Common Cryptographic
Architecture
Cryptographic
Application
Programming Interface

Cryptography is considered by many users to be
a complicated subject. An architecture for a
cryptographic application programming interface
simplifies customer use of cryptographic
services by helping to ensure compliance with
national and international standards and by
providing intuitive high-level services that may
be implemented on a broad range of operating
systems and underlying hardware. This paper
gives an overview of the design rationale of the
recently announced Common Cryptographic
Architecture Cryptographic Application
Programming Interface and gives typical
application scenarios showing methods of using
the services described in the architecture to meet
security requirements.

Possibly there once was a time when informa-
tion was not considered a business asset, but
such a time is no more. Protecting enterprise in-
formation is becoming more and more essential in
maintaining an organization’s competitive edge.
Cryptography is one element of a set of basic data
security measures that provide security for infor-
mation assets. Other measures include physical
and logical access control, identification and au-
thentication mechanisms, security management,
and journaling and auditing procedures. Data se-
curity measures such as access control and au-

130 JOHNSON ET AL.

by D. B. Johnson
G. M. Dolan
M. J. Kelly
AV Le
S. M. Matyas

diting may be adequate for applications where all
information assets are on site and within the con-
trol of the enterprise. However, for applications
where data must reside outside direct manage-
ment control, or are shared among many users,
prudent data processing installations may require
the additional protection that cryptography pro-
vides.

Cryptography is the transformation of intelligible
information into apparently unintelligible form in
order to conceal information from unauthorized
parties. Cryptography is the only known practical
method to protect information transmitted elec-
tronically through communication networks. It
can also be an economical way to protect stored
data. Cryptographic methods can be used to pro-
tect not only the confidentiality of data, but the
integrity of data as well. Data confidentiality is the
protection of information from unauthorized dis-
closure. Data integrity is the protection of infor-

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

mation from unauthorized modification. The
cryptographic transformation of data is defined
by a cryptographic algorithm, or procedure, un-
der the control of a value called the cryptographic
key. The cryptographic key must be protected
against unauthorized use, as the security of the
cryptographic transformation depends on the se-
crecy and integrity of the key. Cryptography can
therefore be viewed as a method to logically re-
duce the area that needs protection to ensure data
confidentiality and/or data integrity to the area
where the cryptographic keys are kept.

There are many applications today for commer-
cial cryptography. Existing applications provide
confidentiality of files and communications, in-
tegrity of messages, and user identification. Cryp-
tographic services are implemented in disparate
products.

Software architecture rationale

Uses of cryptography. Files may be encrypted lo-
cally and decrypted either locally or on a remote
system at an indeterminate time in the future.
This requires that the cryptographic algorithm be
compatible in the two systems and that the key
used for decryption be available at the remote
system. Some applications may require the enci-
pherment of partial or full communications be-
tween systems. This requires the use of a com-
mon cryptographic key-management and key-
exchange approach.

Communication integrity may be guaranteed by
using a message authentication code (MAC) to de-
tect alteration of messages transmitted over net-
works. Conceptually, a MAC is a cryptographic
checksum that is derived using a key that is
known only to the parties involved. The MAC is
generated at the message origination node and
appended to the message. On receipt of the mes-
sage and its associated MAC, the MAC is verified at
the message destination node.

Another use is the detection of unauthorized file
modifications. A modification detection code
(MDC) calculation may be used to reduce the prob-
lem of maintaining the integrity of an arbitrarily
large data object to that of maintaining the integ-
rity of a 128-bit quantity. For example, to detect
program alteration, an MDC could be calculated
on a known correct version of the program and

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 1 Cryptographic APl model

CRYPTO- APl APPL

APPL APl CRYPTO- |
- fe— - GRAPHIC |

then published in a generally available forum,
such as a newspaper. A recipient of the program
can then calculate the MDC for the received pro-
gram and verify that the resulting MDC is the
same. An MDC is different from a MAC in that the
algorithm for calculating an MDC does not use a
secret key and is public knowledge.

Financial applications require the use of a PIN
(personal identification number) for user authen-
tication. The cryptographic support at various
places in the network must provide for encryp-
tion, translation, and verification of PINs.

Cryptographic services are tailored for the envi-
ronment where they will operate. However, they
should perform the same operation, with the same
results, regardless of the product or the environ-
ment. If a customer uses a workstation-based
product for end-user cryptographic services, it
should be compatible with host-based products
that provide the same services. In addition, if a
customer writes an application that requires cryp-
tographic services, the application should be por-
table between the IBM strategic operating sys-
tems. All the above considerations result in the
conclusion that a cryptographic architecture is
both necessary and desirable.

Cryptographic API model. A model for the Com-
mon Cryptographic Architecture Cryptographic
Application Programming Interface! (Crypto-
graphic API) is shown in Figure 1. The crypto-
graphic subsystem consists of all cryptographic
functions below the Cryptographic API. The cus-
tomer or system application (APPL) calls API serv-
ices to provide the cryptographic transforma-
tions. The application typically transmits the
encrypted information to an application on an-
other system which in turn calls appropriate API
services to achieve the desired security objective.

JoHnsoN ET AL 131

L66L ‘2 ON ‘0E TOA “TYNHNOr SW3LSAS Wl

v 13 NOsNHor g8 L

-a1 asoy) Ajuo Buisseoor 0} siasn SHWIj [0JU0D $S8008
Aeuonaiosiq |oJued $8890e Alojepuew 0 AIRUORSIOSIP
Jayyie 0} 108lgns aq Aew saainosal ‘esudisiue 8y} jo Aol
-jod Ayunoas ay) uo Buipuada “uonesiypow 1o 8InsojosIp
pazuoyineun woly sa21nosal §198)01d |0JJU0D SS800Y
‘ale noA jeym pue ‘ssassod noA yeym ‘mouy noA
Jeym jo uolieuiquod e Bujaq se pazueoeieyo used sey uol
-eofusyine Jasn Jo ABojouyoa) ay | "uoIBOUBYINE JO [9A8]
1s8ybiy sy} s1ayo yoiym ‘sojweuip ainjeubis se yons ‘uoy

ALIKINO3S
3svavivd

NOLLNal¥LsIa
w01

S3IDNIALIS ALIHNOTS XIV ANV YVS

ALIHOIINI JHVMAEVYH
SIHNLYIH ALIHNDIS FIHYMAYVYH

ALIHOILNIWILSAS DNILVHIJO

ALIHO3IINIVIVA
ALNVILNIAIINOD]

1INV 2 INSWIDVYNVIN ALIHND3S

H
=]
m
Z
=]
a
(<]
3
=]
z
-
>
[
3
I
m
z
=)
£
=
[©]
-4

S3ILNIOVYd W3LSAS d3isndl aoa
SADIAYIS ALHNOAS YVS

SNOLLYOINddV H3sn

-iuooa. sujBwWoIq pue ‘uoieonusyine u Ayjigedes Jsjealb
Aueoyiubis Jajo yoiym ‘Spied UBWS ‘SHIOMIBU Ul uon
-BoNuUaYINe pasueyua 104 siojelausl piomssed awi-euo 10
‘suay o} esuodsas pue abusjieyo ‘piomssed Buipuels-Huoj
auy sepnu; ABojouyosy ualing “senbiuyos) juaseyp Jo
Jaqunu e Aq paysi|dwoooe aq ued Jasn e Jo uonediuayiny
"(puasn) Jaynuapl anbjun-walsAs e AQq psynuspl si jesn y
'$80In0sal pajoslold 0} pojuelb s| ss800€ 910J9(YIoMIBU
pue WalsAs B 0} s19Sn JO uoyeoyuap! ay} AJLIBA 0} sainp
-900.d J0 198 © S| (v31) UOiIEJIUBYINE PUEB UOIRIRIIUSD]
‘wieIsAs ayy jo Albaul ay) ayejol 0}
punoj st uoouny weiboid ooads e aleym (sHvdy) suodey
sisfjeuy weibold pezuoyny 1deode o) pspiuWLIod pue
souyepinb Alubejul waysAs sy paysiand sey gl siesk ey
JBAQ "saAI0AS WB)SAS BU} Sk 0] palaype aq Aljenuiuoo pue
s$800.d Juswidojaaap ayj Buunp ubisep ayy ul pajelodiooul
aq isnw Ayibelul welsAs ‘welsAs Bunesedo ey jo Ausdoid
e sy "Alubaju) weysAs eoioue Jey) sauljepinb pejuswinoop
pue seoepoul JO 189S Jyoads e saunbal wsisAs yoeg
‘'sainjeay Alunoes pue swsiueyoew Apbejul asempiey
[eluswiuolAUS onbiun uepao Jo aoualsixe oYy uo spuad
-ap pue swisiueyoow ANInoss sy jo BuissedAq Jo uonuan
-WNo4I0 8y} Juanaid o} weisAs Buneiedo eyl Jo Aljige ey se
pauyep st} "WelsAs e Jo Alundas sy} JO 8U01SIBUICD 8} pue
weysAs Bupeledo ue jo Auedoid e si Aibeiun welsAg
‘seoBpaUl PoINONS BUIAJOAS PUB SWISIUBYOBW pPaje|el
uum samjioe} Aunoss Jo siehe| Buimoljjo) ayl Jo Sisisu0d
‘ainby Bulluedwoooe sy ul umoys ‘ainpPnas
SIY1§o |apowl ay | "Ainoes waysAs Bunuewsejdwy
Jo§ 8iMdnAs S pedsunouue NGl ‘6861 1900100 U |

Data mtegrrty ;s the means to detect the modmcat:on of
data stored focally ortransmitted overa network. Twotypes

of data integrity services exist: the detection of mtermonal
modification, which is provided by cryptographic functions

such as message authentication code (MAC) or modifica-

tion detection code (MDC), and the detection of accidental

modification, which is provided by noncryptographic .

mechanisms. The CCA implements both the MAC and MDC
functions. The use of a cryptographic function like MDC has
proved effective in discovering and combatting computer
viruses.

