VM/ESA support
for coordinated recovery
of files

This pasper discusses the concepts and facilities
of the Shared File System (SFS) support for
Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™) Coordinated Resource
Recovery (CRR). It includes background
information on limitations that lead to SFS
support for coordination of file recovery
functions. The level of support provided by the
Virtual Machine/System Product (VM/SP) Release
6 SFS support is identified and contrasted with
the support provided in VM/ESA. The paper
contains an overview of the system structure and
the rationale for the support and is a discussion
from the overall perspective of the total system
environment and system processing for resource
recovery. After the concepts and structure of
VM/ESA SFS support are introduced, the paper
discusses the specific technology involved in
providing SFS support for Coordinated Resource
Recovery. This includes a discussion of specific
facilities used by SFS and how SFS deals with
certain conditions that can arise. In addition, this
paper discusses the Conversational Monitor
System (CMS) compatibility considerations that
contributed to the design of SFS support for
Coordinated Resource Recovery. This includes
compatibility with prior releases and
compatibility with the CMS file system support
for minidisks. Finally, some of the future
directions for file system support of resource
recovery are identified along with some of the
challenges that remain to be solved.

he Shared File System in the Virtual Ma-
chine/System Product (vM/SP) introduced
the concept of recoverable files and application
controls over committing or backing out changes
to such files. The SFS support in Virtual

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

by C. C. Barnes
A. Coleman
J. M. Showalter
M. L. Walker

Machine/Enterprise Systems Architecture™
(VM/ESA™) and its support for Coordinated Re-
source Recovery (CRR) extends the concepts and
support. Reference 1 contains a complete under-
standing of the recoverable file support intro-
duced by the SFS in VM/SP, but some of the key
concepts and facilities are summarized here for
convenience.

A cMS work unit is a unit of processing on behalf
of a Conversational Monitor System (CMS) appli-
cation. Resource recovery functions are sup-
ported for certain resources processed by, or on
behalf of, the application. CMS provides applica-
tion services that allow CMS applications to con-
trol what processing is done for a particular work
unit context. That is, an application may choose
to separate its processing into multiple, distinct
work units to effect different recovery processes
for separate phases or instances of its processing.

A recoverable resource is any persistent applica-
tion resource (data or object) that is enabled for
resource recovery processing. For recoverable
resources, all processing of the resource in the
context of one CMS work unit is treated as an

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

BARNES ET AL. 107

Figure 1 CMS Shared File System use of recovery coordination without CRR

CMS WORK UNIT

atomic unit of processing. Either all changes are
effected, or none of the changes are effected. Not
all resources available to CMS applications can (or
need be) defined to be recoverable. Indeed, some
resources, by their nature, should not be sub-
jected to resource recovery functions.

A recoverable file is a file that is subject to re-
source recovery functions. With the CMS SFS, a
file can be defined to be recoverable or nonre-
coverable. Data files would typically be defined as
recoverable files. Files that record status (e.g.,
print files or log files) would typically be defined
as nonrecoverable.

Commit is a CMS function that tells CMS to com-
plete all changes made to recoverable resources
that were made in the context of a specified (or
implied) CMS work unit. For example, a CMS com-
mit would cause the SFS to commit to permanent
storage all changes to all recoverable files that
were changed in the context of the CMS work unit
specified by the commit.

108 BARNES ET AL.

Backout is a CMS function that tells CMS to
“undo™ all changes made to recoverable re-
sources in the context of a specified (or implied)
cMS work unit. For example, a CMS backout
would cause the SFS to restore all recoverable
files to the state they were in before the changes
done in context of the CMS work unit.

While SFS support introduced in VM/SP extended
the capabilities of the cMs file system, it did have
some limitations: SFS in VM/SP does not support
updating multiple files in multiple file pools within
the context of one CMS work unit. That is, SFS
could only provide consistent file updates within
a single file pool. While this is clearly an improve-
ment over minidisk support, it does represent a
limitation in single systems and in distributed
(multiple system) environments.

With vM/sP Shared File System support, there
was also no system-assisted method of coordi-
nating the committing (or backing out) of CMS file
updates with updates to resources managed by

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 2 CMS Shared File System participation in VM recovery coordination

SHARED FILE
SYSTEM
RESOURCE
MANAGER

CRR ;
LOGICAL UNIT |
OF WORK

other resource managers. Support in this area
would have to be built into the application that
was using both SFs files and the other resource.

Given the limitations of the VM/SP recovery sup-
portin SFS, the objectives established for SFS sup-
port in VM/ESA included objectives to overcome
these limitations. In both cases, the Coordinated
Resource Recovery support in VM/ESA plays a
key role in overcoming the limitations. While
other solutions (e.g., SFS unique recovery coor-
dination facilities) could have been employed, the
use of common system services for this provided
a more robust solution.

Figure 1 shows a CMS file system application that
is attempting to write to files in two different SFS
file pools within the same CMS work unit. Such an
application is not supported in VM/SP. The objec-
tive for VM/ESA was to support such a CMS appli-
cation, which included: allowing writing to mul-
tiple (local) file pools within one CMS work unit,

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

and allowing writing to both local and remote file
pools on one CMS work unit.

The support is intended to accommodate appli-
cations that perform synchronized broadcast of
file (for example, library) updates to multiple sys-
tems, and that move data (or files) from one file
pool to another (copy and erase coordination
across file pools).

Through SFS use of the Coordinated Resource Re-
covery facilities for coordinating commit proc-
essing, updates to multiple file pools can be sup-
ported on the same CMS work unit.

Figure 2 illustrates the objectives for SFS partic-
ipation in recovery coordination with other vM
resource managers.

Figure 2 shows a CMS application that is attempt-
ing to write to multiple VM resources (local and
remote) and shared files on the same logical unit

BARNES ET AL. 109

Figure 3 VM/SP Release 6 usage of multiple SFS file poois
without CRR

USER
APPLICATION
PROGRAM

REJECTED

VM CONTROL
PROGRAM

of work. This ““local” logical unit of work is the
VM/ESA Coordinated Resource Recovery equiva-
lent of a CMS work unit. The objective for VM/ESA
was to support such applications by coordinating
the write activity on the CMS work unit with the
corresponding VM/ESA logical unit of work, such
that the application does not have to code the
logic to synchronize the file writes with the other
application update activity.

The specific objective for SFS participation in re-
covery coordination was coordination of SFS with
other resource managers that might participate in
CRR. With the introduction of CRR support in
VM/ESA, it is both possible and desirable to pro-
vide SFS support for CRR logical units of work,
such that SFS can participate as a resource man-
ager in a multi-resource VM application. This was
desired for two reasons:

* To enable the use of SFS by resource managers
wishing to effect participation in CRR by using
the file system

¢ To allow applications to coordinate CMS file up-
dates with updates to other resources managed
by separate CRR-capable resource managers

By registering as a Coordinated Resource Recov-
ery participant, updates to CMS files managed by
the Shared File System can be coordinated with
updates to other resources updated by the CRR
application.

