Key handling with
control vectors

A method Is presented for controlling
cryptographic key usage based on control
vectors. Each cryptographic key has an
associated control vector that defines the
permitted uses of the key within the
cryptographic system. At key generation, the
control vector is cryptographically coupled to the
key via a special encryption process. Each
encrypted key and control vector is stored and
distributed within the cryptographic system as a
single token. Decryption of a key requires
respecification of the control vector. As part of
the decryption process, the cryptographic
hardware also verifies that the requested use of
the key is authorized by the control vector. This
paper focuses mainly on the use of control
vectors in cryptosystems based on the Data
Encryption Algorithm.

ryptography is a means often used to protect

data transmitted through a communications
network. Data are encrypted at a sending device
using a cryptographic algorithm such as the Data
Encryption Algorithm (DEA)' and are decrypted
at a receiving device. The DEA enciphers a 64-bit
block of plaintext into a 64-bit block of ciphertext
under the control of a 64-bit cryptographic key.
Each 64-bit key consists of 56 independent key
bits and eight bits that may be used for error de-
tection. In all, there are 2% different crypto-
graphic keys that may be used with the DEA.

Since the DEA itself is a nonsecret algorithm, the
degree of protection provided by a DEA-based
cryptographic system depends on how well the
secrecy of the cryptographic keys is maintained.
Therefore, an important goal of sound key man-

A portion of this paper is reprinted with permission from the Journal
of Cryptology Vol. 3, No. 2, 1990, published by Springer-Verlag, Inc.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

by S. M. Matyas

agement is to ensure that cryptographic keys
never occur in clear (unencrypted) form outside
the cryptographic hardware, except under secure
conditions when keys are first initialized within
the cryptographic device. For two cryptographic
devices to communicate, the devices must share
a common cryptographic key. In fact, a key-man-
agement scheme commonly uses many different
keys as a means to control access to the data
encrypted with those keys. The key-management
scheme therefore needs an efficient and secure
means to distribute keys from one cryptographic
device to another. In practice, this means is
ordinarily accomplished by first installing a com-
mon key-encrypting key at each device and there-
after using this key-encrypting key to electroni-
cally distribute keys from one device to another.
Key distribution encompasses the processes of
key generation, key delivery, and key importa-
tion. The process of installing the first, or initial,
key-encrypting key consists of generating the key
at one device and transporting the key to the other
device (e.g., via courier) where it is initialized
within the cryptographic hardware (e.g., via man-
ual entry). Thereafter, automated electronic pro-
cedures are followed.

To date, cryptographers and implementers of
cryptographic standards and products have
evolved Kkey-distribution schemes concerned
mostly with protocols for the exchange of keys

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

maTYAS 151

Figure 1 Control vector concept

KEY CONTROL VECTOR

100101100011,.1001 §

O T S

COUPLING
METHOD

and with strategies for encrypting and authenti-
cating keys to ensure the integrity of the key-dis-
tribution process itself. However, methods for
controlling key usage, although not overlooked
altogether, have been slow to develop, mainly be-
cause until now key-management designs have
needed to handle only a few types and uses of keys.

Cryptographic systems being developed today
must support an increasing variety of types and
uses of keys to meet the growing needs of an ex-
panded and more sophisticated community of
cryptographic system users. In fact, it can be said
that a fundamental element of electronic key dis-
tribution is the means by which key-usage infor-
mation is conveyed, with integrity, from a gener-
ating device where keys are created, to one or more
receiving devices where keys are used. Without
such a capability, it may be possible for an adver-
sary to replace keys of one type with those of an-
other type and thereby cause a receiving device to
import and use these keys incorrectly,

To illustrate the danger of importing a key of one
type as a key of another type, consider the case
where a key-encrypting key (i.e., type = ‘key-
encrypting key’) is imported as a data-encrypting
key (i.e., type = ‘data-encrypting key’). A key-
encrypting key is used by the cryptographic hard-
ware to encrypt and decrypt other keys. Keys
encrypted and decrypted with a key-encrypting
key are maintained in the secure boundary of the
cryptographic hardware: They may be used by
authorized application programs, but the values
of the keys are kept secret. However, the data
encrypted and decrypted with a data-encrypting
key are directly available to the application pro-
gram. Thus, if a key-encrypting key could be
changed into a data-decrypting key, the keys en-
crypted with that key-encrypting key could be
decrypted and recovered, in the same way that

152 MATYAS

data are decrypted and recovered, in clear form
outside the cryptographic hardware.

Within a cryptographic system, software access
control methods can be used to control key usage.
The permitted uses of a key specified by a cryp-
tographic application program to the crypto-
graphic system software, i.e., across the applica-
tion program interface (API), can be checked and
enforced within the cryptographic system soft-
ware. Thus, the software can ensure that a key
with an “‘encipher” attribute but no “decipher”
attribute can be used with an encipher instruction
but not with a decipher instruction. However,
methods to achieve greater protection are possi-
ble and may indeed be prudent, or even manda-
tory, since an inside adversary who bypasses the
cryptographic system software and gains access
to the cryptographic hardware interface can de-
feat security by executing cryptographic instruc-
tions with keys of one type substituted for those
of another type.

In older systems where the number of key types
and uses is small, it has been common practice to
infer key usage from the context of the key-ex-
change protocol (e.g., that an encrypted data key
is transmitted as the third block of eight bytes in
the second message exchanged within the key-
distribution protocol). But a more general, open-
ended approach is needed for present and near-
term systems, where the number of key types and
uses is certain to be larger. To accomplish this
approach, distributed keys should carry with
them a record of the key-related information that
spells out how and under what conditions these
keys can be processed by a using cryptographic
device. This key-related information should be
linked cryptographically to the key such that it is
infeasible for an adversary to cause the crypto-
graphic hardware to process a key except by
specifying and using the correct key-related in-
formation.

This paper describes a method for controlling key
usage through the use of a data variable called the
control vector.

How control vectors work

Within a cryptographic system, each key has an
associated control vector, as illustrated in Figure
1. The key is composed of a randomly generated
string of 0 and 1 bits. The control vector is com-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

posed of a set of encoded fields representing the
authorized or permitted uses of the key. During
key generation, the key and control vector are
cryptographically “locked,” or coupled, to pre-
vent information in the control vector from being
changed. This process involves encrypting the
generated key K with a variant key-encrypting
key KK@C, where KK@C is produced as the
exclusive-OR product of key-encrypting key KK
and control vector C. Upon recovery, the key-
encrypting key is again combined with the control
vector to produce the same variant key KK@C,
which is then used to decrypt the encrypted key.
Since the decryption of the key occurs entirely
within the cryptographic hardware, use of a se-
cret key-encrypting key KK vyields a process that
the user cannot perform independently. The con-
trol vector particularizes the process to one
“type” of key, while maintaining key secrecy.
The method for cryptographically coupling keys
and control vectors is discussed in greater detail
in the section entitled Control Vector.

The key and control vector are cryptographic var-
iables used to initialize, or personalize, the cryp-
tographic system. Figure 2 illustrates this proc-
ess. The key personalizes the cryptographic
algorithm by selecting one of many possible map-
ping functions. The control vector personalizes
the hardware cryptographic instruction processor
by selecting a set of possible instructions, instruc-
tion modes, and instruction processing opera-
tions that may be executed by the cryptographic
software.

The concept underlying the control vector can be
applied to key-management designs supporting
both symmetric algorithms such as the DEA in
which the decryption key is the same as the en-
cryption key, and asymmetric (“public-key’’) al-
gorithms in which the keys are different. How-
ever, the discussion focuses mainly on showing
how the control vector can be implemented
within a key-management scheme based on the
DEA. The first part of the paper, up to the section
entitled Control Vector Forms and Formats, dis-
cusses general control vector concepts. The sec-
ond part discusses a control vector design imple-
mented in the IBM Transaction Security System.

Background

The ways in which prior key-management designs
have achieved key-usage control can be traced. In

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 2 Personalization via the key and control vector

KEY

v
KEY REGISTER

|

CRYPTOGRAPHIC
ALGORITHM

a key-management scheme developed by IBM,
outlined in a group of papers previously published
in the IBM Systems Journal®* and implemented in
a line of IBM cryptographic products, keys are
separated and controlled cryptographically
through the use of variants of a master key, called
key variants. In the key management, a 64-bit
master key KMO has two master key variants
KMI1 and KM2. In the cryptographic hardware,
KM1 and KM2 are produced from KMO by ex-
clusive-ORing nonsecret mask values vl and v2
with KMO, i.e., KM1 = KM0 @ vl and KM2 =
KMO0 @ v2, where @ denotes the exclusive-OR
operation. Keys stored within the cryptographic
system are separated into three distinct and cryp-
tographically separate classes, where the first
class is encrypted with KMO, the second class is
encrypted with KM1, and the third class is en-
crypted with KM2. Each of these classes has a
different assigned key usage. (The notation KM is
sometimes used in place of KM0.) The IBM key-
management scheme has also been extended to
handle 128-bit master keys. In that case, the mas-
ter key variants KM1 and KM2 are produced
from 128-bit key KMO0 by exclusive-ORing non-
secret mask values vl and v2 with the leftmost
and rightmost 64-bit parts of KMO, i.e., KM1 =
KM0 @ (vl,vl) and KM2 = KM0 @ (v2,v2),
where the comma denotes concatenation. The
values vl and v2 are 64-bit universal constants
defined by the key-management architecture.