Security management encompasses registration and
enrollment of users and resources in the enterprise infor-
mation base, the facilities to administer security in various
combinations of both centralized and decentralized rights-
management based on the security policy of the enterprise,
and the mechanisms to audit various levels of security-rel-
evant events. Audit further breaks down into the detection,
logging, and reporting of events as well as the invocation
of security alerts for immedi-
ate action. As the only mech-
anism to validate verified
access to protected re-
sources, audit complements
1&A and access control.

Department of Defense
(DoD) trusted-system facili-
ties are enhancements to the
basic security facilities and
are designed into the sys-
tem to support the various
levels of trust defined by the
U.S. Government in their
trusted-system criteria. In
certain systems IBM has in-
corporated the functions to

WHAT YOU
KNOW

WHAT YOU
ARE

" user appllcatmn as: Common Pragrammmg mtertaces,

These security facilites and mechanisms, atthough em- |
bcdaed in the host operating system software, areaiso
designed to be utilized in delivering specmc‘ network

. database and workstatnon secunty capability.

h September 1980, IBM expanded its commit-

‘ment to security with the announcement of pians

=% for an enterprise-wide security architecture to

encompass the CCA, SAA, and emerging technologies

required in a distributed computing environment. Further

enhancements were also made to the various security
facilitios across the SAA and AIX systems.

CCA defines an application programming interface for a
wide variety of confidentiality and data integrity functions
that are available at both the application program and
subsystem level. Currently, MVS/ESA™, VTAM™,
IMS/ESA™, and CICS/ESA™ provide support for this inter-
face to CCA based on the
newly announced ES/9000™
Integrated Cryptographic Fa-
cility. In addition, the PC DOS
workstation-based Transac-
tion Security System im-
plements this interface as
part of a comprehensive
finance industry security sys-
tem. The new Virtual Ma-
chine/Enterprise Systems
Architecture™ (VM/ESA™)
product is currently im-
plementing support for the
Integrated Cryptographic Fa-
cility part of a guest virtual
machine environment run-

WHAT YOU
POSSESS

ning MVS/ESA.
Curtis L. Symes

meet these criteria, whereas
in other cases it has de-

Characterizing user authentication technology

Trademarks are those of International Business Machines Corporation

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991 JOHNSON ET AL. 133

Terminology used in examples. In all examples in
this paper the following names are used. The
name Ann is used for the creator or sender of a
crytographic key or other output of a Crypto-
graphic API service. The name Bill is used for the
intended recipient of the key or other output. Us-
ers at an intermediate node use a name that starts

The Common Cryptographic
Architecture Cryptographic API
definition uses a common
key-management approach.

with the letter C, for example, Charles. The name
used for an arbitrary adversary attempting to pen-
etrate the security mechanisms is Eve.

Common Cryptographic Architecture. The need
for a Common Cryptographic Architecture Cryp-
tographic API is derived by the applications that
require cryptographic services. These applica-
tions are, in general, distributed across many IBM
products. It is necessary to provide the capability
to encipher data in one product, send the data to
another system either directly or via a network,
and decipher the data in the destination product.
To ensure this capability, there must be a com-
mon set of cryptographic operations available on
multiple systems. If the cryptographic operations
are provided externally as common callable serv-
ices on the disparate systems, then the additional
advantage of enhancing program portability is
achieved.

The Common Cryptographic Architecture Cryp-
tographic API definition uses a common key-man-
agement approach and contains a set of consistent
callable services. This allows for the implemen-
tation of cryptographic solutions that are inde-
pendent of the networks and processing systems.
Common key management ensures that all prod-
ucts that conform to the architecture allow users
to share cryptographic keys in a consistent man-
ner. The definition of key management provides
methods for initializing keys on systems and net-
works, and also supports methods for the gener-

134 JOHNSON ET AL,

ation, distribution, exchange, and storage of
keys.

The callable services provide a common high-
level language interface for user or system appli-
cations. Thus, a small machine application could
use the same service calls as a large machine ap-
plication. The services provide a common set of
functionality that is applicable to a wide variety of
applications. The Common Cryptographic Archi-
tecture Cryptographic API services define a level
of cryptographic capability that allows programs
to be developed that work on disparate systems.
In particular, the Common Cryptographic Archi-
tecture provides two forms of compatibility for
applications: interoperability and portability.

Interoperability is the assurance that applications
that use the architected services will work to-
gether. Interoperability is achieved by common
encryption and decryption algorithms, common
key-management definitions, and common exter-
nal information formats. Interoperability has the
following limitations:

1. As the internal key token definition is imple-
mentation-dependent, it should be assumed
that an operational key token created on one
cryptographic subsystem implementation will
not work on another implementation. (See the
description of internal and operational keys in
the section on operational keys.)

2. As the key storage definition is implementa-
tion-dependent, it should be assumed that the
key storage for one implementation will not
work with another implementation unless a
conversion utility exists and is executed.

Portability is the ability to move an application
program from one system to another without
changing the program. However, it should be
noted that portability is at the source code level.
That is, it should be assumed that it is necessary
to recompile the application program in order for
it to be able to run on a different cryptographic
system or to run on a different cryptographic
product on the same system.

Cryptographic API objectives. The objectives in
designing the architecture for the Common Cryp-
tographic Architecture Cryptographic API were to
provide an intuitive multisystem application pro-
gramming interface while allowing for future
growth.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

It was realized early in the design process that the
callable services should not be defined at too low
alevel, as too much of the complexity would then
reside with the user. The cryptographic services
were designed to attempt to hide as much of the
complexity of the underlying system as possible
and present an intuitive interface. It was also de-
cided early in the design that it was very desirable
to follow the guidelines developed by John Ehr-
man at the Santa Teresa laboratory for designing
Systems Application Architecture™ (SAA™) call-
able services. Doing so gave a level of confidence
that the cryptographic services would be able to
be implemented on many different systems. How-
ever, this decision required overcoming the chal-
lenge of abiding by the SAA callable service guide-
lines in regard to data types. Apparently, the only
data types that are supported in all programming
languages are character strings and 32-bit binary
integers. Neither of these definitions applies to
encrypted data, but further investigation showed
that if the data do not need to be manipulated by
the caller, an undifferentiated string type (that is,
a string that may be composed of arbitrary hexa-
decimal values) could also be used in a parameter
definition. This undifferentiated string data type
allowed for the definition of data structures
needed to contain information so that the inter-
face could be defined in a more intuitive manner.

Good architectural design must include the pos-
sibility for future growth. This requirement may
be met by adding new services. However, in
many cases, the old service definition may almost
meet the new requirement, except that some new
parameter option specification requires support.
This desirable design trait is addressed by the def-
inition of a rule array in many services. The rule
array length and rule array parameters, in effect,
support a variable length method of passing in-
formation to the service. For any particular level
of the software, there will be a defined maximum
size of the rule array in any particular service.
However, a later level of software may define
more parameter options and support a larger rule
array size to accommodate increased functional-

ity.
Data structures

Control vector externalization. The control vector
is a pivotal concept in the Common Crypto-
graphic Architecture. See the companion papers

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

in this issue** for more information. The control
vector concept is more flexible and more intuitive
than the variant concept used in previous cryp-
tographic systems. From a software viewpoint,
some important facts about the control vector
need to be re-emphasized:

» It allows electronic key distribution without
misuse of the key by a normal user.

e [t is a compact nonsecret data structure.

* It is conceptually associated with a key.

* It has a dual use: it enforces cryptographic sep-
aration, and it specifies key usage.

Operational keys. An operational key is a key that
is encrypted under the master key at a particular
system and can be used in a service at that sys-
tem. Operational keys are accessed either di-
rectly by value in an internal key token or indi-
rectly by a key label.

