Systems management
for Coordinated
Resource Recovery

Coordinated Resource Recovery is a Virtual
Machine/Enterprise Systems Architecture™
(VM/ESA™) function for providing consistency of
changes to multiple resources in environments
that include distributed applications. It provides a
uniform solution for applications to the problem
of resource consistency. Systems management
of Coordinated Resource Recovery in VM/ESA
(CRR) Is the set of system services and
interfaces that support both automatic and
manual procedures for managing CRR
instaliation, performance, and recovery, as well
as resource manager and application
participation. Much of systems management is
focused on application recovery from occasional
failures of the procedures for coordinating
consistent resource changes. This paper
describes several key aspects of CRR systems
management, including the CRR recovery log,
facilities for minimizing manual intervention when
failures occur, performance considerations, and
application participation in recovery.

hen applications use more than one re-

source, they must ensure that resource
changes are applied consistently, even when ap-
plications encounter failures such as the unex-
pected termination of a resource manager, loss of
communications media, or other environmental
error. Although most such failures are unusual,
the effort to recover from them by restoring con-
sistency between affected resources can be very
significant, especially for the growing number of
distributed applications. The Coordinated Re-

90 BENNETT ET AL

by R. B. Bennett
W. J. Bitner
M. A. Musa
M. K. Ainsworth

source Recovery function of Virtual Machine/En-
terprise Systems Architecture™ (VM/ESA™) pro-
vides an integrated and uniform solution to this
problem. Coordinated Resource Recovery (CRR) in
VMJ/ESA is described in Reference 1.

An important part of CRR are the aids for systems
management that support CRR installation, avail-
ability, performance monitoring, performance
tuning, and recovery. Systems management is
most valuable when integrated into the system
and fully automatic. After examining these auto-
matic capabilities, we discuss and illustrate the
more unusual situations where human interven-
tion may be necessary to manage the system. A
future challenge of CRR is to expand the automatic
aspects of systems management while simplifying
those tasks that cannot be automated. This ap-
proach encourages CRR use in a large variety of
system environments and resources.

The first half of this paper describes the auto-
mated aspects of systems management and dis-
cusses the manual systems management tasks

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

that may need to be performed. The paper con-
cludes with some considerations for future en-
hancements.

Automated resynchronization

Although failures during application synchroni-
zation point (sync point) procedures are very un-
usual, CRR in the VM/ESA system provides auto-
matic recovery (resychronization) when such
failures occur, completing the sync point to en-
sure that all resource changes are either commit-
ted or backed out. Resynchronization completes
the sync point for each failed resource as the re-
source manager becomes available. Support per-
sonnel are kept informed through console mes-
sages and are alerted if intervention is required.

CRR builds on the base established by the Cus-
tomer Information Control System/Virtual Stor-
age Extended (CICS/VSE™) and Customer Infor-
mation Control System/Enterprise Systems
Architecture (CICS/ESA™) systems, as well as
Systems Network Architecture Logical Unit
(SNA LU) 6.2.%* With the VM/ESA system, CRR is
completely integrated and therefore does not
introduce additional application environments
dedicated to resource recovery processing such
as are provided by CICS. While retaining a sync
point manager for each execution environment
(or virtual machine) integrated with the Conver-
sational Monitor System (CMS), the recovery log
and associated recovery server are centralized for
each VM/ESA system. The full function of CRR is
available to any application running under CMS in
a VM/ESA.

The SNA LU 6.2 sync point architecture estab-
lished a foundation for recovery from sync point
failures. In the architecture, and to some extent in
CICS, the recovery involves brief attempts to re-
gain communications with participating applica-
tions (protected conversations) to complete the
failing sync point, but forces commit or backout
for sync point participants when they are not
available to complete sync points normally. With
CRR, both conversations and resources involved
in sync point failures are normally automatically
recovered through an independent, centralized
recovery facility. Periodic and automatic at-
tempts to resynchronize with sync point partici-
pants continue until resolution, with a provision
for manual intervention in extreme cases.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

During sync point recovery, portions of resources
may be locked, pending the resolution of the sync
point. Automatic recovery minimizes the time
that these resources are locked and therefore un-
available to other users or applications. Auto-
matic and centralized recovery facilities minimize
administrative requirements. As distributed ap-
plications and network systems grow at rates that
exceed the availability of qualified systems man-
agement professionals, automated recovery,
such as that provided by CRR, is essential.

With networks of VM/ESA systems, the resynchro-
nization work is subdivided between the recovery
servers of the systems in the network. Each re-
covery server manages sync point recovery for
the applications or portions of applications that
reside in their system using the local sync point
log information. This provides a reasonable bal-
ance between the efficiencies of centralization
and the availability benefits of decentralization.
Resynchronization work is performed asynchro-
nously by assigning a separate task for managing
the recovery of each participant of the sync point,
permitting significant overlaps in recovery proc-
essing.

The recovery server tasks operate on behalf of
corresponding sync point managers to recover
the failing sync point by re-establishing commu-
nications with affected resource managers, and
when necessary, recovery server tasks in other
systems. When attempts to establish these com-
munications are delayed, the recovery tasks are
temporarily suspended for a timed interval before
attempting again. This minimizes use of system
resources while attaining automatic recovery
goals.

Resychronization includes a provision for notify-
ing a “‘parent” recovery server task by dependent
recovery server task or resource manager when a
sync point order (commit or backout) is needed or
a sync point response is ready. A recovery server
that is suspended until the time for the next retry
is immediately taken out of suspension when that
participant initiates this notification. By using this
notification, relatively long retry intervals are ac-
ceptable, minimizing resource consumption re-
quired by retry activities and eliminating the sys-
tems management task of tuning retry intervals.