MATYAS 153

In a key-management scheme from Smid® of the
National Institute of Standards and Technology
(NIST)—also incorporated in ANSI (American Na-
tional Standards Institute) Standard x9.17° and
ISO (International Organization for Standardiza-
tion) Standard 8732"—keys are separated and
controlled cryptographically through the use of
key-manipulation processes called key notariza-
tion and key offset. Essentially, key notarization
is a process in which a key-encrypting sender key
(KK1j) or a key-encrypting receiver key (KKji) is
derived within the cryptographic hardware from
a key-encrypting key (KK) shared between two
communicating devices “i” and *‘j.” The keys
KKij and KKji are functions of KK and identifiers
“i” and “‘j.” Each pair of devices, i and j, also
maintains a pair of synchronized incrementing
counters CTRij and CTRji. Essentially, key off-
setting is a process in which a unique time-variant
key (KKij @ CTRij) or (KKji @ CTRji) is pro-
duced within the cryptographic hardware by ex-
clusive-ORing a key value and a counter value.
After a counter has been used it is incremented by
one. At device i, the variant key KKij @ CTRijj is
used to encrypt keys in the distribution channel
sent to device j, and KKji @ CTRji is used to
decrypt keys in the distribution channel received
from device j. In contrast to the method of key-
usage control in the IBM Kkey-management
scheme, where key usage is determined accord-
ing to the key variant under which the key is en-
crypted, the ANSI X9.17 key-management scheme
links the usage of a key to the method used to
derive the key, per the notarization and offset
processes. That is, the use of the key depends on
how the key has been derived.

Key tag. The method of control vectors is similar
in many respects to a method based on key tags
originally proposed by Jones.® (See also Dav-
ies.®) In Jones’ method, a 64-bit DEA key consists
of 56 independent key bits and an 8-bit key tag.
That is, the eight nonkey bits ordinarily used or
reserved for error-detection purposes are used as
a key tag. Although not contiguous, the eight tag
bits (t0, t1, ..., t7) logically constitute a single
field. The tag bits are defined as follows: Bit t0
indicates whether the key is a data-encrypting key
(KD) or a key-encrypting key (KK) (0 = KD,
1 = KK). Bit t1 indicates whether the key can be
used for encipherment (0 = no, 1 = yes). Bit t2
indicates whether the key can be used for deci-
pherment (0 = no, 1 = yes). Bits t3 through t7 are
spares. (A similar technique is also used to en-

154 wmATYAS

code key-usage information within the control
vector.)

Keys are created by a function that has an input
parameter with information necessary to con-
struct a key tag. At key creation, bits t0 through
t2 of the tag are encoded as follows. For a KK
sender key, the bits are encoded as B*110’, indi-
cating that the key is a KK key, that it can be used
to encipher KDs, and that it cannot be used to
decipher KDs. For a KK receiver key, the bits are
encoded as B101’, indicating that the key is a KK
key, that it can be used to decipher KDs, and that
it cannot be used to encipher KDs. A KD key can
be encoded as (1) B‘011’, indicating that the key
can be used to encipher and decipher data, (2)
B‘010’, indicating that the key can be used to en-
cipher but not decipher data, or (3) B‘001’, indi-
cating that the key can be used to decipher but not
encipher data. Thus, the same key ‘‘typed’ in one
case as “encipherment only” and in the other
case as “decipherment only” gives a kind of pub-
lic-key cryptographic system. (A public-key
cryptographic system is based on a public-key
algorithm, where one key is used for encipher-
ment and another, different key is used for deci-
pherment.) Furthermore, a KK “typed” at one
installation as ‘“‘encipherment only” can be used
to encipher keys to be used at another installa-
tion. The receiving installation holds a copy of the
same KK, but “typed” as ‘“decipherment only,”
which can therefore be used to receive keys from
the sending installation.

Once created, a key and tag remain together for
the “life”” of the key. A tag appears in clear form
only when the key is decrypted and processed
within the cryptographic hardware.

The key tag differs from the control vector in sev-
eral respects. First, the control vector can be im-
plemented without affecting key parity. This in-
dependence permits the control vector to be used
with existing or “‘off the sheif”’ cryptographic
hardware that accepts keys only if they have cor-
rect key parity. Second, practical implementa-
tions of the control vector are possible where con-
trol vector length is unbounded. This condition
permits the control vector specification to be ex-
tended, as necessary, to satisfy new requirements
placed on the key management. Third, the control
vector is a data variable stored and transmitted
with the key in clear form. Hence, options are
available for the control vector to be processed

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

advantageously at different levels and points
within the cryptographic system. For example,
the control vector can be partitioned so that key
usage can be controlled (1) in the cryptographic
hardware, (2) in the cryptographic system soft-
ware, and (3) in the cryptographic application
program, using three subvectors, which have
been specified separately in an architecture. Ba-
sically, the measure of integrity obtained with
such a mechanism is as good as the measure of
integrity that one has over the process of ensuring
that the control vector is not changed from the
point in time when it is checked, either by the
application or by the software, to the point in time
when it is read into the cryptographic hardware
where it is processed. Strategies and methodol-
ogies for implementing such a hierarchy of key-
usage control are beyond the scope of this paper
and are not further discussed.

Control vector

The control vector is a nonsecret cryptographic
variable used by a key-management scheme to
control cryptographic key usage. In principle, the
control vector can be used to control the usage of
any cryptographic variable, although for conve-
nience the discussion is limited to keys.

In a cryptographic system, each key K has an
associated control vector C, where K and C con-
stitute a logical 2-tuple (K,C). Each crypto-
graphic device is designed so that key processing
can be performed only if the requested use of the
key is authorized by the control vector. In effect,
C grants processing rights to K. The granularity
of control that can be achieved with the control
vector, although somewhat dependent on the in-
genuity of the designer, depends on the breadth
and sophistication of the Kkey-management
scheme and the number and kind of processing
options available within the cryptographic in-
struction set. For a limited instruction set, the
degree of control exercised via the control vector
is likely to be very simple; for a comprehensive
instruction set supporting a wide range of cryp-
tographic processing options, the degree of con-
trol may indeed be highly refined.

Cryptographic coupling of K and C. Implementa-
tion of the control vector concept requires that
the key and control vector (K,C) be coupled cryp-
tographically. Otherwise, the key-usage at-
tributes granted to each key could be changed by

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

merely replacing one control vector with another.
Basically, there are two approaches for crypto-
graphically coupling K and C. A first approach is
based on integrating C into the functions used to
encrypt and decrypt keys. A second approach
makes use of a special authentication code (AC)
calculated directly or indirectly on K and C.

The first approach has the characteristic that K is
recovered correctly at a using device only if the
correct control vector is specified. Conversely,
specification of an incorrect control vector does
not prevent the decryption and recovery of a key,
but the recovered key K’ is for all intents and
purposes a spurious value bearing no known re-
lationship to the real key K. It is the task of a good
architecture or design to ensure that recovered
spurious values of K’ are of no cryptographic use
to a would-be adversary. The main advantage of
the approach is that for short C, where the length
of C is no greater than the length of the key-en-
crypting key KK used to encrypt K, efficient en-
cryption and decryption functions can be de-
vised. The additional processing introduced by
the control vector is negligible.

The second approach has the characteristic that
both K and C are authenticated before K is proc-
essed by the cryptographic device. But some ad-
ditional processing overhead is needed to calcu-
late AC. For instance, if AC is defined as a 32-bit
message authentication code (MAC), per ANSI
Standard X9.9,° one DEA encryption step is
needed to process each 64 bits of input.

Because the first approach of integrating C into
the key-encryption and key-decryption functions
has more favorable performance characteristics,
the approach is discussed in greater detail in the
next section.

Control vector encryption and decryption algo-
rithms. The control vector encryption (CVE) and
control vector decryption (CVD) algorithms used
to encrypt and decrypt a key, respectively, are
illustrated in Figure 3. In the CVE algorithm in
Figure 3, C is an input control vector whose
length is a multiple of eight bytes; KK is a 128-bit
key-encrypting key consisting of a leftmost 64-bit
part KKL and a rightmost 64-bit part KKR, i.e.,
KK = (KKL,KKR); K is a 64-bit key or the left-
most or rightmost 64-bit part of a 128-bit key. The
inputs are processed as follows. C is operated on
by hashing function h (described in the following

MATYAS 155

Figure 3 CVE and CVD algorithms

C KK K

CVE 1

HABHING FUNCTION h

KK®H

b

o-d-g ALGORITHM

CvD l

HASHING FUNCTION h

KK®H

b

d-e-d ALGORITHM

e,

&ikan (K]

subsection) to produce the 128-bit output H. H is
exclusive-ORed with KK to produce 128-bit out-
put KK@H. Finally, K is encrypted with KK@H
to produce output e*xxou(K), where e* indicates
encryption with 128-bit key KK@H using an en-
cryption-decryption-encryption (e-d-e) algorithm
as defined in ANSI Standard x9.17-1985% and 150
Standard 8732.7

An encrypted key of the form e*xqu(K) is de-
crypted with the CvD algorithm as depicted in Fig-
ure 3. C is operated on by hashing function h to

156 maTYAas

produce the 128-bit output H. H is exclusive-ORed
with KK to produce 128-bit output KK®H. Fi-
nally, e*xxgu(K) is decrypted with KK@H using a
decryption-encryption-decryption (d-e-d) algo-
rithm to produce output K. The d-e-d algorithm is
just the inverse of the e-d-e encryption algorithm.

