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Cryptography  is  considered  by  many  users to be 
a  complicated  subject.  An  architecture for a 
cryptographic  application  programming  interface 
simplifies  customer  use  of  cryptographic 
services  by  helping to ensure  compliance  with 
national  and  international  standards  and  by 
providing  intuitive  high-level  services  that  may 
be  implemented on a  broad  range  of  operating 
systems  and  underlying  hardware.  This  paper 
gives an overview of the design  rationale of the 
recently  announced  Common  Cryptographic 
Architecture  Cryptographic  Application 
Programming  Interface  and  gives  typical 
application  scenarios  showing  methods of using 
the  services  described in the  architecture to meet 
security  requirements. 

P ossibly there  once  was a time when informa- 
tion was  not  considered a business asset, but 

such  a  time is no  more.  Protecting  enterprise in- 
formation is becoming more  and more essential in 
maintaining an organization’s  competitive  edge. 
Cryptography is one  element of a set of basic  data 
security  measures  that  provide  security  for infor- 
mation assets.  Other  measures include physical 
and logical access  control, identification and  au- 
thentication  mechanisms,  security  management, 
and  journaling  and auditing procedures.  Data  se- 
curity  measures  such as access  control  and au- 
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diting may be  adequate  for  applications  where all 
information assets  are  on  site  and within the  con- 
trol of the  enterprise.  However,  for  applications 
where  data must reside  outside  direct manage- 
ment control,  or  are  shared among many users, 
prudent  data  processing  installations may require 
the additional protection  that  cryptography  pro- 
vides. 

Cryptography is the  transformation of intelligible 
information into  apparently unintelligible form in 
order  to  conceal information from  unauthorized 
parties.  Cryptography is the  only  known  practical 
method to  protect information  transmitted  elec- 
tronically through communication  networks. It 
can  also  be an economical way to  protect  stored 
data.  Cryptographic  methods  can be used to  pro- 
tect not only the confidentiality of data, but  the 
integrity of data  as well. Data confidentiality is the 
protection of information from  unauthorized dis- 
closure.  Data integrity is the protection of infor- 
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mation from  unauthorized modification. The 
cryptographic  transformation of data is defined 
by a cryptographic  algorithm, or  procedure, un- 
der  the  control of a value called the cryptographic 
key.  The  cryptographic  key  must be protected 
against unauthorized use,  as  the security of the 
cryptographic  transformation  depends on  the se- 
crecy  and integrity of the  key.  Cryptography  can 
therefore  be viewed as a method to logically re- 
duce  the  area  that  needs  protection  to  ensure  data 
confidentiality and/or  data integrity to  the  area 
where the cryptographic  keys are kept. 

There  are many applications  today  for  commer- 
cial cryptography.  Existing  applications  provide 
confidentiality of  files and  communications, in- 
tegrity of messages,  and  user identification. Cryp- 
tographic  services are implemented in disparate 
products. 

Software architecture rationale 

Uses of cryptography. Files may be  encrypted lo- 
cally and  decrypted  either locally or  on a remote 
system  at an indeterminate  time in the  future. 
This  requires  that  the  cryptographic algorithm be 
compatible in the  two  systems  and  that  the key 
used for  decryption be available at  the  remote 
system.  Some  applications may require  the  enci- 
pherment of partial or full communications be- 
tween  systems. This requires  the use of a com- 
mon cryptographic key-management and key- 
exchange  approach. 

Communication integrity may be  guaranteed by 
using a message authentication  code (MAC) to  de- 
tect  alteration of messages transmitted  over net- 
works.  Conceptually, a MAC is a  cryptographic 
checksum  that is derived using a key that is 
known only to the  parties  involved.  The MAC is 
generated  at  the message origination node and 
appended to  the message. On receipt of the mes- 
sage and  its  associated MAC, the MAC is  verified at 
the message destination  node. 

Another  use is the  detection of unauthorized file 
modifications. A modification detection  code 
(MDC) calculation may be used to  reduce  the prob- 
lem of maintaining the integrity of an arbitrarily 
large data object  to  that of maintaining the integ- 
rity of a 128-bit quantity. For example,  to  detect 
program  alteration,  an MDC could be calculated 
on  a  known  correct version of the program and 
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Figure 1 Cryptographic API model 

CRYPTO- API APPL 
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then published in a generally available forum, 
such  as  a  newspaper.  A  recipient of the  program 
can  then  calculate  the MDC for  the  received  pro- 
gram and verify that  the resulting MDC is the 
same. An MDC is different from a MAC in that  the 
algorithm for calculating an MDC does  not  use a 
secret key and is public knowledge. 

Financial applications  require the use of a PIN 
(personal identification number) for  user  authen- 
tication.  The  cryptographic  support  at  various 
places in the  network must provide for  encryp- 
tion,  translation,  and verification of PINS. 

Cryptographic  services  are  tailored for  the  envi- 
ronment  where  they will operate.  However,  they 
should perform the  same  operation, with the  same 
results,  regardless of the  product or  the environ- 
ment. If a  customer  uses a workstation-based 
product  for  end-user  cryptographic  services, it 
should be compatible with host-based  products 
that  provide  the  same  services. In addition, if a 
customer  writes an application  that  requires  cryp- 
tographic services,  the  application should be por- 
table  between  the IBM strategic  operating  sys- 
tems. All the  above  considerations  result in the 
conclusion that a cryptographic  architecture is 
both necessary  and  desirable. 

Cryptographic API model. A model for  the Com- 
mon Cryptographic  Architecture  Cryptographic 
Application Programming Interface'  (Crypto- 
graphic API) is shown in Figure 1. The  crypto- 
graphic subsystem  consists of all cryptographic 
functions below the  Cryptographic API. The  cus- 
tomer or system  application (APPL) calls API serv- 
ices to  provide  the  cryptographic  transforma- 
tions.  The  application typically transmits the 
encrypted information to an  application on an- 
other  system which in turn calls appropriate API 
services to achieve  the  desired  security  objective. 

JOHNSON ET AL. 131 





tion keis between uqers and across ne&vMi have demf- user application as Common  Programming Intefliws. 
oped. These  s&urity  facilites and mechanisms,  although  em- 

Data  integrity is the  means to detect'the mod~cation of bodied in the host, operating  system  software,  are also 
data  stored local& ortransmitted  over  a  network.  Two  types designed to be  utilkted in delivering  specific,  netwbrk, 
of data  integrity  services  exist:  the  detection  of  intentional  database,  and worbtation security  capability. 
modification,  which is provided  by  cryptographic  functions 
such as message  authentication  code  (MAC)  or  modifica- 
tion  detection  code (MDC),  and the  detection of  accidental 
modification,  which is provided  by  noncryptographic 
mechanisms.  The CCA implements  both  the MAC and MDC 
functions.  The  use  of a cryptographic  function like MDC has 
proved  effective in discovering  and  combatting  computer 
viruses. 

Security  management  encompasses  registration  and 
enrollment  of  users  and  resources in the  enterprise  infor- 
mation  base,  the  facilities  to  administer  security  in  various 
combinations  of  both  centralized  and  decentralized  rights- 
management  based  on  the  security  policy  of  the  enterprise, 
and  the  mechanisms  to  audit  various  levels of security-rel- 
evant  events.  Audit  further  breaks  down  into  the  detection, 
logging,  and  reporting  of  events  as  well  as  the  invocation 

n September 1990, IBM  expanded its commit- 
ment to security  with  the  announcement  of  plans 
for  an  enterprise-wide  security  architecture  to 

encompass  the  CCA, SAA, and  emerging  technologies 
required in a distributed  computing  environment.  Further 
enhancements  were  also  made  to  the  various  security 
facilities  across  the SAA and AIX systems. 

CCA defines  an  application  programming  interface  for a 
wide  variety  of  confidentiality  and  data  integrity  functions 
that  are  available  at  both  the  application  program  and 
subsystem  level.  Currently, MVS/ESATM, VTAMTM, 
IMS/ESATM, and CICS/ESATM provide  support  for  this inter- 

of  security  alerts  for  immedi- 
ate  action.  As  the  only  mech- 
anism to validate verified 
access  to  protected re- 
sources,  audit  complements 
I&A  and  access  control. 