An internal key token contains an encrypted
cryptographic key and its associated control vec-
tor. It is typically used for a key with a short life,
as for example, a key that is used for a session and
is disposed of when the session is over. It allows
implementation support for the capability for
authorized users to change the master key while
the system is on line. Previously, a master key
change required that the cryptographic sub-
system be taken off line,

In an internal key token, a field may be set to
allow detection of situations where the master
key has been changed but the encrypted key in
the key token is still encrypted under the old mas-
ter key. If desired, the system software on de-
tection of such a condition, can re-encipher the
encrypted key from encryption under the old
master key to encryption under the current mas-
ter key, and replace the old encrypted value with
the new in the key token and continue with the
originally requested operation.

A key label indirectly identifies an internal key
token stored in key storage. An operational key is
a candidate for being kept in key storage if it is a
key with a long life (that is, it must survive mul-
tiple master key changes), if it is appropriate to
enforce system access control to use this key, or
if many users need access to this key.

From experience with previous systems, some
customers have requested enhancements that al-

JOHNSON ET AL. 135

Table 1 Common Cryptographic Architecture services

- Service Pseudonym Service Name
Data-operation services
1. Encode CSNBECO
2. Decode CSNBDCO
3. Encipher . CSNBENC
4. Decipher - CSNBDEC
5. Ciphertext Translate CSNBCTT
6. MDC Generate © CSNBMDG
7. MAC Generate ‘CSNBMGN
8. MAC Verify CSNBMVR
Key-management services - i
9. Clear Key Import CSNBCKI
10. DATA Key Export ‘CSNBDKX
11. Key Export - CSNBKEX
12. Key Generate CSNBKGN
13. Key Import - CSNBKIM
14. RN Generate CSNBRNG .
15. Secure Key Import CSNBSKI
PIN-management services o
16. Clear PIN Generate CSNBPGN
17. Encrypted PIN Translate CSNBPTR
18. Encrypted PIN Verify . CSNBPVR

low the Cryptographic API services to be passed
keys either directly by value or indirectly via a
key label. This has been satisfied in the Crypto-
graphic API by the definition of the key identifier
parameter found in most of the Cryptographic APt
services. A key identifier can be either an internal
key token or a key label and is 64 bytes long. If
the first byte is a character, then the data specified
in a key identifier parameter are interpreted by
the software as a key label specification. If the
first byte is an X‘01’ (hexadecimel value), then
the data specified in a key identifier parameter are
interpreted by the software as an internal key to-
ken specification.

External keys. An external key is a key encrypted
under a key-encrypting key (KEK). The KEK may
be either an IMPORTER Kkey or an EXPORTER key.
An IMPORTER key is used to import keys onto the
system. Importing a key consists of calling the
Key Import service which re-encrypts a key in
importable form (i.e., from encryption under an
IMPORTER key) to operational form (i.e., to en-
cryption under the master key of this system).
This makes the key operational on this system. It
is possible to create a key in import form directly
by using the Key Generate service or the Secure
Key Import service. An EXPORTER key is used to
export keys to other systems. Exporting a key

136 JOHNSON ET AL.

consists of calling the Key Export service which
re-encrypts a key from operational form to ex-
portable form (i.e., to encryption under an
EXPORTER key). The encrypted key may then be
electronically transported to the receiving sys-
tem. The EXPORTER key on the sending system is
paired with an IMPORTER key on the receiving
system as both have the same value when inter-
nally decrypted. It is possible to create a key in
export form directly by using the Key Generate
service.

An external key is kept in an external key token.
The external key token is the foundation for Com-
mon Cryptographic Architecture external key
distribution. Use of the external key token helps
ensure interoperability, and is buiit by the creator
of the key. An external key token contains the
encrypted key, its associated control vector, and
a token validation value.

The token validation value (TVV) is used to verify
that an external key token is valid and helps pre-
vent an invalid or overlaid external key token
from being accepted by a service. As many values
in a key token have no inherent structure (i.e.,
they appear completely random), it is desirable to
add redundancy to the definition of the external
key token so that there is a high level of confi-
dence that it has not been corrupted. As some
cryptographic operations produce unintelligible
ciphertext, it is important that errors not be dis-
covered too late, after some unrecoverable proc-
ess has occurred.

Cryptographic APl services

A reference chart for the Common Cryptographic
Architecture Cryptographic API services is shown
in Table 1. The service pseudonym is the descrip-
tive name for a service, while the service name is
the formal name for the service and the name by
which the service is called from a program. Fol-
lowing is an overview (from the caller’s perspec-
tive) of the cryptographic functionality each ser-
vice provides.

Data-operation services. The Cryptographic API
provides data-operation services that allow call-
ers to provide data confidentiality and data integ-
rity. The Cryptographic API consists of callable
services that provide the cryptographic transfor-
mations that allow a system service or customer

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

application caller of a service to meet security
requirements.

Encode and Decode. The Encode and Decode
services provide Electronic Code Book (ECB) en-
cryption and decryption of eight bytes of text.
The cryptographic key is supplied as an unen-
crypted eight-byte value, not as an internal key
token. As the key is unencrypted, the caller of
these services is responsible for ensuring the se-

The Encipher and Decipher

services provide support for

encryption and decryption of
sensitive data.

crecy of the keys. These services provide com-
patibility support for previous systems and pro-
vide the Data Encryption Algorithm (DEA)*
encryption and decryption primitives that may be
used as subroutines in the design of installation-
written special-purpose cryptographic services.

Encipher and Decipher. The Encipher and Deci-
pher services provide support for encryption and
decryption of sensitive data. Consider the follow-
ing scenario: Ann wants to send messages to Bill.
However, the messages are transmitted by means
that cannot prevent Eve, an adversary, from
reading the transmitted messages. The problem is
to devise a method whereby the content of mes-
sages sent by Ann are kept from being determined
by Eve. This is the classic example of the use of
cryptography to provide data confidentiality, and
the solution is to scramble Ann’s intelligible mes-
sage in such a way that Bill can unscramble it
easily but Eve cannot without doing an exces-
sively impractical amount of work.

This data security problem may be solved as fol-
lows: Ann and Bill agree to use the Cryptographic
API Encipher and Decipher services in one of the
five supported methods of encryption and also
agree to share a secret value, in particular the
value of a DATA key. Ann will Encipher the mes-
sage and send the encrypted message to Bill, who

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

will then Decipher the encrypted message to pro-
duce the original message. Eve may be able to
intercept the encrypted message, but without
knowing the value of the DATA key cannot deter-
mine the original message.

The Cryptographic API supports five different
methods of encryption as follows:

ANSI X3.106 Cipher Block Chaining (CBC)
ANSI X9.23 Octet (Byte) Padding

IBM 4700 (Byte) Padding

1BM Information Protection System (IPS)

IBM Cryptographic Unit Support Program
(cusp)

e

Five different methods are supported because
each method is in use today, each method is dif-
ferent from the others (mainly in its method of
short block handling) and each has it own advan-
tages and disadvantages. Note that the 1BM 4700
also has a method of encryption which does not
pad data and is the same as the ANSI X3.106 Cipher
Block Chaining (CBC) method.

ANSI Standard X3.106° defines four modes of DEA
encryption, and IBM products, in general, support
the Cipher Block Chaining (CBC) method. This is
a normal method to use but it has one obvious
shortcoming, since it is not defined for data with
a length that is not a multiple of eight bytes. Var-
ious other standards and 1BM products have de-
veloped different solutions in attempting to han-
dle this concern. ANSI Standard x9.23° defines an
octet (byte) padding method which always pads
the data so that the text length is a multiple of
eight bytes. The standard specifies that the pad
digits (except for the last digit, which contains a
pad byte count) contain varying contents. The
IBM 4700 Finance Communication System,’ be-
sides supporting the CBC method, supports pad-
ding the text with a caller-specified pad digit. Like
the ANSI X9.23 octet padding method, the 4700
padding method always pads the data and the
rightmost pad digit is a count in binary of the
number of pad digits (including the count digit).

A disadvantage of using a padding method is that
padding produces ciphertext that is longer than
the plaintext. If a record needs to be encrypted
and the plain text replaced with the encrypted
text, it is obviously desirable if the length of the
text does not increase. The 1BM Cryptographic
Unit Support Program (CUSP-3848),® which runs

JOHNSON ET AL. 137

on MVS systems, added extensions to the CBC def-
inition to support a data length of any byte mul-
tiple where the resulting encrypted text is the
same length as the clear text. The 1BM Informa-
tion Protection System (IPS, also known as the
CIPHER command on VM systems)® defined an ex-
tension to the CBC definition similar to CUSP, in
that the ciphertext is the same length as the plain-
text. Furthermore, both cusp and 1pS define a
concept called record chaining where, in effect, a
data set is treated as one long record, i.e., a value
is calculated that allows chaining from one record
to the next in the data set. However, the defini-
tions of 1PS and CUSP record chaining differ.

