Coordinated Resource
Recovery in VM/ESA

A system service for coordinated recovery of
resources is a critical function needed for
distributed processing environments because
applications need to provide for data integrity
while the location of the data and processes are
transparent to the application. VM is the first IBM
operating system to provide Coordinated
Resource Recovery as a system service rather
than as a service provided by unique
environments running on the operating system,
and the VM Common Programming Interface-
Communications and Shared File System are the
first subsystems to utilize the service. This paper
is an overview of why and how VM provided
Coordinated Resource Recovery (CRR). CRR is
the implementation of the Systems Application
Architecture™ (SAA™) resource recovery interface
within Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™). This coordinated sync
point system service allows one or more
applications or subsystems to update multiple
resources and to request that all updates be
committed or backed out together. The
applications and their respective resources can
be local or distributed. CRR either coordinates
the request to commit or backout immediately, or
supports automatic resource resynchronization
in case a system or subsystem fails. When
restart is not possible, CRR allows for
intervention by a system operator or
administrator.

Support has long been provided within IBM for
the resource recovery requirements of data-
base and data communication objects (e.g., rela-
tional tables, files, conversations) controlled by
the subsystems IMS/VS, CICS, SQL/DS, and DB2™ in
the transaction environments of the MVS/ESA™
and VSE operating systems.' The main benefit of
resource recovery has been integrity for the sup-

72 MASLAK, SHOWALTER, AND SZCZYGIELSKI

B. A. Maslak
J. M. Showalter
T. J. Szczygielski

by

ported data. However, two equally important and
often overlooked results of resource recovery are
application enablement and improved system
management. Resource recovery simplifies appli-
cation development because the application de-
veloper does not need to create recovery proce-
dures, write documentation on how to use the
procedures, or be aware of sharing and distribu-
tion characteristics. Resource recovery improves
system management because uniform system-
management recovery procedures can be devel-
oped by administrators of the resources.

For interactive or personal computing environ-
ments, if data are not shared and not distributed,
application developers may provide for the data
integrity needs of users. Since the data are pri-
vate, no new system-management procedures are
introduced for administrators. However, as data
become shared and as data and processes are dis-
tributed, it is progressively more difficult for the
application developer to support data integrity.
When data integrity is supported by the applica-
tion, unique system-management recovery pro-
cedures are introduced.

vM Coordinated Resource Recovery (CRR) ex-
tends the benefits of resource recovery (data in-
tegrity, application enablement, and system man-

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 1 Single user of a non—shared file

ONE USER

BEFORE EXECUTION X

DURING EXECUTION TEMPX np TEMPX
X

AFTER EXECUTION X

\

. FILE X l

agement) to the Conversational Monitor System
(cMs) environment of Virtual Machine/Enterprise
Systems Architecture™ (VM/ESA™). The support
is distributed, and interactive CMS is a distributed
personal computing environment in which appli-
cations may use local or distributed shared re-
sources and may cooperate with other applica-
tions. Thus, CRR is a model of the resource
recovery solution for the evolving workstation-
host environment called the enterprise local area
network.

The first resource managers to use the support are
in the vM Shared File System and vM Common
Programming Interface-Communications. They
provide immediate solutions for customers. Ad-
ministrators are now able to move data from one
Shared File System resource manager to another.
CMS applications may cooperate with CICS/ESA™
applications so that each may update resources.
For each of the above cases, data integrity is
maintained, system management recovery proce-
dures are uniform, and there is no impact to the
application as sharing characteristics change or as
data and processes are distributed.

Concepts of Coordinated Resource Recovery. In
personal computing environments where sharing

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

is not required, as shown in Figure 1, a single user
invokes an application that updates a nonshared
file, x. If the application developer has a data-
integrity goal, the application contains a recovery
procedure and provides documentation for the
user about application failures. In this case, the
recovery procedures and documentation are well
understood and relatively straightforward. For
example, the application may create the new level
of a file as a temporary file, erase the old file, and
rename the temporary file. Through this proce-
dure, a consistent state of the file can be main-
tained.