110 BARNES ET AL

SFS participation in CRR is related to other SFS
enhancements (as described in Reference 1). SFS
participation in Coordinated Resource Recovery
applications increases the need for SFS support
for nonrecoverable files in order to support ap-
plication logs, audit files, or other such files that
are not supposed to be affected by coordinated
rollback processing. Because the coordinated
(CRR) commit involves committing resources
other than SFS resources, the rejection of commit
processing due to open files would be extremely
undesirable. Thus, if SFS files are to be used by
CRR applications, it is necessary that SFS remove
this restriction.

What follows is a discussion of the structure of
the SFS support, followed by considerations of
compatibility with the system. The paper con-
cludes with a discussion of future directions.

System structure of VM/SP

In vM/SP, SFS consists of two major parts, the SFS
resource adapter that resides in the requesting
user’s virtual machine, and the SFS resource man-
ager that resides in a separate server virtual ma-
chine. The SFS resource manager is sometimes
called the SFs file pool server. The SFS resource
adapter translates file system requests to ad-
vanced program-to-program communications
(APPC/VM) with the SFS resource manager. Each
SFS resource manager manages one SFS file pool
of data. The SFS resource manager receives the
APPC/VYM communications sent by the SFS re-
source adapter and performs the requested file or
directory operation. In performing the operation,
the SFS resource manager provides other implicit
operations such as authorization checking, lock-
ing for sharing, and logging for recovery.

Updates to multiple SFS files can be coordinated
as long as they reside in a single file pool. At-
tempts to update files in multiple file pools in a
single work unit are rejected by the SFS resource
adapter (see the request to SFS resource manager
2 in Figure 3). The reason for this is that each SFS
resource manager has its own independent recov-
ery log. This enables coordination of updates
within a file pool but not between file pools. There
was no coordination of updates made to multiple
file pools.

In addition, there was no capability to coordinate
SFS updates with any other resource manager’s

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 4 VM/SP Release 6 usage of multiple resource managers without CRR

SFS
RESQURCE

USER
APPLICATION
MANAGER 1 PROGRAM

sFs
'RESOURCE
ADAPTER

CRR
RESOURCE
MANAGER

updates. The SFS commit routine only committed
SFS resources and no others. Even if other re-
source managers had a commit function, they had
no way of participating in a coordinated commit.
Each resource manager’s commit would have to
be done separately, allowing the possibility that
one commit may succeed and another commit
may fail (see the separate requests to SFS resource
manager 1 and the other resource manager in
Figure 4).

System structure of VM/ESA

Commit processing. In VM/ESA, the SFS resource
adapter and the SFS resource manager still use
APPC/VM conversations to communicate. In addi-
tion, they also communicate with a Coordinated
Resource Recovery facility. The CRR facility sup-
ports coordination among multiple resource man-
agers and protected conversations.? The SFS re-
source adapter communicates with the CRR
synchronization point manager (or sync point
manager) and the SFS resource manager commu-
nicates with the CRR recovery server.

As the SFS resource adapter receives requests, it
determines whether each request is for a new
work unit or a new SFS resource manager (for
example, a new SFS file pool). In either case, the
SFS resource adapter provides a new registration
with the sync point manager. If requests are made
to two SFS file pools in one work unit, the SFS
resource adapter registers twice. When a commit
is issued (either by the application or implicitly by
CMS), the sync point manager invokes the SFS re-
source adapter to perform its two-phase commit

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

procedure (a prepare phase followed by commit
phase). The sync point manager indicates that
only a one-phase commit procedure is required if
a single SFS file pool is the only resource involved
in the commit. If the commit cannot be completed
by all resource managers involved, the sync point
manager tells the SFS resource adapter to roll
back or backout the changes.

This same kind of processing is supported by an
SFS resource manager connected by the Trans-
parent Services Access Facility (TSAF) of VM or
by APPC Virtual Telecommunications Access
Method (vTAM) support. Only the CRR recovery
server on the requesting user’s system is used for
logging during commit as long as the application
is not using any protected conversations.

Resynchronization. If a failure occurs during com-
mit processing, the state of the commit may in-
dicate that resynchronization processing is re-
quired. Some examples of such failures are:

* A termination of the conversation between the
resource adapter and its resource manager

¢ A failure of the resource manager

* A failure of the entire system

Resynchronization is required when the SFS re-
source manager has completed phase one of a
two-phase commit procedure and has not been
told whether to commit or backout. The CRR re-
covery server can determine this situation from
the log information written during the commit
processing. In this situation, the CRR recovery
server automatically initiates resynchronization

BARNES ET AL. 111

Figure 5 VM/ESA resynchronization processing

USER

APPLICATION
PROGRAM

8F8
AESOURCE
ADAPTER {

CRR
RECOVERY
SERVER

when the failure has been resolved (see Figure 5).
This does not involve the user virtual machine
that made the original update requests. In fact,
the user does not even have to be logged on. The
CRR recovery server is able to invoke the resource
managers involved in the commit because the
sync point manager was given sufficient informa-
tion by the resource adapter during registration.
This information was provided to the CRR recov-
ery server during commit.

Upon initiation of resynchronization, the CRR re-
covery server reads its log to determine the state
of the commit. From this information, it can de-
termine whether the work should be committed or
backed out. Each SFS resource manager is in-
voked and told whether to commit or to backout.

This procedure works in a TSAF collection and
between VM systems connected through a VTAM
network. Since all the work was originally initi-
ated from a single virtual machine, only a single
CRR recovery server (the one on the requesting
user’s system) is involved in the resynchroniza-
tion.

Invocation and interactions

The Coordinated Resource Recovery facility al-
lows applications to participate in coordinated
transactions that write data to more than one par-
ticipating resource in a CMS work unit. This sup-
port is invoked implicitly as a result of a CMS

112 BARNES ET AL.

request which is destined for an SFs file pool. A
CcMsS work unit can consist of a series of related
actions whose changes are treated as a single up-
date. Each group of related actions is called a
coordinated transaction. Within a coordinated
transaction, data may be written to multiple file
pools.

SFS participates in CRR by supporting the two-
phase commit protocol for synchronization
(sync) point requests. This is accomplished by the
SFS resource adapter registering with the sync
point manager when the first request is made to a
file pool server associated with a work unit. In
Figure 6, the SFS resource adapter would register
SFS work unit x with file pool 1, work unit x with
file pool 2, and work unit y with file pool 1 with the
sync point manager.

