  Structuring  the  control 
vector  type field in this way makes it easier  to 
understand,  and it should permit the key-man- 
agement  architecture  to  be more easily extended. 

Usage  control. The usage  control field specifies 
the permitted  uses of the 64-bit variable (64-bit 
key, leftmost or rightmost 64-bit parts of a 128-bit 
key,  or a 64-bit cryptographic variable) associ- 
ated with the  control  vector.  The usage control 
field consists of a  collection of subfields, unique 
for  each  control  vector  type.  That  is,  the subfields 
defined for  a data privacy key are different from 
those defined for  a  key-encrypting  sender  key,  or 
for  a PIN-encrypting-in key,  etc. 

Characteristics of the usage control field and  the 
architectural  rules  pursued in its design follow. 
Generally,  each subfield in the usage control field 
is a bit which either  enables  (set  to 1) or disables 
(set to 0) the  use of the  key or cryptographic vari- 
able as a specific input  parameter to a specific 
cryptographic  instruction.  However,  there  are 
cases where this level of control is limited only to 
particular  instruction  modes.  In  other  cases it  is 
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broadened to include a group of like or related 
cryptographic  instructions.  Generally  speaking, 
the usage control field enables a cryptographic 
application, via the  cryptographic  software, to 
limit or  restrict  the usage of a key in order  to 
achieve a different measure or level of crypto- 
graphic  security.  Instruction  mode  parameters 

The  usage control field specifies 
the permitted uses of the 64-bit 

variable associated with the 
control vector. 

are the  external  means  used  to  control  instruction 
execution. The control  vector  type  and usage 
control fields are designed to facilitate  and sim- 
plify control  vector  checking.  They are  also  de- 
signed to  provide a high degree of security by 
avoiding control  vector specifications that lead to 
conflicting key-usage attributes. 

Log. The log field, used  only in the key-encrypt- 
ing sender  key  and  key-encrypting  receiver  key 
control  vectors,  provides  an  audit  trail of the  us- 
age control field. If (Cl,C2)  are  the  control  vec- 
tors of a to-be-generated  key,  where C1 is a key- 
encrypting  sender key control  vector  and C2  is a 
key-encrypting  receiver  key  control  vector, the 
usage control field in C1 is stored in the log field 
in  C2 and  the usage control field in C2 is stored in 
the log field  in C1. In  this way the  user of each key 
is permitted  to  see  the usage attributes of the 
other  key. 

Reserved. The reserved field provides  a  control- 
vector-based  key management with a means  for 
extending  the  architecture to meet  future  require- 
ments, with minimal or  no impact  on  products 
implementing the  control  vector. 

Example of key-usage control 

The  process of key-usage control  can  be illus- 
trated by looking at a typical control  vector lay- 
out  and  the  control  vector  checking  steps used 
in a typical cryptographic  instruction  to  check 
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the control  vector. For example,  consider  a 
data privacy  key  control  vector of the form 
X‘0003600003000000’. Table  2  shows  the bit lay- 
out  for  this  control  vector. 

The  control  vector  type field (bits 08-14) is en- 
coded  as B‘0000001’, indicating that  the key is a 
data privacy  key.  The  export  control field (bit 17) 
is encoded  as B‘ l’, indicating that  the  key  can  be 
exported.  The usage control field (bits 18-19) is 
encoded as B‘ lo’, indicating that  the key can  be 
used to  encipher  data but  not  decipher  data.  That 
is,  the  “encipher” usage control bit is B‘l’ and the 
“decipher” usage control bit is B‘O’ . The  anti- 
variant field (bits 30 and 38)  is encoded as B‘Ol’, 
indicating that  the field is properly set.  The CFAP 
control field (bits 32-37) is unchecked by the 
cryptographic  hardware. The form field (bits 
4042) is  encoded as B‘OOO’, indicating that  the 
key is a 64-bit key.  The key part field (bit 44) is 
encoded  as B‘O’, indicating that it is a key, not a 
key  part.  The  extension field (bits 45-46) is en- 
coded  as B‘OO’, indicating that  the  control  vector 
is a 64-bit control  vector.  The  remainder of the 
control  vector bits are reserved  and  untested. 