Documentation should state what the user’s tasks
are if the application fails. For example, the user
could be told to list the files. If only the temporary
file is listed, the application makes the required
updates and the user need only rename the tem-
porary file. After an analysis by the user, the file
could be restored to a consistent state—either the
old state where the application needs to be rein-
voked, or a new state where the application need
not be reinvoked.

Figure 2 represents two users sharing files. Here
documentation provided by the application de-
veloper is more complicated and recovery pro-

MASLAK, SHOWALTER, AND SZCZYGIELSKI 73

Figure 2 Multiple users sharing a file

L APPUIGATION

RTINS

SHARED
FILE X

R R RSN

APPLICATION

R N R S T

Figure 3 Distributed data and applications

APPLICATION

ONE USER . PRRTY L e SHARED
il OF : : ——p FILE X

v

(e |

SHARED
FILE Y

v

74 MASLAK, SHOWALTER, AND SZCZYGIELSKI IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

cedures vary depending on the user. For the user
who owns the file, the procedures could be the
same as in Figure 1. All other users need to con-
tact the owner, who becomes a data administrator
and who can do an analysis similar to the analysis
mentioned above.

Until the manual recovery procedure is done,
new users may access inconsistent data unless
very complex recovery and locking procedures
are developed by the application developer.
These procedures are further complicated be-
cause they may not execute in the user’s personal
computing environment—an environment that is
subject to uncontrolled failures or shut downs.
Again, a consistent state can be maintained but
the burden on the application is increased. The
developer requires a file system that supports
data sharing with integrity, so that updates can be
committed (commit) or be removed (backout) to-
gether, guaranteeing a consistent state.

Figures 1 and 2 deal with only one resource (i.€.,
afile). Now consider Figure 3, where the data and
the application are distributed. A set of files
makes up what the user may view as one file, but
which is really two applications cooperating with
a protected conversation. The application devel-
oper must handle the recovery of multiple re-
source types (i.e., the files and the conversa-
tions). It is even more difficult for the application
developer to document what the end user or ad-
ministrator needs to do in case of a failure. In
spite of the system infrastructure for communi-
cations, the application developer may question if
distribution is a good idea.

Finally, consider the example of an image appli-
cation. A design of the application is shown in
Figure 4 and has the following specifications:

e Forms are scanned by a device attached to a
workstation and an image of the scan is saved
as an object on optical devices attached to the
workstation.

¢ A VM system with SQL/DS contains a master in-
dex that is the object catalog used to access the
images of the forms.

e An MVS system with DB2 contains all the infor-
mation extracted from the forms and is used for
analysis of this information.

Application developers need a distributed system
that supports a commit or backout that guaran-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

tees a consistent state for a set of heterogeneous
distributed objects. Unfortunately, there is no
such system. For the image application, the de-
velopment team is required to design the recovery
procedures. Extensive work will go into devel-
oping these procedures and testing them. More
work will go into documentation of the proce-
dures for users and data administrators. And, fi-
nally, the procedures will be unique for this ap-
plication.

CRR provides commit and backout to CMS appli-
cations. These applications may be distributed,
and the shared files are in the vM Shared
File System. The support is extendable so other
data management and data communication sys-
tems that execute on VM can take advantage of
uniform system resource recovery procedures.
The support shows that the synchronization point
or recovery concepts of Systems Network Archi-
tecture are sufficient when a computing environ-
ment like CMS is connected to multiple local or
remote resource managers. The support shows
feasibility for the image application where the ap-
plication and resources are distributed among a
workstation and two heterogeneous host sys-
tems. Therefore, a distributed system can be built
that will ailow the image application developers to
concentrate more completely on the evolving im-
age technology rather than resource recovery is-
sues.

Overview of CRR

CRR is based on concepts common to CICS/ESA,
CICS/VSE™, IMS/VS, the Systems Network Archi-
tecture LU 6.2, and the SAA™ Resource Recovery

- Interface.