Because the file pool is now registered, when ei-
ther a commit or backout is issued by the appli-
cation, the sync point manager drives SFS either
to prepare and then commit (or backout if a failure
occurs) or to backout. If a failure occurs during
sync point processing, SFS participates in resyn-
chronization by setting aside the logical unit of
work involved in the sync point process (waiting
for the second phase of the two-phase commit).
Those logical units of work that have processed
the first phase of a two-phase commit are identi-
fied as prepared work. Prepared work can either
be prepared-and-connected work or prepared-
and-not-connected work. Prepared-and-con-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

nected work has an active conversation from the
user’s virtual machine to the SFS file pool server,
whereas the prepared-and-not-connected work
has lost its conversation (is severed) from the us-
er’s virtual machine to the SFS file pool server and
now requires resynchronization.

Ordinarily this prepared work is resolved during
normal system restart and resynchronization op-
erations. There may be times when the SFS op-
erator needs to intervene and manually synchro-
nize the prepared-and-not-connected work. For
example, if for some reason there will be a long
delay before resynchronization, then users will
not be able to access files or directories that are
locked, due to the prepared-and-not-connected
work. SFS holds all locks for work that is not com-
mitted (including work that is prepared-and-not-
connected). For these types of circumstances the
SFS operator can manually synchronize the pre-
pared-and-not-connected work by issuing either a
FORCE COMMIT or a FORCE BACKOUT command.
SFS remembers this heuristic action taken by the
operator and when resynchronization direction is
finally received, SFS responds according to the
direction (commit or backout) given by the oper-
ator.

CRR registration. Upon receiving an SFS request
for a work unit/file pool server pair that has not
been previously registered, the SFS resource
adapter registers that work unit/file pool server
pair with the sync point manager.

If the registration is successful, the SFS resource
adapter sends the request to the SFS resource
manager. If, as a result of the request, a logical
unit of work was not started in the SFS resource
manager, the SFS resource adapter suspends the
registration for that work unit/file pool server
pair. This suspension leaves the work unit/file
pool server pair registered but removes it from
participation in coordination by the sync point
manager. This saves calls to the SFS resource
adapter exits when there is no active work in the
SFS resource manager. If, however, a logical unit
of work was started on the target file pool, a re-
covery token (a unique identification assigned to
the logical unit of work by the SFS resource man-
ager) is returned to the SFS resource adapter along
with a recovery transaction program name (TPN).
The SFs resource adapter then issues change reg-
istration to supply the recovery token and recov-
ery TPN for the registry entry.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 6 Work unit to file pool relationship

SFS FILEPOOL 1.
-» SFS FILE FOOL 2

SFS FILE. POOL -

The SFS resource adapter always registers for the
end-of-work unit exit. The SFS resource adapter
exit may or may not unregister a resource when
called for the end-of-work unit exit. If the work
unit that is ending is a system work unit (that is,
the work unit identification is in the range re-
served for system use), the resource is not un-
registered. If, however, the work unit that is end-
ing is a user-requested work unit, the resource is
unregistered. System work units are commonly
used (and reused) work units, whereas user work
units are used infrequently. Because of the infre-
quent use of user work units, it makes sense to
tolerate the overhead of unregistering these work
units. However, the overhead of the unregister
function for system work units is eliminated by
suspending them instead of unregistering them.

Exchange log names. To connect to the CRR re-
covery server, the SFS resource manager needs
the CRR recovery server’s network logical unit
(LU) name and TPN. Because the SFS resource
adapter and the CRR recovery server are always
on the same processor, the SFS resource manager
can use the ‘“connect back” locally known LU
name from the extended data presented with the
connection pending interrupt during communica-
tions. In addition, the TPN of the CRR recovery
server is available to the SFS resource adapter
through a routine, which it then passes on to the
SFS resource manager.

The SFS resource adapter passes the CRR recov-
ery server log name and the CRR recovery server
TPN to the SFS resource manager with each re-
quest. If the log name is unavailable because the

BARNES ET AL. 113

Figure 7 Exchange log name flow

NOT SAME

CRR recovery server is not running, the SFS re-
source adapter indicates to the SFS resource man-
ager that this request is not participating in CRR
(as zeros in place of the name).

When the first conversation is established be-
tween an SFS resource adapter and the file pool
server, and at the beginning of each logical unit of
work, the SFS resource manager is responsible for
determining whether an initial exchange log name
is required. If the information with the request
indicates that the SFS resource adapter is at alevel
prior to VM/ESA, no exchange is required because
that SFS resource adapter cannot participate. If
the log name passed by the SFS resource adapter
is all zeros, an exchange is not required since the

114 BARNES ET AL.

zeros indicate that the CRR recovery server is not
available and that the SFS resource adapter is reg-
istered as a sole writer to the log. The flow in
Figure 7 illustrates the steps to determine if an
exchange-log-names is required. As shown
above, the SFS resource manager looks for the
following:

1. An entry for the CRR recovery server in the SFS
resource manager log. Because the SFS re-
source manager could be accessed by the SFS
resource adapter on a particular processor
through more than one LU, the SFS resource
manager log could have multiple entries con-
taining the same CRR, recovery server log
name, but each with a different LU name. If an
entry is found, but the log name is different
from the one passed by the SFS resource
adapter, the associated CRR recovery server
has started a new log. The SFS resource man-
ager log is considered existing, but the SFS re-
source manager must initiate an exchange-log-
names request to give its own log name to the
new CRR recovery server log.

2. Alocal indication that log names were or were
not exchanged. If the local indication shows
that a log name exchange has occurred since
the SFS resource manager was started, and the
CRR recovery server log name received from
the SFS resource adapter is the same as the log
name saved in the log name table of SFS, then
an exchange is not required. If none of the
preceding tests indicates that an exchange log
name is necessary, then the SFS resource man-
ager proceeds with handling the SFS request.
However, if an exchange log name is required,
the SFS request is put on hold until log verifi-
cation is finished. If an error results from ex-
change-log-names, then the SFS request is not
performed and an error code is returned to the
SFS resource adapter indicating that coordi-
nated participation could not proceed.

3. The SFS resource manager acting on the re-
sponse from the CRR recovery server and tak-
ing action as shown in Table 1. Note that the
SFS resource manager participation in sync
points must be denied until the error condition
is resolved. The SFS resource manager opera-
tor should contact the recovery server opera-
tor to determine the reason for the mismatch.
Every SFS request whose SFS resource adapter
indicates this same recovery server will cause
the same exchange-log-names sequence to oc-
cur until the problem is corrected.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Table 1 Initial exchange_log_names reply

Recovery Reply
Server's Function
Log Status Status
COLD or NORMAL
WARM
COLD NORMAL
WARM NORMAL
WARM ABNORMAL COLDor The re

The exchange-log-names sequence described
here is the initial exchange required to ensure the
logs match correctly before any new work is ini-
tiated. A similar exchange is required during re-
synchronization and is described in a later section
in this paper.

Resource adapter exits. The SFS resource adapter
registers and provides support for four resource
adapter exits: precoordination exit, coordination
exit, postcoordination exit, and end-of-work unit
exit. At registration time, the SFS resource
adapter passes to the sync point manager the en-
try point of the routine that will handle the exit
function.