The log that provides the recovery capabilities for
CRR is logically in two parts containing sync point

BENNETT ET AL. 91

Figure 1 An example of a traditional distributed application

WIDGET SALES
APPLICATION
LOCAL

SALES OFFICE
PROGRAM 1

v

WIDGET SALES
APPLICATION

REGIONAL
OFFICE
PROGRAM 2

WIDGET SALES
APPLICATION

CORPORATE
SALES
PROGRAM 3

WIDGET SALES
APPLICATION

CORPORATE
MANUFACTURING
PROGRAM 4

v

WIDGET SALES
APPLICATION

CORPORATE
INVENTORY
PROGRAM 5

WIDGET SALES
APPLICATION

CORFORATE
CUSTOMER RELATIONS
PROGRAM 6

02 BENNETT ET AL.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

information and a list of sync point logs (log
names). The sync point log contains information
concerning each active sync point, identified by a
logical unit of work, such as the status of each
locally known sync point participant. The log
name portion holds the names of locally known
sync point participants’ sync point logs. CRR sup-
ports a procedure for exchanging log names with
sync point participants in order to determine if
any of the participants’ sync point logs have been
replaced. If the exchange indicates that the iden-
tity of a log has changed between the time of sync
point initiation and sync point failure recovery,
CRR maintains integrity by suspending recovery
and avoiding use of the invalid log.

An example may help to illustrate the automatic
resynchronization of CRR. Figure 1 shows a tra-
ditional distributed application called Widget
Sales. It involves a local order entry portion (Pro-
gram 1) with updates to several local files through
two resource managers that could be either sep-
arate database repositories or completely differ-
ent database types. Regional sales files are up-
dated through a partner application (Program 2).
The local sales transaction also initiates a corpo-
rate sales update activity (Program 3), which
spins off parallel update activities for three other
corporate resources (Programs 4, 5, and 6).

Figure 2 shows a distribution of the programs into
five systems. A more complete example would
involve multiple local and regional systems, omit-
ted here for simplicity of illustration. Assuming a
VM/ESA implementation, each program of the
Widget Sales application executes in a separate
virtual machine. Local System 1, for example,
uses a virtual machine for Program 1 that updates
Resources 1 and 2, each of which uses a server
virtual machine for its respective resource man-
ager. In this illustration, sync points are assumed
to originate from top to bottom, forming a sync
point tree.

Figure 3 shows the VM/ESA virtual machine struc-
ture for Local System 1. Specifically, the local
sales application (Program 1) uses the Shared File
System (SFS) component of VM/ESA, which im-
plicitly uses the SFS resource adapter to commu-
nicate with SFS 1 and 2 (Resource Managers 1 and
2) in server virtual machines for updating Files 1,
2, and 3. The local application also uses VM/ESA
services to initiate protected conversations with

iBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

application partners that run remotely in regional
and corporate systems. A CMS protected conver-
sation adapter handles communication interfaces
for the protected conversations. The distributed
application uses CRR to ensure consistency of re-
source changes. Once the application has com-
pleted the local portion of the transaction and has
propagated work to the “downstream” programs,
it initiates a sync point. This invokes the local
sync point manager to begin the two-phase com-
mit procedure with its registered sync point par-
ticipants. The sync point also propagates down-
stream to the regional and corporate systems. The
prepare-to-commit (phase 1) and commit (or
backout) (phase 2) sync point orders flow down
through the tree and the responses flow up
through the tree.

The status of each resource manager and conver-
sation participant for this sync point (connected
by solid lines in Figure 2) is recorded in a sync
point log in the system whose program directly
used that resource. For example, Corporate Sys-
tem 1 has a sync point log with the status of the
current sync point that includes the sync point
states of Resource Manager 4 and Programs 4, 5,
and 6. The VM/ESA system also supports remote
resources. If Program 3 used Resource Manager
6 (not illustrated), Corporate System 1 would
record the status of that participant in its sync
point log, even though the resource is remote.

Figure 4 shows that the recovery server, as the
maintainer of the sync point log, receives sync
point log information from each instance of a sync
point manager in the local system, using a local
log link. If a failure occurs that prevents normal
completion of a sync point, the recovery server is
automatically activated to pursue contacts with
sync point participants, as dashed lines from re-
covery servers in Figure 4 show, to complete the
interrupted sync point for the sync point man-
ager. The sync point log determines the partici-
pants and their status. Individual recovery serv-
ers are responsible for only that portion of the
sync point tree for which they have log informa-
tion. This portion is shown in Figure 4 as the im-
mediate leaf nodes of the tree connected by
dashed lines to a particular recovery server.

There are several events that could start the re-
covery process. Figure 4 is the basis for exploring
a few sync point failure scenarios:

BENNETT ET AL. 93

Figure 2 Systems partitioning of application

REGIONAL SYSTEM 1

94 BENNETT ET AL. IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 3 VM/ESA structure of virtual machines for local system

LOCAL SALES
PROGRAM 1

RESQURCE
ADAPTER

TO REGION'Y - |

TO CORPORATE ¥ -

1.

Assume that the virtual machine hosting Pro-
gram 1 fails during a sync point. This results
in a failure of the communication link be-
tween Program 1 virtual machine and the Re-
covery Server 1 virtual machine, as well as a
failure of the sync point manager for the fail-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

ing virtual machine. This event causes Re-
covery Server 1 to begin to recover using the
sync point log, involving any active sync
points logged for the Program 1 virtual ma-
chine. To accomplish this, Recovery Server
I must resynchronize with Resource Man-

BENNETT ET AL.