Guidelines for choosing an encryption method.
To reduce the complexity of using these different
methods, the Cryptographic API defines the En-
cipher and Decipher services so that these five
options are supported via a caller specification of
the process rule parameter. Guidelines for the use
of a particular method are as follows:

1. If exchanging encrypted data with a specific
implementation, e.g., CUSP or ANSI X9.23, then
use that method.

2. The CBC method should be used whenever
possible. Use of this method requires that the
plaintext length always be a multiple of 8.

3. If the Ciphertext Translate service is to be ex-
ecuted on the encrypted data at an intermedi-
ate node, then the caller must ensure that the
ciphertext is a multiple of 8. To meet this re-
quirement, using a process rule of CBC, X9.23,
or 4700-PAD will prevent the possible inad-
vertent error of creating ciphertext that is not
a multiple of 8 and that cannot be processed by
the Ciphertext Translate service.

4. If the ciphertext length must be equal to the
plaintext length and the plaintext length may
not always be a multiple of 8, then either the
IPS or CUSP method should be chosen.

5. If many similar records are being encrypted
via repeated calls or if the text will be proc-
essed in segments, then the IPS or CUSP record
chaining method is suggested.

6. The 1Ps record chaining method is preferred
over the CUSP record chaining method.

The Encipher and Decipher services require a
caller to supply an initialization vector. In many
cases, an initialization vector of binary zeroes
may be used and often is enough to ensure se-
curity. However, if the plaintext is highly struc-

138 JOHNSON ET AL.

tured or is repetitious, examination of just the
ciphertext may disclose the existence of the struc-
ture of the plaintext and such a disclosure may not
meet security requirements. If this is the case, the
caller should consider using a different nonzero
initialization vector for each call, as this will ef-
fectively mask any structure or repetition that
may exist in the plaintext. The output of the Ran-
dom Number Generate service is suitable for use
as a nonzero initialization vector.

Ciphertext Translate. Another aspect of data se-
curity is the possibility that two parties want a
third party at an intermediate node to act as a
server for them in translating data from encryp-
tion under one key to encryption under another.
However, Ann and Bill do not want Charles, the
third party, to have direct access to the plaintext,
i.e., the original message. Such a service is sup-
plied by the Ciphertext Translate service. A
trusted system administrator for Charles’s sys-
tem is supplied with a DATAXLAT key by both
Ann and Bill and he then manually installs the
DATAXLAT keys. Charles can then call the Cipher-
text Translate service and the plaintext message
does not appear outside the cryptographic sub-
system. The intent of using the Ciphertext Trans-
late service is to disallow recovery of the plaintext
at the intermediate node.

The Ciphertext Translate service works with sys-
tems that were designed before the Common
Cryptographic Architecture; therefore when us-
ing the Key Generate service to generate a key for
use in Ciphertext Translate, a DATAXLAT key is
paired with a DATA key. However, note that it is
a user at the intermediate node that must do the
key generation and not the user at the terminal
node. This implies that additional procedural con-
trols may be appropriate when using DATAXLAT
keys to ensure the expected security is achieved.

MDC Generate. The MDC Generate service pro-
vides support for integrity of data by calculation
of a modification detection code (MDC).

Consider the following scenario: Ann creates a
large file and wants to distribute the file to Bill.
However, Ann and Bill do not share a secret. The
problem is how to allow Bill to detect if the file has
been altered or replaced in the time between be-
ing sent by Ann and being received by Bill. If Ann
can inform Bill of 128 bits of data and ensure the
integrity of those 128 bits, then the problem may

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

be solved as follows: Ann and Bill agree to use the
MDC Generate service. Ann calculates an MDC for
the file and informs Bill (with integrity) of the
128-bit MDC value. Ann then sends the file to Bill.
On receiving the file, Bill calculates the MDC for
the received file and compares it with Ann’s MDC.
If the MDC values are equal, the file is accepted as
genuine. If not, the file is assumed to be bogus.
Note that the output of the MDC Generate process
is 128 bits. If an object is less than 128 bits, then the
integrity of the object may be maintained directly,
rather than through use of an MDC.

An additional use is the ability to detect if the file
has been changed since it was originally received,
e.g., if altered by a virus. Once an MDC has been
established for a file, the MDC Generate service
may be run at any later time on the file and the
resulting generated MDC compared with the
stored MDC to detect deliberate or inadvertent
modification.

The MDC calculation ' provides a publicly-known
cryptographic one-way function. That is, the MDC
calculation does not rely on any secret informa-
tion and is easy to compute for specific data, yet
it is hard to find data that will result in a given
MDC. The data that are to have an MDC calculated
may be arbitrarily long, because of support in the
MDC Generate service for segmenting the text.
The segmenting rule allows callers to break up
long text into a first portion, any number of mid-
dle portions, and a last portion. In effect, the
problem of ensuring integrity of a large file is re-
duced to the problem of ensuring integrity of a
128-bit value. By providing a data reduction
mechanism, the MDC calculation reduces the size
of the problem. For example, it is feasible to pub-
lish the MDC for a program in a source of public
information, e.g., in a certain newspaper for a
specific day. The idea is that the source of public
information is generally available, cannot be eas-
ily spoofed, and any interested party may deter-
mine the MDC for the program and verify that the
received program results in the same MDC.

Another use of the MDC Generate service is to
hash a passphrase down to a value suitable for use
as a cryptographic key. A passphrase is concep-
tually like a password except that it may be 80
characters in length. As the output of the MDC
Generate service is 128 bits, the output will need
to be truncated when being used for the value of
a single length key. When considering such a us-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

age of the MDC Generate service, it is important
to remember to use a passphrase with a high vari-
ability, i.e., it should be possible to create any of
the 2% (over 72 quadrillion) single length Keys.
This will ensure that an adversary could not re-
duce the problem of trying to determine the cryp-
tographic key used by trying to guess the pass-
phrase that produced it. For example, a single
dictionary word should not be used in the MDC
Generate service to calculate a cryptographic
key, as an adversary could try every word in a
large dictionary and see if any of the values pro-
duced by the MDC Generate service is the one
used. A large dictionary typically has a total of
about 100000 words, which is much less than the
number of possible cryptographic keys.

MAC Generate. The MAC Generate service pro-
vides support for data integrity via the calculation
of a message authentication code (MAC). Concep-
tually, a MAC is a cryptographic checksum that is
based on a shared secret between the message
creator and the message recipient. The shared se-
cret in this case is the value of the cryptographic
key. The MAC calculation supported is described
in the ANSI X9.9 standard,!" specifically it is the
MAC calculation on binary data. The data that are
to have a MAC calculated may be arbitrarily long
because of support in the service for segmenting
the text, exactly as defined in the MDC Generate
service.

Consider the following scenario: Two parties de-
cide to send electronic messages between them-
selves. However, the messages are transmitted
by means that cannot prevent an adversary from
interjecting messages into the transmission chan-
nel. The problem is to devise a method whereby
genuine messages sent by the other party are dif-
ferentiated from bogus messages interjected by
an adversary (with a very high probability). This
data integrity problem may be solved as follows:
The parties agree beforehand to follow the ANSI
X9.9 standard and share a secret DEA key that is
known only to themselves. Ann creates a mes-
sage and calculates a MAC for the message and
sends the message and the calculated MAC to Bill.
Now consider the situation from Bill’s viewpoint.
For all he knows, the message is either genuine or
bogus. To verify that the message is genuine, Bill
calculates a MAC on the received message and
compares it to the received MAC. If the compar-
ison is equal, then the message is accepted as
genuine (i.e., created by Ann who shares the se-

JOHNSON ET AL. 139

cret key) because only Ann knows the secret that
allows for the correct MAC to be calculated.

An additional concern of the data integrity prob-
lem is as follows: What if Eve merely resends an
old message that already has a correct MAC cal-
culated for it? Such a message is termed a stale
message and (depending on the application) it
may be important for Bill to detect the replay of
a stale message. The solution is for Ann to include
time-varying information in the message that al-
lows Bill to detect a replay of a stale message.
Examples of time-varying information are a se-
quence number, a time stamp, or a random num-
ber nonce used in a request/response protocol. (A
nonce is a technical term for a random quantity
used in a security message protocol.) Bill inter-
rogates the time-varying information to ensure
that the message is acceptable according to pre-
established criteria, such as the sequence num-
bers must always increase, the time stamp must
be a time within a specified window of the current
time, etc.

If both data confidentiality and data integrity are
required, then both message encryption and mes-
sage authentication may be done. It is recom-
mended that the MAC be calculated on the plain-
text message and that the key used tayencrypt the
message have a different value from the key used
to calculate the MAC on the message.

MAC Verify. Another aspect to data integrity that
may be desirable in some situations is the concept
of a MACVER key, i.e., a key that may be used in
the MAC Verify service but cannot be used in the
MAC Generate service. The data that are to have
a MAC verified may be arbitrarily long, because of
support for segmenting the text by the MAC Verify
service, in the same manner as is done in the MAC
Generate service.