Although the CVE and CVD algorithms in Figure 3
are described using key-encrypting key KK, KK
could be replaced by a different key, such as the
master key, KM. Since the CVE and CVD algo-
rithms are implemented within the cryptographic

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

hardware, specification of KK is entirely under
the control of the key management.

Hashing function h. The hashing function h im-
plemented in the CVE and CVD algorithms is il-
lustrated in Figure 4. Hashing function h operates
on input control vector C (whose length is a mul-
tiple of 64 bits) to produce a 128-bit output H.

If C is 64 bits, h(C) is set equal to (C,C), where the
comma denotes concatenation, and the extension
field (bits 45,46) in h(C) is set equal to B‘00’. That
is, h acts like a concatenation function. If C is 128
bits, h(C) is set equal to C, and the extension field
in h(C) is set equal to B‘01°. That is, h acts like an
identity function. If C is greater than 128 bits,
h(C) is set equal to a 128-bit modification detec-
tion code calculated by the MDC-2 algorithm
shown later in Figure 5, and the extension field in
h(C) is set equal to B‘10’.

In each of the three cases, the eighth bit of each
byte in h(C) is adjusted such that each byte has
even parity. This adjustment ensures that when
h(C) is exclusive-ORed with KK, the variant key
KK@®h(C) has the same parity as KK (i.e., if KK
has odd parity, then KK@h(C) also has odd par-
ity). Adjusting bits 7, 15, 23, ..., etc. (i.e., the
parity bits) and setting bits in the extension field
in h(C) have the following implications. For 64-
and 128-bit control vectors, it means that these bit
positions in the control vector must be reserved
for use by hashing function h. For control vectors
larger than 128 bits, it means that 110 bits in h(C)
are set from the calculated MDC so that h(C) re-
mains a cryptographically strong ‘‘fingerprint”
of C.

The extension field in h(C) serves to ensure, for
a fixed KK, that the set of keys of the form
KK®h(C) consists of three disjoint subsets S1,
S2, and S3, where S1 denotes the keys resulting
from all 64-bit Cs, S2 denotes the keys resulting
from all 128-bit Cs, and S3 denotes the keys re-
sulting from all Cs larger than 128 bits. This pre-
vents a form of cheating wherein the CVD algo-
rithm is tricked into decrypting an encrypted key
€*xkaenco(K) by using a false control vector. To
illustrate, suppose Cl1 is a control vector larger
than 128 bits and e* g g1y (K) is an encrypted key
produced from KK, K, and Cl1. Instead of pre-
senting €*gxgncy(K) and C1 to the CvD algorithm,
€*kkancy(K) and h(Cl1) are presented. That is,
one cheats by claiming that h(C1) is a 128-bit con-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 4 Hashing function h

C

1

DETERMINE LENGTH OF G

164 BITS

SET H 1= C,C
SET EXTENSION := 8'00" ¢

ST SV N 71

128 BITS

> SET H:=C
SET EXTENSION := B'O1

>128 BITS

v

SET H = MDC CALCULATED ON C g
SET EXTENSION = 8'10 i

ADJUST EAGH BYTE FOR EVEN PARITY §

H = h(C)

trol vector. Since, in that case, h(h(C1)) is just
equal to h(C1), the CcvD algorithm decrypts
€*kkancn(K) with the key KK@h(C1) to recover
K.

Hashing function h accomplishes two important
design objectives. First, it handles both short and
long control vectors, thus ensuring that a key-
management scheme based on the control vector
concept is open-ended. Second, the processing

matyas 157

overhead to handle short control vectors (64 and
128 bits) is minimized so as to have minimal im-
pact on the key management. A 128-bit control

An MDC has a purpose
similar to a MAC.

vector is probably more than sufficient to handle
the key-usage control requirements of most cur-
rent key-management systems.

Maodification detection code. A modification de-
tection code (MDC) is a nonsecret cryptographic
variable of fixed, relatively short length used to
authenticate a message or plaintext of arbitrary,
much longer length. An MDC has a purpose similar
to a message authentication code (MAC). How-
ever, unlike a MAC, which is calculated with a
secret key, an MDC is calculated with a public
one-way function. Thus, MDCs can be used ad-
vantageously in places where it is impractical to
share a secret key. More efficient digital signature
procedures can be realized by signing MDCs cal-
culated on messages rather than signing the mes-
sages themselves. The process of loading and ex-
ecuting programs within a secure memory can be
improved by storing a list of authorized MDCs
within the secure boundary of the cryptographic
hardware. When a program is loaded, an MDC is
calculated on the program and compared for
equality against a specified entry in the MDC list.
When applied to control vectors, MDCs permit
long control vectors to be implemented with a
cryptographic algorithm having relatively short,
fixed-length keys.

A function for calculating 128-bit MDC values,
called the MDC-2 algorithm, ! is illustrated in Fig-
ure 5. (MDCs are also discussed by Meyer and
Schilling. '*) The MDC-2 algorithm is so-named be-
cause two DEA encryptions are performed for
each 64-bit block of input plaintext processed by
the algorithm. In Figure 5, K1 and L1 are two
64-bit nonsecret constant keys. They are used
only to process the first 64-bit block of plaintext,
Y1. Thereafter, input values K2, K3, ..., Kn are
based on output values (Al1,D1), (A2,D2), ...,

158 MATYAs

(An-1,Dn-1), and input values L2, L3, ..., Ln are
based on output values (C1,B1), (C2,B2), ...,
(Cn-1,Bn-1). That is, the outputs of each iteration
are fed back and used as the keys at the next
iteration. The 32-bit swapping function merely re-
places Bi with Di and Di with Bi.

The MDC-2 algorithm processes data in multiples
of 64 bits, with a 128-bit minimum. No padding is
performed by the algorithm, although such pad-
ding could be performed as a service by either
hardware or software. When padding is required,
a padding algorithm f should be used that is guar-
anteed not to produce synonyms. That is, if Y and
Y’ are two different data inputs, the padded value
of Y must not equal the padded value of Y’, or
mathematically speaking, Y # Y' guarantees that
f(Y) # f(Y'). A padding algorithm satisfying this
requirement is given below. The method, which
requires the input to consist of a whole number of
bytes, is based on a padding rule described in
ANSI X9.23.7 (For convenience, the rule is de-
scribed in terms of bytes not bits.) If the data
length is less than eight bytes, pad bytes are
added to make the data length 16. If the data
length is eight or more bytes, pad bytes are added
to make the data length a multiple of eight bytes.
Padding is done even if the current data length is
a multiple of eight bytes. All pad bytes except the
last contain a value of X‘FF’. The last pad byte is
a pad count (in hexadecimal) of the total number
of pad bytes, including the pad byte containing
the pad count.

To illustrate the problem of synonyms, suppose
that the above padding rule is followed, except
that padding is not performed when the data
length is already a multiple of eight bytes. Thus,
an input Y equal to X‘FFFFFFFFFFFFFFFFF
FFFFFFFFFFFFF0O1’ is not padded, since its
length is already a multiple of eight bytes. But an
input Y’ equal to X'‘FFFFFFFFFFFFFFFFFFF
FFFFFFFFFFF’ is padded with X‘01’ to produce
a value X‘FFFFFFFFFFFFFFFFFFFFFFFFF
FFFFF01’ equal to Y. Thus, inputs Y and Y’ pro-
duce the same MDC.

An MDC-4 algorithm requiring four DEA encryp-
tions per 64-bit block of input has also been de-
signed,!! but its details are not discussed here.

Security of the CVE and CVD algorithms. The

method of encryption and decryption with de-
rived keys of the form KK@H provides an effec-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 5 MDC-2 algorithm

Yi

Ki e 0

i

Input Y consists of 64-bit blocks Y1,
¥2, ..., ¥n, where n must be > 1.

Output MDC := concatenation of An, Dn, Cn, |-
and Bn.

1, K1 and L1 are defined:
X'5252525252525252!
X'2525252525252525"

~
&
1 nn

2,...,n, Ki and Li are defined:
concatenation of Ai~l1 and Di-1
except bits 1 and 2 are set equal

to BT10'.

Li := concatenation of Ci-1 and Bi-1
except bits 1 and 2 are set equal
to B'01".

=
-
o

Bits are numbered 0, 1, ..., etc. from
most significant to least significant.

tive means to couple K and C, since given
e*kkeu(K) and C, where h(C) = H, there is no
apparent computationally efficient means to find
alternative values of e* gy (K) and C’, where
h(C’) = H', that give rise to the same recovered
value of K. There is also a precedent for using
derived keys for key-management purposes. The
IBM and ANSI key-management schemes men-
tioned in the background section of this paper
each make use of derived keys produced as the
exclusive-OR product of a secret key and a non-
secret cryptographic variable. In the IBM key-
management scheme, the required nonsecret
cryptographic variable is formed from a 64-bit
variant mask v. In the ANSI scheme, the key-off-
set process makes use of a nonsecret crypto-
graphic variable formed from a 56-bit counter CTR.