9%

Figure 4 Sync point tree and recovery servers

LOCAL SYSTEM 1
J o e e e e e e e e e e e e e ey
1 1
i LOG LINK |
! REGOVERY !
' . _ SERVER1 '
| r i
1 ! | St]
| j 1]
1 prm s e U]
: ! et 1ot : .
| ! " to I
1 ro 1
1 [I
1 [|
! P |
i [{
i t o |
i i1]
[_ DU S AP
11
[|
9
o e i o et et o o o o s o e b |
! :
REGIONAL SYSTEM 1 | : i
1
e e DR L | CORPORATE SYSTEM 1 H
| 1 1
) LOG LINK ! I ————--——--—-—-———-—--—--———-—-——-;————~—-:
! ReRven o b LOG LINK i]
! bt RECQVERY]
! b SERVER 3 '
| b e I
| ; Lo i i
| e 1o !]
1 f P ! tot 1
1 : 1 | o 1
1 1 e Pt i
i [P 1
1 [1 i
| 1 [1
1 [[|
1 v 1o]
| | i []
RPN P i
{ [t
IO O N PR U SY S S
[
[!
Tt
it
Ut
o o o o o o e 2 i e] e o ot o o s i i ot i s o v o]
CORPORATE SYSTEM 2 r '
FRNASIRIUN FUR DS UUYpUUON DS AU 1
! § | { CORPORATE SYSTEM 3 !
f
t i 1 o e o o e b et e e e ot o e e o i s s oy
] j [: |
! LOG LINK X bl X !
1 i [])
| R e
i RECOVERY Pl RECOVERY]
! SERVER 4 o SERVER 5 |
i LOG LINK I !
i I i
1 I { I
1 N SR [I
1 H It |
1 o e e o ok [}
) . P i
])]
i 1o i
{ [|
i i {
) o]
i i }
] P |
1] i I
" e e s St o P 1 A ok L . S A o = i o P S o ot 4o ot s e e] L e o e e e en B S S i Sk it . e . e, e e . . v e s . i e

96 BENNETT ET AL. IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

ager 1, Resource Manager 2, Recovery
Server 2, and Recovery Server 3. When the
recovery is complete, the results are reported
to the Recovery Server 1 operator.

2. Another failure scenario involves a failure of
Program 3 during a sync point. As a result,
Recovery Server 3 resynchronizes with Re-
source Manager 4, Recovery Server 4, and
Recovery Server 5. In this case, Recovery
Server 3 must additionally report its results
“upstream” to Recovery Server 1.

3. When a recovery server encounters a termi-
nating failure, its log data are preserved.
When the recovery server is restarted, it au-
tomatically starts recovery tasks for all sync
points in progress at the time of the recovery
server failure, represented by log entries in
the recovery server’s log. Assume that Re-
covery Server 4 fails or Corporate System 2
fails. When Recovery Server 4 is restarted, it
recovers any sync points in progress for Pro-
gram 4 and Program 5. The recovery server
establishes a separate task to recover each
participant in each of the sync points for
which it has a log entry, recovering multiple
sync points in parallel.

4. Anapplication has the option to wait for sync
point recovery to complete. If Resource
Manager 2 fails during a sync point procedure
and the sync point manager for Program 1
detects the failure when it drives the second
phase of the commit procedure, the sync
point manager remains operational so that it
can send a request on the log link to Recovery
Server 1, requesting recovery of Resource
Manager 2. When the recovery is complete,
Recovery Server 1 reports the result to the
sync point manager and the application can
continue. More typically, an application
would not wait but would terminate, allowing
resynchronization to resolve the failed sync
point independently.

Automated performance optimizations

One important task for systems management is to
optimize system performance. This includes min-
imizing the use of system resources such as cen-
tral processor units, storage, and physical input/
output operations. The objective is to automate
systems performance management wherever pos-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

sible, which is more difficult for CRR since it may
operate in a large variety of environments. There
are several areas where automatic performance
optimizations are available with CRR, including
asychronous functions and the recovery server
log.

Asynchronous functions. Asynchronous functions
are generally more expensive in terms of path
length than synchronous functions, but asynchro-
nous functions improve overall response time.
The CRR recovery server and sync point manager
automatically select the more efficient of the two
methods.

The recovery server writes asynchronously to
logs to overlap the processing for dual logging and
asynchronously processes requests from sync
point managers and resource managers. As €x-
plained previously, resynchronization includes
extensive use of asynchronous processing tech-
niques.

Sync point manager processing involves commu-
nications with the recovery server and one or
more resource managers. While recovery server
communications are synchronous to the sync
point manager, resource manager communica-
tions are generally asynchronous. The following
shows the impact on user response time for the
sync point manager coordination of n resources:

For synchronous communication,
1

RT = D, time(n)
n

where RT = response time.

For asynchronous communication,
RT = MAX(time(1..n)) + n * X

where RT = response time and x = overhead for
asynchronous functions.

Asynchronous functions let communication re-
sponse time approach the maximum time to com-
municate with any one resource manager versus
the sum of the time to communicate each re-
source manager. The communication time may be
significant since applications involving CRR may
span networks.