Consider the following scenario: Suppose the re-
cipient may verify the MAC for a genuine message
but the cryptographic work factor to generate a
MAC for an arbitrary message is too large to be
practical. Given a message with its associated
MAC, the intent of this concept is that the only
realistic way the MAC could have been calculated
is by Ann, the owner of the MAC key and not Bill,
the owner of the MACVER Kkey, i.e., Ann cannot at
some later time disavow or repudiate the message
by claiming it was not created and authenticated
by her. Such a service is supplied via the use of

140 JOHNSON ET AL.

a MACVER key. A MACVER key may only be used
in the MAC Verify service, not the MAC Generate
service.

Key-management services. Doing data-operation
services by importing clear key values requires the
transporting of the clear key values and their asso-
ciated key types from the originator to the recipient.
When the originator and the recipient reside on dif-
ferent systems, this may be done by physically
transporting the information by a courier.

However, there are concerns with such a manual
procedure, because it is error prone as it requires
human involvement. Good security practice dic-
tates that each originator and recipient have a
unique key value so that compromise of the key
used in one channel does not compromise another
channel. This means that many keys may need to
be distributed. Good security practice also dic-
tates that the keys be changed if compromise is
suspected and, in any case, changed on a regular
basis.

As the number of users of cryptographic services
grows, the manual approach becomes infeasible
to use with all keys. What is desired is a crypto-
graphic key-distribution method that simplifies
electronic distribution of keys, minimizes manual
key entry, and maintains the intended usage of
keys.

The Common Cryptographic Architecture key-
management services allow a caller to support
generation, installation, and distribution of cryp-
tographic keys. The distribution of cryptographic
keys is standardized through the use of an exter-
nal key token.

Random Number Generate. The Random Num-
ber Generate service provides user access to a
random or a strong cryptographically-based
pseudorandom number generator. The output of
a call to this service is suitable for cryptographic
use. That is, a suitable value for the clear key
parameter of the Clear Key Import or Secure Key
Import service is the output of a Random Number
Generate chll. Also, when using a nonzero ini-
tialization vector in the Encipher service, a suit-
able value for the initialization vector parameter
is the output of a Random Number Generate call.
It may also be used as a nonce.

The output of this service has superior properties
of randomness when compared with the output of

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

pseudorandom number generators provided in
many programming languages, which typically
are based on the method of linear congruences
and are not cryptographically based. For these
reasons, when a high quality random or pseudo-
random number is desired for non-cryptographic
reasons, this service may be used.

Clear Key Import and Secure Key Import. The
Clear Key Import service provides the ability to
create an internal key token for a DATA key for an
arbitrary key value. The Secure Key Import ser-
vice does a similar function except that any sup-
ported generic key type may be specified. This
latter service is authorized, as it is not intended
for the general user. Use of these services trans-
forms the value of the key from an unencrypted
form into an operational form where it may be
used in a way appropriate for its specified key
type. The output of these services is a data struc-
ture called the internal key token which contains
the encrypted key value and an encoding of the
specified key type. The key in an internal key
token is an operational key, i.e., it is encrypted
under the master key. Note that if the specifica-
tion of the key type is changed either accidentally
or intentionally the correct key value will not be
recovered as the value of the encrypted key is
cryptographically coupled to the control vector
associated with the specified key type. See the
companion paper by S. M. Matyas? for details on
the control vector mechanism. It is recommended
that the values of the clear keys to be imported by
these services should be generated via a call to the
Random Number Generate service or via a call to
the MDC Generate service where the input text is
of sufficient variability.

Key Export. The Common Cryptographic Archi-
tecture Cryptographic API supports electronic
key distribution with minimal manual key instal-
lation. An initial EXPORTER key-encrypting key is
installed on a system by a courier and an initial
IMPORTER key-encrypting key is installed on an-
other system. The EXPORTER key and the IM-
PORTER key have the same value. After the man-
ual installation of these initial key-encrypting
keys, all subsequent key distribution may be done
electronically. For example, Ann on a system
with an EXPORTER key installed as above may
execute the Key Export service to perform the
cryptographic transformations to convert the in-
formation for an operational key in an internal key
token to a exportable key in an external key to-

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

ken. The output of the Key Export service is a
data structure called the external key token which
contains the encrypted key and its associated
control vector. The key is encrypted under the
key-encrypting key that exists on Ann’s sending
system as an EXPORTER key and on Bill’s receiv-
ing system as an IMPORTER key. Note that if the
specification of the control vector is changed ei-
ther accidentally or intentionally the correct key
value will not be recovered as the value of the
encrypted key is cryptographically coupled to the
control vector. The Key Export service also
transforms a key label specification (which refers
to an operational key in key storage) to an exter-
nal key token.

DATA Key Export. The DATA Key Export service
does the same transformation as Key Export, but
only for a DATA key. This allows an installation to
define a higher level of authorization for the Key
Export service, that is, the ability to export any key.

Key Import. The external key token can be elec-
tronically transmitted to another system that has
the corresponding IMPORTER Kkey. An application
may execute the Key Import service to perform
the cryptographic transformations to convert the
information in the external key token (which is
considered an importable key) to an operational
key in an internal key token. The intended usage
of the key (i.e., the key type) is maintained
through the control vector mechanism. It cryp-
tographically couples the usage attributes of a key
with the key so that the key cannot be recovered
and used without specification of the correct con-
trol vector (either explicitly in the external key
token or implicitly via specification of the key

type).

The definition of the external key token supports
the strategic key-distribution protocol. The stra-
tegic protocol is guaranteed to work on all sys-
tems that conform to the Common Cryptographic
Architecture Cryptographic API definition. The
external key token has two methods of use as
follows:

1. Bill calls the Key Import service specifying
TOKEN. In this case, the control vector in the
external key token is used as is, and any sup-
ported control vector will be processed. Bill
might do this if he just created the key token
and therefore knows the control vector is cor-

JOHNSON ET AL. 141

Figure 2 Peer-to-peer key-distribution environment

"ANN") “BILL"

KEY GENERATE . | pis key KEY IMPORT

ANN'S KEY

rect or if he wants to process the key token
regardless of its contents.

2. Bill calls the Key Import service specifying a
generic key type. This process is the same as
if specifying TOKEN, except that the Crypto-
graphic API also verifies that the control vector
in the external key token is compatible with
the generic key type specified.

In the following examples Ann has generated a
MACVER key (that is, a key that may only be used
with the MAC Verify service) and sent it to Bill.

1. Bill calls Key Import specifying a key type of
TOKEN. This specification will import the key
regardless of the control vector in the key to-
ken.

2. Bill calls Key Import specifying a key type of
MACVER. This specification is correct and
therefore will allow the import to continue and
Bill is assured that he is importing a MACVER
key.

3. Bill calls Key Import specifying a key type of
PINVER (that is, a key that may be used in the
Encrypted PIN Verify service). This call will
fail as the Control Vector in the external key
token does not agree with the specified ex-
pected key type. Bill knows that there has
been a failure somewhere and can pursue re-
solving the problem.

Besides being paired with an EXPORTER key, an
IMPORTER key may be used by itself to support file
encryption. A DATA key needs to exist in import
form. This may be done by using either Secure
Key Import or Key Generate. The DATA key in
import form (encrypted under a specific IM-
PORTER key) may be imported via the Key Import

142 JOHNSON ET AL.

service resulting in an operational DATA key. The
operational DATA key may then be used to en-
crypt a file. The operational DATA key is then
discarded and the import form of the DATA key is
kept with the encrypted file. If the IMPORTER key
is kept in key storage, then any master key
changes will not invalidate the IMPORTER key, as-
suming a product-specific key storage conversion
utility is run. When the file is needed to be de-
crypted, then the Key Import service may be
called with the appropriate IMPORTER key and im-
port form of the DATA key to produce an opera-
tional DATA key which may then be used to de-
crypt the file.

Key Generate. The Key Generate service sup-
ports the generation of a key or pair of keys. If a
pair of keys is generated, both of the keys have
the same value but may have different key types
(for example, MAC and MACVER) and different key
forms (that is, operational, importable, or export-
able) as allowed by the service. The Key Gener-
ate service is the standard method of creating
keys in the Common Cryptographic Architecture.
Use of the Key Generate service may allow an
implementation to restrict usage of the Secure
Key Import service to initial installation of
EXPORTER and IMPORTER key-encrypting keys. It
may also allow an implementation to prohibit us-
age of the Key Export service or possibly use it
just for system backup purposes.