Precoordination. The SFS resource adapter proc-
essing for precoordination consists of tests to de-
termine whether the work unit/file pool server
pair is in the proper state to commit. For example,
if an asynchronous request is outstanding for the
work unit/file pool server pair, the work unit/file
pool server pair will not be able to participate in
commit processing.

Coordination. The SFS resource adapter process-
ing for coordination depends upon the value of the
action parameter.

e For action PREPARE, the adapter exit sends a
prepare_to_commit SFS request to the SFS re-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

source manager. Upon return from the SFS re-
source manager, the adapter exit interprets the
return code and passes it on to the sync point
manager.

e For action REQUEST_COMMIT and COMMITTED,
the adapter exit sends a commit SFS request.

e For action BACKOUT or DEALLOCATE_ABEND,
the adapter sends a backout SFS request to the
SFS resource manager.

e For action PREPARE_TO_RESYNC, the SFS re-
source adapter causes the conversation for the
given work unit/file pool server pair to be
severed.

The adapter exit is called with action OK_BACK-
OUT if the exit responded with a backout indica-
tion to action PREPARE. For action OK_BACKOUT,
the adapter exit simply sets the default response
and returns to the sync point manager. Figures 8
and 9 illustrate the flow when an application is-
sues a commit or backout.

Postcoordination. The SFS resource adapter
processing for postcoordination consists of sus-
pending the given work unit/file pool server pair
if, as a result of the sync point that has just oc-
curred, the work unit/file pool server pair does not
have an active logical unit of work. If files or di-
rectories were open at the time of commit, the
work unit/file pool server pair will have an active
logical unit of work (commit without close sup-

BARNES ET AL. 115

Figure 8 Flow for commit

JSSUES ‘OQMMIT

INVOKES - d
GOORDINKT IGN .

PROPER
STATE
TO COMMIT

SENDS PREFARE- ‘

TO-COMMI

T RESOURGE

MANAGER s DOES . PREPARE-
TO~COMMIT

PROCESS

INVOKES "

, goonuwm f

SENDS COMMIT
TG RESOURCE

MANAGER ' DOES. COMMIT
PROCESS

EITHEH SUSPENDS } o

NEW HEQOVEFIY
TOKEN .

APPLICATION g

FROM = . . .
SYNG POINT ~ ~
MANAGER -

port), causing the SFS resource adapter to update
the recovery token (the unique identification as-
signed to the logical unit of work by the SFS re-
source manager) using change registration.

End-of-work unit. The SFS resource adapter proc-
essing for end-of-work unit consists primarily of
cleaning up registration data for the specified
work unit/file pool server pair, which may include
unregistering for nonsystem work units. The end-
of-work unit exit is executed at end-of-command,
abend of the application, and when the applica-
tion returns the work unit.

Commit with normal end. When the SFS resource
adapter coordination exit receives control from
the sync point manager with action PREPARE, the
SFS resource adapter sends a prepare_to_commit
to the SFS resource manager. The SFS resource

116 BARNES ET AL.

adapter sends the transaction tag (set by the ap-
plication) and the global logical unit of work iden-
tifier (input from the sync point manager when the
coordination exit is invoked) to the SFS resource
manager.

In order to support high concurrency, SFS does
no updating of its catalog space until the end
of the logical unit of work. Therefore, when a
prepare_to_commit is received, it must now up-
date all catalog information required by the logical
unit of work and then update its log by writing a
prepare_to_commit log record. This log record is
used in the event of a system failure to rebuild the
environment related to the logical unit of work.

During the prepare_to_commit, if no failures oc-
cur, then an *“‘0k” response is given to the SFS
resource adapter, which it returns to the sync

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1891

Figure 9 Flow for backout

ISSUES BACKOUT

INVOKES
PRECOORDINATION

INVOKES

WITH ACTION

STATE
G
COORDINATION
EXIT

VERIFIES
IN PROPER

INVOKES < ‘
ST

POST-
COORDINATION

SENDS
BACKOUT TO
RESOURCE
MANAGER DOES
BACKQUT
PROCESS
AESPONDS OK | < RESPONDS. OK]

SUSPENDS
REGISTRATION

APPLICATION
RECEIVES

OM
SYNC POINT
MANAGER

RETURNS 7O APPLICATION [¢ RETURNS |

point manager. Subsequently, the SFS resource
adapter coordination exit should receive an ac-
tion COMMITTED from the sync point manager.
The SFS resource adapter then sends a commit
request to the SFS resource manager.

When the SFS resource manager receives the
commit request, a commit log record is written.
All resources associated with the logical unit of
work are released unless files or directories are
open (commit without close support). For this
case, a new logical unit of work is started implic-
itly and the locks associated with the open files
and directories are held for this new logical unit
of work. The SFS resource manager then responds
to the SFS resource adapter with an ““‘ok” response,
which is passed on to the sync point manager.

The SFS resource manager still supports the one-
phase commit process. If a commit request is re-
ceived which has not been preceded by a prepare,
SFS will update all catalog information required by
the logical unit of work and then update its log by
writing a commit log record.

Backout. Backouts can be initiated several ways.
If the SFS logical unit of work was registered, then

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

backout will be coordinated through the sync
point manager. One exception to this case is non-
recoverable files. The changes for files with this
attribute are committed (not coordinated) when-
ever the application initiates a backout, the ap-
plication terminates with a failure, or any other
error (such as logoff) that follows implicit tempo-
rary ‘“‘closes” done by CMS for nonrecoverable
files. Any recoverable files involved in the logical
unit of work are part of a coordinated backout.

Certain errors that occur while processing an SFS
request can cause an implicit backout condition.
This condition is then signalled to the SFS re-
source adapter causing the SFS resource adapter
to initiate backout processing. The SFS resource
adapter first suspends coordination for the work
unit/file pool server pair that is already backed out
and then it invokes the sync point manager using
the interface for the backout function.

In doubt and locks. When the SFS resource man-
ager responds to a prepare_to_commit request in-
dicating that a logical unit of work can either com-
mit or backout (i.e., the resource is “‘prepared’),
locks must be held on all resources used by this

BARNES ET AL. 117

Table 2 Resynchronization exchange_log_names request

logical unit of work, which is said to be in doubt
(prepared). Until the second phase ends, any
other logical unit of work that requests those re-
sources held by this logical unit of work will have
to wait for them. In order to prevent long delays
to other units of work, the prepared logical unit of
work that is still connected (and therefore not a
likely candidate for resynchronization) will most
likely end soon, so the requestor waits for the
lock to be released. However, if the prepared log-
ical unit of work is not still connected (resynchro-
nization is required, and therefore a long delay
may occur), then the requestor is immediately de-
nied with a special error code indicating that a
prepared logical unit of work holds the resource.
Once the logical unit of work waits for the re-
source held by the prepared logical unit of work,
if the state of the prepared logical unit of work
changes from prepared-and-connected to pre-
pared-and-not-connected, the waiting logical unit
of work is immediately denied its request with a
special error code.