It is noteworthy that the CVE and CVD algorithms
are such that the leftmost 64 bits of KK@H may
accidentally equal the rightmost 64 bits of
KK@®H, even though the leftmost 64 bits of KK
do not equal the rightmost 64 bits of KK. How-
ever, the probability of such a random event is
about equal to 1/2°¢ (i.e., no better than guessing
K). It does not appear that an adversary can gain

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

a practical advantage from such a property, even
using a direct search or trial-and-error method by
holding KK constant and varying C to produce a
different KK@H. Methods of exhaustive search
do not appear to be improved, nor does it appear
that one can detect when the leftmost 64 bits of
KK@®H equal the rightmost 64 bits of KK@®H,
since K remains encrypted and has no distinguish-
ing feature or property that would signal an adver-
sary that such a state has been reached. To prevent
the leftmost 64 bits of KK@®H from ever equaling
the rightmost 64 bits, the CVE and CvD algorithms
could set a bit, say bit i, in the leftmost 64 bits of
KK®H to B0’ and set the same bit i in the right-
most 64 bits to B‘1’. In that case, bit i in the 64-bit
control vector and bits i and i + 64 in the 128-bit
control vector would be specified in the architec-
ture as reserved bits (i.e., unused for key manage-
ment). However, the extra computation necessary
to avoid this situation does not seem to be justified.

The cvD algorithm is such that a would-be ad-
versary can cause a spurious key K’ to be recov-
ered within the cryptographic hardware. This re-
covery is done by replacing input e* g o (K) with
an arbitrary value, called “value,” not equal to

MATYAS 159

Figure 6 Generating function G

> e,;(ey1 @H1 (K)

b &oy2@H2lK)

RN
GENERATION
K oS
Key1
C1
Key?2 M
C2 U
‘ v 1
VALIDATE
c,c2 -

e*kkaeu(K), i.e., by specifying inputs C, KK, and
“value” to the CvD algorithm instead of inputs C,
KK, e*yxau(K). However, a good key-manage-
ment design will ensure that such spurious keys
are of no beneficial use to a would-be adversary.
More is said about spurious keys in the section
entitled Controlling Key Usage.

Key generation and distribution

To make effective use of the control vector, the
key-management scheme must provide a gener-
ating function G for the generation of keys, as
illustrated in Figure 6. Function G produces out-
puts €*,.,1eu(K) and e*y.,,¢u,(K) from an inter-
nally generated random key K and from input val-
ues C1, C2, keyl, and key2. C1 and C2 are control
vectors, and key1 and key2 are 128-bit keys spec-
ified by the key management. In an actual imple-
mentation, keyl and key2 might represent the
master key of the generating device “i,” key-en-
crypting keys shared between the generating de-

160 matvas

vice i and designated receiving device ‘‘j,” key-
encrypting keys shared between two designated
receiving devices j and Kk, or some combination
thereof. The values H1 and H2, in the expressions
€*eyioni (K) and e* ., (K), are hash values cal-
culated within function G from the input control
vectors C1 and C2, respectively. Different key-
generation modes and their uses within a key-
management scheme are discussed in greater de-
tail in a companion paper in this issue. "

The first output €*,.,,64,(K) is produced by op-
erating on inputs key1, K, and C1 with encryption
algorithm CVE. Likewise, the second output
e*ey2om2(K) is produced by operating on inputs
key2, K, and C2 with encryption algorithm CVE.
Function G also validates (C1,C2) to ensure that
both control vectors are consistent with and con-
form to the architectural specification (i.e., C1
and C2 represent a valid pair permitted by the key
management). This validation is called control
vector enforcement or control vector checking.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 7 Key import with import function 1

KKij ——l_
e*KKI]®H2(K)

c2 —

c2

> e*KMJ@HZ(K)

The outputs €*,,,,on(K) and e*,,51,(K) are pro-
duced only after (C1,C2) has been validated; oth-
erwise execution of function G is aborted. The
valid control vector pairs (C1,C2) are just those
arrived at during the key-management design proc-
€ss.

The key-usage attributes in C1 and C2 might be
equal or different. For example, C1 could grant K
the right to generate MACs, whereas C2 could
grant K only the right to verify MACs. Thus, one
using device can generate MACs, whereas a sec-
ond using device can only verify MACs.

Generating function G, illustrated in Figure 6, can
be used to distribute keys in a variety of key-
distribution environments. In a peer-to-peer envi-
ronment, key distribution from one device to an-
other, say device i to device j, is handled by
specifying inputs (KMi, C1) and (KKij, C2) to
function G. That is, master key KMi of device i
is specified in place of key1, and key-encrypting
key KKijj (installed at devices i and j) is specified
in place of key2. The encrypted key outputs are
therefore e* gy (K) and e*¢y;iou (K), which are
stored as key tokens (e*gyigm(K), C1) and
(e*kkijem2(K), C2), respectively. Key token
(e*xmigm1(K), Cl) is stored at device i and key
token (e*gy;eu:(K), C2) is transmitted in a key-
distribution channel to device j.

At device j, an import function I is executed to

re-encipher e*gg;on,(K) to the form e* g (K),
as illustrated in Figure 7, where KMj is the master

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

key of device j. Import function I consists of two
steps: (1) execution of the CvD algorithm to de-
crypt e*xijen(K) with KKij and C2 to recover K
and (2) execution of the CVE algorithm to encrypt
K with KMj and C2 to produce ¢*gy;eu(K). The
key token (e*gyjpu:(K), C2) is stored at device j.

Key tokens (e*xpigni (K), C1) and (€*kpam(K), C2)
are now of a form to be processed by the cryp-
tographic hardware at devices i and j, respec-
tively.

Of course, the processes of key generation and
key import are a bit more complicated than rep-
resented here, since key-encrypting keys are en-
crypted under the master key and stored in a key
data set. The only key stored in clear form in the
cryptographic hardware is the master key. Thus,
before KKij can be processed by import function
I or by generating function G, it must be de-
crypted. This extra level of detail is omitted from
the present discussion.

The description of key generation and key distri-
bution illustrates several properties of key han-
dling using the control vector. The usage of a key
is determined by its creator, where one encrypted
copy of the key may have one usage and another
encrypted copy of the key may have another us-
age. During key distribution, keys and control
vectors may be translated from encryption with
one key to encryption with another key, e.g.,
from KKij to KMj using import function 1. But the
process is such that keys and control vectors re-

mMATYAS 161

Table 1 Instructions and encrypted key Inputs

Instruction Input Parameter
I1 P1
12 P2
I3 P3, P4
14 Ps, P6

main linked or coupled together so that one can-
not replace the control vector of one key with that
of another.

In order to control key usage effectively, one
must link the usage of a key to usage information
encoded in the control vector. A method for ac-
complishing this linkage is taken up next.

Controlling key usage

The main features of key-usage control can be
conveniently illustrated with a toy, or example,
system. Consider a cryptographic system imple-
menting a set of cryptographic instructions I1, 12,
I3, and 14, where I1 and 12 each have one en-
crypted key input and I3 and I4 each have two
encrypted key inputs. For convenience, the six
encrypted key inputs are designated P1, P2, ...,
P6. The relationship among the instructions
and the encrypted key inputs is just as given in
Table 1.

Within the toy system, every generated key can
be used or processed in up to six ways, i.e., as P1
in I1, as P2 in 12, as P3 or P4 in I3, and as P5 or
P6 in I4. To control key processing adequately,
six key-usage fields Ul, ..., U6 are designed
within the control vector as part of the architec-
ture, viz.,

U1 uz2 Us | U4 | US | U6

Each Ui (fori = 1, ..., 6) is defined as follows:

Ui

1 : The key associated with this control
vector can be processed as input
parameter Pi.

Ui = 0 : The key associated with this control

vector cannot be processed as input

parameter Pi.

162 MATYAs

Thus, the natural one-to-one correspondence be-
tween the key parameters and the key-usage
fields designed within the control vector enables
the key management to conveniently control how
akey is used on the basis of where the key is used.

As a notational convenience, let (ul,u2,u3,ud,us,u6)
represent the encoding of the usage fields Ul
through U6. The remainder of the bits of the
toy system in C are spares, and thus are ignored
by the cryptographic hardware. The encoding
(100000) permits K to be processed as input key
parameter P1 in cryptographic instruction I1. The
encoding (110000) permits K to be processed ei-
ther as input key parameter P1 in cryptographic
instruction 11 or as input key parameter P2 in
instruction 12.

When an instruction has two or more execution
modes controlled by an input mode parameter,
the assignment of input key parameters can be
made on the basis of individual instruction
modes. Thus, better granularity in key-usage con-
trol is achieved.

When encrypted keys and control vectors are
specified as inputs to a cryptographic instruction,
each control vector is checked to ensure that the
requested use of the key is permitted, as illus-
trated in Figure 8. That is, control vector check-
ing ensures that the key usage implied by the
specification of a key as a particular input param-
eter Pj in a particular instruction or instruction
mode Ik, is permitted by the control vector. If
checking succeeds, the key-recovery process is
enabled and processing continues; otherwise in-
struction processing is aborted. The key-recov-
ery process decrypts the input encrypted keys.
Where necessary, the master key KM is input to
the process, thus permitting keys encrypted un-
der KM to be decrypted using the CVD algorithm
previously described in Figure 3. Thereafter, the
decrypted keys as well as additional input infor-
mation are processed by the cryptographic in-
struction to produce one or more outputs.