Briefly, CRR applications execute as a series of
one or more logical units of work, where each unit
consists of changes to protected resources. Pro-
tected resources are those resources that are sub-
ject to application-controlled synchronization
(sync point) verbs, COMMIT and BACKOUT. Ex-
amples of protected resources could be database
objects, conversations between cooperating
applications, files, directories, messages, and
queues. When the application issues the COMMIT
verb, all of the protected resources are taken from
one consistent state to another, so the logical unit
of work appears to be atomic, relative to the pro-
tected resources. Failure in the process causes all
of the protected resources to be returned to their

MASLAK, SHOWALTER, AND SZCZYGIELSKI 7§

Figure 4 Image application example

WORKSTATION

USER

l

SCANNING
DEVICE

HOST VM SYSTEM

OPTICAL
DEVICE

S0L/08
MASTER INDEX

v

HOST MVS 8YSTEM

v

a2
-p -VITAL RECORDS

last consistent state. The application may also is-
sue the BACKOUT verb to request directly that the
resources be returned to their last consistent
state.

The COMMIT verb initiates a two-phase commit
procedure, a prepare phase followed by a commit
phase. During the prepare phase, each resource
manager of a protected resource used by the ap-
plication is polled by the system sync point man-
ager to determine if all resources are ready for
commit. A resource manager responds ‘“ready”
to the poll if the new state of the resource is on

76 MASLAK, SHOWALTER, AND SZCZYGIELSKI

nonvolatile storage, and if the manager is able to
promise that the commit can be completed if all
other resource managers are ready. During the
commit phase, all resource managers make the
next consistent state of the resource available for
applications or users. If the application uses the
BACKOUT verb or if any one resource manager is
not able to respond “‘ready,” the system sync
point manager tells all resource managers to make
the last consistent state of the resource available.

While the system is processing the sync point
verbs, any one or all of the distributed parts can

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

fail. For example, the CMS virtual machine, like a
real workstation, can be terminated by a user; an
operator may shut down a resource manager of
protected resources; or a loss of power may cause
system shutdown or communication failure. If a
failure occurs, each logical unit of work that was
affected by the failure will be resynchronized.
This resynchronization happens as the parts (the
resource managers that control the files or con-
versations) are restarted, and the result for each
unit of work is that the protected resources are
either taken from one consistent state to another
or are returned to their last consistent state.

In general, CRR creates no new system operator
or administrator tasks. However, until resyn-
chronization is complete, the protected files re-
main locked. Thus, if some part is not restarted
quickly (e.g., an operator misses a failure mes-
sage or a communication medium needs to be re-
paired), users may request system operator or ad-
ministrator intervention. In such conditions, CRR
provides operator display commands so that, for
each unit of work, it can be determined what re-
start actions are required.

In the extreme case that timely restarts cannot
take place, CRR allows the system operator to
make heuristic decisions, and allows the applica-
tion developer to warn the operator about the
consequences of such decisions. The warning in-
formation is provided by the application devel-
oper at execution time within an object called
transaction tag. Heuristic decisions are made
when users tell the operator that a resource is not
available. These decisions are based on what the
operator knows or is able to learn about the re-
sources and application. Decisions are expressed
in a command and can force a specific protected
resource to its previous or next consistent state.
A decision can break the atomicity relative to all
protected resources involved in a unit of work.
This breakage, known as heuristic mixed, is the
condition where one or more resource managers
commit the next consistent state and one or more
backout to the last consistent state. The result is
loss of integrity for a data object that consists of
multiple distributed files. The transaction tags
help the system operator to resist requests for
heuristic decisions. For example, the tag could
tell an operator to call a resource administrator.
It could also inform the operator that an incorrect
heuristic decision will require a rebuild of some
distributed object, and that the rebuild will take

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

much longer than the planned recovery procedure
for broken media.