The Key Generate service provides support for a
caller to generate a key or a pair of keys in a
peer-to-peer key-distribution environment (Fig-
ure 2). In a typical application a key is generated
that can be used on this system (i.e., one key is
either operational or importable), and the same
value is used for a key that can be used on another
system (the key is exportable). Though the oper-
ational and exportable keys have the same value,
they will typically have different key types. All
output generated keys are encrypted. If a key is
encrypted under the master key, then the key is
operational on this system and is returned in an
internal key token. If a key is encrypted under an
IMPORTER key, then the key is returned in an ex-
ternal key token that may be imported to this sys-
tem (possibly at some later time). If a key is en-
crypted under an EXPORTER key, then the key is
returned in an external key token that may be
transmitted to the system with the corresponding
IMPORTER key where it may then be imported.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

The Key Generate service may also be used by a
key-distribution center (KDC) to generate keys to
solve what is called the N? (“N squared”) key-
distribution problem. (Refer to Figure 4, later.)
This problem results from noticing that the num-
ber of key-encrypting keys potentially needed is
approximately the square of the number of sys-
tems, as any particular system may need to ex-
change keys with any other system. As the num-
ber of systems (or nodes) in a network is typically
denoted by the variable N, this problem is known
as the N2 (N squared) key-distribution problem.
The number of different keys needed to be gen-
erated and installed may therefore be large, even
for a small network. The goal is to have the com-
plexity of adding a new system to a network of
systems grow proportional to the number of sys-
tems in the network and not proportional to the
square of the number of systems.

This problem may be solved using the Common
Cryptographic Architecture Cryptographic API
through use of a designated key-distribution cen-
ter (KDC). The key-distribution center has an EX-
PORTER key installed for each other system in the
network, and each other system has the appro-
priate IMPORTER key installed accordingly. A typ-
ical KDC application is where one generated key
is exportable to one system and the other gener-
ated key is exportable to another system. Notice
that the key is not used on the generating system.
When one system wants to establish a key with
another system, a request is sent to the KDC which
acts as a server to generate the two external key
tokens needed. The external key tokens are then
electronically transmitted to their respective sys-
tems where they can be imported.

Peer-to-peer key distribution. A typical peer-to-
peer key-distribution scenario which illustrates
the use of the Key Generate service is illustrated
in Figure 2. A typical process flow follows:

1. Ann calls Key Generate with a mode of OPEX
(that is, the first generated key is operational
on this system and the second key is export-
able), key typel of MAC (that is, a key that can
be used in the MAC Generate service) and key
type2 of MACVER (that is, a key that can be
used in the MAC Verify service but not the MAC
Generate service), and also specifies via key
label the appropriate EXPORTER key associ-
ated with Bill’s node.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

2. Ann keeps the generated operational MAC key
token.

3. Ann sends the generated exportable MACVER
key token to Bill.

4. Billis expecting to receive a MACVER Key from
Ann, so on receipt of the external key token
Bill calls Key Import specifying the received
key token, a key type of MACVER and the
IMPORTER key associated with Ann’s node.
This produces an operational MACVER key to-
ken for Bill.

5. Ann calls the MAC Generate service specifying
the MAC key token to generate a message au-
thentication code (MAC) for a specific message,
appends the MAC to the message and sends this
combination to Bill.

6. Bill receives the message and its MAC and calls
the MAC Verify service specifying the opera-
tional MACVER key token to verify the MAC for
the message. Assuming the MAC verifies, Bill
is assured that the message really did come
from Ann.

7. Eve cannot create a MAC for a bogus message
because she cannot determine the value of the
MAC key as it is encrypted under the master
key of the system where Ann resides and can-
not determine the value of the MACVER key
used by Bill as it is encrypted under the secret
key-encrypting key shared between the sys-
tems that Ann and Bill reside on.

For an example of the technical implementation
details needed to support a peer-to-peer key-dis-
tribution environment with control vectors, see
the companion paper by S. M. Matyas, A. V. Le,
and D. G. Abraham.?

Key-distribution center. Use of a peer-to-peer
key-distribution protocol is appropriate for small
networks or where a few nodes in a large network
are able to act as a small network. However, at-
tempting to solve the general key-distribution
problem in a large network may result in a dif-
ferent solution, due to scaling factors of the nec-
essary number of manually installed key-encrypt-
ing keys. For example, for the arbitrary network
depicted in Figure 3, a key-distribution center is
one method of attempting to solve the scaling
problem. (See Figure 4.)

Use of the Key Generate service in a key-distri-
bution center environment is also possible. In this
environment, a third system generates the keys in
external form for distribution to both requesting

JOHNSON ET AL. 143

Figure 3 Generalized computer network

COMMUNICATIONS NETWORK

-~ CRYPTO- |
 ‘GRAPHIC §7
© SYSTEM N

Figure 4 Key-distribution center environment

parties, that is, both generated keys are in ex-
portable form. Using this method has an advan-
tage in reducing the number of key-encrypting
keys needed in the entire network, as each system
only needs to establish a key exchange channel
with the key-distribution center, rather than with
all other systems.

For an example of the technical implementation
details needed to support a key-distribution cen-
ter environment with control vectors, see the
companion paper by S. M. Matyas, A. V. Le, and
D. G. Abraham.?

144 JOHNSON ET AL.

PIN-management services. A personal identifica-
tion number (PIN) is used as an authentication
mechanism to prove the identity of an individual.
Conceptually, a PIN is similar to a password. To-
day, most PIN processing is done in connection
with an automated teller machine (ATM) and au-
thorizes personal financial transactions. A cus-
tomer of a financial institution inserts the ATM
card, then enters a PIN to provide the authoriza-
tion. Information from the magnetic strip on the
ATM card and the supplied trial PIN is then trans-
mitted to a site that is authorized to verify the trial
PIN.

There are two basic methods used to verify a PIN:
the PIN database method and the PIN calculation
method.

The PIN database method of PIN verification is to
keep the value of the PIN in a database in a specific
encrypted PIN block format. Note that some PIN
block formats have varying contents and so may
not be practical for use in a PIN database. When
a request for customer authorization arrives, the
encrypted PIN block containing the trial PIN is
compared for equality with the encrypted PIN
block containing the correct PIN. Note that the
PIN block containing the trial PIN may be en-
crypted under a different key than is used to en-
crypt the PIN database. In this case, the PIN block
needs to be translated from encryption under one
key to encryption under another key. Of course,
the PIN block formats and the contents of the PIN
blocks must be identical for the comparison to
succeed. If this is not the case, then the PIN block
needs to be reformatted to the PIN block format
used in the PIN database.

The PIN calculation method of PIN verification is
to extract the trial PIN from the encrypted PIN
block, recalculate the (correct) PIN using cus-
tomer account information and the secret PIN ver-
ification key, and compare the trial PIN with the
calculated PIN.

Notice that both PIN verification methods do not
allow a clear PIN value to appear in the clear out-
side the cryptographic subsystem. This is impor-
tant for good PIN security and is a reason that a
DATA key is not used to encrypt PIN blocks, as a
DATA key may be used to decrypt encrypted data,
i.e., its corresponding plaintext may appear in the
clear outside the cryptographic subsystem.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 5 Clear PIN calculation

NONSECRET
AGCCOUNT NUMBER

' OTHER NONSECRET
‘PARAMETERS

PIN CALCULATION PROCEDURE
SECRET

PIN-
CALCULATING
KEY

SECRET PIN

The value of the PIN is determined by the method
of PIN calculation. Five different methods of PIN
calculation are supported.

When a PIN is transmitted between systems, it is
contained in a 64-bit encrypted PIN block. Ten
different PIN block formats are supported and an
appropriate method of extracting the PIN from
each PIN block format is provided.

Clear PIN Generate. The Common Crypto-
graphic Architecture Clear PIN Generate service
supports generation of the following five outputs:

1. Clear IBM 3624 PIN (output is an institution-
assigned PIN)

2. Clear IBM 3624 PIN offset (input is a customer-
selected PIN, output is the PIN offset)

3. Clear IBM German bank pool (GBP) PIN (output
is an institution PIN)

4. Clear 1BM German bank pool PIN offset (input
is an institution PIN, output is the PIN offset)

5. Clear VISA™ PIN validation value (pVV), (input
is a customer PIN)

The Clear PIN Generate service is an authorized
service and is not intended for use by a normal
(unauthorized) user. It may be used as part of the
process of creating an installation PIN database or
creating PIN mailers that are sent to the financial

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

institution’s customers that want to use an ATM.
See Figures 5 and 6.

Encrypted PIN Translate. The Encrypted PIN
Translate service allows an intermediate system
to change the value of the key the PIN block is
encrypted under, change the PIN block format, or
change some of the non-PIN contents of the PIN
block.

If just the value of the key is being changed, this
is termed a key-translate invocation with a proc-
ess rule of TRANSLAT. In any other case, the proc-
ess is termed a key-translate invocation with a
process rule of REFORMAT. REFORMAT function-
ality is a superset of TRANSLAT functionality, ex-
cept that sometimes a REFORMAT may fail in suc-
cessfully doing a PIN extraction or PIN formatting
while a TRANSLAT process usually cannot fail if
the parameters are specified correctly.