Department  of  Defense 
(DOD)  trusted-system  facili- 
ties  are  enhancements  to  the 
basic  security  facilities  and 
are  designed  into  the  sys- 
tem  to  support  the  various 
levels  of  trust  defined  by  the 
U.S. Government in their 
trusted-system  criteria. In 
certain  systems IBM has  in- 
corporated  the  functions  to 
meet  these  criteria,  whereas 
in other  cases it has  de- 

~~ ~ 

face  to CCA based  on  the 
newly  announced ES/9000TM 
Integrated  Cryptographic  Fa- 
cility.  In  addition,  the PC DOS 
workstation-based  Transac- 
tion Security System  im- 
plements  this  interface as 
part  of a comprehensive 
finance  industry  security  sys- 
tem.  The  new  Virtual  Ma- 
chine/Enterprise Systems 
ArchitectureTM (VMIESATM) 
product is currently im- 
plementing  support  for  the 
Integrated  Cryptographic  Fa- 
cility  part of a guest  virtual 
machine  environment  run- 
ning MVS/ESA. 

Curtis L. Symes 
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Terminology  used  in  examples. In all examples in 
this  paper the following names are used.  The 
name Ann is used  for the  creator  or sender of a 
crytographic  key or  other output of a  Crypto- 
graphic API service.  The name Bill is used for  the 
intended  recipient of the key or other  output. Us- 
ers  at  an intermediate  node  use  a name that  starts 

The Common Cryptographic 
Architecture Cryptographic API 

definition  uses  a  common 
key-management approach. 

with the  letter C ,  for  example, Charles. The name 
used for  an  arbitrary  adversary  attempting  to pen- 
etrate  the security  mechanisms is Eve. 

Common  Cryptographic  Architecture. The need 
for a Common  Cryptographic  Architecture Cryp- 
tographic API is derived by the  applications  that 
require  cryptographic  services.  These applica- 
tions are, in general,  distributed  across many IBM 
products.  It is necessary to provide  the capability 
to  encipher  data in one  product, send the  data  to 
another  system  either  directly  or  via  a  network, 
and  decipher  the  data in the  destination  product. 
To  ensure this  capability,  there  must be a com- 
mon set of cryptographic  operations available on 
multiple systems. If the  cryptographic  operations 
are provided  externally as common callable serv- 
ices on  the  disparate  systems,  then  the additional 
advantage of enhancing program portability is 
achieved. 

The Common  Cryptographic  Architecture Cryp- 
tographic API definition uses a common key-man- 
agement  approach  and  contains  a  set of consistent 
callable  services.  This allows for  the implemen- 
tation of cryptographic  solutions  that are inde- 
pendent of the  networks  and  processing  systems. 
Common  key management ensures  that all prod- 
ucts  that  conform to  the  architecture allow users 
to  share  cryptographic  keys in a consistent man- 
ner.  The definition of key management provides 
methods  for initializing keys on systems  and net- 
works,  and  also  supports  methods  for  the  gener- 
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ation,  distribution,  exchange,  and  storage of 
keys. 

The callable services  provide  a  common high- 
level language interface  for  user or  system appli- 
cations. Thus, a small machine application  could 
use the  same  service calls as a  large machine ap- 
plication. The services  provide a common  set of 
functionality that is applicable  to a wide  variety of 
applications. The Common  Cryptographic Archi- 
tecture  Cryptographic API services define a  level 
of cryptographic  capability  that allows programs 
to be developed  that  work  on  disparate  systems. 
In  particular,  the  Common  Cryptographic Archi- 
tecture  provides  two  forms of compatibility for 
applications: interoperability  and  portability. 

Interoperability is the  assurance  that  applications 
that use the  architected  services will work  to- 
gether.  Interoperability is achieved by common 
encryption  and  decryption  algorithms,  common 
key-management definitions, and  common  exter- 
nal information formats.  Interoperability  has the 
following limitations: 

1. As the  internal  key  token definition is imple- 
mentation-dependent, it should be  assumed 
that an operational key token  created  on  one 
cryptographic  subsystem  implementation will 
not  work  on  another  implementation.  (See  the 
description of internal  and  operational  keys in 
the  section  on  operational  keys.) 

2. As the key storage definition is implementa- 
tion-dependent, it should  be  assumed  that  the 
key storage  for  one  implementation will not 
work with another  implementation  unless a 
conversion utility exists  and is executed. 

Portability is the ability to  move an application 
program from  one  system  to  another  without 
changing the  program.  However, it should be 
noted  that portability is at  the  source  code  level. 
That  is, it should be  assumed  that it is necessary 
to recompile the  application  program in order  for 
it to be able to run on a different cryptographic 
system or  to run on a different cryptographic 
product  on the same  system. 

Cryptographic API objectives. The objectives in 
designing the  architecture  for  the  Common  Cryp- 
tographic Architecture  Cryptographic API were to 
provide an intuitive multisystem  application  pro- 
gramming interface while allowing for  future 
growth. 
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It  was realized early in the design process  that  the 
callable services should not  be defined at  too low 
a  level, as  too much of the complexity would then 
reside with the  user.  The  cryptographic  services 
were designed to attempt  to hide as much of the 
complexity of the underlying system as possible 
and  present  an  intuitive  interface. It was also de- 
cided early in the design that it was very  desirable 
to follow the guidelines developed by John  Ehr- 
man at  the  Santa  Teresa laboratory  for designing 
Systems Application ArchitectureTM ( s A A ~ ~ )  call- 
able  services. Doing so gave  a level of confidence 
that  the  cryptographic  services would be able to 
be implemented on many different systems.  How- 
ever, this  decision  required  overcoming  the chal- 
lenge of abiding by the SAA callable service guide- 
lines in regard to  data types.  Apparently,  the only 
data  types  that  are  supported in all programming 
languages are  character strings and 32-bit binary 
integers.  Neither of these definitions applies to 
encrypted  data,  but  further investigation showed 
that if the  data  do not  need  to be manipulated by 
the caller, an undifferentiated string  type  (that  is, 
a  string  that may be composed of arbitrary hexa- 
decimal values) could also be used in a parameter 
definition. This undifferentiated string  data  type 
allowed for  the definition of data  structures 
needed to contain information so that  the  inter- 
face could be defined in a more intuitive manner. 

Good  architectural design must include the pos- 
sibility for  future  growth.  This  requirement may 
be met by adding new services.  However, in 
many cases,  the old service definition may almost 
meet  the  new  requirement,  except  that some new 
parameter  option specification requires  support. 
This  desirable design trait is addressed by the def- 
inition of a rule array in many services.  The rule 
array length and rule array  parameters, in effect, 
support a variable length method of passing in- 
formation to  the service. For any  particular level 
of the  software,  there will be  a defined maximum 
size of the rule array in any  particular  service. 
However,  a  later level of software may define 
more  parameter  options  and  support  a larger rule 
array  size  to  accommodate  increased functional- 
ity. 

Data structures 

Control vector externalization. The  control  vector 
is a pivotal concept in the Common Crypto- 
graphic  Architecture. See  the  companion  papers 
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in this  for more information. The  control 
vector  concept is more flexible and  more  intuitive 
than  the  variant  concept used in previous  cryp- 
tographic systems.  From  a  software  viewpoint, 
some important  facts  about the  control  vector 
need to be re-emphasized: 

It allows electronic  key  distribution  without 

It is a  compact  nonsecret data  structure. 
It is conceptually  associated with a key. 
It  has a dual use: it enforces  cryptographic  sep- 

misuse of the key by a normal user. 

aration,  and it specifies key usage. 

Operational keys. An operational  key  is  a  key  that 
is encrypted  under  the  master key at a  particular 
system  and can be used in  a  service  at  that sys- 
tem.  Operational  keys are  accessed  either di- 
rectly by value in an internal key token  or indi- 
rectly by a key label. 

An internal key token  contains an  encrypted 
cryptographic  key  and  its  associated  control vec- 
tor.  It is typically used  for  a  key with a  short life, 
as  for  example, a key that is used for a session  and 
is disposed of when the  session is over.  It allows 
implementation support  for  the  capability  for 
authorized  users to change the master key while 
the  system is on  line.  Previously, a master key 
change  required  that  the  cryptographic  sub- 
system be taken off line. 

In  an internal key  token,  a field may be  set  to 
allow detection of situations  where  the  master 
key has been changed  but  the  encrypted  key in 
the key token is still encrypted  under  the old mas- 
ter  key. If desired,  the  system  software  on  de- 
tection of such  a  condition,  can  re-encipher the 
encrypted key from encryption  under the old 
master key to encryption  under the  current mas- 
ter  key,  and  replace  the old encrypted value with 
the new in the key token  and  continue with the 
originally requested  operation. 

A key label indirectly identifies an internal  key 
token  stored in key storage. An operational  key is 
a  candidate  for being kept in key  storage if it is a 
key with a long life (that is, it must  survive mul- 
tiple master key changes), if it is appropriate  to 
enforce  system  access  control to use  this  key, or 
if many users  need  access  to  this  key. 