A data privacy key and  control  vector are proc- 
essed in the CF instructions  that  encipher and de- 
cipher data.  The control  vector  checking  steps 
performed in the CF instruction  that  enciphers 
data  are listed below: 

1.  Control  vector  type field encoded as  data com- 
patibility key or  data privacy key or  data ANSI 

2. “Encipher” bit in usage control field  in “en- 

3. Form field encoded as “64-bit key” 
4. Extension field encoded as “64-bit CV” or 

5 .  Valid antivariant field required 
6.  Key-part field encoded  as  “key” 

This relatively simple set of control  vector  check- 
ing steps  illustrates  several things about  the  con- 
trol  vector checking process.  First,  the checking 
steps  are  independent of one  another, so that  they 
can be performed in any  order.  In  fact,  because of 
this independence, it is possible  to  allocate  con- 
trol  vector  checking among multiple processors. 
In that case,  each  processor performing control 
vector  checking  reports  the  outcome  to  the  proc- 
essor  that  executes  the  instruction,  and if trust- 
worthy  positive  responses are received from each 

key 

abled”  state 

“128-bit CV” 
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Table 2 Bit  layout  for  data  prlvacy  key  control  vector 

Blt Poslttons  Bit8 

X0003600003000000’ 

0047 Dooom 
OS15 oooo 0011 
16-23 01 10 oooo 
24-3 1 moooo 
32-39 m 0011 
4 0 4 7  oooooooD 
48-55 oooom 
56-63 oDoooooO 

processor,  instruction  execution is enabled.  For 
example,  a  smart  card used at a workstation 
could, in theory,  be  personalized to perform in- 
stallation-unique control  vector  checking, e.g., 
using installation-specified fields in the control 
vector  extension.  In  that  case,  control  vector 
checking of the  control  vector  base is performed 
by the  cryptographic  hardware of the  device,  and 
control  vector  checking of the  control  vector  ex- 
tension is performed by the  smart  card.  Such in- 
stallation-unique checking might include  a provi- 
sion for  keys  to  be used only during specific time 
periods, or  days of the  week. 

Second,  each  control  vector  checking  step  can 
test a field for  one  value,  or  for  one of several 
possible permitted  values. For example, the en- 
cipher  instruction  permits  data to  be enciphered 
with three different key types,  viz.,  data  compat- 
ibility key,  data  privacy  key,  and  data ANSI key. 
The  form,  antivariant,  and  key-part fields are 
tested  for specific values.  This  testing  means  that 
the  control  vector  checking  process  accepts as 
valid any  one of possibly many different control 
vectors, not just  one control  vector. 

Third,  control  vector  checking is sparse. For ex- 
ample, of the 256 possible 64-bit control  vector 
base values that  can  serve  as  input  to  the  encipher 
instruction,  6 x 240 of these  are  valid. Of the 16 
tested  bits,  there are six valid combinations and, 
of the 40 untested  bits,  there are z4O valid com- 
binations, giving a  total of 6 X z 4 O  valid combi- 
nations. The bits in the parity field are ignored.  In 
contrast to control  vector  checking,  for a key- 
management scheme  based  on  key  variants, 
where 64-bit key-variant values are somewhat  ar- 
bitrarily assigned by the  architecture,  the  analo- 
gous checking process is therefore  based  on  a 64- 
bit encoded key variant.  In  that case,  to  check 



any  one of the 6 X 240 different 64-bit vectors 
requires  a  lookup  table  containing  6 X 240 en- 
tries-which  will not  work!  The  power of the con- 
trol  vector  over the key  variant is evident. 

Table 2 shows an example of a control  vector  base 
value  that  passes  the  control  vector  checkingproc- 
ess  for  the  encipher  instruction.  The  reader may 
find  it instructive  to  trace  each checking step  and 

Control vector checking is 
sparse. 

verify that  the  encoded  value in each  control  vec- 
tor field checked by the  encipher  instruction is 
indeed valid. 

Control  vector  enforcement 

The  process of control  vector checking described 
in the  section  entitled  Control  Vector  Forms  and 
Formats is in reality only one way in which the 
cryptographic facility (cF) can  ensure  that  the  set 
of control  vectors specified to a cryptographic in- 
struction are  consistent  and  permitted.  This more 
general  process is called control  vector  enforce- 
ment.  Control  vector  checking is just  one way to 
accomplish  control  vector  enforcement. 