Note that an interface is available to the user,
called “‘set filewait on,” which can be used to
control whether or not to wait for resources and
has no effect on the processing described above.

Resynchronization. When the CRR recovery
server initiates resynchronization to ensure con-
sistent completion of a sync point by all registered
resources, an exchange-log-names and compare-
states request is received by the SFS resource
manager. The following summarizes the se-
quence of events.

The SFS resource manager receives the resyn-
chronization request that consists of two parts.
The first part is exchange_log_names and is proc-
essed as shown in Table 2. If the CRR recovery

118 BARNES ET AL.

server has initiated an exchange_log_names re-
quest, it means that it had information on its log
that indicated resynchronization work was pend-
ing. If the SFS resource manager finds that its log
indicates that log names have never been ex-
changed with that CRR recovery server, an error
situation exists because the logs are now out of
sync. Log names can only be saved during an
initial exchange.

If the log name exchange was satisfactory, the SFS
resource manager processes the second part
(compare_states) as shown in Table 3. When the
SFS resource manager finishes either a commit or
backout, alog record recording that fact is written
to the SFS log. The logical unit of work is then
immediately ‘““forgotten.” An assumption is made
that any subsequent direction given by the CRR
recovery server notifying to either commit or
backout was the direction taken earlier and the
response echoes the direction.

Processing the compare_states request also
means that a record is written to the SFS log in-
dicating the action (commit or backout), and free-
ing all resources held by the logical unit of work
(including locks).

Resynchronization may be delayed because com-
munication paths are down. During this delay,
SFS holds all locks for work that needs to be re-
synchronized. The CRR recovery server will au-
tomatically establish connections to the SFS re-
source manager and drive the resynchronization
process when communication paths are available.
However, if an unusual situation occurs where
the delay is long, or if the locks relate to critical
resources, the SFS operator may need to manually
complete the process using a command. SFS pro-
vides a FORCE command for this purpose.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Table 3 Compare_states response

LUWID state at LUWID* State Sent by Recovery Server
resource Backout Committed
manager Resoturce Manager’s Actions
Backout or LUWID Send “backout™ reply Send “committed” reply
not found
Prepared Drive backout and send Drive commit and send
“backout” reply “committed” reply
Committed or LUWID Send “backout” reply Send “‘committed” reply
not found
Heuristic backout Send **heuristic backout™ Send “heuristic backout™
reply reply
Heuristic committed Send *‘heuristic committed” Send “heuristic committed”
reply reply

*LUWID—logical unit of work identifier

The SFS operator, not knowing the commit or
backout state of all other related resources, has a
difficult decision to make when using the FORCE
command, and commit or backout integrity is ex-
posed. To minimize this exposure, SFS supports
the following:

* An SFS operator command that displays infor-
mation about the state of work. The objective of
this command is to give the operator enough
information so the administrator of the coordi-
nating system can be contacted to determine
whether this task should be committed or
backed out.

* SFS remembers whether the operator did a
FORCE commit or FORCE backout. Thus, when
communication paths are re-established and the
automatic resynchronization process is able to
take place, SFS is able to continue its partici-
pation. If the operator made the correct commit
orbackoutdecision, theresynchronization proc-
ess completes normally. However, if the com-
mit or backout state is incorrect, error messages
are displayed and SFS replies to CRR with formal
heuristic return codes.

* The FORCE records created at the time of the
operator FORCE command is not deleted until
the automatic resynchronization process re-
quests the state of this logical unit of work. If an
SFS operator knows that no resynchronization
will come from the coordinator because of a
new log or cleanup from the coordinator site,
the operator can delete all FORCE records and
the log name associated with a particular logical

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

unit by issuing an ERASE command. If the op-
erator issues the ERASE command and subse-
quent resynchronization state exchange takes
place, the response (nonheuristic) is supplied
according to formal rules.

Compatibility

When the Shared File System was introduced to
VM, it was understood that it would have to co-
exist with the CMS file system. Coexistence had to
be considered from the interactive user’s per-
spective and from an application’s perspective.
The key design point for both sets of users is that
a Shared File System directory can be accessed,
and once accessed, CMS disk (minidisk) file sys®
tem operations and commands can be used to ma-
nipulate the data in the Shared File System di-
rectory.

In the minidisk file system, the user has to access
a minidisk before it can be used. When the user
accesses a minidisk, the file system is told where
to place the minidisk in a linear search order.
Each position in the search order is called a file
mode. Since each file mode is represented by an
uppercase alphabetic character (A-Z), the user
can have up to 26 accessed minidisks in a search
order.

Once a minidisk is accessed, the user manipulates
the files on the minidisk through two methods.
CMS commands can be used by the interactive
user or issued from an application to manipulate

BARNES ET AL. 119

minidisk files. Examples of some CMS commands
are RENAME, ERASE, and COPYFILE. For applica-
tions, the other method available to manipulate
minidisk files is a macro interface, called the file
system application programming interface (FS
macro API). The FS macro API provides the basic
functions of open, read and write, and close. It
also provides other functions, to determine if a file
exists and to erase a file.

Commit strategy. In VM/SP, the FS macro API was
enhanced so that it would work on accessed SFS
directories. When the file is in an SFS directory,
using the FS macro API will result in CMS perform-
ing the operations using the default work unit.
The commit strategy for the default work unit is
different from the minidisk commit strategy.

In the cMs file system, data integrity and consis-
tency are maintained on a minidisk basis. Stated
another way, the minidisk is the commit scope, all
files updated on a single minidisk are committed
at the same time. In the FS macro API, there is no
interface to commit files. A commit of the
minidisk happens when the last file open for write
on the minidisk is closed.

In the Shared File System, the commit scope is
the work unit. All files updated on a single work
unit are committed at the same time. SFS contains
interfaces to commit changes on the work unit.
When using the FS macro API to operate on files
in a directory, the changes are made using the
default work unit. In the vM/SP Shared File Sys-
tem, a commit strategy was created so that the
commits of the default work unit would corre-
spond to the commits of the minidisk for appli-
cations using the FS macro API. The commit strat-
egy was that a commit is attempted whenever a
file is closed through the compatibility interface.
The SFs server will commit the work after it has
closed the last file opened on the work unit. If
there are still open files on the work unit, the SFS
server will not commit any work. This commit
strategy is not optimal, since files open for reading
prevent the commit if SFS is involved, but do not
prevent the commit if only minidisks are in-
volved.

In VM/ESA, the Shared File System commit strat-
egy for the FS macro API was improved with the
introduction of the commit-without-close support
for Shared File System. This support allows a

120 BARNES ET AL

work unit to be committed if files in an SFS di-
rectory are opened for either reading or writing.
With this support in place, the commit strategy
changes to attempt a commit whenever the last
file open for update through the compatibility in-
terface at the file mode is closed. Now, the com-
mit strategy is the same for the FS macro API,
whether the files are on a minidisk or in a Shared
File System directory.