If one cheats by specifying e*gygc(K) and C2
instead of e* g (K) and Cl (i.e., a false control
vector C2 is specified instead of C1), one of two
things will happen. If control vector checking
fails, the instruction is aborted. If control vector
checking succeeds, the key-recovery process will
recover a spurious key K’ # K. As mentioned
several times previously, it is the task of the key-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 8 Control vector checking process

CRYPTOGRAPHIC INSTRUCTION

OPERATION CODE: -I

CRYPTOGRAPHIC HARDWARE |

CONTROL VECTOR
CHECKING

ZMODE PARAMETERS
- CONTROL VECTORS _J

v

lENABLE LINE

1 KEY

ENCRYPTED KEYS J > RECOVERY ¢
lKEYS

INPUTS 1 » INSTRUCTION

.| PROCESSING

1
OUTPUTS <

J

management scheme to ensure that such spurious
keys are of no beneficial use to a would-be ad-
versary. In practice, it is rather easy to ensure,
since cryptographic applications generally in-
volve two communicating parties who must each
possess the same cryptographic key. Thus, for
practical purposes, one communicating party
cannot cheat the other, since the keys recovered
within the cryptographic hardware in that case
are K and K’ (i.e., the first device has K and the
second device has K’, or vice versa).

Instead of a control vector specification like the
one shown at the beginning of this section, where
a single control vector contains the usage at-
tributes for all instructions, there may be multiple
control vectors. A more intuitive control vector
specification is achieved if separate control vec-
tors are made a part of the architecture for each
broad category or type of key, such as data keys,
key-handling keys, and PIN-handling keys. For
example, I1 and 12 might be data processing in-
structions and I3 and 14 might be key-handling

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 19891

instructions, in which case it may be advanta-
geous to group I1 and 12 to form a first set called
Type 1 and to group 13 and I4 to form a second set
called Type 2, as illustrated below. Control vector
checking is similar except for the additional type
field which must be checked.

Type 1 U1 U2

Type 2 U3 U4 us U6

The toy system provides a convenient method for
introducing the general principles of control vec-
tor design. However, the power and versatility of
the control vector are best understood and ap-
preciated from the study of an actual implemen-
tation. Therefore, the remainder of the paper dis-
cusses a control vector design implemented in
IBM’s Transaction Security System. The key-
management and cryptographic system design

MATYAS 163

Figure 9 Format of the control vector base

- s BITS

. OF CONTROL

-—--2 BITS
—?;—,zi,etTg o
e

—— 18T
s

- 7 BITS

| \aaBLe
é;e-fVAFitkaus o

— VARABLE - |

pursued in the Transaction Security System are
discussed in companion papers in this issue. 1

Control vector forms and formats

The key-management scheme implemented in the
IBM Transaction Security System supports 64-bit
control vectors and, in a few cases, 128-bit con-
trol vectors.

A 64-bit control vector, or the first 64 bits of a
128-bit control vector, are called a control vector
base. The second 64 bits of a 128-bit control vec-
tor are called a control vector extension. The con-
trol vector extension supports special-purpose
key management such as installation-specific

164 wmATYAS

key-management controls and also provides
space for future uses.

Format of the control vector base. Figure 9 illus-
trates the general format of the control vector
base. The control vector base consists of three
primary subvectors: a parity subvector, a cryp-
tographic facility access program (CFAP) subvec-
tor, and a cryptographic facility (CF) subvector.
The CF and CFAP are the hardware and software
components of a cryptographic system (also see
Reference 14).

Parity subvector. The parity subvector (depicted
as a single field) is composed of eight parity bits
whose bit locations are structured according to
the architecture to coincide with the eight parity
bits in a 64-bit DEA key. The parity subvector has
even parity, i.e., the parity bit in each byte is
adjusted so that the number of “1” bits in each
byte is an even number. The parity bits are set by
the cryptographic software and are ignored by the
cryptographic hardware. Maintaining even parity
in the control vector ensures that for a given key
all keys derived from that given key will have the
same parity as the original key. Even parity
avoids potential hardware incompatibilities that
may result during key processing, e.g., if proc-
essed by an encryption or decryption chip that
requires keys to have odd parity.

CFAP control subvector. A CFAP control subvec-
tor is a collection of fields used by the CFAP for
key-handling and key-management purposes.
This subvector is not processed by the CF, i.e.,
the hardware ignores this field. A bit in the CFAP
control subvector indicates whether the associ-
ated encrypted key may be specified as an input
parameter to the CFAP at the application program
interface (API) or whether the key must be stored
in a cryptographic key data set and accessed on
the basis of a key label specified as an input pa-
rameter to the CFAP at the API. Greater integrity
is achieved if keys are managed by the system. In
that case, a system-level access control program
such as the IBM Resource Access Control Facility
(RACF) can be the means to restrict the use of
cryptographic keys to authorized users only.

CF control subvector. The CF control subvector
is a collection of fields used by the cryptographic
facility for key-handling and key-management
purposes.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

CF control subvector field descriptions. The CF
control subvector contains the following nine
fields: antivariant, extension, key part, export
control, form, type, usage control, log, and re-
served.

Antivariant. The antivariant field is used to cryp-
tographically distinguish control vectors from
variants, i.e., to ensure that an encrypted key of
the form e*x5v(K), where V is the concatenation

Encrypted keys conforming
to one architecture cannot
be substituted and used for
keys of another architecture.

of a 64-bit variant mask v with itself (i.e., V =
v,v), cannot be substituted and used in a mean-
ingful way for an encrypted key of the form
e*kkeu(K), where H is derived from a control
vector using hashing function h, and vice versa.
In a key-management scheme based on key var-
iants, each variant mask v is a 64-bit value formed
by replicating a single eight-bit value eight times.
Each eight-bit value has even parity, and the val-
ues are selected so that no two eight-bit values are
complements of each other. The antivariant bits
are designed in an architecture so that at least two
bytes in the control vector are unequal, thus en-
suring that the set of all values of the form h(C)
and the set of all 128-bit variant mask values (v,v)
are disjoint. This permits architectures based on
control vectors and variants to coexist without
harmful side effects, i.e., encrypted keys con-
forming to one architecture cannot be substituted
and used for keys of another architecture.

Extension. The extension field (not to be confused
with the control vector extension) indicates the
length of C, i.e., 64-bit, 128-bit, or greater than
128-bit. The extension field in C is structured to
coincide with the extension field in h(C), which
was discussed in the subsection on hashing func-
tion h.

Key part. The key-part field indicates whether the
cryptographic variable associated with the con-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

trol vector is (1) a key or (2) an intermediate key
value. An intermediate key value consists of a
single key part or the exclusive-OR product of
two or more key parts. The key-part field in the
control vector works in combination with the
cryptographic instructions to control the import-
ing of keys. The cryptographic instructions per-
form key installation via the entry of two or more
key-part values, which when combined within the
cryptographic hardware, form the key. Thus,
each part of the key may be entered separately by
different people.

Export control. The export control field indicates
whether the key or cryptographic variable asso-
ciated with the control vector (1) may be exported
or (2) may not be exported. The term “export”
refers to a key-management process in which a
key or cryptographic variable is translated from
encryption under the master key to encryption
under a key-encrypting sender key KESK, which
permits the key to be transmitted to a receiving
device where it is imported. The task of “‘export-
ing” a key is performed by a cryptographic in-
struction which re-enciphers the key from enci-
pherment under the master key to encipherment
under a key-encrypting sender key. However,
this operation is performed only if the export con-
trol field in the control vector of the key indicates
that the key may be exported. A cryptographic
instruction is also available to reset the export
control field from the “export allowed” state to
the “export not allowed” state. However, the ex-
port control field cannot be changed from the ex-
port-not-allowed state to the export-allowed state.

Form. The form field indicates whether the 64-bit
variable associated with the control vector is (1)
a class 1 key, (2) the leftmost 64 bits of a class 2
key, (3) the leftmost 64 bits of a class 3 key, (4) the
rightmost 64 bits of a class 2 key, or (5) the right-
most 64 bits of a class 3 key. The term “‘class” is
used here only to help distinguish the five cases.
A class 1 key is a 64-bit key. A class 2 key is a
128-bit key in which the leftmost and rightmost
64-bit parts of the key are independently gener-
ated. A class 3 key is a 128-bit key in which the
leftmost and rightmost 64-bit parts of the key are
independently generated or deliberately set equal
for compatibility with 64-bit keys. Figure 10 il-
lustrates the three supported classes of keys.

The form field provides cryptographic separation
among the three classes of keys and, for class 2

MATYAS 165

Figure10 Classes of keys

. BA-BITK.

128-BIT KK
KR # KL

128-BIT KK
KR | KR=ORAKL

and class 3 keys, between the leftmost and right-
most 64-bit parts of the key. In effect, it ensures
that the class of the key specified at the instruc-
tion interface is permitted by the instruction, and
it ensures that the leftmost 64 bits and rightmost
64 bits of 128-bit keys cannot be interchanged and
used incorrectly.