From  experience with previous  systems,  some 
customers  have  requested  enhancements that al- 
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Table 1 Common  Cryptographic  Architecture  services 

service Pseudonym Senrlee Name 

Data-operation services 
1.  Encode CSNBECO 
2. Decode CSNBDCO 
3. Encipher CSNBENC 
4. Decipher CSNBDEC 
5 .  Ciphertext Translate CSNBCTT 
6. MDC Generate CSNBMDG 
7. MAC Generate CSNBMGN 
8. MAC  Verify CSNBMVR 

Key-management services 
9. Clear Key  Import CSNBCKI 

10. DATA Key Export CSNBDKX 
11. Key Export CSNBKEX 
12. Key Generate CSNBKGN 
13. Key Import CSNBKIM 
14. RN Generate CSNBRNG 
15. Secure  Key  Import CSNBSKI 

PIN-management services 
16. Clear  PIN  Generate CSNBPGN 
17, Encrypted PIN  Translate CSNBPTR 
18. Encrypted PIN Verify CSNBPVR 

low the  Cryptographic API services  to be passed 
keys  either  directly  by value or indirectly via a 
key label. This  has  been satisfied in the  Crypto- 
graphic API by the definition of the key identifier 
parameter  found in most of the Cryptographic API 
services.  A  key identifier can  be  either  an  internal 
key token or a  key label and is 64 bytes long. If 
the first byte is acharacter, then  the  data specified 
in a key identifier parameter are interpreted by 
the software as a key label specification. If the 
first byte is an X'O1' (hexadecimel  value),  then 
the  data specified in a  key identifier parameter  are 
interpreted by the  software as  an internal key to- 
ken specification. 

External keys. An external key is a key encrypted 
under a key-encrypting key (KEK). The KEK may 
be  either  an IMPORTER key or  an EXPORTER key. 
An IMPORTER key is used  to  import  keys  onto  the 
system.  Importing  a key consists of calling the 
Key  Import  service which re-encrypts  a key in 
importable  form  (i.e.,  from  encryption  under  an 
IMPORTER key) to operational  form  (Le.,  to  en- 
cryption  under  the  master key of this  system). 
This  makes the key  operational on this  system.  It 
is possible to  create a  key in import  form  directly 
by using the  Key  Generate  service  or  the  Secure 
Key  Import  service. An EXPORTER key is used to 
export  keys  to  other  systems. Exporting  a key 
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consists of calling the  Key  Export  service which 
re-encrypts  a key from  operational  form to ex- 
portable  form  (i.e., to  encryption  under  an 
EXPORTER key).  The  encrypted  key may then  be 
electronically transported  to  the receiving sys- 
tem.  The EXPORTER key  on  the  sending  system is 
paired with an IMPORTER key on  the receiving 
system as both  have  the  same  value  when  inter- 
nally decrypted.  It is possible to  create a key in 
export  form  directly by using the  Key  Generate 
service. 

An external  key is kept in an  external  key  token. 
The  external key token is the foundation  for Com- 
mon Cryptographic  Architecture  external  key 
distribution.  Use of the  external  key  token helps 
ensure  interoperability,  and is built by the  creator 
of the  key. An external  key  token  contains  the 
encrypted  key,  its  associated  control  vector,  and 
a  token validation value. 

The  token validation value (TVV) is used to verify 
that an external key token is valid and helps pre- 
vent an invalid or overlaid  external  key  token 
from being accepted  by a service. As many  values 
in a key token  have  no  inherent  structure  (i.e., 
they appear completely random), it is desirable to 
add  redundancy to  the definition of the  external 
key token so that  there is a high level of confi- 
dence  that it has  not  been  corrupted. As some 
cryptographic  operations  produce unintelligible 
ciphertext, it is important  that  errors  not  be dis- 
covered  too  late,  after  some  unrecoverable  proc- 
ess  has  occurred. 

Cryptographic API services 

A  reference  chart  for the Common  Cryptographic 
Architecture  Cryptographic API services is shown 
in Table 1 .  The service  pseudonym is  the descrip- 
tive name for a service, while the service name is 
the formal name for  the  service  and  the  name by 
which the  service is called from  a  program. Fol- 
lowing is an  overview (from the caller's  perspec- 
tive) of the  cryptographic  functionality  each  ser- 
vice provides. 

Data-operation services. The Cryptographic API 
provides  data-operation  services  that allow call- 
ers  to provide  data confidentiality and  data integ- 
rity.  The  Cryptographic API consists of callable 
services  that  provide  the  cryptographic  transfor- 
mations that allow a  system  service or  customer 

IBM SYSTEMS JOURNAL,  VOL 30, NO 2, 1991 



application  caller of a service to meet  security 
requirements. 

Encode  and  Decode. The  Encode  and  Decode 
services  provide  Electronic  Code Book (ECB) en- 
cryption  and  decryption of eight bytes of text. 
The cryptographic  key is supplied as  an unen- 
crypted  eight-byte  value,  not as  an internal key 
token. As the key is  unencrypted,  the caller of 
these  services is responsible for ensuring  the  se- 

The Encipher and Decipher 
services  provide support for 
encryption and decryption of 

sensitive data. 

crecy of the  keys.  These  services  provide com- 
patibility support  for  previous  systems  and  pro- 
vide the  Data  Encryption Algorithm (DEA)4 
encryption  and  decryption primitives that may be 
used as subroutines in the design of installation- 
written  special-purpose  cryptographic  services. 

Encipher  and Decipher. The  Encipher  and Deci- 
pher  services  provide  support  for  encryption  and 
decryption of sensitive data. Consider  the follow- 
ing scenario: Ann wants to send messages to Bill. 
However,  the  messages  are  transmitted by means 
that  cannot  prevent  Eve,  an  adversary, from 
reading the  transmitted  messages.  The problem is 
to  devise a method  whereby  the  content of mes- 
sages  sent by Ann are kept from being determined 
by Eve. This is the  classic  example of the use of 
cryptography to provide  data confidentiality, and 
the solution is to  scramble Ann's intelligible mes- 
sage in such  a way that Bill can unscramble it 
easily but Eve cannot without doing an exces- 
sively impractical  amount of work. 

This  data  security problem may be solved as fol- 
lows: Ann and Bill agree  to  use  the  Cryptographic 
API Encipher  and  Decipher  services in one of the 
five supported  methods of encryption and also 
agree to  share a secret  value, in particular  the 
value of a DATA key. Ann will Encipher  the mes- 
sage and  send  the  encrypted message to Bill, who 
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will then  Decipher  the  encrypted  message to pro- 
duce  the original message. Eve may be able to 
intercept  the  encrypted  message,  but  without 
knowing the value of the DATA key  cannot  deter- 
mine the original message. 

The  Cryptographic API supports five different 
methods of encryption as follows: 

1. ANSI X3.106 Cipher Block Chaining (CBC) 
2. ANSI X9.23 Octet  (Byte) Padding 
3. IBM 4700 (Byte) Padding 
4. IBM Information  Protection  System (IPS) 
5 .  IBM Cryptographic Unit Support Program 

(CUSP) 

Five different methods are  supported  because 
each method is in use  today,  each  method  is dif- 
ferent  from  the  others (mainly in its  method of 
short block handling) and  each  has it own  advan- 
tages and  disadvantages. Note  that  the IBM 4700 
also  has  a method of encryption which does  not 
pad data  and is the  same as  the ANSI X3.106 Cipher 
Block Chaining (CBC) method. 

ANSI Standard X3.1065 defines four  modes of DEA 
encryption,  and IBM products, in general,  support 
the  Cipher Block Chaining (cBC) method.  This is 
a normal method to  use  but it has  one  obvious 
shortcoming,  since it is  not defined for  data with 
a length that is not a multiple of eight bytes. Var- 
ious  other  standards  and IBM products  have  de- 
veloped different solutions in attempting to han- 
dle this concern. ANSI Standard X9.236 defines an 
octet (byte) padding method which always  pads 
the  data so that  the  text length is a multiple of 
eight bytes.  The  standard specifies that  the pad 
digits (except  for  the  last digit, which contains a 
pad byte  count)  contain varying contents.  The 
IBM 4700 Finance  Communication  System,'  be- 
sides supporting  the CBC method,  supports  pad- 
ding the  text with a caller-specified pad digit. Like 
the ANSI x9.23 octet padding method,  the 4700 
padding method always  pads  the data and  the 
rightmost pad digit is a count in binary of the 
number of pad digits (including the  count digit). 