Another part of the mapping is that a commit is
attempted when the last file open for reading
through the compatibility interface at the file
mode is closed. This commit is not required for
compatibility reasons, since there is no concept of
a commit of a read-only minidisk. Also, because
the commit of the read-only work is handled by
CMS, there is no compatibility problem for the
application. Read-only work on a work unit must
be committed to end the SFS server logical unit of
work.

File attributes. In the CMS file system, the file
mode is actually composed of two characters, the
file mode letter (A-Z) and the file mode number
(0-6). As was stated previously, the file mode let-
ter determines the minidisk’s placement in the file
search order. The file mode number determines
the attributes of the file. It is possible to have files
with different file mode numbers but the same file
mode letter. For example, a minidisk can be ac-
cessed as file mode B, and there could be files on
the minidisk with file modes B0, B1, B2, and B3.

One of the attributes is the update-in-place at-
tribute. This attribute is associated with file mode
number 6. The update-in-place attribute means
that the existing records of a file are written back
to their previous location on a minidisk, rather
than in a new location. An application would use
update-in-place for several different reasons,
such as:

* Avoiding the need to reaccess a minidisk when
there is one writer to the minidisk with concur-
rent readers, as long as the updates do not
change the number of blocks in the file

¢ Reducing the space utilization when there are
many records in large files

» Avoiding out-of-space errors when updating a
file

¢ Allowing multiple writers to update a prefor-
matted file

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

In VvM/SP, the user could create a file in an SFS file
pool with a file mode number of 6, but the file
would not have the update-in-place attribute. In
VM/ESA, to address the requirements for file mode
6 files, the concept of file attributes was added to
SFS. These file attributes are associated with a
file, they are not associated with a file mode. A file
in an SFS file pool has two attributes, the overwrite
attribute and the recoverability attribute. There
are two values for the overwrite attribute, “in-
place” and ‘““notinplace.” There are two values to
the recoverability attribute, ‘‘recover” and
“norecover.”

The value of “‘inplace” for the overwrite attribute
for SFs files maps to the update-in-place attribute
for minidisk files. The allowable combinations of
overwrite attribute values and recoverability val-
ues are shown in Figure 10.

The recoverability attribute determines what hap-
pens to changes made to the file if the application
issues a backout. Files with the ‘“norecover”
value for the recoverability attribute will have
their changes committed whether the application
issues a commit or a backout, or the application
fails with an abnormal termination. This support
is useful to applications that are creating files that
do not need recovery support, such as log files or
audit files.

In vMm/sp, if an application wanted to work with
recoverable and nonrecoverable files, the appli-
cation would have to use two work units. All the
recoverable work would be on one work unit and
all the nonrecoverable work would be on the
other work unit. The recoverable work unit would
be committed or back out as necessary. The non-
recoverable work unit would always be commit-
ted. The introduction of the recoverability at-
tribute simplifies the application’s design, since
updates to recoverable and nonrecoverable files
can be on the same work unit.

Concerns. An application programming interface
(API) was introduced in VM/SP to allow the appli-
cation programmer to manipulate data in the
Shared File System. The API was provided as a set
of routines, which are packaged as part of library
services. The support necessary to manipulate
the routines was also introduced.

Commit option support. The API support for
Shared File System provides interfaces to do such

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 10 Overwrite and recoverability attributes

OVERWRITE ATTRIBUTE

NOTINPLACE

ALLOWED

RECOVER~
ABILITY
ATTRIBUTE

ALLOWED

ALLOWED

NORECOVER

things as file manipulation, directory manipula-
tion, locking, and authorization functions. The
API provides two different methods to commit the
changes associated with a work unit. The work
may be committed by invoking a commit routine
or the work may be committed by specifying a
commit option on a routine that supports it. Rou-
tines that represent typical commit points for
Shared File System applications support the com-
mit option.

The application programmer has a choice to make
when closing a file, because there are two ways to
commit. The first method is to specify the commit
option and the second method is to specify the
nocommit option along with a separate invocation
of the commit routine.

One of the advantages of specifying the commit
option on a SFS function invocation is better per-
formance, because there is only one interaction
with the Shared File System server, since the re-
quest to commit is “‘coupled” with the other re-
quest. If the commit option is specified, this is
reflected by setting a commit indicator in the re-
quest that is sent to the SFS resource manager,
which carries out the function specified in the re-
quest and then commits the work.

In comparison, specifying the nocommit option
and following with a commit invocation results in
two interactions with the Shared File System
server. First, a request is sent to the SFS resource
manager to close the file. Then, the sync point
manager will perform the commit. Performing the

BARNES ET AL. 121

commit involves the sync point manager notifying
the SFS resource adapter, which in turn will send
the commit request to the SFS resource manager.

In VM/ESA, it was a requirement that specifying
the commit option on an SFS routine resulted in a
coordinated commit. It was also known that not
every commit had to be a coordinated commit.
That is, if an application is coded to the VM/SP SFS
API and then run on VM/ESA, it will not require any
coordinated commits, since it is dealing with a
single write resource manager. For performance
reasons, it is better if coupled commits can stay
coupled if coordination with multiple resource
managers is not required.

Coupled commits are still allowed. When proc-
essing the commit option, the SFS resource
adapter checks whether there is any other re-
source in use for the work unit. If there are other
resources, such as a protected conversation or
another SFs file pool, active for the work unit, the
coupled commit performance optimization is not
allowed. The SFS resource adapter sends the orig-
inal request without the commit indicator to the
SFS resource manager. Once that request com-
pletes, the SFS resource adapter performs a co-
ordinated commit. If there are no other resources
active for the work unit, the coupled commit per-
formance optimization is allowed. The SFS re-
source adapter sends the original request with the
commit indicator set to the SFS resource manager.

Atomic operation support. In the SFS, some op-
erations are atomic. Atomic operations have the
following special rules: there can be no outstand-
ing work when the atomic operation is started,
and there is no outstanding work once the atomic
operation completes. Following an atomic oper-
ation with a commit or backout request is mean-
ingless, there is nothing to commit or back out.
Atomic operations are not coordinated by CRR.
That is, an atomic operation commits its own
work. This commit is not a coordinated commit;
only the work done by the atomic operation is
committed.

In VM/SP, atomic operations are allowed only
when there is no outstanding work for the work
unit when the atomic operation is started. In
VM/ESA, the rule for when atomic operations are
allowed is that there can be no outstanding work
for the affected file pool for the work unit. An
atomic operation must be directed at a particular

122 BARNES ET AL.

file pool. The status of other file pools on the work
unit does not determine whether an atomic oper-
ation is allowed for a particular work unit.

This change in the rules for atomic operations
should not cause any problems for applications
written under the vM/SP rule. Those applications
should continue to operate successfully; how-
ever, this change should simplify the develop-
ment of applications under VM/ESA.