Control vector type. The control vector type field
indicates what type of 64-bit variable is associated
with the control vector. The control vector type
field consists of a main-type and a sub-type. The
main-type defines broad types of keys and cryp-
tographic variables, whereas the sub-type defines
particular types of keys within each main-type.
Together, the main-type and sub-type fields fa-
cilitate the definition of a set of generic key and
cryptographic variable types using a hierarchical
naming structure. Figure 11 shows the control
vector main-types and sub-types.

Keys and cryptographic variable names are
formed as a concatenation of the main-type name
and the sub-type name, except that the word
“key” appearing in main-type is moved to the
end. Thus, main-type = *‘datakey,” and sub-type
= “compatibility” becomes data compatibility
key. A short description of the use of each key
and cryptographic variable type is provided be-
low. In the specification of names for main-type,
the term “cryptovariable’ is used as an abbrevi-
ation for cryptographic variable.

The data compatibility key is used to maintain
compatibility with devices not implementing the

166 MATYAS

control vector. Usage control bits permit the key
to encipher data, decipher data, generate MACs,
and verify MACs.

The data privacy key is used to support crypto-
graphic applications requiring encipherment and
decipherment of data. Usage control bits permit
encipher-only and decipher-only operations.

The data MAC key is used to support crypto-
graphic applications requiring the generation and
verification of MACs. Usage control bits permit
generation-only and verification-only of MACs.

The data privacy-translate key is used to support
cryptographic applications requiring ciphertext
translation. Usage control bits permit decrypt-
only or encrypt-only operations in the ciphertext
translate instruction. A data privacy-translate
key operates together with a data privacy key. A
data privacy-translate key can only decrypt ci-
phertext originally encrypted with a data privacy
key. Likewise, plaintext re-encrypted with a data
privacy-translate key can only be decrypted with
a data privacy key.

The data compatibility-translate key, like the
data privacy-translate key, is used to support
cryptographic applications requiring ciphertext
translation. Usage control bits permit decrypt-
only or encrypt-only operations in the ciphertext
translate instruction. A data compatibility-trans-
late key operates together with a data compati-
bility key. A data compatibility-translate key can
only decrypt ciphertext originally encrypted with
a data compatibility key. Likewise, plaintext re-
encrypted with a data compatibility-translate key
can only be decrypted with a data compatibility
key.

The data ANSI key is used to support ANSI X9.17
key management. Usage control bits permit the
key to encipher data, decipher data, generate
MACs, and verify MACs.

The PIN-generating key is used to support finan-
cial transactions requiring dynamic user PIN (per-
sonal identification number) verification. Usage
control bits permit the key to generate clear and
encrypted PINs and to generate reference PINs
used in PIN verification.

The PIN-encrypting-in key is used to decrypt in-
bound PINs processed by the PIN instructions. Us-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 19891

Figure11 Control vector hierarchy

| MAIN -TYPE

DATA KEY

[sus-TyPE

PIN KEY

KEY-ENCRYPTING KEY

CRYPTOVARIABLE

CRYPTOVARIABLE -ENCRYPTING KEY

UNSPECIFIED

PIN BLOCK

age control bits permit the key to be used in CF
instructions for verifying encrypted PINs, gener-
ating clear offsets, translating PINs, and reformat-
ting PINs.

The PiN-encrypting-out key is used to encrypt
outbound PINs processed by PIN instructions. Us-
age control bits permit the key to be used in CF
instructions for formatting and encrypting PINs,
generating formatted and encrypted PINs, trans-
lating PINs, and reformatting PINs.

The attributes “in”” and “‘out” associated with the
PIN-encrypting key cut down the amount of free-
dom a would-be adversary would have to manip-
ulate the cryptographic instruction interfaces in
an attempt to subvert security. In effect, they per-
mit a finer degree of control to be achieved in the
management and processing of PINs.

The key-encrypting sender key is used at a send-
ing device to encrypt keys transmitted to a re-
ceiving device. Usage control bits permit the key
to be used in CF instructions for generating keys,
exporting keys, and translating keys.

The key-encrypting receiver key is used at a re-
ceiving device to decrypt keys received from a

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

sending device. Usage control bits permit the key
to be used in CF instructions for generating keys,
importing keys, and translating keys.

The key-encrypting sender key and key-encrypt-
ing receiver key control vectors permit establish-
ment of a unidirectional, or one-way, key-distri-
bution channel between two devices.

The key-encrypting terminal key is used to main-
tain compatibility with terminal devices not im-
plementing the control vector. Usage control bits
permit certain key types to be encrypted under
this key for electronic distribution to a terminal.

The key-encrypting ANSI key is used in support of
ANSI X9.17 key management to electronically
transmit and receive keys.

The cryptovariable-encrypting key is used to en-
crypt and decrypt cryptographic variables proc-
essed by certain cryptographic instructions.

The PIN block, cryptovariable token, cryptovari-
able intermediate ICV, and unspecified control
vectors are not defined here.

The architectural advantages of multiple types of
control vectors, as specified by the control vector

MaTYAs 167

type field, are these. First, shorter control vectors
are possible, since each key type is processed by
fewer cryptographic instructions. Thus, fewer
usage control bits are required to control key
processing. Second, if the control vector type and
usage control fields are designed with key gener-
ation in mind, the control vector type field can be
used advantageously to simplify control vector
checking during key generation. The idea is to
define the control vector type and usage control
fields in such a way that generating function G can
validate each input control vector pair (C1,C2) on
the basis of checking the control vector type fields
in C1 and C2, but not checking the usage control
fields. To do this, function G must store a list of
valid pairs of control vector types. The usage con-
trol fields are designed so that any combination of
usage bits, in either C1 or C2, is permitted. That
is, no specification of the usage control field leads
to a conflict in consistency or security. Third, the
specification of keys and cryptographic variables
via the control vector type field, where control
vector types indicate broad application areas
served by these keys and cryptographic varia-
bles, leads to an intuitive specification. Also, the
key types are consistent with key types defined
for existing cryptographic products. In addition,
key types are chosen to closely parallel the ge-
neric uses of keys from the perspective of the user
and application program. Structuring the control
vector type field in this way makes it easier to
understand, and it should permit the key-man-
agement architecture to be more easily extended.

Usage control. The usage control field specifies
the permitted uses of the 64-bit variable (64-bit
key, leftmost or rightmost 64-bit parts of a 128-bit
key, or a 64-bit cryptographic variable) associ-
ated with the control vector. The usage control
field consists of a collection of subfields, unique
for each control vector type. That is, the subfields
defined for a data privacy key are different from
those defined for a key-encrypting sender key, or
for a PIN-encrypting-in key, etc.

Characteristics of the usage control field and the
architectural rules pursued in its design follow.
Generally, each subfield in the usage control field
is a bit which either enables (set to 1) or disables
(set to 0) the use of the key or cryptographic vari-
able as a specific input parameter to a specific
cryptographic instruction. However, there are
cases where this level of control is limited only to
particular instruction modes. In other cases it is

168 wmaTvas

broadened to include a group of like or related
cryptographic instructions. Generally speaking,
the usage control field enables a cryptographic
application, via the cryptographic software, to
limit or restrict the usage of a key in order to
achieve a different measure or level of crypto-
graphic security. Instruction mode parameters

The usage control field specifies
the permitted uses of the 64-bit
variable associated with the
control vector.

are the external means used to control instruction
execution. The control vector type and usage
control fields are designed to facilitate and sim-
plify control vector checking. They are also de-
signed to provide a high degree of security by
avoiding control vector specifications that lead to
conflicting key-usage attributes.

Log. The log field, used only in the key-encrypt-
ing sender key and key-encrypting receiver key
control vectors, provides an audit trail of the us-
age control field. If (C1,C2) are the control vec-
tors of a to-be-generated key, where Cl1 is a key-
encrypting sender key control vector and C2 is a
key-encrypting receiver key control vector, the
usage control field in C1 is stored in the log field
in C2 and the usage control field in C2 is stored in
the log field in C1. In this way the user of each key
is permitted to see the usage attributes of the
other key.

Reserved. The reserved field provides a control-
vector-based key management with a means for
extending the architecture to meet future require-
ments, with minimal or no impact on products
implementing the control vector.

Example of key-usage control

The process of key-usage control can be illus-
trated by looking at a typical control vector lay-
out and the control vector checking steps used
in a typical cryptographic instruction to check

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

the control vector. For example, consider a
data privacy key control vector of the form
X‘0003600003000000°. Table 2 shows the bit lay-
out for this control vector.

The control vector type field (bits 08-14) is en-
coded as B*0000001°, indicating that the key is a
data privacy key. The export control field (bit 17)
is encoded as B*1’, indicating that the key can be
exported. The usage control field (bits 18-19) is
encoded as B°10’, indicating that the key can be
used to encipher data but not decipher data. That
is, the “encipher” usage control bitis B‘1’ and the
“decipher” usage control bit is B‘0’. The anti-
variant field (bits 30 and 38) is encoded as B‘01°,
indicating that the field is properly set. The CFAP
control field (bits 32-37) is unchecked by the
cryptographic hardware. The form field (bits
40-42) is encoded as B‘000’, indicating that the
key is a 64-bit key. The key part field (bit 44) is
encoded as B‘0’, indicating that it is a key, not a
key part. The extension field (bits 45-46) is en-
coded as B*00’, indicating that the control vector
is a 64-bit control vector. The remainder of the
control vector bits are reserved and untested.