The following methods or combinations of meth- 
ods may be  used  to  accomplish  control  vector 
enforcement: 

Specify  control  vector in CFAP and  check  con- 
trol  vector  bits in CF: This  method  checks bits 
and fields within the  control  vector to  ensure 
that  they  contain  permitted  values.  In  certain 
cases, cross-checking of bits  and fields among 
two  or more  control  vectors is necessary to en- 
sure  that  they  contain  only  permitted combina- 
tions of values. 
Specify control  vector in CFAP and  set  control 
vector  bits in CF: This  method  sets bits and 
fields within the  control  vector to prescribed 
values  (i.e., by overwriting  the bits and fields of 
the  control  vectors  passed  at  the  instruction in- 
terface). 
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Generate  control  vector  in CF from information 
specified by CFAP: This  method  generates  con- 
trol  vectors  from  parameter  information  passed 
at  the instruction  interface. 
Table  lookup of control  vector in CF from  index 
specified by CFAP: This  method  uses a table of 
control  vectors  stored within the CF. An index 
value passed at  the instruction  interface  selects 
the  control  vector or  vectors used by an instruc- 
tion. 
Control  vector implicitly specified: The CF in- 
struction  uses  a fixed set of control  vectors. 
Since  there  is no variability, the  control  vectors 
are  stored as  constants in the  instruction. 

In  the key-management scheme implemented in 
the  Transaction  Security  System,  control  vector 
enforcement is accomplished using the first and 
third methods  (i.e.,  control  vector  checking  and 
control  vector  generation). The first method  per- 
mits errors in the  control  vector to  be  detected 
and  reported to  the CFAP. The  third  method  re- 
duces  the  number of control  vectors  that  must  be 
specified at  the  instruction  interfaces,  thereby  re- 
ducing complexity.  However,  this  paper  deals 
only with control  vector  checking. 

Concluding  remarks 

Control  vectors  contrasted  with  variants. The  con- 
trol  vector  consists of a set of structured fields 
whose encoded values and meanings are defined 
by the  architecture,  and a set of unstructured 
fields and  code  points  reserved  for  future  use.  The 
structured fields specify a  control  vector  type  and 
a  set of key-management and  key-usage  control 
fields that  record information about  the  key or 
cryptographic variable and define its  permitted 
uses.  The  architecture is extended by defining 
new fields in the control  vector or by adding to  the 
specification of an  existing field. 

In contrast,  the variant mask is a single  field con- 
sisting of a set of encoded mask values (generally a 
small set). The undefined code points are reserved 
for future use. Each variant mask value defines a 
key or cryptographic variable with a particular set 
of assigned key-management and key-usage at- 
tributes. The key-management architecture is ex- 
tended by  defining additional variant mask values. 

The major difference between the  control  vector 
and  the  variant mask is that  the  former  can  sup- 
port  a  very rich key-management  scheme with 
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many  key-management  and key-usage control  at- 
tributes,  and  the  latter  cannot.  First,  note  that  for 
two  comparable key-management schemes  that 
must  support multiple orthogonal key-manage- 
ment  and key-usage control  attributes,  one  based 
on  control  vectors  and  the  other  on  variant mask 
values, the number of encoded  control  vector val- 
ues N1 is about  equal to  the number of variant 
mask  values N2. In either  case, a control  vector 
or a variant  mask value is validated by confirming 
that it is an element of a  set of allowed values S, 
where S is a  subset of the  set of all possible val- 
ues. But for  control  vectors,  set membership is 
conveniently  determined,  even  for large N1, by 

An important  difference between 
the key tag  and  the control 
vector is  that the  key  tag is 
available  in  clear form only 

within the cryptographic 
hardware. 

checking one  or more fields in the  control  vector. 
However, with variants  there is no shortcut;  one 
must  store  and  search  a list of N2 values.  There- 
fore, for  large N2, variant mask checking cannot 
be implemented efficiently. 

Control vectors contrasted with  key tags. Several 
attributes of the  Jones’ key tag make it inappro- 
priate  for  use as a  general methodology for  con- 
trolling key usage.  Each 64-bit key has only eight 
bits available for  a  key  tag.  The  control  vectors 
defined by the key-management scheme imple- 
mented in the Transaction  Security  System al- 
ready  make  use of the majority of the bits in the 
control  vector  base,  and  therefore,  the key tag 
could  not  be  used to implement this key-manage- 
ment  architecture.  Moreover, DEA-based prod- 
ucts  and  equipment  that  use  the eight nonkey bits 
for  parity  checking, or that  must maintain com- 
patibility with those  products  and  equipment  that 
do,  cannot  use  the  key  tag. 