Future directions and challenges

Directions for distributed data. There is mounting
interest in the industry on the general topic of
distributed data and their various forms. One of
the major challenges is finding ways to access
data across an enterprise that is comprised of a
network of unlike systems, each with its own
unique file system capabilities. As an illustration
of this, see Reference 3. This referenced docu-
ment provides a survey of distributed data capa-
bilities on a number of IBM systems (including
VM), and provides some insights into the require-
ments and direction for distributed data.

While a number of IBM systems provide distrib-
uted file capability, few of the systems provide
access to file data on other (unlike) systems. For
example, SFS remote file access support only
works between interconnected VM systems. If a
VM application needs to gain access to a Customer
Information Control System (CICS) control file on
MultipleVirtual Storage (MVS), this requires a dif-
ferent facility. If a VM application requires access
to file data on Operating System/400® (05/400%), or
Operating System/2® (0s/2®), the support pro-
vided is limited to file transfer services.

The solution to this problem will be defined pro-
tocols for file access across the various diverse
systems. The direction for distributed file access
across Systems Application Architecture™
(sAA™) platforms is the Distributed Data Man-
agement architecture.* In addition, there are a
number of published distributed file access pro-
tocols that exist and are relatively popular in the
industry. In Transmission Control Program/Inter-
net Protocol (TCP/IP) networks, the SUN Network
File System (NFS™) protocol and variations of it
are quite popular. In the context of DOS or 0S/2
local area network environments, the Server
Message Block protocols are quite popular. In the

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

context of international standards, Open Systems
Interconnection (0SI) defines the file transfer, ac-
cess, and management (FTAM) protocols for file
access.

All of the protocols mentioned include some con-
cept and semantics of recovery processing asso-
ciated with file access. Most of the protocols for
this are somewhat limited in scope. It should be
noted, however, that the FTAM protocols include
support for the standard of the International Or-
ganization for Standardization (1SO 9804) for com-
mitment, concurrency, and recovery (CCR),
which has concepts similar to those of the SNA
architecture for resource recovery. This reflects
industry interest in applying resource recovery
capabilities on file data.

With the introduction of Shared File System sup-
port for Coordinated Resource Recovery in
VM/ESA, IBM now has two SAA platforms that sup-
port a form of coordinated file recovery in the
context of their distributed file support (CMS and
CICS in the MVS environment). A logical next step
for 1BM would be to define the architecture for
protocols to coordinate file recovery across un-
like file systems.

In this context, it is important to note that SFS
support for coordinated file recovery conforms to
concepts and architecture defined for SNA re-
source recovery.® Similarly, the CICS recovery
support for file control function shipping provides
support that is consistent with the SNA architec-
ture. It seems feasible that the recovery capability
provided by cMS and CICS could be extended to
the broader scope of distributed file access across
unlike file systems. It would seem as if this could
be done in the context of either (or both) SNA
architecture for resource recovery or 0SI archi-
tecture for CCR.

Cooperative processing considerations. One par-
ticular form of distributed data that deserves spe-
cial attention is the distribution of data between a
workstation and a host. File access between a
workstation and a host is driven by one of two
basic requirements, (1) file serving for the work-
station and (2) workstation access to host data.

File serving for workstations involves host server
functions that emulate the functions of the work-
station’s file system. For workstation file serving,
there does not appear to be any need for resource

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

recovery support. Few, if any, workstation file
systems support the concept of recoverable files.
This, in turn, means there are not many worksta-
tion applications that require commit (or backout)
processing. However, one might expect this to
change in the future.

Workstation access to host data, on the other
hand, involves a workstation application per-
forming functions on host data which may include
access to recoverable files. In this context, the
distributed file access services at the workstation
must support, or otherwise honor, the recovery
protocols for access to those files. If the work-
station application attempts to access recover-
able file data on multiple hosts, then presumably
the workstation services would need to include
facilities for initiating some form of coordinated
recovery of resources.

There would appear to be two approaches for ad-
dressing this requirement. If the workstation only
accesses ‘‘like hosts,” one could envision placing
host-specific file recovery services and perhaps
even host coordinated recovery services on the
workstation. On the other hand, if the worksta-
tion needs to deal with multiple “unlike hosts™
(with unlike file systems), then one would expect
a more universally usable approach with an ar-
chitecture defined.

In either case, one of the concerns that arises
relative to recoverable file access from the work-
station, is whether or not a workstation is an ap-
propriate place from which to control resource
recovery. Controlling commit and backup from a
workstation is not particularly difficult to imag-
ine; however, the prospect of a user workstation
supporting and controlling the resynchronization
process would seem difficult to achieve. After all,
a CRR recovery server logically operates indepen-
dently of the user or application environment.

In this context, one might expect functions like
those of the CRR recovery server to not actually
reside on individual user workstations. Instead,
these components might be expected to reside on
a locally attached (for example, local area net-
work attached) server (either another micropro-
cessor or one of the hosts).

Considerations for device recovery. The CRR sup-
port in VM/ESA covers the functions required for
dynamic backout support and resynchronization.

BARNES ET AL. 123

Dynamic backout refers to the ability to perform
commit and backout processing without inter-
rupting service to applications. CRR does not
cover synchronization of forward recovery or
backup and restore processes. The requirement
for SFS participation in CRR has no direct impli-
cations on Shared File System facilities for
backup and restore. The backup and recovery fa-
cilities for SFS files will continue to be supported
as in VM/SP.

However, the concept of retaining work unit data
consistency across direct access storage devices
(DASD) restore operations is not new. It is sup-
ported by transaction oriented resource managers
such as Structured Query Language/Data System
or those found in CICS/VSE™ or CICS/MVS™. The
support is effected through logging of resource
updates and forward recovery processing on
DASD recovery.

This section briefly explores the possible future
enhancements that might be entertained relative
to recoverable cMs files, particularly those that
might be participants in CRR applications that also
manipulate resources that are subject to forward
recovery.

Backup and restore procedures. Traditionally,
cMS files have been protected by backup and re-
store facilities. Unless specifically provided by
the application, forward recovery support is not
provided. In the context of work unit based com-
mit and backup processing, restore procedures
offer an opportunity for application data to be re-
stored to an inconsistent state from the applica-
tion’s point of view. (Restoring data to an incon-
sistent state could happen with or without
Coordinated Resource Recovery or the Shared
File System commit support in VM/SP. It can also
happen with minidisk files.)

Historically, CMs applications have dealt with
this by recommending that all data for the appli-
cation be stored in the same unit of DASD alloca-
tion (that is, a minidisk), such that it would tend
to be backed up and restored as a unit. This pro-
cedure works quite adequately for the CMS
minidisk environment. The situation is less clear
in the SFS environment, however, and the CRR
environment further complicates the picture.