Recovery server log optimization. Because all two-
phase commits require logging by the recovery
server, automatic performance optimizations are

BENNETT ET AL. 97

Figure 5 Ring buffer before and after checkpoint procession

particularly beneficial. These involve log com-
pression to optimize disk space utilization and
buffering or grouping of log data to reduce the
amount of physical input/output (/0) activity.
Log optimizations prevent log 1/O processing from
becoming a bottleneck, even when sync point
processing rates are high. Again, it is important
that these performance optimizations do not re-
sult in additional manual intervention or jeopar-
dize data integrity. I/O operations involving mul-
tiple data blocks are used throughout CRR
processing to minimize physical /0 operations.

Log compression is a technique for avoiding op-
erational disruption and intervention otherwise
required to extend log disk space. Log compres-
sion uses a ring buffer* which is a wraparound
method of recording log records on the log disks
whereby the beginning of the log space is reused
when the end of the area is reached. A checkpoint
procedure is automatically initiated before the
wraparound occurs, and summarizes all active
sync point activity in a new checkpoint log
record. Figure S shows the ring buffer conceptu-
ally, before and after checkpoint processing, and
the log condensation that is possible.

The SNA LU 6.2 sync point architecture describes
two types of log write requests, forced and non-
Jorced. Forced log write data must be immedi-
ately written to nonvolatile storage (e.g., DASD).
Nonforced log data are buffered in virtual storage

98 BENNETT ET AL.

until a forced log write arrives or the nonforced
buffer is filled. This avoids the cost of physical
output operations for every log write.

Physical /0 operations are also minimized by
grouping data from multiple log write requests
into a single physical output operation. Concur-
rent log write requests from the various sync
point managers are collected by the recovery
server into a common log write buffer, then writ-
ten to the log disks as a group. Forced log write
requests are not considered complete until the
physical log write is finished, but nonforced log
write requests complete without requiring an im-
mediate physical write.

Figure 6 shows the benefit that log buffer man-
agement provides for physical /0 operations. As
the rate of sync point processing increases, the
physical I/0 log activity per sync point decreases,
due to an increase in the amount of log buffering
and write grouping. The benefit of these perfor-
mance optimizations increases with the rate of
sync point activity because the recovery server is
more likely to receive concurrent requests for log
writes. Log output bottlenecks are unlikely ex-
cept when log write activity approaches the max-
imum physical output rate of the log device,
based on the current data blocking strategy. The
graph is for a generalized case. The results vary
depending on the environment.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 6 Sync point rate versus physical IO log operation

46
4.4 ~
4.2

4.0

3,8
3.6

LOG 1708 PER SYNC POINT

3.4 -
3.2+
3.0
2.8
2.6+
2.4
2.2
2,0+
18
16

14

'SYNC POINTS PER: SECOND

1~
&

n

Automated availability

Dual logging increases availability of the CRR log
by maintaining identical copies of the log on sep-
arate physical devices. When one disk becomes
inoperable, the recovery server automatically
continues by logging sync point data to the func-
tioning disk. At failure time, the recovery server
writes a checkpoint record to the working log
disk. A message notifies the operator that a log
disk has failed. With each subsequent check-
point, the failed log disk is rechecked for opera-
bility. If found to be operable, CRR processing
automatically resumes logging to both disks. Be-
cause the checkpoint summarizes all outstanding
CRR activity to both log disks, manual interven-
tion is not necessary to reactivate the log disk that
had failed.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Limp mode, which is the state entered when the
recovery server becomes unavailable, lets some
applications continue to function. While in limp
mode, applications that use resources coordi-
nated by CRR may continue to run, but will get an
error return code when attempting to use CRR.
This allows for the continued operation of appli-
cations that can avoid use of CRR. While there is
also some performance degradation associated
with running in limp mode, overall availability is
improved for those users that are not affected by
the loss of the recovery server.

Operational intervention

We have discussed the systems management ac-
tivities that are completely automated in CRR. To

BENNETT ET AL. 99

Table 1 Systems management tasks for resynchronization

Task

Messages Querles Transaction Commands
' Tags

Monitor the CRR portion of the system
Determine that a problem exists

Determine what application is having the problem
Determine the original user of the application
Determine which recovery servers are involved

Determine if manual intervention is required
Force a commit or backout to occur

Determine the state of the resources (committed or backed out)

X
X

>

by
P4 K

summarize, CRR automates all of the sync point
activity as long as (1) the CRR components are
physically available and (2) the protocols that are
programmed between components are correct.
Failures in these areas are expected to be rare.
The remainder of this paper describes some of the
manual systems management tasks that occasion-
ally may be necessary.

Establishing or installing a recovery server is a
straightforward task, requiring few manual deci-
sions. Once the initial installation process is com-
pleted, the CRR recovery server is automatically
started when the system is brought up. Although
the recovery server shares a virtual machine with
an SFS file pool server, the recovery server is in-
stalled on an SFS server base that is dedicated to
the recovery server facility, enhancing both ser-
viceability and performance. However, the flex-
ibility exists for creating a server machine that
acts as both a recovery server and an SFS file pool
server.

When recommended installation procedures are
followed, frequent CRR performance monitoring
and tuning are not normally necessary. Occasion-
ally monitoring may be needed to determine the
CRR usage level. Both commands and standard
VM/ESA monitoring facilities are available.

CRR provides methods for simplifying operational
intervention when problems occur, often avoid-
ing operational disruption. Since CRR resides in an
SFS file pool server, it is possible to designate any
other SFS file pool server as an alternate recovery
server. If there is an extended failure of the pri-
mary recovery server or its execution environ-
ment, control of the CRR log disks can be trans-
ferred to the alternate recovery server as
necessary to restore the operation of CRR. As de-

100 BENNETT ET AL

scribed earlier, CRR continues to operate when
one of the two log disks becomes inoperable. CRR
supports operational intervention for replacing
the failing log without stopping recovery server
operations.