CRR system structure

To support CRR and the SNA LU 6.2 sync point
architecture in VM, several requirements had to
be addressed. In vM, each CMS user has an envi-
ronment and a virtual machine. CRR cannot re-
quire users to log on or dial into a special envi-
ronment. Thus, system services that support CRR
had to be available to any CMS application running
in auser’s virtual machine, and the recovery serv-
ices of CRR are needed regardless of whether a
user is logged on to the system. These services
need to be invoked after a failure, even if the user
that ran the original application does not log on
again. From a system-management point of view,
it is simpler if the recovery procedure is invoked
automatically by the system. A single recovery
log that is independent of resources provides a
central point of failure control. As a result, CRR
has to be provided partly in the user’s virtual ma-
chine (commit coordination) and partly in a sep-
arate virtual machine (failure recovery). It was
also desirable to provide a general capability to
allow resource managers to participate in Coor-
dinated Resource Recovery. Prior releases of VM
did not have any notion of coordination of re-
source managers; each had its own independent
recovery facilities with no capability to allow
them to work together.

Coordinated Resource Recovery is provided to
CMS virtual machines in VM/ESA through partici-
pating resources that provide a resource adapter
and a resource manager, and CRR that provides a
sync point manager and a recovery server.

Examples of these components are shown in
Figure 5.

Resource adapter. Resource adapters execute in
the user’s virtual machine and provide the appli-
cation programming interface to the resource
manager. A resource adapter can be an elaborate
linkage component that communicates with a dis-
tributed resource manager (e.g., advanced pro-
gram-to-program communications, or APPC/VM)
or a simple routine that calls a resource manager
executing in the same environment as the appli-
cation. A private protocol can be used between
the resource adapter and the resource manager if
the resource manager does not distribute to an-

MASLAK, SHOWALTER, AND SZCZYGIELSKI T7

Figure 5 VM/ESA structure for VM Coordinated Resource Recovery

CRR VM SFS USER
RECOVERY RESOURCE APPLICATION
SERVER MANAGER PROGRAM

other resource manager. (See the section Fol-
low-on Considerations later in this paper.) If the
resources are protected resources, the resource
adapter interacts with the sync point manager.
This interaction includes registration, handling
various coordination exits that are invoked by the
sync point manager, and returning status infor-
mation to the sync point manager. In this case,
the resource adapter is sometimes called a pro-
tected resource adapter.

VM/ESA provides two protected resource adapters
with the system, the Shared File System (SFS)
protected resource adapter and an APPC/VM pro-
tected conversation resource adapter.

Protected resource adapters support CMS work
units. A work unit is the application scope that
controls which resources participate in a sync
point. The application can specify which work
unit is involved when changes to protected re-
sources are made or when protected conversa-
tions are initiated.

CRR enhances the support for multiple work units
in a single virtual machine. Specifically, applica-
tions, the sync point manager, and protected
adapters can still support multiple concurrent
work units. Each work unit can now support mul-
tiple protected resources in a single commit
scope. Tying together the work units of two ap-
plication environments with a protected conver-

78 MASLAK, SHOWALTER, AND SZCZYGIELSKI

RESOURCE
ADAPTER

CROSS
SYSTEMS
CONVERSATION
SUPPORT

{APPC/ VM
VTAM)

sation is also supported. Work units in different
virtual machines that are related are identified by
a common logical unit of work identifier (LUWID).
This LUWID is the same as that defined by the SNA
LU 6.2 sync point architecture and is assigned by
(or received from) the initiating system. If the ini-
tiating system is a VM/ESA system, the LUWID is
assigned by the CRR recovery server. Each work
unit can have a series of sync points. A sync point
addressed to a work unit (explicitly or by default)
does not affect activity on other work units in the
virtual machine. On the other hand, a sync point
addressed to a work unit that is related (via the
LUWID) to work in other virtual machines or other
systems does affect that related work.