A  disadvantage of using a padding method is that 
padding produces  ciphertext  that is longer than 
the  plaintext. If a  record  needs to be  encrypted 
and the plain text  replaced with the  encrypted 
text, it is obviously desirable if the length of the 
text  does not increase.  The IBM Cryptographic 
Unit Support Program ( c u s ~ - 3 8 4 8 ) , ~  which runs 
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on MVS systems,  added  extensions  to  the CBC def- 
inition to  support a data length of any  byte mul- 
tiple where  the resulting encrypted  text is the 
same length as  the clear  text.  The IBM Informa- 
tion Protection  System (IPS, also known as  the 
CIPHER command  on VM systems)’ defined an ex- 
tension to  the CBC definition similar to CUSP, in 
that  the  ciphertext  is  the  same length as  the plain- 
text.  Furthermore,  both CUSP and IPS define a 
concept called record chaining where, in effect, a 
data  set is treated  as  one long record,  i.e., a value 
is calculated  that allows chaining from one  record 
to  the next in the  data  set.  However,  the defini- 
tions of IPS and CUSP record chaining differ. 

Guidelines for choosing an encryption method. 
To reduce the complexity of using these different 
methods,  the  Cryptographic API defines the  En- 
cipher  and  Decipher  services so that  these five 
options are supported  via a caller specification of 
the  process  rule  parameter. Guidelines for  the use 
of a  particular  method are  as follows: 

1 .  If exchanging encrypted  data with a specific 
implementation,  e.g., CUSP or ANSI  X9.23, then 
use  that  method. 

2. The CBC method should be used whenever 
possible. Use of this  method  requires  that  the 
plaintext length always  be  a multiple of 8. 

3.  If the Ciphertext  Translate  service is to be ex- 
ecuted  on  the  encrypted  data  at  an intermedi- 
ate  node,  then  the  caller  must  ensure  that  the 
ciphertext is a multiple of 8. To  meet this re- 
quirement, using a process rule of CBC,  X9.23, 
or 4700-PAD  will prevent  the  possible inad- 
vertent error of creating  ciphertext  that is not 
a multiple of 8 and  that  cannot  be  processed by 
the Ciphertext  Translate  service. 

4. If the ciphertext length must  be  equal to  the 
plaintext length and  the  plaintext length may 
not  always  be  a multiple of 8, then  either  the 
IPS or CUSP method should be  chosen. 

5. If many similar records are being encrypted 
via repeated calls or if the  text will be proc- 
essed in segments,  then  the IPS or CUSP record 
chaining method is suggested. 

6 .  The IPS record chaining method is preferred 
over  the CUSP record chaining method. 

The  Encipher  and  Decipher  services  require  a 
caller  to  supply an initialization vector.  In many 
cases,  an initialization vector of binary zeroes 
may be used  and  often is enough to  ensure se- 
curity.  However, if the  plaintext is highly struc- 
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tured or  is repetitious,  examination of just  the 
ciphertext may disclose the  existence of the  struc- 
ture of the  plaintext  and  such a disclosure may not 
meet security  requirements. If this is the  case,  the 
caller should consider using a different nonzero 
initialization vector  for  each  call, as this will ef- 
fectively mask any  structure  or  repetition  that 
may exist in the  plaintext.  The  output of the  Ran- 
dom Number  Generate  service is suitable  for  use 
as  a  nonzero initialization vector. 

Ciphertext  Translate. Another  aspect of data se- 
curity is the possibility that  two  parties  want  a 
third party  at  an  intermediate  node  to  act as a 
server  for  them in translating data from  encryp- 
tion under  one key to  encryption  under  another. 
However, Ann and Bill do not  want  Charles,  the 
third party,  to have  direct  access to  the plaintext, 
i.e.,  the original message. Such a service is sup- 
plied  by the  Ciphertext  Translate  service.  A 
trusted  system  administrator for Charles’s  sys- 
tem is supplied with a DATAxLAT key by both 
Ann and Bill and  he  then manually installs the 
DATAXLAT keys.  Charles  can  then call the  Cipher- 
text  Translate  service  and  the  plaintext message 
does not appear  outside  the  cryptographic  sub- 
system.  The  intent of using the  Ciphertext  Trans- 
late  service is to disallow recovery of the plaintext 
at  the  intermediate  node. 

The  Ciphertext  Translate  service  works with sys- 
tems  that  were designed before the Common 
Cryptographic  Architecture;  therefore when us- 
ing the  Key  Generate  service to  generate a key for 
use in Ciphertext  Translate,  a DATAXLAT key is 
paired with a DATA key.  However,  note  that it is 
a  user  at  the  intermediate  node  that  must do  the 
key generation  and  not  the  user at  the terminal 
node.  This implies that  additional  procedural  con- 
trols may be appropriate  when using DATAXLAT 
keys to ensure  the  expected  security is achieved. 

MDC Generate. The MDC Generate  service  pro- 
vides support  for integrity of data  by  calculation 
of a modification detection  code (MDC). 

Consider  the following scenario: Ann creates a 
large file and  wants to distribute the file to Bill. 
However, Ann and Bill do not  share  a  secret.  The 
problem is how to allow Bill to  detect if the file has 
been altered or replaced in the  time  between be- 
ing sent by Ann and being received  by Bill.  If Ann 
can inform Bill of 128 bits of data  and  ensure  the 
integrity of those 128 bits,  then  the problem may 
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be solved as follows: Ann and Bill agree  to  use  the 
MDC Generate  service. Ann calculates an MDC for 
the file and informs Bill (with integrity) of the 
128-bit MDC value. Ann then  sends  the file to Bill. 
On receiving the file, Bill calculates  the MDC for 
the  received file and  compares it with Ann's MDC. 
If the MDC values are  equal,  the file is accepted  as 
genuine. If not,  the file is assumed  to  be bogus. 
Note that  the  output of the MDC Generate process 
is 128 bits. If an object is less than 128 bits, then the 
integrity of the object may be maintained directly, 
rather than through use of an MDC. 

An additional  use is the ability to  detect if the file 
has been changed  since it was originally received, 
e.g., if altered by a  virus.  Once  an MDC has been 
established  for a file, the MDC Generate  service 
may be run at any  later  time  on  the file and the 
resulting generated MDC compared with the 
stored MDC to  detect deliberate or inadvertent 
modification. 

The MDC calculation"  provides a publicly-known 
cryptographic  one-way  function.  That  is,  the MDC 
calculation does not rely on any secret informa- 
tion and is easy  to  compute  for specific data, yet 
it is hard to find data  that will result in a given 
MDC. The  data  that  are  to have an MDC calculated 
may be arbitrarily  long,  because of support in the 
MDC Generate  service  for segmenting the  text. 
The segmenting rule allows callers  to break up 
long text  into  a first portion, any number of mid- 
dle  portions,  and a last  portion.  In  effect,  the 
problem of ensuring integrity of a large file  is re- 
duced to  the problem of ensuring integrity of a 
128-bit value. By providing a  data  reduction 
mechanism,  the MDC calculation  reduces  the size 
of the problem. For example, it is feasible  to  pub- 
lish the MDC for a program in a  source of public 
information,  e.g., in a  certain  newspaper  for  a 
specific day.  The idea is that  the  source of public 
information is generally available,  cannot be eas- 
ily spoofed,  and any interested  party may deter- 
mine the MDC for  the program and verify that  the 
received  program  results in the  same MDC. 

Another  use of the MDC Generate  service is to 
hash  a  passphrase  down  to  a value suitable for  use 
as a cryptographic  key.  A  passphrase is concep- 
tually like a  password  except  that it may be 80 
characters in length. As the  output of the MDC 
Generate  service is 128 bits,  the  output will need 
to  be  truncated when being used for  the value of 
a single length key. When considering such  a us- 
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age of the MDC Generate  service, it is important 
to  remember to use  a  passphrase with a high vari- 
ability,  i.e., it should be possible  to  create  any of 
the 256 (over 72 quadrillion) single length keys. 
This will ensure  that  an  adversary  could  not  re- 
duce  the problem of trying to  determine  the  cryp- 
tographic key used by trying to guess  the  pass- 
phrase  that  produced  it.  For  example, a single 
dictionary word should not  be  used in the MDC 
Generate  service  to  calculate  a  cryptographic 
key,  as  an  adversary  could  try  every  word in a 
large dictionary  and see if any of the values pro- 
duced by the MDC Generate  service is the  one 
used.  A large dictionary typically has  a  total of 
about 100000 words, which is much  less  than the 
number of possible  cryptographic  keys. 

MAC Generate. The MAC Generate  service  pro- 
vides support  for  data integrity via the calculation 
of a message authentication  code (MAC). Concep- 
tually,  a MAC is a cryptographic  checksum that is 
based on a shared  secret  between the message 
creator  and  the message recipient. The shared  se- 
cret in this  case is the value of the  cryptographic 
key.  The MAC calculation  supported is described 
in the ANSI x9.9 standard, ' I  specifically it is the 
MAC calculation on binary data.  The  data  that  are 
to have  a MAC calculated may be  arbitrarily long 
because of support in the  service  for segmenting 
the  text, exactly  as defined in the MDC Generate 
service. 