The remaining topics address operational inter-
vention considerations for resynchronization.
Since resynchronization is normally automatic,
this intervention is seldom necessary.

Monitoring resynchronization

Table 1 shows an overview of systems manage-
ment tasks that may be required for managing
unusual cases where automatic resynchroniza-
tion is delayed or incomplete, along with the cat-
egories of tools provided by recovery servers for
addressing them. Resource managers that partic-
ipate in CRR must provide analogous facilities.
Referencing Table 1 and Figure 7, messages, que-
ries, transaction tags, and commands are dis-
cussed next.

Messages. Monitoring CRR by support personnel
assures data integrity of the resources involved,
especially when automatic facilities are stalled or
otherwise cannot complete a coordinated sync
point operation. Recovery servers provide a va-
riety of messages for monitoring the execution of
CRR. In some respects, a recovery server moni-
tors itself, because it produces messages when-
ever abnormal situations arise.

Messages indicate when resynchronization is
started for a particular logical unit of work and
provide information for support personnel to
monitor its progress. This information can be
used by support personnel to assist in anticipation
of unacceptable delays, prompting investigation

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 7 Operational intervention in resynchronization

N

CRR
MESSAGES

TN

RECOVERY
SERVER 1

:

v
A
ORDER
RESPONSE

A s e i s O S

- ———— T

RECOVERY
SERVER 3

and occasional intervention in the automatic re-
sychronization process.

If delays in resynchronization are not recognized
and addressed promptly, support personnel may
receive phone calls or messages from users indi-
cating that data resources are not available or ap-
plications are not functioning properly. Data re-
sources locked by an unresolved sync point may
not only hold up the sync point participants, but
also other users of the affected resources.

In addition to potential delays in resychroniza-
tion, messages may inform support personnel of
heuristic mixed conditions. Heuristic mixed con-
ditions occur when some participants in a logical
unit of work are committed while other partici-
pants are backed out. With automatic resychroni-
zation, heuristic mixed conditions should not oc-
cur. The condition can occur when a participating

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

resource manager violates recovery protocols or
support personnel intervene with an inconsistent
and inappropriate action. By screening of re-
source manager participation and proper training
of support personnel, these conditions are nor-
mally avoided.

Queries. Along with the messages described pre-
viously, a set of queries for information in the
recovery server log are available to support per-
sonnel where additional information is needed to
determine the extent and nature of an unresolved
sync point. This information includes identifica-
tion of the state of the sync point participants, the
logical unit of work, and the order (commit or
backout) provided by the initiator of the sync
point (when available). In addition, a transaction
tag may be displayed, providing specific applica-
tion information that can be extremely helpful in
sync point resychronization.

BENNETT ET AL. 101

The logical unit of work identifier can be quite
long in order to accommodate network architec-
ture uniqueness, and would be unwieldy for both
reading and key entry in queries. To avoid this
problem, CRR queries return a six-character token
to represent the logical unit of work identifier lo-
cally. This simplifies subsequent queries where
the token is substituted for the long logical unit of
work identifier.

Queries only return information recorded in the
local recovery server sync point log. To investi-
gate logical unit of works that span multiple sys-
tems, additional queries are required, as de-
scribed later.

Transaction tags. Recovery from sync point fail-
ures may be significantly simplified through the
participation of application programmers. A
small investment of time in the early stages of
application development has potential for a huge
payback in reducing the time for recovery of com-
plex distributed applications. One of the chal-
lenges of recovery is associating a failure with the
specific elements of the originating application,
especially in network environments. CRR lets the
application programmer associate application ex-
ecution elements and sources, such as an invoice
number or file name, with particular sync point
occurrences. This can provide a distinct associ-
ation between failure recovery and affected ap-
plications. Application participation in recovery
simplifies and automates the work of systems
management for CRR.

The information included in an 80-byte transac-
tion tag can be generic to the application (e.g., the
name of a file that contains the recovery proce-
dure for this application), as well as unique to a
particular stage of the execution of the application
(e.g., transaction identifier, user account number,
or sequence number).

When the transaction tag is provided, it is stored
in the recovery server log, where it is available in
messages and query responses, providing infor-
mation to support personnel for associating sync
point recovery situations with concurrent appli-
cation conditions and states. This information
makes it possible for support personnel to avoid
having to contact application operators or pro-
grammers when manual intervention is required
for the resolution of inconsistent sync points. In
addition, transaction tags may provide support

102 BENNETT ET AL.

personnel with application directions for manual
resolution of rare occurrences of inconsistent
sync points. This information could be defined
using prose or encoding, agreed upon between
application and support personnel. For example,
encoding in the transaction tag might indicate
that:

* Support personnel should permit automatic re-
synchronization to be delayed for no more than
10 minutes before beginning manual interven-
tion for this application.

¢ Support personnel should never manually re-
solve inconsistencies for this application with-
out a complete understanding of the effect upon
all sync point participants, because a heuristic
mixed situation could cause intolerable re-
source repair work.

¢ Support personnel may intervene with resyn-
chronization for this application by backing out
a resource change, when it causes a resynchro-
nization delay, because the particular resource
is not especially critical for the application com-
pletion.