Resource manager. A resource manager is a sys-
tem application running in a virtual machine that
directly controls one or more VM resources. If the
resources are shared among multiple users, the
resource manager generally runs in a virtual ma-
chine that is separate from user virtual machines.
This is sometimes called a server virtual machine.
A resource adapter-resource manager pair is sim-
ilar to the notion of a client-server pair. If the
resource manager is controlling protected re-
sources, it receives coordination information
from its resource adapter. The resource manager
establishes communication with its recovery
server during resynchronization initialization and
exchanges information that is required during re-
synchronization recovery.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 6 VM/ESA calling structure for VM Coordinated Resource Recovery

CRR VM SFS ER

RECOVERY RESOURCE APPLICATION

SERVER MANAGER PROGRAM
UPDATE

RESOURCE
ADAPTER

CROSS

SYSTEMS
COMMIT CONVERSATION

ALLOCATE VTAM)

VM/ESA provides a Shared File System protected
resource manager. In addition, APPC/VM pro-
tected conversations are supported through the
VM/ESA control program for local conversations
and APPC/VM VTAM support for conversations that
Cross systems.

Sync point manager. The sync point manager is
the part of the CRR facility for CMS that resides in
the application’s virtual machine. When a pro-
tected resource adapter is invoked by the appli-
cation to update a resource, the protected re-
source adapter registers with the sync point
manager to participate in CRR. The sync point
manager coordinates the updating of protected
resources and distributes the coordination of pro-
tected conversations to other sync point manag-
ers.

When the application issues a commit, the sync
point manager controls synchronization point
processing by invoking the participating resource
adapters (i.e., those that have previously regis-
tered) through the following sync point manager
exits:

* Precoordination—Checks participating re-
sources to ensure they are ready for a sync
point

* Coordination—Implements the one-phase and
two-phase commit protocols. It is during this

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

exit that the sync point manager invokes the
recovery server to record the state of the sync
point in its log.

¢ Postcoordination—Performs cleanup process-
ing after a sync point

The following exits are not considered sync point
exits:

* End of work unit—Does cleanup processing be-
fore the work unit ends

* Backout required—Puts the protected resource
manager in a state such that roll back (backout)
is required

Recovery server. The recovery server handles log-
ging for the sync point manager. It receives in-
formation from participating resource managers
during resynchronization initialization that is
used in combination with the sync point manager
log information if a resynchronization recovery
situation occurs. The calling relationships are
shown in Figure 6.

The recovery server also handles resynchroniza-
tion for failing sync points. Resynchronization re-
covery is initiated on the system that originally
issued the sync point. If this is a VM/ESA system,
the recovery server initiates an Exchange-Log-
Names/Compare-States transaction with the re-
source managers invoked from this system. This

MASLAK, SHOWALTER, AND SZCZYGIELSK! 79

Figure 7 Resynchronization recovery initiated from another system

CRR VM SFS USER
RECOVERY RESQURCE APPLICATION
SERVER MANAGER PROGRAM

includes APPC/VM VTAM support if a protected
conversation has been allocated with another sys-
tem. If another system originally issued the sync
point, the recovery server receives an Exchange-
Log-Names/Compare-States transaction through
APPC/VM VTAM support (see Figure 7) and then
initiates an Exchange-Log-Names/Compare-States
transaction with the resource managers invoked
from this system,

Local area network work groups

The virtual-machine structure of VM/ESA can ap-
ply as a model to the real machine structure of a
programmable workstation (PWS) local area net-
work (LAN) work group. Each user runs in a pw$
rather than a user virtual machine. Each user PWs
can contain a sync point manager that communi-
cates with a separate recovery server PWS over
the LAN. User PWSs can also contain protected
resource adapters and a protected conversation
resource adapter to support participation in Co-
ordinated Resource Recovery. They also need
communication facilities to support cross system
conversations. The recovery server on a PWS can
maintain a recovery server log like the VM/ESA
recovery server. Each resource manager can run
in a separate PWS with its own resource manager
recovery log. This allows resynchronization re-
covery even if a user shuts the pwS off at the
wrong time. A PWS structure of this type would

80 MASLAK, SHOWALTER, AND SZCZYGIELSKI

RESQURCE
ADAPTER

CROSS
SYSTEMS
CONVERSATION
SUPPORT
(APPC/WM
VTAM)

also support the connection of a VM/ESA host with
protected resources and a distributed application
on the LAN. See Figure 8 for an example of this
structure.