Consider the following scenario:  Two  parties  de- 
cide  to  send  electronic  messages  between  them- 
selves.  However,  the  messages  are  transmitted 
by means that  cannot  prevent an  adversary  from 
interjecting messages  into  the  transmission  chan- 
nel. The problem is to devise a method  whereby 
genuine messages sent by the  other  party  are dif- 
ferentiated from bogus messages  interjected  by 
an  adversary (with a  very high probability).  This 
data integrity problem may be solved as follows: 
The  parties  agree  beforehand  to follow the ANSI 
x9.9 standard  and  share a secret DEA key that is 
known only to themselves. Ann creates a mes- 
sage and  calculates a MAC for  the message and 
sends  the message and  the  calculated MAC to Bill. 
Now consider  the  situation  from Bill's viewpoint. 
For all he knows,  the message is  either  genuine  or 
bogus. To verify that the message is  genuine, Bill 
calculates a MAC on  the received  message  and 
compares it to  the received MAC. If the compar- 
ison is equal,  then  the message is accepted  as 
genuine (i.e.,  created by Ann who  shares  the  se- 

JOHNSON ET AL. 139 



cret key) because only Ann knows the  secret  that 
allows for  the  correct MAC to be calculated. 

An additional  concern of the  data integrity prob- 
lem is as follows: What if Eve merely resends an 
old message that  already  has a correct MAC cal- 
culated  for  it?  Such  a message is termed a stale 
message and (depending on  the application) “it 
may be  important  for Bill to  detect  the replay of 
a  stale  message. The solution is for Ann to include 
time-varying information in the message that al- 
lows Bill to  detect a replay of a stale message. 
Examples of time-varying information are a se- 
quence  number, a time stamp,  or  a  random num- 
ber  nonce used in a  requesthesponse  protocol. (A 
nonce is a  technical  term  for a random  quantity 
used in a security message protocol.) Bill inter- 
rogates the time-varying information to  ensure 
that  the message is acceptable  according  to  pre- 
established  criteria,  such as  the  sequence num- 
bers  must  always  increase, the time stamp  must 
be  a time within a specified window of the  current 
time, etc. 

If both  data confidentiality and  data integrity are 
required,  then  both message encryption  and mes- 
sage authentication may be  done.  It is recom- 
mended that  the MAC be  calculated  on the plain- 
text message and  that  the  key used tqencrypt  the 
message have a different value from  the key used 
to calculate  the MAC on  the message. 

MAC Verify. Another  aspect  to  data integrity that 
may be desirable in some  situations is the  concept 
of a MACVER key,  i.e., a key that may be used in 
the MAC Verify service  but  cannot be used in the 
MAC Generate  service.  The  data  that  are  to  have 
a MAC verified may be arbitrarily long, because of 
support  for segmenting the  text by the MAC Verify 
service, in the same  manner as is done in the MAC 
Generate  service. 

Consider the following scenario:  Suppose  the  re- 
cipient may verify the MAC for a genuine message 
but  the  cryptographic  work  factor to generate  a 
MAC for  an  arbitrary message is too large to  be 
practical.  Given a message with its  associated 
MAC, the  intent of this  concept is that  the only 
realistic  way  the MAC could have  been calculated 
is by Ann,  the  owner of the MAC key and not Bill, 
the owner of the MACVER key, i.e., Ann cannot  at 
some  later  time  disavow  or  repudiate  the message 
by claiming it was not created  and  authenticated 
by her.  Such  a  service is supplied via the use of 
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a MACVER key.  A MACVER key may only  be  used 
in the MAC Verify service,  not  the MAC Generate 
service. 

Key-management  services. Doing data-operation 
services by importing clear key values requires the 
transporting of the clear key values and their asso- 
ciated key types from the originator to  the recipient. 
When the originator and the recipient reside on dif- 
ferent systems, this may be done  by physically 
transporting the information by a courier. 

However,  there  are  concerns with such  a manual 
procedure,  because it is error  prone  as it requires 
human involvement. Good security  practice  dic- 
tates  that  each  originator  and  recipient  have a 
unique key value so that  compromise of the  key 
used in one  channel  does  not  compromise  another 
channel.  This  means  that many keys may need to 
be distributed. Good security  practice  also  dic- 
tates  that  the  keys  be  changed if compromise is 
suspected  and, in any  case, changed  on a regular 
basis. 

As the  number of users of cryptographic  services 
grows,  the manual approach  becomes infeasible 
to use with all keys. What is desired is a  crypto- 
graphic key-distribution  method that simplifies 
electronic  distribution of keys, minimizes manual 
key entry,  and maintains the intended usage of 
keys. 

The Common Cryptographic  Architecture key- 
management services allow a  caller to  support 
generation,  installation,  and  distribution of cryp- 
tographic keys.  The  distribution of cryptographic 
keys  is  standardized  through the  use of an  exter- 
nal key token. 

Random  Number  Generate. The Random  Num- 
ber  Generate  service  provides  user  access to a 
random or a strong  cryptographically-based 
pseudorandom  number  generator. The  output of 
a call to this  service is suitable for cryptographic 
use.  That  is,  a suitable value for  the clear  key 
parameter of the  Clear  Key  Import or Secure  Key 
Import  service is the  output of a Random  Number 
Generate c”a1. Also,  when using a nonzero ini- 
tialization vector in the Encipher  service, a suit- 
able value for  the initialization vector  parameter 
is the  output of a  Random  Number  Generate call. 
It may also  be used as a  nonce. 

The  output of this  service  has  superior  properties 
of randomness when compared with the  output of 

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991 



pseudorandom  number  generators provided in 
many programming languages, which typically 
are based  on the method of linear  congruences 
and  are  not  cryptographically  based. For  these 
reasons,  when a high quality random or pseudo- 
random  number is desired  for  non-cryptographic 
reasons,  this  service may be  used. 

Clear  Key  Import  and Secure Key  Import. The 
Clear  Key  Import  service  provides  the ability to 
create  an internal key token  for  a DATA key for an 
arbitrary key value. The  Secure  Key  Import  ser- 
vice does a similar function  except  that  any  sup- 
ported  generic key type may be specified. This 
latter  service is authorized,  as it is not intended 
for  the general  user. Use of these  services  trans- 
forms  the  value of the key from an unencrypted 
form  into an operational  form  where it  may be 
used in a way  appropriate  for  its specified key 
type.  The  output of these  services is a data  struc- 
ture called the internal  key  token which contains 
the  encrypted  key  value  and  an  encoding of the 
specified key  type.  The  key in an internal key 
token  is an operational key,  i.e., it is encrypted 
under  the  master key. Note  that if the specifica- 
tion of the key type is changed  either accidentally 
or intentionally the  correct  key value will not be 
recovered as  the value of the  encrypted key is 
cryptographically  coupled to  the control  vector 
associated with the specified key type.  See  the 
companion  paper by S. M. Matyas’ for  details  on 
the  control  vector mechanism. It is recommended 
that  the  values of the  clear  keys to be imported by 
these  services should be  generated via a call to  the 
Random  Number  Generate  service or via a call to 
the MDC Generate  service  where  the input text is 
of sufficient variability. 

Key  Export. The Common Cryptographic Archi- 
tecture  Cryptographic API supports  electronic 
key distribution with minimal manual key instal- 
lation. An initial EXPORTER key-encrypting key is 
installed on a system by a courier  and an initial 
IMPORTER key-encrypting key is installed on  an- 
other  system.  The EXPORTER key  and  the IM- 
PORTER key have  the  same  value.  After  the man- 
ual installation of these initial key-encrypting 
keys, all subsequent key distribution may be done 
electronically. For example, Ann on a system 
with an EXPORTER key installed as above may 
execute  the  Key  Export  service  to perform the 
cryptographic  transformations  to  convert  the in- 
formation  for an operational key in an internal key 
token to a  exportable  key in an external key to- 
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ken. The  output of the  Key Export  service is a 
data  structure called the  external  key  token which 
contains  the  encrypted key and  its  associated 
control  vector. The key is encrypted  under  the 
key-encrypting  key  that  exists  on Ann’s sending 
system as  an EXPORTER key and  on Bill’s receiv- 
ing system as  an IMPORTER key. Note  that if the 
specification of the  control  vector is changed ei- 
ther  accidentally or intentionally the  correct  key 
value will not be recovered as the  value of the 
encrypted key is cryptographically  coupled to  the 
control  vector.  The  Key  Export  service  also 
transforms a key label specification (which refers 
to an  operational  key in key  storage) to  an  exter- 
nal key token. 

DATA Key  Export. The DATA Key  Export  service 
does  the  same  transformation as Key  Export, but 
only for  a DATA key.  This allows an  installation to 
define a higher level of authorization  for  the  Key 
Export service, that is, the ability to export any key. 