An important difference between the key tag and 
the  control  vector is that  the key tag is available 

in clear  form only within the cryptographic  hard- 
ware.  The  control  vector is carried along with the 
encrypted  key, in clear  form, in an  external key 
token.  The  key tag is recovered in clear  form 
when the key is decrypted,  whereas  the  control 
vector is supplied to  the cryptographic  hardware 
at  the  instruction  interface,  thus  permitting  the 
key to  be  decrypted.  Therefore, with the key  tag, 
key-usage control is limited to  that which can  be 
performed in the  cryptographic  hardware.  In  con- 
trast, with the control  vector,  key-usage  control 
can be effected in multiple locations, including the 
cryptographic  hardware,  the  cryptographic soft- 
ware,  a  cryptographic  software-provided  instal- 
lation exit,  or  the  application  program.  Another 
difference is that, with the  control  vector,  key 
usage is controlled  at  the  instruction  interface. 
With the key tag, key usage is  controlled at  the 
DEA interface  (i.e., to  control elementary  encrypt 
and  decrypt  operations with the key). 

Advantages of the control vector. For some  cryp- 
tographic devices, especially those offering lim- 
ited,  special-purpose, or self-contained  crypto- 
graphic functions, key variants may provide 
suitable key separation  and  key-usage  control. 
For general-purpose  cryptographic  devices, 
where  very high-speed cryptographic  operations 
are required or it is impractical or infeasible to 
implement full hardware  control  vector  checking, 
key separation  and key-usage control may be  ad- 
vantageously effected through the use of a subset 
of frequently used control  vector  values, called a 
generic subset.  In that case,  the control vector val- 
ues are stored in tabular form within the crypto- 
graphic hardware, and a fast table lookup method is 
used to enforce proper control vector usage. This 
also ensures compatibility with other devices im- 
plementing the same control vector  set. This 
method of control vector implementation is the  one 
pursued in a companion paper in this issue. l7 

However, in situations  where the cryptographic 
hardware  implementation  permits full field-by- 
field control  vector  checking, a much finer gran- 
ularity in key  separation  and  key-usage  control is 
possible. There  are  several  other  advantages of a 
key-management architecture  based  on  control 
vectors. Many of these  are  already  obtained in the 
key-management scheme  implemented in the 
Transaction  Security  System. 

The  control  vector  has  no  restriction on length. In 
theory, a key-management architecture  based  on 
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control  vectors  can  be grown indefinitely (i.e.,  the 
architecture  is said to  be open-ended). 

The  control  vector  consists of a  set of  fields sep- 
arately specified in an architecture.  These fields 
control key usage at  the CF cryptographic  instruc- 
tion interface  and,  to  a  lesser  degree,  at  the CFAP 
cryptographic function interface  (i.e., at the API). 

The  control vector consists of a 
set of fields separately specified 

in  an architecture. 

Positioning the controlling mechanisms at  these 
points  permits  a fine degree of key-usage control 
to be realized in the key-management architec- 
ture. 

Experience  has shown that  each CF cryptographic 
instruction  needs to check only a  fraction of the 
control  vector fields within any one  control vec- 
tor.  That  is, only sparse checking is needed. 
Therefore,  a  certain economy of scale is realized 
in the  control  vector checking process, which is 
unattainable with other  methods  (e.g., using key 
variants). 

Experience  has  also shown that many control 
vector fields have no dependence  on  other  control 
vector fields, and  the checking performed on 
these fields is totally independent of the checking 
performed on  other fields. When dependencies do 
exist,  they generally involve only a few fields, so 
that  the  necessary cross-checking is far less than, 
in theory, it might be. This independence and 
weak dependence among the  control  vector fields 
means that  control  vector checking can  be per- 
formed as a  series of independent checking steps, 
in no  particular  order. 

Because  control  vector checking consists of a se- 
ries of independent checking steps,  control  vector 
checking can  be performed by multiple parallel or 
distributed  processors. As already pointed out, 
installation-specific control  vector fields  in the 
control  vector  extension  could, in theory, be 
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checked by a  smart  card which has  been  person- 
alized in advance with an installation-specific 
control  vector checking program.  The  control 
vector checking performed on  the  control  vector 
base,  e.g.,  at  a  workstation,  is left unaltered  and 
can  service many different installation and  net- 
work configurations. 