Applications and CRR

CRR, in combination with the resource managers
that participate in its processing, lets the appli-
cation developer concentrate on the best way to
design the application without having to worry
about data integrity. The application developer
can decide that the best way to design the appli-
cation is a cooperative model where pieces of the
application run in different processors or virtual
machines; the application can also interact with
more than one data repository.

It was recognized during the design of CRR that
applications vary in complexity. Some applica-
tions simply update a file, while some applications
are complicated multiuser servers which manage
the data. Other types of applications vary in their
degree of complexity. The design of CRR and its
interfaces takes into account the complexity of
application designs, but does not make the simple
application complex. CRR requires little to no in-
teraction by an application, and provides inter-
faces when more interaction with CRR is needed
by an application. These application interfaces

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 8 Local area network work group picture

USER
PROGRAMMABLE
WORKSTATION

RESQURCE
ADAPTER

COMMUNICATION FACILITY

USER USER
PROGRAMMABLE PROGRAMMABLE
WORKSTATION WORKSTATION

RESQURCE RESOURCE
ADAPTER ADAPTER
AREA
LT N} N FACILIT
COMMUNICATION FACILITY NETWORK COMMUNICATION FACILITY
PROGRAMMABLE PROGRAMMABLE
WORKSTATION WORKSTATION
PROGRAMMABLE
WORKSTATION

VM/ESA HOST

USER
APPLICATION

VM CONTROL PROGRAM

can influence application performance, applica- Protected resource managers and CRR. The initial
tion error handling, and provide application-spe- release of VM/ESA provides two resource manag-
cific information for support personnel if a failure ers that participate in CRR processing: the Shared
occurs during CRR processing. File System and APPC/VM conversations. These

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 MASLAK, SHOWALTER, AND SZCZYGIELSKI 81

resource managers and any other resource man-
agers that participate in CRR processing are called
protected resource managers. CRR processing in-
volves one or more applications updating pro-
tected resource managers’ objects and requesting
that all the updates be committed or rolled back
to their last commit point. CRR must be told which
resource managers accessed by an application are
protected. When deciding how this was to be
done, two choices were looked at. One was to
have the application identify each resource man-
ager to CRR; the other was to have each resource
manager identify itself to CRR. Related to that was
a question of how and when data (or other ob-
Jjects) owned by a resource manager became pro-
tected. Since data are a corporate asset and since
data resource managers have their own philoso-
phy on data sharing and data authorization, CRR
requires that each protected resource manager
(not the VM/ESA operating system, the application
writer, or application user) decides when and how
it becomes protected. Having the resource man-
ager interact with CRR keeps the control of the
data (object) with the resource manager and the
complexity of interacting with CRR out of the ap-
plication logic. Each resource manager defines
what if anything an application must do to cause
the resource manager and its objects to be pro-
tected.

Generally, an application first interacts with CRR by
issuing a request to a resource manager. The re-
source manager interacts with CRR on the applica-
tion’s behalf. So, for example, an application is-
suing a request to the Shared File System causes
the Shared File System to interact with CRR and
become protected. The Shared File System also
allows the application to have special types of
files, called nonrecoverable files, that are not pro-
tected. Reference 2 explains this in more detail.
As another example, if an application desires a
protected conversation, it indicates so with a syn-
chronization parameter on the APPC/VM or the
Common Programming Interface-Communica-
tions application programming interface. Eachre-
source manager that participates in CRR process-
ing will decide whether or not the application
program has to explicitly ask for the resource
manager to be involved in CRR processing for the
logical unit of work.