In the Widget Sales example, a transaction tag
may provide such information as the user name,
the name of the application (Widget Sales), and
the order number. Transaction tags can be passed
from program to program along with the other
data. In the Widget Sales application, a transac-
tion tag may be established in Program 1 on Local
System 1 and then passed to Program 2 and Pro-
gram 3, until all the participants in the distributed
application have information concerning the orig-
inal sales order. In the case of a failure and a delay
in resynchronization, this information could as-
sist support personnel in associating inquiries
from application users concerning delays in spe-
cific resychronization activities. It could also be
very helpful in those rare cases where erroneous
manual intervention causes a heuristic mixed sit-
uation. If this should happen, the transaction tag
information may be used to identify specific re-
source elements that may need repair.

Commands. CRR includes commands to simulate
normal sync point procedures to provide a com-
mit or backout order as a surrogate for an un-
available sync point initiator, or a response as a
surrogate for an unavailable sync point partici-
pant. These commands may be used when auto-
matic recovery is stalled because of prolonged
outages, requiring manual intervention to resolve

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Table 2 Status of application data

RS1 Committed - Sales by person
Committed Sales order

RSt - - Committed - Local sales :

RS2 - ‘Committed Regional sales ~ =

RS3 " . ‘Prepared to commit - " Corporate sales -

RS4 . Prepared to commit "~ Manufacturing

RS4 - Prepared to commit *- Inventory:

RS5 _Prepared to commit- Customer relations

failed sync points. Messages, queries, and occa-
sionally phone calls may be necessary to collect
information for formulation of these commands.

To illustrate manual resolution refer to Figure 4.
Assume that there is a prolonged communications
failure that prevents automatic recovery of a
failed sync point in Recovery Server 3 from re-
ceiving a commit or backout order from Recovery
Server 1, which represents a sync point initiator.
Support personnel in Corporate System 1 deter-
mine from queries and communications with Lo-
cal System 1 personnel that the required order
from the sync point initiator is to commit, per-
mitting support personnel to simulate the order of
the initiator through a CRR command, and allow-
ing the sync point recovery to complete in Cor-
porate System 1. If there were an additional pro-
longed failure of the communications path
between Recovery Server 3 and Recovery Server
4, another CRR command would be needed to sim-
ulate the response from Recovery Server 4.

Challenges of a distributed environment

CRR must address many environments from single
system to complex networks of distributed appli-
cations. Even with a single system, multiple prod-
ucts and resource managers may be involved,
possibly including the products of multiple ven-
dors. When manual intervention is required, the
skills of several support people may be required
because each resource manager may have differ-
ent external representations and recovery logs.
Complexity grows accordingly as networks of ho-
mogeneous and heterogeneous systems are used,
where an understanding of the entire scope of an
unresolved logical unit of work presents a partic-
ularly difficult challenge. The goal of systems
management in CRR is to make it possible to man-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

age Coordinated Resource Recovery across
many environments.

The complexities of distributed systems are best
addressed by collecting CRR messages at a central
site where queries are used to collect information
and make adjustments for remotely located re-
covery servers. NetView® and VM/ESA facilities
are useful in simplifying and consolidating these
network management tasks.

To assure data integrity, support personnel must
be able to determine the use and status of all re-
sources for a logical unit of work in a distributed
application. The logical unit of work for a partic-
ular application can be represented in several dis-
tributed recovery server logs.

Using the Widget Sales application as an exam-
ple, messages can be issued from any one of five
recovery servers or seven resource managers on
five systems. Considering that there may be nu-
merous local systems, the number of systems
may be even greater. The possibility of multiple
applications for support personnel to manage in a
distributed systems environment dramatically
compounds the situation and focuses on the im-
portance of using transaction tags to aid in prob-
lem determination and correction.

The following example involves a communication
failure between Recovery Server 1 on Local Sys-
tem 1 and Recovery Server 3 on Corporate Sys-
tem 1 after all sync point participants have been
prepared to commit, i.e., have completed phase
one of the two-phase commit procedure. Table 2
describes the status of a sample logical unit of
work. Initially the support personnel do not have
all of this status information. They may not even
know what the Widget Sales application does.

BENNETT ET AL. 103

There is no single message or query that gives the
support personnel all of this information.

A complex example is chosen to illustrate that
sufficient information is available to support op-
erational intervention in the unlikely case where
failures occur, and where delays in automatic re-
covery cannot be tolerated. The example is also
the basis for exploring simplifications through the
use of transaction tags and proposing some future
improvements for support of operational inter-
vention in the antomatic recovery process. In the
example, distributed systems are managed by
central support personnel who must resolve a log-
ical unit of work, assuming that it is not practical
to wait for repairs that would permit the process
to be completed automatically. CRR may be used
in environments where support personnel are
centralized, distributed, or a combination
thereof. The example based on Table 2 follows:

1. A message routed to the central site indicates
that resychronization was attempted, but
there was a communications outage that pre-
vented its completion. After being notified of
three such retries at 10-minute intervals, sup-
port personnel decide to intervene. This de-
cision is based on anticipated delays in fixing
the outage, along with the priorities of the
participating applications, possibly associ-
ated with pressure from users who are unable
to access resources that are locked by the
incomplete sync point.

2. Support personnel obtain CRR query results for
the logical unit of work from the Recovery
Server 1 log indicating that: Resource Manag-
ers 1 and 2 are committed; Recovery Server 2
is committed; and Recovery Server 3 is pre-
pared to commit, but has not committed.

3. Support personnel query Recovery Server 2
for the logical unit of work providing a more
complete picture of the resource managers
involved in the logical unit of work. This
query tells them that Resource Manager 3 is
committed and no additional recovery serv-
ers are involved.