Because  control  vector checking consists of a  se- 
ries of independent checking steps,  control  vector 
checking can  be serialized and performed advan- 
tageously by different software programs and 
hardware  components. For example,  consider  a 
cryptographic  service  request  issued by an appli- 
cation program to CFAP, which in turn  results in 
a  cryptographic  instruction  issued to  the CF. A 
user-defined field  in the  control  vector  extension 
could be  checked by the application program 
prior to  its issuing the  service  request to  the CFAP. 
An installation-defined field  in the  extension 
could then be checked by an installation-provided 
program (executed via a CFAP installation exit), 
and a CFAP field  in the  control  vector  base  can be 
checked by the CFAP prior to issuing the  crypto- 
graphic instruction.  The CF fields in the  control 
vector  base  are then checked by the  instruction 
prior to executing the  instruction. If checking fails 
at any stage,  the  process  is halted. 

The design is such  that  control  vector checking is 
independent of (a) the functional processing per- 
formed by each  instruction, (b) the  encryption 
and decryption algorithms (CVE and CVD) used by 
the key management to protect  keys  and to cryp- 
tographically couple  the keys and  control vec- 
tors,  and (c) the key-distribution protocol. Thus, 
new fields and  code  points  can  be designed in the 
control  vector within the  architecture  and addi- 
tional control  vector checking can  be added to 
existing checking procedures without affecting (a) 
present  control  vector fields, (b) present  control 
vector checking procedures, (c) present  instruc- 
tion functional processing,  and (d) present in- 
struction  interfaces. 

The  control  vector permits a key-management ar- 
chitecture to  be designed such  that  the majority of 
the complexity associated with the key-manage- 
ment architecture is embodied as encoded fields 
within the  control  vector.  The  control  vector 
checking procedures may be made as general as 
possible, so that common checking routines  can 
be used by several  cryptographic  instructions. 
Conversely,  the common set of functions  for gen- 
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erating  keys, producing derived  keys,  and en- 
crypting  and  decrypting  keys using the control 
vector  are made as simple and  straightforward as 
possible. That  is, key-management complexity is 
localized in the control  vector,  not in the  func- 
tions  that  process  control  vectors  and  keys.  Thus, 
the  control  vector gives rise to  fewer  and simpler 
cryptographic  functions to  ensure cryptographic 
separation,  thereby  reducing  the  work  necessary 
to certify the cryptographic  security. 

Since  the  control  vector is a  structured  variable, 
the  encoded fields and  code  points  present in the 
control  vector match the  cryptographer’s intu- 
ition  about the way a key-management scheme 
operates.  This  structuring aids in understanding 
the key-management architecture  at all levels of 
cryptographic  product  and  application design and 
improves the implementation  and  use of those 
products. 

Each CF instruction  and  the  control  vector  check- 
ing steps  for  each CF instruction can, but need 
not, be implemented within the  same  component 
of the  cryptographic  system. Thus, an imple- 
menter  has a choice of where  control  vector 
checking  can be implemented most  advanta- 
geously within the  cryptographic  device. 

Acknowledgments 

The  author  wishes  to  acknowledge C. H. Meyer 
and  B.  Brachtl  who  collaborated with him on  an 
initial idea  for controlling key usage that  eventu- 
ally led to  the control  vector.  The  author  also 
wishes to acknowledge D. B. Johnson, R. K. 
Karne, A. V. Le, R. Prymak,  and J. D. Wilkins 
for  their  efforts in codeveloping  the  control  vec- 
tor. 

Cited  references 

1 .  American National Standard X3.92-1981, Data  Encryp- 
tion  Algorithm, American National Standards Institute, 
New York (December 31, 1981). 

2. W. F. Ehrsam, S.  M. Matyas, C. H. Meyer, and W. L. 
Tuchman, “A Cryptographic Key Management Scheme 
for Implementing the Data Encryption Standard,” IBM 
Systems  Journal 17, No. 2, 106-125 (1978). 

3.  S. M. Matyas and C. H. Meyer, “Generation, Distribu- 
tion, and Installation of Cryptographic Keys,” IBM Sys- 
tems  Journal 17, No. 2, 126-137 (1978). 

4. R. E.  Lemon, “Cryptography Architecture for Informa- 

I 
~ 

~ 

I IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991 

tion Security,” IBM Systems Journal 17, No. 2, 138-150 
(1978). 