Key  Import. The  external  key  token  can be elec- 
tronically transmitted to another  system  that  has 
the  corresponding IMPORTER key. An application 
may execute  the  Key  Import  service  to  perform 
the  cryptographic  transformations to  convert  the 
information in the  external  key  token (which is 
considered an importable key) to  an operational 
key in an  internal key token. The intended usage 
of the  key  (i.e.,  the  key  type) is maintained 
through the  control  vector  mechanism. It  cryp- 
tographically couples  the usage attributes of a key 
with the key so that  the  key  cannot  be  recovered 
and used without specification of the  correct  con- 
trol  vector  (either explicitly in the  external  key 
token or implicitly via specification of the key 
type). 

The definition of the  external key token  supports 
the  strategic  key-distribution  protocol. The  stra- 
tegic protocol is guaranteed to work  on all sys- 
tems  that  conform to  the Common  Cryptographic 
Architecture  Cryptographic API definition. The 
external  key  token  has  two  methods of use as 
follows: 

1. Bill calls the  Key  Import  service specifying 
TOKEN. In  this case,  the  control vector in the 
external key token is used as is,  and  any  sup- 
ported  control  vector will be  processed. Bill 
might do this if he just  created  the key  token 
and  therefore  knows the  control  vector  is  cor- 
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Figure 2 Peer-to-peer key-distribution environment 

rect  or if he  wants to  process  the key  token 
regardless of its  contents. 

2. Bill calls the  Key  Import  service specifying a 
generic key type.  This  process is the  same as 
if specifying TOKEN, except  that  the  Crypto- 
graphic API also verifies that  the  control  vector 
in the  external  key  token is compatible with 
the generic  key  type specified. 

In  the following examples Ann has  generated  a 
MACVER key  (that  is, a key  that may only be used 
with the MAC Verify service)  and  sent it to Bill. 

1 .  Bill calls Key  Import specifying a key type of 
TOKEN. This specification will import  the key 
regardless of the  control  vector in the key to- 
ken. 

2. Bill calls Key  Import specifying a  key  type of 
MACVER. This specification is correct  and 
therefore will allow the import to continue  and 
Bill is assured  that he is importing a MACVER 
key. 

3. Bill calls Key  Import specifying a key type of 
PINVER (that  is, a key that may be used in the 
Encrypted PIN Verify service).  This call will 
fail as the  Control  Vector in the  external key 
token  does  not  agree with the specified ex- 
pected key type. Bill knows that  there  has 
been  a  failure  somewhere  and  can  pursue re- 
solving the problem. 

Besides being paired with an EXPORTER key,  an 
IMPORTER key may be used by itself to  support file 
encryption.  A DATA key  needs  to  exist in import 
form.  This may be  done by using either  Secure 
Key  Import or Key  Generate.  The DATA key in 
import  form  (encrypted  under a specific IM- 
PORTER key) may be  imported via the  Key  Import 
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service resulting in an operational DATA key. The 
operational DATA key may then  be  used  to  en- 
crypt a file. The operational DATA key is  then 
discarded  and  the  import  form of the DATA key is 
kept with the  encrypted file.  If the IMPORTER key 
is kept in key storage,  then  any  master  key 
changes will not  invalidate  the IMPORTER key, as- 
suming a product-specific key storage  conversion 
utility is run. When the file is  needed to  be de- 
crypted,  then  the  Key  Import  service may be 
called with the  appropriate IMPORTER key  and im- 
port form of the DATA key to  produce  an  opera- 
tional DATA key which may then  be  used to de- 
crypt  the file. 

Key Generate. The  Key  Generate  service  sup- 
ports  the  generation of a  key or pair of keys. If a 
pair of keys is generated,  both of the keys  have 
the same value but may have different key types 
(for example, MAC and MACVER) and different key 
forms  (that  is,  operational,  importable, or export- 
able) as allowed by the  service.  The  Key  Gener- 
ate service is the  standard  method of creating 
keys in the  Common  Cryptographic  Architecture. 
Use of the  Key  Generate  service may allow an 
implementation to  restrict  usage of the  Secure 
Key  Import  service to initial installation of 
EXPORTER and IMPORTER key-encrypting  keys. It 
may also allow an implementation to prohibit us- 
age of the  Key  Export  service  or possibly use it 
just  for system  backup  purposes. 

The  Key  Generate  service  provides  support for a 
caller to  generate  a  key or a  pair of keys in a 
peer-to-peer key-distribution environment (Fig- 
ure 2). In a typical application a key is generated 
that  can  be used on  this  system  (i.e.,  one  key is 
either  operational or importable),  and  the  same 
value is used  for  a  key  that  can be used  on  another 
system  (the key is exportable).  Though the  oper- 
ational  and  exportable  keys  have the same  value, 
they will typically have different key  types. All 
output  generated  keys are  encrypted. If a key is 
encrypted  under  the  master  key,  then the key is 
operational  on  this  system  and is returned in an 
internal  key  token. If a key is encrypted  under  an 
IMPORTER key,  then the key is returned in an ex- 
ternal  key  token  that may be imported to this  sys- 
tem (possibly at  some  later time). If a key is en- 
crypted  under an EXPORTER key,  then  the  key is 
returned in an  external  key  token  that may be 
transmitted  to  the  system with the corresponding 
IMPORTER key where it may then  be  imported. 
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solve  what is called the N2 (“N~squared”) key- 
distribution  problem. (Refer to  Figure 4, later.) 
This problem results  from noticing that  the num- 
ber of key-encrypting  keys potentially needed is 
approximately  the  square of the  number of sys- 
tems, as any  particular  system may need to  ex- 
change  keys with any  other  system. As the num- 
ber of systems  (or nodes) in a network is typically 
denoted by the variable N, this problem is known 
as  the N2  (N squared)  key-distribution  problem. 
The number of different keys needed to be gen- 
erated  and installed may therefore  be  large,  even 
for a small network.  The goal is to have the com- 
plexity of adding a new system to a  network of 
systems  grow  proportional  to  the  number of sys- 
tems in the  network  and not proportional  to  the 
square of the number of systems. 

This  problem may be  solved using the Common 
Cryptographic  Architecture  Cryptographic API 
through  use of a designated  key-distribution  cen- 
ter (KDC). The key-distribution  center  has  an EX- 
PORTER key installed for  each  other  system in the 
network,  and  each  other  system  has  the  appro- 
priate IMPORTER key installed accordingly. A typ- 
ical KDC application is where  one  generated  key 
is exportable  to  one  system  and the other gener- 
ated key is exportable to  another  system. Notice 
that  the key is not used on  the  generating  system. 
When one  system  wants  to  establish  a key with 
another  system,  a  request is sent to  the KDC which 
acts  as a  server  to generate  the  two  external key 
tokens  needed.  The  external key tokens are then 
electronically  transmitted  to  their  respective  sys- 
tems  where  they can be  imported. 

Peer-to-peer  key  distribution. A  typical peer-to- 
peer  key-distribution  scenario which illustrates 
the  use of the Key Generate  service is illustrated 
in Figure 2. A typical process flow follows: 

1. Ann calls Key  Generate with a mode of OPEX 
(that is,  the first generated key is operational 
on  this  system  and  the  second key is export- 
able),  key  type1 of MAC (that  is, a key that  can 
be  used in the MAC Generate  service) and key 
type2 of MACVER (that is, a key that can be 
used in the MAC Verify service  but not the MAC 
Generate  service),  and  also specifies via key 
label the  appropriate EXPORTER key associ- 
ated with Bill’s node. 
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3. Ann sends  the  generated  exportable MACVER 
key token to Bill. 

4. Bill is expecting  to  receive a MACVER key from 
Ann, so on receipt of the  external key token 
Bill calls Key  Import specifying the  received 
key token, a key  type of MACVER and  the 
IMPORTER key associated with Ann’s  node. 
This produces an operational MACVER key  to- 
ken for Bill. 

5.  Ann calls the MAC Generate  service specifying 
the MAC key token to generate a message  au- 
thentication  code (MAC) for a specific message, 
appends  the MAC to  the message and  sends  this 
combination to Bill. 

6 .  Bill receives  the message and its MAC and  calls 
the MAC Verify service specifying the  opera- 
tional MACVER key token  to verify the MAC for 
the  message. Assuming the MAC verifies, Bill 
is assured  that  the  message really did come 
from Ann. 

7. Eve  cannot  create  a MAC for a bogus  message 
because  she  cannot  determine the value of the 
MAC key as it is encrypted  under  the  master 
key of the  system  where Ann resides  and  can- 
not  determine  the  value of the MACVER key 
used by  Bill as it is encrypted  under  the  secret 
key-encrypting key shared  between  the  sys- 
tems  that Ann and Bill reside on. 