4. Support personnel determine that Recovery
Server 3 is operational, therefore the failure
is with communications facilities between
Recovery Servers 1 and 3. If the communi-
cation link failure prevents a query from the

104 BENNETT ET AL.

central site, then a query at the local node
would be necessary. Support personnel
query the Recovery Server 3 sync point log
for the logical unit of work indicating that:
Resource Manager 4 is prepared to commit
and Recovery Servers 4 and 5 are prepared to
commit.

Support personnel query Recovery Server 4
for the logical unit of work indicating that:
Resource Managers 5 and 6 are prepared to
commit and no further Recovery Servers are
involved.

Support personnel query Recovery Server 5
for the logical unit of work indicating that:
Resource Manager 7 is prepared to commit.

With this information (see Table 2), support
personnel are ready to initiate commands to
override the automatic recovery process and
avoid a heuristic mixed condition. Support
personnel determine that Recovery Server 3
should be driven with a commit order to com-
plete the sync point for the selected logical
unit of work. This is accomplished with a CRR
operator command for Recovery Server 3,
manually supplying the commit order that
would have originated from Recovery Server
1. The commit is automatically propagated to
Resource Manager 4, Recovery Server 4, and
Recovery Server 3.

The support personnel also initiate a CRR
command that manually simulates the re-
sponse from Recovery Server 3 to Recovery
Server 1, which indicates that the logical unit
of work is committed. This results in the au-
tomatic generation of messages that indicate
the completion of resynchronization and the
resolution of the sync point for the logical unit
of work with a commit of all resources. This
permits normal completion of the logical unit
of work with minimal manual intervention and
without waiting for repair of the failing systems
communications facilities. Resources held up
by the failure are promptly freed. This avoids
the inconsistencies that can result when re-
sources are freed by individual resource man-
agers, unilaterally forcing sync point resolution
without complete knowledge or cooperation of
other participants and the appropriate system
management support facilities.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

The above example is useful for demonstrating a
very complex recovery scenario for which there
are possibilities and challenges for improvement.
For example, a transaction tag could refer the
support personnel to a Widget Sales application
recovery procedure document that specifies ex-
actly which queries are necessary, thereby sim-
plifying the analysis. Another possibility is that a
transaction tag could indicate that it is normally
acceptable for the application to wait for auto-
matic recovery to complete, avoiding the manual
intervention except for extreme cases (outages in
excess of some specific time period).

There is also an opportunity for the customization
of network tools such as NetView for filtering
messages and automatically gathering informa-
tion through queries.

Future considerations for CRR

We have discussed several of the innovations of
CRR involving automatic recovery, operational
override that avoids heuristic mixed conditions
for cases where automatic recovery is delayed by
prolonged systems failures, and assistance for
communication between applications and sys-
tems support personnel. Yet there are still some
interesting challenges for future extensions of
CRR.

Improve and expand recovery aids. As environ-
ments using CRR grow in complexity, tools are
needed that can automatically monitor resyn-
chronization, analyze the status of a logical unit
of work across all affected systems, and report
the results to a designated central facility when
conditions justify operational intervention. It
would also be helpful to assist in isolating the
specific portion of a resource that is affected by an
incomplete sync point. Recovery aids should be
generalized to support many heterogeneous en-
vironments to avoid restricting the scope of CRR.

Expand the transaction tag capability. Currently
the transaction tag is supported only by CRR in
VM/ESA. Where an application updates data on
other systems, the transaction tag information
should be available on all systems involved with
a logical unit of work identifier.

Extend CRR to heterogeneous environments. CRR
was designed to support and participate in net-
works of heterogeneous systems with an open-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

ended set of resource managers. Although the
SNA LU 6.2 sync point architecture provides con-
siderable guidance for accomplishing this, there
are some areas that are beyond the architecture,
especially for resource manager participation. Al-
though CRR in the VM/ESA system, along with SFS
participation, has provided a model for extension
to other environments and systems, it remains a
challenge to maintain this uniformity as CRR par-
ticipation grows to systems other than VM/ESA.

Provide audit trails. Many applications provide a
complete record of changes in an audit trail. CICS
provides this capability through an application
program interface for journaling. Distributed ap-
plications have the same requirement, except that
the audit trail for a single logical unit of work may
be distributed across many systems. A tool for
assisting the support personnel in problem deter-
mination would permit combining all of the audit
trails for a single logical unit of work.

Summary

The data processing industry has experienced a
rapid growth of capable resource managers to sat-
isfy a variety of user requirements. Often appli-
cations are unable to complete their work without
using a number of independently managed re-
sources, requiring efficient coordination for con-
sistent changes across the set of resources. With
distributed applications, the challenges of coor-
dination increase even more.

CRR in VM/ESA provides an integrated, consistent,
and uniform solution to this problem and follows
an architecture for extension to many other sys-
tems as well. The solution offers an alternative for
applications that have previously had to develop
their own individual solutions to the problems of
resource coordination, at considerable expense
and duplication.

We have examined several aspects of systems
management for CRR in VM/ESA that reduce the
need for manual intervention in recovery, avail-
ability, and performance optimizations. In addi-
tion, there are occasionally situations where in-
tervention is still necessary while avoiding
heuristic mixed conditions. There is also oppor-
tunity for application programmers and operators
to participate by providing application-specific in-
formation to simplify manual involvement in re-
covery. Finally, there is a clear need for addi-

BENNETT ET AL. 105

tional tools to assist in systems management and
further automate the coordination of resources,
especially as distributed applications grow in
complexity.

Virtual Machine/Enterprise Systems Architecture, VM/ESA,
CICS/VSE, and CICS/ESA are trademarks, and NetView is a
registered trademark, of International Business Machines
Corporation.