A data privacy key and control vector are proc-
essed in the CF instructions that encipher and de-
cipher data. The control vector checking steps
performed in the CF instruction that enciphers
data are listed below:

1. Control vector type field encoded as data com-
patibility key or data privacy key or data ANSI
key

2. “Encipher” bit in usage control field in “en-
abled” state

3. Form field encoded as ““64-bit key”

4. Extension field encoded as “64-bit CV” or
*128-bit CV”’

5. Valid antivariant field required

6. Key-part field encoded as “‘key”

This relatively simple set of control vector check-
ing steps illustrates several things about the con-
trol vector checking process. First, the checking
steps are independent of one another, so that they
can be performed in any order. In fact, because of
this independence, it is possible to allocate con-
trol vector checking among multiple processors.
In that case, each processor performing control
vector checking reports the outcome to the proc-
essor that executes the instruction, and if trust-
worthy positive responses are received from each

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Table 2 BIt layout for data privacy key control vector

X‘0003600003000000’
" Bit Posltions Bits

00-07 0000 0000

08-15) 0000 0011

16-23 01100000 = . - -
24-31 00000000 .
32-39 00000011 -
40-47 0000.0000

48-55 0000 0000

5663 0000 0000

processor, instruction execution is enabled. For
example, a smart card used at a workstation
could, in theory, be personalized to perform in-
stallation-unique control vector checking, e.g.,
using installation-specified fields in the control
vector extension. In that case, control vector
checking of the control vector base is performed
by the cryptographic hardware of the device, and
control vector checking of the control vector ex-
tension is performed by the smart card. Such in-
stallation-unique checking might include a provi-
sion for keys to be used only during specific time
periods, or days of the week.

Second, each control vector checking step can
test a field for one value, or for one of several
possible permitted values. For example, the en-
cipher instruction permits data to be enciphered
with three different key types, viz., data compat-
ibility key, data privacy key, and data ANSI key.
The form, antivariant, and key-part fields are
tested for specific values. This testing means that
the control vector checking process accepts as
valid any one of possibly many different control
vectors, not just one control vector.

Third, control vector checking is sparse. For ex-
ample, of the 2% possible 64-bit control vector
base values that can serve as input to the encipher
instruction, 6 X 2% of these are valid. Of the 16
tested bits, there are six valid combinations and,
of the 40 untested bits, there are 2% valid com-
binations, giving a total of 6 X 2% valid combi-
nations. The bits in the parity field are ignored. In
contrast to control vector checking, for a key-
management scheme based on key variants,
where 64-bit key-variant values are somewhat ar-
bitrarily assigned by the architecture, the analo-
gous checking process is therefore based on a 64-
bit encoded key variant. In that case, to check

maTyas 169

any one of the 6 X 2% different 64-bit vectors
requires a lookup table containing 6 X 2% en-
tries—which will not work! The power of the con-
trol vector over the key variant is evident.

Table 2 shows an example of a control vector base
value that passes the control vector checking proc-
ess for the encipher instruction. The reader may
find it instructive to trace each checking step and

Control vector checking is
sparse.

verify that the encoded value in each control vec-
tor field checked by the encipher instruction is
indeed valid.

Control vector enforcement

The process of control vector checking described
in the section entitled Control Vector Forms and
Formats is in reality only one way in which the
cryptographic facility (CF) can ensure that the set
of control vectors specified to a cryptographic in-
struction are consistent and permitted. This more
general process is called control vector enforce-
ment. Control vector checking is just one way to
accomplish control vector enforcement.

The following methods or combinations of meth-
ods may be used to accomplish control vector
enforcement:

» Specify control vector in CFAP and check con-
trol vector bits in CF: This method checks bits
and fields within the control vector to ensure
that they contain permitted values. In certain
cases, cross-checking of bits and fields among
two or more control vectors is necessary to en-
sure that they contain only permitted combina-
tions of values.

» Specify control vector in CFAP and set control
vector bits in CF: This method sets bits and
fields within the control vector to prescribed
values (i.e., by overwriting the bits and fields of
the control vectors passed at the instruction in-
terface).

170 wmaTvas

» Generate control vector in CF from information
specified by CFAP: This method generates con-
trol vectors from parameter information passed
at the instruction interface.

» Table lookup of control vector in CF from index
specified by CFAP: This method uses a table of
control vectors stored within the CF. An index
value passed at the instruction interface selects
the control vector or vectors used by an instruc-
tion.

» Control vector implicitly specified: The CF in-
struction uses a fixed set of control vectors.
Since there is no variability, the control vectors
are stored as constants in the instruction.

In the key-management scheme implemented in
the Transaction Security System, control vector
enforcement is accomplished using the first and
third methods (i.e., control vector checking and
control vector generation). The first method per-
mits errors in the control vector to be detected
and reported to the CFAP. The third method re-
duces the number of control vectors that must be
specified at the instruction interfaces, thereby re-
ducing complexity. However, this paper deals
only with control vector checking.

Concluding remarks

Control vectors contrasted with variants. The con-
trol vector consists of a set of structured fields
whose encoded values and meanings are defined
by the architecture, and a set of unstructured
fields and code points reserved for future use. The
structured fields specify a control vector type and
a set of key-management and key-usage control
fields that record information about the key or
cryptographic variable and define its permitted
uses. The architecture is extended by defining
new fields in the control vector or by adding to the
specification of an existing field.

In contrast, the variant mask is a single field con-
sisting of a set of encoded mask values (generally a
small set). The undefined code points are reserved
for future use. Each variant mask value defines a
key or cryptographic variable with a particular set
of assigned key-management and key-usage at-
tributes. The key-management architecture is ex-
tended by defining additional variant mask values.

The major difference between the control vector

and the variant mask is that the former can sup-
port a very rich key-management scheme with

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

many key-management and key-usage control at-
tributes, and the latter cannot. First, note that for
two comparable key-management schemes that
must support multiple orthogonal key-manage-
ment and key-usage control attributes, one based
on control vectors and the other on variant mask
values, the number of encoded control vector val-
ues N1 is about equal to the number of variant
mask values N2. In either case, a control vector
or a variant mask value is validated by confirming
that it is an element of a set of allowed values S,
where S is a subset of the set of all possible val-
ues. But for control vectors, set membership is
conveniently determined, even for large N1, by

An important difference between
the key tag and the control
vector is that the key tag is
available in clear form only

within the cryptographic
hardware.

checking one or more fields in the control vector.
However, with variants there is no shortcut; one
must store and search a list of N2 values. There-
fore, for large N2, variant mask checking cannot
be implemented efficiently.

Control vectors contrasted with key tags. Several
attributes of the Jones’ key tag make it inappro-
priate for use as a general methodology for con-
trolling key usage. Each 64-bit key has only eight
bits available for a key tag. The control vectors
defined by the key-management scheme imple-
mented in the Transaction Security System al-
ready make use of the majority of the bits in the
control vector base, and therefore, the key tag
could not be used to implement this key-manage-
ment architecture. Moreover, DEA-based prod-
ucts and equipment that use the eight nonkey bits
for parity checking, or that must maintain com-
patibility with those products and equipment that
do, cannot use the key tag.

An important difference between the key tag and
the control vector is that the key tag is available

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

in clear form only within the cryptographic hard-
ware. The control vector is carried along with the
encrypted key, in clear form, in an external key
token. The key tag is recovered in clear form
when the key is decrypted, whereas the control
vector is supplied to the cryptographic hardware
at the instruction interface, thus permitting the
key to be decrypted. Therefore, with the key tag,
key-usage control is limited to that which can be
performed in the cryptographic hardware. In con-
trast, with the control vector, key-usage control
can be effected in multiple locations, including the
cryptographic hardware, the cryptographic soft-
ware, a cryptographic software-provided instal-
lation exit, or the application program. Another
difference is that, with the control vector, key
usage is controlled at the instruction interface.
With the key tag, key usage is controlled at the
DEA interface (i.€., to control elementary encrypt
and decrypt operations with the key).

Advantages of the control vector. For some cryp-
tographic devices, especially those offering lim-
ited, special-purpose, or self-contained crypto-
graphic functions, key variants may provide
suitable key separation and key-usage control.
For general-purpose cryptographic devices,
where very high-speed cryptographic operations
are required or it is impractical or infeasible to
implement full hardware control vector checking,
key separation and key-usage control may be ad-
vantageously effected through the use of a subset
of frequently used control vector values, called a
generic subset. In that case, the control vector val-
ues are stored in tabular form within the crypto-
graphic hardware, and a fast table lookup method is
used to enforce proper control vector usage. This
also ensures compatibility with other devices im-
plementing the same control vector set. This
method of control vector implementation is the one
pursued in a companion paper in this issue. "’

However, in situations where the cryptographic
hardware implementation permits full field-by-
field control vector checking, a much finer gran-
ularity in key separation and key-usage control is
possible. There are several other advantages of a
key-management architecture based on control
vectors. Many of these are already obtained in the
key-management scheme implemented in the
Transaction Security System.