Relative to the Shared File System environment,
an approach that may be pursued is a logical ex-

124 BARNES ET AL.

tension of the procedures used for minidisks. The
concept is one of file aggregates. A file aggregate
is an application-defined collection of files, inde-
pendent of either their physical placement on the
disk or the logical placement in file directories. By
providing backup and restore services that oper-
ate on file aggregates, an application could protect
itself from inconsistent application data as a resuit
of a restore by defining the appropriate file ag-
gregate for the data.

In the context of CRR environments, the situation
becomes somewhat more complex. That is, in or-
der for the file aggregate backup and restore pro-
cedure to work, it would require that the file ag-
gregate construct be honored across multiple file
pools. On a single system with a single backup
tool, this could probably be effected without
much trouble. However, in the context of multi-
ple file pools across multiple systems, this be-
comes much more difficult, particularly if the
systems are autonomous from a systems manage-
ment point of view.

In the multiple systems case, some degree of co-
ordination among multiple instances of backup
tools is implied. Minimally, they would have to
recognize and support common definitions of the
cross system file aggregates. A backup or restore
operation initiated on any one of the systems
would imply a need to initiate the corresponding
operations on other systems that own files in the
file aggregate. Within a limited configuration of
multiple systems, this is probably reasonable. In
the context of a loose confederation of systems
tied together in a wide area network, however,
this may not be practical.

Forward recovery facilities. Another approach
that could be taken to assure consistency of ap-
plication data across DASD recovery procedures
would be to support forward recovery for file
data. With this approach, all updates to recover-
able files would be logged such that on DASD fail-
ures, the file data could be restored through the
last successful work unit. If all distributed file
components provide this level of support, file data
across multiple systems could always be kept in
a consistent state from the application’s point of
view.

This approach seems valid and is demonstrated

through cics/Mvs-based facilities® that support
file control recoverable files. However, this level

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

of support can be expensive in terms of the log-
ging required and the processing required to re-
store the files in the event of a failure.

In the context of CMS files, such support was con-
sidered more support than was needed. With CMS
files and cMSs file applications, there are two sig-
nificant considerations. The first is file “‘replace”
versus file “update” activity, where many CMS
file applications do not update records of a file.
They do whole file replace operations. This would
result in some very imposing logging require-
ments, should SFS attempt to provide forward re-
covery support. The second consideration is user
facilities for archive and retrieval, where CMS files
are subject to end user initiated, file-level archival
and retrieval functions. Functionally one can
think of these as user-driven backup and restore
functions. This, of course, has the potential of
destroying any application-level consistency that
logging may be attempting to effect.

These factors lead one to the conclusion that for-
ward recovery, if provided, should not apply to all
CMsS files, or even all CMS recoverable files. That
is, the customer would want to be selective about
what files were subject to forward recovery proc-
essing. Similarly, one would expect that files sub-
ject to forward recovery processing would prob-
ably not be subject to user-driven archival and
retrieval functions.

Virtual Machine/Enterprise Systems Architecture, VM/ESA,
Systems Application Architecture, SAA, CICS/VSE, and
CICS/MVS are trademarks, and Operating System/400,
0S/400, Operating System/2, and OS/2 are registered trade-
marks, of International Business Machines Corporation.

SUN NFS is a trademark of SUN Microsystems.

Cited references

1. R. L. Stone, T. S. Nettleship, and J. Curtiss, “VM/ESA
CMS Shared File System,” IBM Systems Journal 30, No.
1, 52-71 (1991, this issue).

2. B. A. Maslak, J. M. Showalter, and T. J. Szczygielski,
“Coordinated Resource Recovery in VM/ESA,” IBM
Systems Journal 30, No. 1, 72-89 (1991, this issue).

3. Concepts of Distributed Data, SC26-4417-0, IBM Corpo-
ration (December 1988); available through IBM branch
offices.

4. DDM Architecture General Information, GC21-9527-1,
IBM Corporation (February 1988); availabie through IBM
branch offices.

5. Systems Network Architecture LU 6.2 Reference: Peer
Protocols, SC31-6808, IBM Corporation; available
through IBM branch offices.

6. CICS VSAM Recovery/lMVS Guide, SH19-6584-1, IBM

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Corporation (June 1989); available through IBM branch
offices.

Cherie C. Barnes IBM Data Systems Division, Route 17C
and Glendale Drive, Endicott, New York 13760. Ms. Barnes
joined IBM in 1973 in the Field Engineering Division. She
transferred to Endicott, New York, in 1979 where she worked
on DOS/VSE and SQL/DS. In 1986 she transferred to the
development team that worked on the design of the Shared
File System and on Coordinated Resource Recovery in the
VM operating system. She is currently an advisory program-
mer in VM/ESA design for CMS data management. Ms.
Barnes received an IBM Means Service Award in 1975 and
1983, an Outstanding Innovation Award in 1987, and a First
Level Invention Award in 1990.

Andrew Coleman /BM Data Systems Division, Route 17C
and Glendale Drive, Endicott, New York 13760. Mr. Coleman
joined IBM in 1979 after receiving a B.S. in mathematics from
Wilkes College. He received an M.S. in advanced technology
from the State University of New York at Binghamton in 1984.
He has worked on SQL/DS test and CSP development and has
participated in the design and development of Coordinated
Resource Recovery. Currently, he is an advisory programmer
working in CMS data management design in the VM operating
system. Mr. Coleman received an Outstanding Technical
Achievement Award in 1990 for his work on Coordinated Re-
source Recovery.

James M. Showalter IBM Data Systems Division, Route 17C
and Glendale Drive, Endicott, New York 13760. Mr. Show-
alterreceived a B.S. in mathematics from Clarkson University
in 1967 and joined IBM that year. Subsequently, he received
an M.S. in computer and information science from Syracuse
University in 1979. He has worked on DOS/VSE, OS/VS1,
VSAM, QMF for VSE, SQL/DS in VSE and the VM operating
systems. Most recently, he worked on the Shared File System
and Coordinated Resource Recovery in the VM operating sys-
tem. He is currently a senior programmer in VM/ESA system
design. Mr. Showalter received Division Awards in 1980 and
1983 and a First Level Invention Award in 1990.

Michael L. Walker IBM Data Systems Division, Route 17C
and Glendale Drive, Endicott, New York 13760. Mr. Walker
received an M.S. in mathematics from the University of Illi-
nois in 1970 and joined IBM that year. Early in his career he
worked with technology and advanced systems projects in
Poughkeepsie, New York, in the areas of database, data com-
munications, and storage management products. He has been
at IBM Endicott since 1979 when he joined the SQL/DS de-
velopment team. More recently, he has held positions in VM
planning and VM strategy, specializing in data facilities and
SAA support in the VM/ESA system. He is currently a senior
programmer in the VM strategy and technologies department.
Mr. Walker received awards in 1981, 1987, and 1989 for his
work on SQL/DS.

Reprint Order No. G321-5426.

BARNES ET AL. 125