The Common Cryptographic Architecture En-
crypted PIN Translate service supports the fol-
lowing ten PIN block formats for both the inbound
PIN block and the outbound PIN block:

IBM 3624

IBM 3621 (same as IBM 5906)

IBM 4704 encrypting PIN pad

1SO 0 (same as ANSI X9.8,'? VISA 1, and ECI 1)

AW -

JOHNSON ET AL. 145

Figure 6 Nonsecret PIN offset or PVV calculation

SECRET PIN

. NONSECRET
ACCOUNT NUMBER

. OTHER MONSECRET
' ‘PABAMETERS

SECRET

PIN-
GALDULATING . - 3624 PIN
ALGORITHM

PIN OFFSET/PVV CALCULATION PROCEDURE

- NONSEGRET
- PIN OFFSET
- OR PW

ISO 1 (same as ECI 4)
VISA 2

VISA 3

VISA 4

ECI 2

ECI 3

SO

1

In the above list, ISO is an acronym for the In-
ternational Organization for Standardization,
ANSI is an acronym for the American National
Standards Institute, and ECI is an acronym for
eurocheque International S.C.

The Encrypted PIN Translate service supports the
PIN database method of PIN verification by allow-
ing a caller to convert a formatted PIN block to
encryption under a specific key (presumably the
key the PIN database is encrypted under) or to
convert a PIN in one PIN block format to another
PIN block format (presumably the PIN block for-
mat the PIN database is in). The Encrypted PIN
Translate service also allows an application pro-
gram to meet required PIN block formats for use
in interchange with other systems, when the PIN
originates in some other PIN block format.

Encrypted PIN Verify. The Encrypted PIN Verify
service provides support for the PIN calculation
method of PIN verification. The PIN correspond-
ing to the supplied account information is gener-

146 JOHNSON ET AL.

ated inside the cryptographic subsystem and
compared for equality with the PIN in the supplied
encrypted PIN block. See Figure 7.

The Encrypted PIN Verify service supports ver-
ification of the following five inputs:

1. 1BM 3624 institution-assigned PIN

2. IBM 3624 customer-selected PIN (via a PIN off-
set)

3. 1BM German bank pool PIN (verify via an in-
stitution key)

4. 1BM German bank pool PIN (verify via a pool
key and a PIN offset)

5. VISA PIN (via a VISA PIN validation value [VISA
PVV))

The Common Cryptographic Architecture En-
crypted PIN Verify service supports the same ten
inbound PIN block formats that are supported by
the Encrypted PIN Translate service.

Cryptographic key separation. An important con-
cept used in the Common Cryptographic Archi-
tecture Cryptographic API is cryptographic key
separation. This concept provides for the creator
of a cryptographic key (whether via the Key Gen-
erate service or the Secure Key Import service) to
declare the intended usage of the key via a key
type specification. The cryptographic subsystem

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

then enforces this specification by denying re-
quested services that are inappropriate for the de-
clared key type.

The mechanism for enforcing key separation for
keysin internal key tokens or external key tokens
is via the control vector mechanism. Each key K
is encrypted in such a way that the value of the
key-encrypting key KK (whether a master key,
an EXPORTER key, or an IMPORTER key) and the
control vector C (associated with K) must be
specified to recover the key. The possible values
of the control vectors are defined by the Common
Cryptographic Architecture. See the companion
paper by S. M. Matyas? for details on the cryp-
tographic transformations. Besides using the con-
trol vector C to recover the value of key K, C is
also examined to see if it has attributes that qual-
ify it to be used in the called service in the re-
quested way. Ifit does not, the service invocation
fails. If C is valid, the requested service execution
proceeds. If a caller alters the value of C to try to
change the attributes of a key, the correct value
of K is not recovered by the key decryption proc-
ess and any resulting output of the service is in-
valid, that is, any output is equivalent to that re-
sulting from using a random unknown key value
in the service.

Generic key types. The method with which the
Common Cryptographic Architecture Crypto-
graphic API externalizes the power (and the com-
plexity) of the control vector concept is by de-
fining generic key types.

A customer’s desire or need for sophistication
will typically grow over time. Initially, a simple
running system may be what is desired. As expe-
rience is gained and knowledge increases, a se-
curity administrator may want to increase the
level of control over usage of cryptographic keys
by the end users. For example, initially Ann may
decide to distribute a key to Bill that can be used
to generate a message authentication code (MAC)
that is used to authenticate the text of an elec-
tronic message. This scenario likely entails elec-
tronic distribution of a MAC key. Later, Ann may
decide that Bill does not really need to be able to
generate a MAC, rather he only needs to verify a
MAC. This suggests possible generation and dis-
tribution of a MACVER Kkey.

Each generic key type is defined according to the
service in which it can be used as input. This

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Figure 7 Steps in algorithmic PIN verification

DECRYPT
* PIN BLOCK

fual

EXTRACT
TRIAL FIN

CALCULATE
PIN OR PWVV

* COMPARE
T VALUES

- EQUAL/NOT EQUAL

exposes the control vector to a user in a top-down
manner, rather than in a bottom-up manner,
which is the way the control vector was designed.
This frees the user from needing to know all the
details of the control vector definition.

For example, instead of defining a generic MAC
key (only) and requiring the user to specify an
additional option stating that this key is only us-
able in a MAC Verify service (as is done in the
control vector field definition) it seemed prefera-
ble to define a generic MAC key as well as a generic
MACVER key. A MAC key is used in the Common
Cryptographic Architecture MAC Generate service.
A MACVER key can only be used in the Common
Cryptographic Architecture MAC Verify service.

Common Cryptographic Architecture key types.
There are ten generic key types supported by the

JOHNSON ET AL. 147

Table 2 Common Cryptographlc Archltecture generic key types

Key Type Attrlbutes

,A smgle length key that may be used in the Encipher and Decxpher services. It may be used to encrypt and

DATA
. ,decrypt data,

service,
authenncanon code on data.

MACVER
authenncaaon code: on data.

| PINGEN
S ;mtemally in the PIN calculation.
PINVER
- C flntemally in the PIN calculation,
IPINENC
' - eucrypted PIN block
OPINENC

) "encryptmg key in Encrypted PIN Translate. -

DATAXLAT A smgle length key thet xﬁay be used as’ gither the inbound or outbound key in the Cxpleertext Translate
MAC k B smgle length key that may be ueed in the MAC Generate service. It may be used to calculate a message
- A single length key that ‘may be used in the MAC Verify service. It may be used to venfy a message
IMPORTER A double iength umdlrecnonal inbound: key~encrypung key. It may be useel as the i(ey—encryetmg key in

L ‘the Key Import, Key Generate (as appropriate), and Secure Key Import servxces ;
EXPORTER A donble length unidirectional outbound key-encrypting key. It may be used as the key-encrypﬁng key in
: the Key Export, Key Generate (as appropnate), and DATA Key Export servwes o
A dcub}e length key that may be used as the PIN generating key in Clear PIN Generate This key is used
A double length key that may be used as the PIN verifying key in Encrypted PIN Verify Thxs key is used

} A double length nmdlrectmnal mbound PIN—encryptmg key. It may be used as an mbound PIN~encryptmg
- - key in Encrypted PIN. Translate and Encrypted PIN Verify. This key is- used mtemaily t0 decrypt an

- A double. Icngth umdlrectwnal outboumi PIN-encrypting key. It may be used as an outbound PIN-

Note 1: Any supported key type may be the source key of the Key Import or the Key Export services.

Note 2: Any supported key type may be specified for a key in the Secure Key Import service.
Note 3: Any key type may be generated via Key Generate, subject to the restrictions of the Key Generate service.

Common Cryptographic Architecture. The at-
tributes for each key type are shown in Table 2.

The value of an EXPORTER key on one system is
typically the value of an IMPORTER key on a sec-
ond system. This allows the first system to send
encrypted keys in external key tokens to the sec-
ond system. If both transmission and reception of
encrypted keys is desired, then both an IMPORTER
and an EXPORTER key should be installed on both
systems.

The OPINENC (Outbound PIN Encrypting) key is
used internally to encrypt an unencrypted PIN
block. The value of an OPINENC key on one sys-
tem is typically the value of an IPINENC (Inbound
PIN Encrypting) key on another system. This al-
lows an encrypted PIN block to be transmitted
from the first system to the second and translated.

The Common Cryptographic Architecture Cryp-
tographic API supports a subset of the control vec-

148 JOHNSON ET AL.

tors as described in the companion paper by S. M.
Matyas.? This subset is as follows:

* Parity—As defined

* Cryptographic facility access program (CFAP)
control—Must be defaulted to zero (no CFAP
enforced control)

¢ Antivariant—As defined

e Extension—Must be defaulted to zero (64-bit
control vector)

¢ Key part-—Must be defaulted to zero (the con-
trol vector is associated with a key, not a key
part)

¢ Export control—Must be defaulted to zero (ex-
port is allowed)

* Form—Data-operation keys must be defaulted
to class 1 (a 64-bit key) and key-management
and PIN management keys must be defaulted to
class 3 (a 128-bit key where the left and right
halves may or may not be equal).