The control vector has no restriction on length. In
theory, a key-management architecture based on

Matyas 171

control vectors can be grown indefinitely (i.e., the
architecture is said to be open-ended).

The control vector consists of a set of fields sep-
arately specified in an architecture. These fields
control key usage at the CF cryptographic instruc-
tion interface and, to a lesser degree, at the CFAP
cryptographic function interface (i.e., at the API).

The control vector consists of a
set of fields separately specified
in an architecture.

Positioning the controlling mechanisms at these
points permits a fine degree of key-usage control
to be realized in the key-management architec-
ture.

Experience has shown that each CF cryptographic
instruction needs to check only a fraction of the
control vector fields within any one control vec-
tor. That is, only sparse checking is needed.
Therefore, a certain economy of scale is realized
in the control vector checking process, which is
unattainable with other methods (e.g., using key
variants).

Experience has also shown that many control
vector fields have no dependence on other control
vector fields, and the checking performed on
these fields is totally independent of the checking
performed on other fields. When dependencies do
exist, they generally involve only a few fields, so
that the necessary cross-checking is far less than,
in theory, it might be. This independence and
weak dependence among the control vector fields
means that control vector checking can be per-
formed as a series of independent checking steps,
in no particular order.

Because control vector checking consists of a se-
ries of independent checking steps, control vector
checking can be performed by multiple parallel or
distributed processors. As already pointed out,
installation-specific control vector fields in the
control vector extension could, in theory, be

172 wmaTYAs

checked by a smart card which has been person-
alized in advance with an installation-specific
control vector checking program. The control
vector checking performed on the control vector
base, e.g., at a workstation, is left unaltered and
can service many different installation and net-
work configurations.

Because control vector checking consists of a se-
ries of independent checking steps, control vector
checking can be serialized and performed advan-
tageously by different software programs and
hardware components. For example, consider a
cryptographic service request issued by an appli-
cation program to CFAP, which in turn results in
a cryptographic instruction issued to the CF. A
user-defined field in the control vector extension
could be checked by the application program
prior to its issuing the service request to the CFAP.
An installation-defined field in the extension
could then be checked by an installation-provided
program (executed via a CFAP installation exit),
and a CFAP field in the control vector base can be
checked by the CFAP prior to issuing the crypto-
graphic instruction. The CF fields in the control
vector base are then checked by the instruction
prior to executing the instruction. If checking fails
at any stage, the process is halted.

The design is such that control vector checking is
independent of (a) the functional processing per-
formed by each instruction, (b) the encryption
and decryption algorithms (CVE and CVD) used by
the key management to protect keys and to cryp-
tographically couple the keys and control vec-
tors, and (c) the key-distribution protocol. Thus,
new fields and code points can be designed in the
control vector within the architecture and addi-
tional control vector checking can be added to
existing checking procedures without affecting (a)
present control vector fields, (b) present control
vector checking procedures, (c) present instruc-
tion functional processing, and (d) present in-
struction interfaces.

The control vector permits a key-management ar-
chitecture to be designed such that the majority of
the complexity associated with the key-manage-
ment architecture is embodied as encoded fields
within the control vector. The control vector
checking procedures may be made as general as
possible, so that common checking routines can
be used by several cryptographic instructions.
Conversely, the common set of functions for gen-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

erating keys, producing derived keys, and en-
crypting and decrypting keys using the control
vector are made as simple and straightforward as
possible. That is, key-management complexity is
localized in the control vector, not in the func-
tions that process control vectors and keys. Thus,
the control vector gives rise to fewer and simpler
cryptographic functions to ensure cryptographic
separation, thereby reducing the work necessary
to certify the cryptographic security.

Since the control vector is a structured variable,
the encoded fields and code points present in the
control vector match the cryptographer’s intu-
ition about the way a key-management scheme
operates. This structuring aids in understanding
the key-management architecture at all levels of
cryptographic product and application design and
improves the implementation and use of those
products.

Each CF instruction and the control vector check-
ing steps for each CF instruction can, but need
not, be implemented within the same component
of the cryptographic system. Thus, an imple-
menter has a choice of where control vector
checking can be implemented most advanta-
geously within the cryptographic device.

Acknowledgments

The author wishes to acknowledge C. H. Meyer
and B. Brachtl who collaborated with him on an
initial idea for controlling key usage that eventu-
ally led to the control vector. The author also
wishes to acknowledge D. B. Johnson, R. K.
Karne, A. V. Le, R. Prymak, and J. D. Wilkins
for their efforts in codeveloping the control vec-
tor.

Cited references

1. American National Standard X3.92-1981, Data Encryp-
tion Algorithm, American National Standards Institute,
New York (December 31, 1981).

2. W. F. Ehrsam, S. M. Matyas, C. H. Meyer, and W. L.
Tuchman, A Cryptographic Key Management Scheme
for Implementing the Data Encryption Standard,” IBM
Systems Journal 17, No. 2, 106-125 (1978).

3. S. M. Matyas and C. H. Meyer, “Generation, Distribu-
tion, and Installation of Cryptographic Keys,”” IBM Sys-
tems Journal 17, No. 2, 126-137 (1978).

4. R. E. Lennon, “Cryptography Architecture for Informa-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

tion Security,” IBM Systems Journal 17, No. 2, 138-150
(1978).

5. M. E. Smid, Notarization System for Computer Net-
works, NBS Special Publication 500-54, U.S. Department
of Commerce, National Bureau of Standards (now NIST),
Washington (October 1979).

6. American National Standard X9.17-1985, American Na-
tional Standard for Financial Institution Key Manage-
ment (Wholesale), American Bankers Association, Wash-
ington (1985).

7. International Standard ISO 8732, Banking—Key Manage-
ment (Wholesale), International Organization for Stan-
dardization, ISO Central Secretariat, Geneva, Switzer-
land (15 November, 1988).

8. R. W. Jones, “Some Techniques for Handling Encipher-
ment Keys,” ICL Technical Journal 3, No. 2, 175-188
(November 1982).

9. D. W. Davies and W. L. Price, Security for Computer
Networks, Second Edition, John Wiley & Sons, Inc.,
New York (1989), pp. 154-157.

10. American National Standard X9.9-1986, American Na-
tional Standard for Financial Institution Message Au-
thentication (Wholesale), American Bankers Associa-
tion, Washington (1986).

11. D. Coppersmith, S. Pilpel, C. H. Meyer, S. M. Matyas,
M. M. Hyden, J. Oseas, B. Brachtl, and M. Schilling,
Data Authentication Using Modification Detection
Codes Based on a Public One Way Encryption Function,
U.S. Patent No. 4,908,861 (March 13, 1990).

12. C. H. Meyer and M. Schilling, “Secure Program Load
with Modification Detection Code,” Proceedings of the
5th Worldwide Congress on Computer and Communica-
tions Security and Protection SECURICOM 88 - SEDEP,
8, Rue de la Michodiere, 75002 Paris, France (1988),
pp. 111-130.

13. American National Standard X9.23-1988, American Na-
tional Standard for Financial Institution Encryption of
Wholesale Financial Messages, American Bankers As-
sociation, Washington (1988).

14. S. M. Matyas, A. V. Le, and D. G. Abraham, “A Key-
Management Scheme Based on Control Vectors,” IBM
Systems Journal 30, No. 2, 175-191 (1991, this issue).

15. D. B. Johnson et al., “Common Cryptographic Architec-
ture Cryptographic Application Programming Interface,”
IBM Systems Journal 30, No. 2, 130-150 (1991, this is-
sue).

16. D. B. Johnson and G. M. Dolan, “Transaction Security
System Extension to the Common Cryptographic Archi-
tecture,” IBM Systems Journal 30, No. 2, 230-243 (1991,
this issue).

17. P. C. Yeh and R. M. Smith, Sr., “ESA/390 Integrated
Crytographic Facility: An Overview,” IBM Systems
Journal 30, No. 2, 192-205 (1991, this issue).

Stephen M. Matyas IBM Federal Sector Division, 9500 God-
win Drive, Manassas, Virginia 22110. Formerly a member of
the Cryptography Center of Competence at the IBM Kingston
Development Laboratory, Dr. Matyas is currently a member
of the Secure Products and Systems department at Manassas,
Virginia. He has participated in the design and development
of all major IBM cryptographic products, including the IBM
Cryptographic Subsystem, and recently he has had the lead
role in the design of the cryptographic architecture for IBM’s
recently announced Transaction Security System. Dr. Matyas

MATYAS 173

holds 26 patents and has published numerous technical arti-
cles on all aspects of cryptographic system design. He is the
coauthor of an award-winning book entitled Cryptography—A
New Dimension in Computer Data Security, published by
John Wiley & Sons, Inc. He is a contributing author to the
Encyclopedia of Science and Technology, and Telecommu-
nications in the U.S.—Trends and Policies. Dr. Matyas re-
ceived a B.S. in mathematics from Western Michigan Uni-
versity and a Ph.D. in computer science from the University
of Iowa. He is the recipient of an Outstanding Innovation
Award for his part in the development of the Common Cryp-
tographic Architecture. He is presently an IBM Senior Tech-
nical Staff Member.

Reprint Order No. G321-5428.

174 wmaTvas IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