For  an example of the  technical  implementation 
details  needed  to  support  a  peer-to-peer key-dis- 
tribution environment with control  vectors,  see 
the  companion  paper by S. M.  Matyas, A. V. Le, 
and D. G.  Abraham.3 

Key-distribution  center. Use of a  peer-to-peer 
key-distribution protocol is appropriate  for small 
networks or where  a  few  nodes in a large  network 
are  able to  act  as a small network.  However,  at- 
tempting to solve the general  key-distribution 
problem in a large network may result in a dif- 
ferent  solution, due  to scaling factors of the  nec- 
essary  number of manually installed key-encrypt- 
ing keys. For example,  for  the  arbitrary  network 
depicted in Figure 3,  a key-distribution  center is 
one method of attempting to solve  the scaling 
problem. (See  Figure 4.) 

Use of the  Key  Generate  service  in a key-distri- 
bution center  environment is also  possible. In this 
environment,  a  third  system  generates  the  keys in 
external form for  distribution to  both requesting 
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Figure 3 Generalized computer network 

Figure 4 Key-distribution center environment 
~~ ~ 

parties,  that  is,  both  generated keys are in ex- 
portable  form. Using this method has an  advan- 
tage in reducing the number of key-encrypting 
keys needed in the  entire  network, as each  system 
only needs  to establish a key exchange channel 
with the key-distribution center,  rather than with 
all other  systems. 

For  an example of the technical implementation 
details needed to support  a key-distribution cen- 
ter  environment with control  vectors,  see the 
companion paper by S. M. Matyas, A. V. Le, and 
D. G. Abraham.3 
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PIN-management  services. A  personal identifica- 
tion number (PIN) is used as  an authentication 
mechanism to prove  the identity of an individual. 
Conceptually,  a PIN is similar to a  password. To- 
day, most PIN processing is done in connection 
with an automated teller machine (ATM) and  au- 
thorizes  personal financial transactions. A cus- 
tomer of a financial institution  inserts  the ATM 
card, then enters  a PIN to provide  the  authoriza- 
tion. Information from the magnetic strip on  the 
ATM card  and  the supplied trial PIN is then  trans- 
mitted to  a site that is authorized to verify the  trial 
PIN. 

There  are  two  basic  methods used to verify a PIN: 
the PIN database method and  the PIN calculation 
method. 

The PIN database method of PIN verification is to 
keep  the value of the PIN in a  database in a specific 
encrypted PIN block format.  Note  that some PIN 
block formats  have varying contents  and so may 
not be practical  for  use in a PIN database. When 
a  request  for  customer  authorization  arrives,  the 
encrypted PIN block containing the trial PIN is 
compared  for equality with the encrypted PIN 
block containing the  correct PIN. Note  that  the 
PIN block containing the trial PIN may be  en- 
crypted  under  a different key than is used to en- 
crypt  the PIN database.  In this case,  the PIN block 
needs to be  translated from encryption  under  one 
key to  encryption  under  another  key. Of course, 
the PIN block formats and the  contents of the PIN 
blocks must be identical for  the  comparison to 
succeed. If this is not the  case,  then  the PIN block 
needs to be  reformatted to the PIN block format 
used in the PIN database. 

The PIN calculation method of PIN verification is 
to  extract  the trial PIN from the  encrypted PIN 
block, recalculate the  (correct) PIN using cus- 
tomer account information and  the  secret PIN ver- 
ification key,  and  compare  the  trial PIN with the 
calculated PIN. 

Notice that  both PIN verification methods do not 
allow a  clear PIN value to  appear in the  clear  out- 
side the  cryptographic  subsystem.  This  is impor- 
tant  for good PIN security  and is a  reason  that  a 
DATA key is not used to encrypt PIN blocks, as a 
DATA key  may be used to  decrypt  encrypted  data, 
i.e., its  corresponding plaintext may appear in the 
clear  outside  the  cryptographic  subsystem. 
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Figure 5 Clear PIN calculation 
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The value of the PIN is determined by the method 
of PIN calculation. Five different methods of PIN 
calculation are supported. 

When a PIN is transmitted between systems, it  is 
contained in a 64-bit encrypted PIN block. Ten 
different PIN block formats are supported and an 
appropriate method of extracting the PIN from 
each PIN block format is provided. 

Clear PIN Generate. The Common Crypto- 
graphic Architecture Clear PIN Generate service 
supports generation of the following  five outputs: 

1. Clear IBM 3624 PIN (output is an institution- 
assigned PIN) 

2 .  Clear IBM 3624 PIN offset  (input  is a customer- 
selected PIN, output is the PIN offset) 

3. Clear IBM German  bank  pool (GBP) PIN (output 
is an institution PIN) 

4. Clear IBM German  bank  pool PIN offset (input 
is an institution PIN, output is the PIN offset) 

5 .  Clear VISATM PIN validation  value (PVV), (input 
is a customer PIN) 

The Clear PIN Generate service is an authorized 
service and is not intended for use by a normal 
(unauthorized) user. It may  be  used as part of the 
process of creating an installation PIN database or 
creating PIN mailers that are sent to the financial 
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institution’s customers that want to use an ATM. 
See Figures 5 and 6. 

Encrypted PIN Translate. The Encrypted PIN 
Translate service allows an intermediate system 
to change the value of the key the PIN block  is 
encrypted under, change the PIN block format, or 
change  some of the nOn-PIN contents of the PIN 
block. 

If just the value of the key is  being changed, this 
is termed a key-translate invocation with a proc- 
ess rule Of TRANSLAT. In  any other case, the proc- 
ess is  termed a key-translate  invocation  with a 
process  rule of REFORMAT. REFORMAT function- 
ality is a superset of TRANSLAT functionality,  ex- 
cept  that  sometimes a REFORMAT may  fail  in suc- 
cessfully  doing a PIN extraction or PIN formatting 
while a TRANSLAT process usudy cannot  fail if 
the  parameters are specified correctly. 

The Common Cryptographic Architecture En- 
crypted PIN Translate service supports the fol- 
lowing ten PIN block formats for both the inbound 
PIN block  and the outbound PIN block: 

1 .  IBM 3624 
2. IBM 3621 (Same as IBM 5906) 
3. IBM 4704 encrypting PIN pad 
4. IS0  0 (same as ANSI x9.8, l2 VISA 1 ,  and ECI 1) 
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Figure 6 Nonsecret PIN offset or PVV calculation 
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5 .  ISO 1 (same as ECI 4) 
6 .  VISA 2 
7. VISA 3 
8. VISA 4 
9. ECI 2 
10. ECI 3 

In  the  above  list, ISO is an acronym  for  the In- 
ternational  Organization  for  Standardization, 
ANSI is an  acronym  for  the American National 
Standards  Institute,  and ECI is an acronym  for 
eurocheque  International S .C. 

The  Encrypted PIN Translate  service  supports  the 
PIN database  method of PIN verification by allow- 
ing a caller to  convert a formatted PIN block to 
encryption  under a specific key (presumably the 
key  the PIN database is encrypted  under)  or  to 
convert  a PIN in one PIN block format to  another 
PIN block format  (presumably  the PIN block for- 
mat  the PIN database is in). The  Encrypted PIN 
Translate  service  also allows an application pro- 
gram to meet  required PIN block formats  for  use 
in interchange with other  systems, when the PIN 
originates in some  other PIN block format. 

Encrypted PIN Verify. The  Encrypted PIN Verify 
service  provides  support  for  the PIN calculation 
method of PIN verification. The PIN correspond- 
ing to  the supplied account information is gener- 
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ated inside the cryptographic  subsystem  and 
compared  for  equality with the PIN in the supplied 
encrypted PIN block. See Figure 7. 

The  Encrypted PIN Verify service  supports  ver- 
ification of the following five inputs: 

1. IBM 3624 institution-assigned PIN 
2. IBM 3624 customer-selected PIN (via a PIN off- 

3.  IBM German  bank pool PIN (verify via an in- 

4. IBM German bank pool PIN (verify via a pool 

5 .  VISA PIN (via a VISA PIN validation value [VISA 

set) 

stitution  key) 

key and a PIN offset) 

PVVI) 

The Common Cryptographic  Architecture  En- 
crypted PIN Verify service  supports  the  same  ten 
inbound PIN block formats  that  are  supported by 
the  Encrypted PIN Translate  service. 

Cryptographic  key  separation. An important  con- 
cept used in the Common Cryptographic Archi- 
tecture  Cryptographic API is  cryptographic  key 
separation.  This  concept  provides  for  the  creator 
of a cryptographic  key  (whether via the Key  Gen- 
erate  service or  the  Secure  Key  Import service) to 
declare  the  intended usage of the key via a  key 
type specification. The  cryptographic  subsystem 
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then  enforces  this specification by denying re- 
quested  services  that are inappropriate  for  the  de- 
clared  key  type. 