Cited references

1. B. A. Maslak, J. M. Showalter, and T. J. Szczygielski,
“Coordinated Resource Recovery in VM/ESA,” IBM Sys-
tems Journal 30, No. 1, 72-89 (1991, this issue).

2. Systems Network Architecture LU 6.2 Reference: Peer
Protocols, SC31-6808, IBM Corporation; available
through IBM branch offices.

3. J. P. Gray and T. B. NcNeill, “SNA Multiple-System Net-
working,” IBM Systems Journal 18, No. 2, 263-297 (1979).

4. J. Gray, P. McJones, M. Blasgen, R. Lorie, T. Price,
F. Putzolu, and I. Traiger, The Recovery Manager of a
Data Management System, Research Report RJ-2623,
IBM Research Division, 650 Harry Road, San Jose, CA
95120 (August 15, 1979).

General references

C. C. Barnes, A. Coleman, J. M. Showalter, M. L. Walker,
“VM/ESA Support for Coordinated Recovery of Files,” IBM
Systems Journal 30, No. 1, 107-125 (1991, this issue).

M. W. Blasgen et al., *“System R: An Architectural Over-
view,” IBM Systems Journal 20, No. 1, 41-62 (1981).

R. A. Crus, “Data Recovery in IBM Database 2,”” IBM Sys-
tems Journal 23, No. 2, 178188 (1984).

J. Gray, Notes on Data Base Operating Systems, Research
Report RJ-2188, IBM Research Division, 650 Harry Road,
San Jose, CA 95120 (February 23, 1978).

J. Gray, P. McJones, M. Blasgen, R. Lorie, T. Price, F. Put-
zolu, and I. Traiger, The Recovery Manager of a Data Man-
agement System, Research Report RJ-2623, IBM Research
Division, 650 Harry Road, San Jose, CA 95120 (August 15,
1979).

B. G. Lindsay et al., Computation and Communications in
R*: A Distributed Database Manager, Research Report RJ-
3740, IBM Research Division, 650 Harry Road, San Jose, CA
95120 (January 6, 1983).

SAA Common Programming Interface Communication Ref-
erence, SC26-4399, IBM Corporation; available through IBM
branch offices.

SAA Common Programming Interface Resource Recovery
Reference, SC31-6821, IBM Corporation; available through
IBM branch offices.

A. L. Scheer, “SAA Distributed Processing,” IBM Systems
Journal 27, No. 3, 370-383 (1988).

VMI/ESA CMS Administration Reference, SC24-5445, IBM
Corporation; available through IBM branch offices.
VM/ESA CMS Application Development Guide, SC24-5450,
IBM Corporation; available through IBM branch offices.

VMI/ESA CMS Application Development Reference, SC24-

106 BENNETT ET AL.

5451, IBM Corporation; available through IBM branch of-
fices.

VM/ESA CMS Planning and Administration Guide, SC24-
5445, IBM Corporation; available through IBM branch of-
fices.

VM/ESA CMS General Information, GC24-5440, IBM Cor-
poration; available through IBM branch offices.

R. Williams et al., R*: An Overview of the Architecture, Re-
search Report RJ-3325, IBM Research Division, 650 Harry
Road, San Jose, CA 95120 (December 2, 1981).

R. Bradley Bennett I[BM Data Systems Division, P.O. Box 6,
Endicott, New York 13760. Mr. Bennett is currently an ad-
visory programmer in data management design for VM. He
joined IBM in 1961 as a systems engineer at Syracuse, New
York. In 1968, he transferred to the Field System Center at
Syracuse as a complex systems design consultant, and in 1970
he transferred to Endicott where he has worked in the design
and development of advanced systems, VSE/VSAM, and
SQL/DS. He received an IBM Outstanding Innovation Award
in 1987 for design work on the Shared File System of
VM/ESA. He has received an IBM Second Level Invention
Achievement Award for patent work. He graduated from
Kenyon College in 1957 where he received a B.A. in econom-
ics.

William J. Bitner IBM Data Systems Division, P.O. Box 6,
Endicott, New York 13760. Mr. Bitner joined IBM in 1985. He
is currently a senior associate programmer in the VM/ESA
performance evaluation department. In 1990 he received an
IBM Outstanding Technical Achievement Award for his con-
tributions to VM/ESA performance. Mr. Bitner received a
B.S. in computer science from the University of Pittsburgh at
Johnstown.

Mark A. Musa IBM Data Systems Division, P.O. Box 6, En-
dicott, New York 13760. Mr. Musa is currently a staff pro-
grammer in VM/ESA systems analysis, where he works on the
functionality and usability of VM/ESA user interface designs.
He joined IBM at Endicott in 1987 and worked in the VM/SP
systems analysis area. He received a B.S. with majors in
mathematics and computer science from the State University
of New York at Brockport in 1976 and a M.S. in computer
science from the State University of New York at Stony
Brook in 1977. Prior to joining IBM, Mr. Musa worked for
Texas Instruments in Dallas, Texas, and the Link Flight Sim-
ulation Division of Singer Corporation in Binghamton, New
York.

Michael K. Ainsworth IBM Data Systems Division, P.O. Box
6, Endicott, New York 13760. Mr. Ainsworth joined IBM in
1984 after earning a M.S. in computer science from Indiana
University in Bloomington. Mr. Ainsworth is currently a sen-
ior associate programmer and has worked on the design and
development of the VM/ESA Shared File System, Coordi-
nated Resource Recovery, and, most recently, installation
and migration tools for VM/ESA.

Reprint Order No. G321-5425.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