5 .  M. E. Smid, Notarization  System  for  Computer  Net- 
works, NBS Special Publication 500-54, U S .  Department 
of Commerce, National Bureau of Standards (now NIST), 
Washington (October 1979). 

6. American National Standard X9.17-1985, American  Na- 
tional Standard  for Financial Institution Key  Manage- 
ment  (Wholesale), American Bankers Association, Wash- 
ington (1985). 

7. International Standard IS0 8732, Banking-Key  Manage- 
ment  (Wholesale), International Organization for Stan- 
dardization, IS0 Central Secretariat, Geneva, Switzer- 
land (15 November, 1988). 

8. R. W. Jones, “Some Techniques for Handling Encipher- 
ment Keys,” ZCL Technical  Journal 3, No. 2, 175-188 
(November 1982). 

9. D. W. Davies and W. L. Price, Security for Computer 
Networks, Second Edition, John Wiley & Sons, Inc., 
New  York (1989), pp. 15k157. 

10. American National Standard X9.9-1986, American Nu- 
tional Standard for Financial Institution  Message  Au- 
thentication  (Wholesale), American Bankers Associa- 
tion, Washington (1986). 

1 1 .  D. Coppersmith, S.  Pilpel, C. H. Meyer, S. M. Matyas, 
M.  M. Hyden, J. Oseas, B. Brachtl, and M. Schilling, 
Data  Authentication  Using  ModiJcation  Detection 
Codes  Based on a  Public  One  Way  Encryption  Function, 
U.S. Patent No. 4,908,861 (March 13, 1990). 

12. C. H. Meyer and M. Schilling, “Secure Program Load 
with  Modification Detection Code,” Proceedings of the 
5th  Worldwide  Congress on Computer  and  Communica- 
tions  Security  and  Protection SECURICOM 88 - SEDEP, 
8, Rue de la Michodiere, 75002 Paris, France (1988), 

13. American National Standard X9.23-1988, American  Na- 
tional Standard for Financial Institution  Encryption of 
Wholesale Financial Messages, American Bankers As- 
sociation, Washington (1988). 

14. S. M. Matyas, A. V. Le, and D. G. Abraham, “A Key- 
Management Scheme Based on Control Vectors,” IBM 
Systems Journal 30, No. 2, 175-191 (1991, this issue). 

15. D. B. Johnson et al., “Common Cryptographic Architec- 
ture Cryptographic Application Programming Interface,” 
IBM Systems Journal 30, No. 2, 130-150 (1991, this is- 
sue). 

16. D.  B. Johnson and G .  M. Dolan, “Transaction Security 
System Extension to the Common Cryptographic Archi- 
tecture,” IBM Systems Journal 30, No. 2,230-243 (1991, 
this issue). 

17. P. C. Yeh and R. M. Smith, Sr., “ESN390 Integrated 
Crytographic Facility: An Overview,” IBM Systems 
Journal 30, No. 2, 192-205 (1991, this issue). 

pp. 1 1  1-130. 

Stephen M. Matyas IBM Federal  Sector  Division, 9500 God- 
win Drive,  Manassas,  Virginia 22110. Formerly a member of 
the Cryptography Center of Competence at the IBM Kingston 
Development Laboratory, Dr. Matyas is currently a member 
of the Secure Products and Systems department at Manassas, 
Virginia. He has participated in the design and development 
of  all major IBM cryptographic products, including the IBM 
Cryptographic Subsystem, and recently he has had the lead 
role  in the design  of the cryptographic architecture for IBM’s 
recently announced Transaction Security System. Dr. Matyas 

MANAS 173 



holds 26 patents and has published numerous technical arti- 
cles on all aspects of cryptographic system design. He is the 
coauthor of an award-winning book entitled Cryptography-A 
New Dimension in Computer  Data  Security, published by 
John Wiley & Sons, Inc.  He is a contributing author to the 
Encyclopedia of Science  and  Technology, and Telecommu- 
nications in the U.S.-Trends  and  Policies. Dr. Matyas re- 
ceived a B.S. in mathematics from Western Michigan  Uni- 
versity and a Ph.D. in computer science from the University 
of Iowa. He is the recipient of an Outstanding Innovation 
Award for his part in the development of the Common Cryp- 
tographic Architecture. He is presently an IBM Senior Tech- 
nical Staff Member. 

Reprint Order No. G321-5428. 

174 MATYAS IBM SYSTEMS JOURNAL,  VOL 30, NO 2, 1 I991 