* Control vector type/subtype—Each Common

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

Cryptographic Architecture generic key type
hasacorresponding control vectorkey type/sub-
type as follows.

DATA—Data Compatibility
DATAXLAT—Data Compatibility-Translate
MAC—Data MAC

MACVER—Data MAC

PINGEN—PIN Generating

PINVER—PIN Generating

IPINENC—PIN Encrypting-In
OPINENC—PIN Encrypting-Out
EXPORTER—Key-Encrypting Sender
IMPORTER—Key-Encrypting Receiver

In addition, the cryptovariable intermediate
control vector is used internally by some im-
plementations.

s Usage control—For each supported generic
key type the usage control field is a specific
value. As the supported key types are generic,
each value is determined to allow the most
functionality for a given control vector key
type/subtype, except that the two verification
key types (MACVER and PINVER) have only the
appropriate verification functionality and the
two key-encrypting key types (EXPORTER and
IMPORTER) do not have key translation capability.

» Log—Must be defaulted to zero (no logging)

& Reserved—As defined

Summary

In summary, the design of the architecture of the
Common Cryptographic Architecture Crypto-
graphic API conforms to SAA callable service
guidelines. It adheres to the goals of interopera-
bility and program portability, supports more
functions, and is more granular than previous
cryptographic systems, yet is arguably more user-
friendly than previous interfaces. Key-manage-
ment services are provided which exploit the con-
trol vector to provide remote key-usage control.
Perhaps most important, the Cryptographic API
was designed with the expectation that additional
functionality requirements will evolve, yet no one
today is sure what those new directions will en-
tail.

Acknowledgments

The author would like to thank the following IBM
people: Dennis (“Abe”) Abraham of Charlotte

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

for the comprehensive cryptographic function set
and his continuing input, Gina Bourbeau and Lu-
cina Green of Kingston for providing models of
callable services that follow SAA guidelines, Phil

C.

Yeh and Ronald Smith of Poughkeepsie for

their help in refining the architecture definition,
Bob Elander of Kingston for his help in defining
the Common Cryptographic Architecture Cryp-
tographic API, and Russ Prymak and John Wilkins
of Manassas for their constructive comments and
help.

Systems Application Architecture and SAA are trademarks of
International Business Machines Corporation.

VISA is a trademark of VISA International Service Associ-
ation.

Cited references

1.

10.

11.

12.

Common Cryptographic Architecture Cryptographic Ap-
plication Programming Interface, SC40-1675, IBM Cor-
poration (1990); available through IBM branch offices.

. S. M. Matyas, “Key Handling with Control Vectors,”

IBM Systems Journal 30, No. 2, 151-174 (1991, this is-
sue).

. S. M. Matyas, A. V. Le, and D. G. Abraham, “A Key-

Management Scheme Based on Control Vectors,” IBM
Systems Journal 30, No. 2, 175-191 (1991, this issue).

. American National Standard X3.92-1981, Data Encryp-

tion Algorithm, American National Standards Institute,
New York (1981).

. American National Standard X3.106-1983, Modes of En-

cryption of the Data Encryption Algorithm, American Na-
tional Standards Institute, New York (1983).

. American National Standard X9.23-1988, American Na-

tional Standard for Financial Institution Encryption of
Wholesale Financial Messages, American Bankers As-
sociation, Washington (1988).

. 4700 Finance Communication System Controller Pro-

gramming Library Volume 5, Cryptographic Program-
ming, SH20-2621, IBM Corporation (1983); available
through IBM branch offices.

. OS/VSI and OS/VS2 MVS Cryptographic Unit Support:

Installation Reference Manual, SC28-1016, IBM Corpo-
ration (1980); available through IBM branch offices.

. R. K. McNeill, Information Protection System Crypto-

graphic Programs for VMI/CMS Users Guide, SH20-2621,
IBM Corporation (1982); available through IBM branch
offices.

D. Coppersmith, S. Pilpel, C. H. Meyer, S. M. Matyas,
M. M. Hyden, J. Oseas, B. Brachtl, and M. Schilling,
Data Authentication Using Modification Detection
Codes Based on a Public One Way Encryption Function,
U.S. Patent No. 4,908,861 (March 13, 1990).

American National Standard X9.9-1986, American Na-
tional Standard for Financial Institution Message Au-
thentication (Wholesale), American Bankers Associa-
tion, Washington (1986).

American National Standard X9.8-1982, American Na-
tional Standard for Personal Identification Number (PIN)
Management and Security, American Bankers Associa-
tion, Washington (1982).

JOHNSON ET AL. 149

Don B. Johnson IBM Federal Sector Division, 9500 Godwin
Drive, Manassas, Virginia 22110. In 1974, Mr. Johnson re-
ceived a B. A in mathematics from Oakland University, Roch-
ester, Michigan. He subsequently joined the IBM Field En-
gineering Division where he worked as a program support
representative on MVS systems, mainly at the General Mo-
tors Technical Center, Warren, Michigan. In 1978, he joined
the 8100/DPPX Change Team in Kingston, New York. In
1982, he worked on DPPX/APL development in Lidingoe,
Sweden. Since 1987 he has worked in the Cryptography Cen-
ter of Competence in Manassas, Virginia. He holds four pat-
ents because of his contributions to the Common Crypto-
graphic Architecture and the Transaction Security System
product architecture. He is currently an advisory programmer
and will soon complete the requirements for a master’s degree
in computer science from Union College, Schenectady, New
York.

George M. Dolan IBM Services Sector Division, 1001 W. T.
Harris Boulevard, Charlotte, North Carolina 28257. Mr. Do-
lan graduated from Lehigh University with a B.S. in electrical
engineering. Since joining IBM at Endicott, New York, in
1961, he has had design responsibilities for various commu-
nications hardware and software products, which in recent
years have been principally for the worldwide finance indus-
try. Mr. Dolan is a senior engineer in the IBM Secure Work-
station Development department. He has worked on the
Transaction Security System, integrating cryptographic pro-
cessors into IBM PS/2 and MVS systems and integrating the
result into customer applications for the protection of data and
user identification. His responsibilities include specifying the
user programming interface and software structure in support
of the Transaction Security System.

Michael J. Kelly IBM Kingston, Neighborhood Road, King-
ston, New York 12401. Mr. Kelly is an advisory programmer
working on the development of encryption products in the
IBM Kingston laboratory. He received a master’s degree in
mathematics from Syracuse University. Prior to joining IBM
in 1980, Mr. Kelly worked as a mathematician in the field of
cryptology for the United States Department of Defense.

An V. Le IBM Federal Sector Division, 9500 Godwin Drive,
Manassas, Virginia 22110. Mr. Le is a staff engineer in the
Cryptography Center of Competence in the IBM Manassas
laboratory. He received a master’s degree in electrical engi-
neering from the University of Utah, Salt Lake City, Utah, in
1982. He joined IBM in 1983 at Boca Raton, Florida, where he
worked as a computer designer in a reduced instruction set
computer project for several years. In 1986, he joined the
Cryptography Center of Competence in Manassas, and has
since been working in the area of cryptographic algorithms
and architectures. Mr. Le holds four issued patents, four
patent applications on file, and has published several technical
disclosures in the area of computer design and cryptography.
He has received two IBM Invention Achievement Awards.

Stephen M. Matyas IBM Federal Sector Division, 9500 God-
win Drive, Manassas, Virginia 22110. Formerly a member of
the Cryptography Center of Competence at the IBM Kingston
Development Laboratory, Dr. Matyas is currently a member
of the Secure Products and Systems department at Manassas,
Virginia. He has participated in the design and development
of all major IBM cryptographic products, including the IBM

150 JOHNSON ET AL.

Cryptographic Subsystem, and recently he has had the lead
role in the design of the cryptographic architecture for IBM’s
recently announced Transaction Security System. Dr. Matyas
holds 26 patents and has published numerous technical arti-
cles on all aspects of cryptographic system design. He is the
coauthor of an award-winning book entitled Cryprography—A
New Dimension in Computer Data Security, published by
John Wiley & Sons, Inc. He is a contributing author to the
Encyclopedia of Science and Technology, and Telecommu-
nications in the U.S.—Trends and Policies. Dr. Matyas re-
ceived a B.S. in mathematics from Western Michigan Uni-
versity and a Ph.D. in computer science from the University
of Iowa. He is the recipient of an Outstanding Innovation
Award for his part in the development of the Common Cryp-
tographic Architecture. He is presently an IBM Senior Tech-
nical Staff Member.

Reprint Order No. G321-5427.

IBM SYSTEMS JOURNAL, VOL 30, NO 2, 1991