The mechanism for  enforcing key separation  for 
keys in internal key tokens  or external key tokens 
is via the  control  vector  mechanism.  Each key K 
is encrypted in such a way that the value of the 
key-encrypting key KK (whether  a  master  key, 
an EXPORTER key,  or  an IMPORTER key) and the 
control  vector  C  (associated with K) must be 
specified to  recover  the key.  The  possible values 
of the  control  vectors  are defined by the Common 
Cryptographic  Architecture.  See the companion 
paper by S .  M. Matyas2  for details  on  the  cryp- 
tographic  transformations.  Besides using the  con- 
trol  vector  C  to  recover  the value of key K, C is 
also  examined to  see if it has  attributes  that qual- 
ify it to  be used in the called service in the  re- 
quested  way. If  it does  not,  the  service  invocation 
fails. If C is valid,  the  requested  service  execution 
proceeds. If a caller  alters  the  value of C to  try  to 
change  the  attributes of a key,  the  correct value 
of K is not  recovered by the key decryption  proc- 
ess and  any resulting output of the  service is in- 
valid,  that  is,  any  output is equivalent to that  re- 
sulting from using a  random  unknown key value 
in the  service. 

Generic  key  types. The  method with which the 
Common Cryptographic  Architecture  Crypto- 
graphic API externalizes  the  power  (and the com- 
plexity) of the  control  vector  concept is by de- 
fining generic  key  types. 

A  customer’s  desire  or need for  sophistication 
will typically grow over  time.  Initially, a simple 
running system may be  what is desired. As expe- 
rience is gained and knowledge increases, a se- 
curity  administrator may want to increase  the 
level of control  over usage of cryptographic  keys 
by the  end  users.  For  example, initially Ann may 
decide to distribute a key to Bill that  can  be used 
to generate  a message authentication  code (MAC) 
that is used to authenticate  the  text of an elec- 
tronic  message.  This  scenario likely entails  elec- 
tronic  distribution of a MAC key. Later, Ann may 
decide  that Bill does  not really need to be able to 
generate a MAC, rather he only needs  to verify a 
MAC. This  suggests  possible  generation  and dis- 
tribution of a MACVER key. 

Each generic  key  type is defined according  to  the 
service in which it can  be used as input.  This 
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Figure 7 Steps in algorithmic PIN verification 
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exposes  the  control  vector  to a user in a  top-down 
manner,  rather  than in a  bottom-up  manner, 
which is the way the  control  vector  was  designed. 
This frees  the  user  from needing to know all the 
details of the control  vector definition. 

For example,  instead of defining a generic MAC 
key (only) and requiring the  user  to specify an 
additional option  stating  that  this  key is only us- 
able in a MAC Verify service  (as is done in the 
control  vector field definition) it seemed  prefera- 
ble to define a generic MAC key as well as a generic 
MACVER key.  A MAC key is used in the Common 
Cryptographic Architecture MAC Generate service. 
A MACVER key can  only  be  used in the Common 
Cryptographic  Architecture MAC Verify service. 

Common  Cryptographic  Architecture  key  types. 
There  are  ten  generic  key  types  supported by the 
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Table 2 Common  Cryptographic  Architecture  generic  key  types 

Key Tvpe Attributes 

DATA A single iength key that may be used in the Encipher and Decipher services. It may be used to encrypt  and 
decrypt  data. 

DATAXLAT A single length key that may be used as either  the inbound or outbound key in the Ciphertext Translate 
service, 

MAC A s W e  length key that may be used in the MAC Generate service. It may be used to calculate a message 
authentication code on data. 

MACVER  A  single length key that may be used in the MAC  Verify service. It may be used to verify a message 
authentication code on data. 

IMPORTER A double length unidirectional inbound key-encrypting key. It may be used as  the key-encrypting key in 
the Key Import, Key Generate (as appropriate), and Secure Key Import services. 

EXPORTER A double length unidirectional outbound key-encrypting key. It may be used as  the  key-encryphg key in 
the Key Export, Key Generate (as appropriate), and DATA Key Export services. 

PINGEN A double length key that may be used as the  PIN generating key in Clear PIN Generate. This key is used 
internally in the  PIN calculation. 

PINVER A double length key that may be used as  the  PIN verifying key in Encrypted PIN Veri€y. This key is used 
internally in the  PIN calculcttion, 

IPINENC A double length unidirectional inbound PIN-encrypting key. It may be used as an inbound PIN-encrypting 
key in Encrypted PIN Translate and Encrypted PIN Verify. This key is used internally to decrypt an 
encrypted PIN block. 

OPINENC A double length unidirectional outbound PIN-encrypting key. It may be used as  an outbound PIN- 
encrypting key in Encrypted PIN TransIate. 

ote 1: Any supported  key  type may he the  source  key of the  Key  Import or the  Key  Export  services. 
Note 2: Any supported  key  type may he specified for a key io the  Secure Key Import  service. 
Note 3: Any key  type may he  generated via Key  Generate,  subject to the restrictions of the  Key  Generate  service 

Common  Cryptographic  Architecture.  The  at- 
tributes  for  each  key  type  are  shown in Table 2. 

The value of an EXPORTER key  on  one  system is 
typically the value of an IMPORTER key  on a sec- 
ond  system.  This allows the first system to send 
encrypted  keys in external  key  tokens  to  the  sec- 
ond  system. If both  transmission  and  reception of 
encrypted  keys is desired,  then  both  an IMPORTER 
and  an EXPORTER key should be installed on  both 
systems. 

The OPINENC (Outbound PIN Encrypting) key is 
used  internally to  encrypt  an unencrypted PIN 
block. The value of an OPINENC key  on  one  sys- 
tem is typically the value of an IPINENC (Inbound 
PIN Encrypting)  key on  another  system. This al- 
lows an  encrypted PIN block to be transmitted 
from the first system to  the second  and  translated. 

The Common  Cryptographic  Architecture  Cryp- 
tographic API supports a subset of the  control vec- 

tors  as  described in the companion  paper  by S .  M. 
Matyas.*  This  subset is as follows: 

Parity-As defined 
Cryptographic facility access  program ( CFAP) 
control-Must be  defaulted to  zero  (no CFAP 
enforced  control) 
Antivariant-As defined 
Extension-Must be  defaulted to  zero (64-bit 
control  vector) 
Key part-Must be  defaulted to  zero  (the con- 
trol  vector is associated with a key, not a key 

Export control-Must be defaulted to  zero (ex- 
port is allowed) 
Form-Data-operation keys  must  be  defaulted 
to class  1 (a 64-bit key) and  key-management 
and PIN management  keys  must  be  defaulted to 
class 3 (a 128-bit key  where the left and right 
halves may or may not  be  equal). 
Control  vector type/subtypeEach Common 

part) 
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Cryptographic  Architecture generic key type 
has  acorresponding  control  vector key typehub- 
type as follows. 

DATA-Data Compatibility 
DATAXLAT-Data Compatibility-Translate 
MAC-Data MAC 
MACVER-Data MAC 
PINGEN-PIN Generating 
PINVER-PIN Generating 
IPINENC-PIN Encrypting-In 

EXPORTER-Key-Encrypting Sender 
IMPORTER-Key-Encrypting Receiver 

In addition,  the  cryptovariable  intermediate 
control  vector is used internally by some im- 
plementations. 

OPINENC-PIN Encrypting-Out 

Usage control-For each  supported generic 
key type  the usage control field is a specific 
value. As the supported  key  types are generic, 
each  value is determined to allow the most 
functionality  for a given control  vector key 
typehbtype, except  that  the  two verification 
key  types (MACVER and PINVER) have only the 
appropriate verification functionality and the 
two  key-encrypting  key  types (EXPORTER and 
IMPORTER) do not have key translation capability. 
Log-Must be defaulted to  zero  (no logging) 
Reserved-As defined 

Summary 

In  summary,  the design of the architecture of the 
Common Cryptographic  Architecture  Crypto- 
graphic API conforms to SAA callable service 
guidelines. It  adheres  to  the goals of interopera- 
bility and program portability,  supports more 
functions,  and is more  granular  than  previous 
cryptographic  systems, yet is arguably more user- 
friendly than  previous  interfaces. Key-manage- 
ment  services are provided which exploit  the  con- 
trol  vector  to provide  remote key-usage control. 
Perhaps  most  important,  the  Cryptographic API 
was designed with the expectation  that  additional 
functionality  requirements will evolve,  yet no one 
today  is  sure  what  those new directions will en- 
tail. 
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