Requesting CRR commit/backout. An application
makes changes to objects owned by resource
managers. When the objects changed are pro-

82 MASLAK, SHOWALTER, AND SZCZYGIELSKI

tected, changes are not made permanent until re-
quested by the application. Similarly, the appli-
cation can request that the changes are backed
out to the last commit point.

The first release of the VM/ESA operating system
provides three different ways to make these re-
quests. For new applications, CRR provides the
application with SAA Resource Recovery Inter-
face services. The application calls the commit
service to make the changes to all protected re-
source managers’ objects permanent and the
backout service to roll back the changes to the
last commit point. The result of the Resource Re-
covery Interface call is returned to the applica-
tion.

The Shared File System (SFS) in the VM/SP oper-
ating system provides commit and backout inter-
faces for SFS files; but to provide migration and
coexistence to the VM/ESA operating system for
existing applications that use this interface, the
SFS commit and backout services will call CRR
processing when invoked. The outcome of the
coordinated commit and more detailed error in-
formation for the SFS resource manager is re-
turned to the application. This is the second way
for applications to commit or backout changes to
all protected resource managers’ objects.

The third method is an implicit action by the
VM/ESA operating system. If the application up-
dates protected resource managers’ objects and
returns to the operating system without having
invoked CRR commit or backout services, CMS
issues a CRR commit to all protected resource
managers on the application’s behalf. If the ap-
plication ends abnormally, CMS issues a CRR roll-
back to all protected resource managers on the
application’s behalf. Implicit action by the oper-
ating system provides ease of using CRR and is
also a migration and compatability consideration
for existing applications running on the VM/SP op-
erating system using the SFS. Implicit action is
also taken by cMS for SFS files in the VM/SP op-
erating system.

Customizing CRR. Although explicit CRR appli-
cation action is recommended, from the previous
discussion one can see that in the simplest case,
an application can update protected resource
managers’ objects and end without issuing any
direct calls to CRR. CMS will then take implicit CRR
action.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Because of the structure of CRR and because of
the sync point architecture CRR follows, CRR has
a set of default operational characteristics. Some
applications, however, might want to change
some or all of these default characteristics and
CRR provides a service to change the following
defaults:

¢ Waiting for resynchronization

¢ CRR sync point manager communication with its
recovery server

» Heuristic decision when abnormal failure occurs

Waiting for resynchronization (recovery). If a fail-
ure develops during CRR commit processing, the
SNA LU 6.2 sync point architecture stipulates that
as a default action, CRR completes recovery with
all failed protected resource managers before re-

Sync point processing runs in the
application’s virtual machine and
its recovery and log manager
runs in a separate CRR
recovery machine.

turning to the application. If the application runs
in a batch environment, the application would
probably be written to use the CRR default, or to
wait for recovery to complete before CRR returns
to the application. However, if the application
runs in an interactive environment, it probably
would not be practical to wait until recovery is
complete. In this case, the application program-
mer would want to have CRR return to the appli-
cation after an attempt at recovery is made. CRR
allows an application to override the default and
request CRR to return to the application after at-
tempting recovery with all failed protected re-
source managers. CRR provides recovery with
these failed protected resource managers later
asynchronously. In the former case, the applica-
tion is guaranteed to know the outcome of the
commit request. In the latter case, the CMS inter-
active environment becomes available for the ap-
plication to complete. The application learns the
result of the commit request and that the commit

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

processing has not yet completed. This lets the
end user start more work in its interactive envi-
ronment or to log off.

CRR sync point manager communication with its
recovery server. As explained earlier, CRR’s sync
point processing runs in the application’s virtual
machine and its recovery and log manager runs in
a separate CRR recovery machine. During CRR
processing there is communication between the
two pieces.

When an application issues a commit or starts
protected work for the first time, the CRR sync
point manager must communicate with its recov-
ery server. Typically when this happens, the CRR
sync point manager waits for a response from its
recovery server before other processing can con-
tinue. This is the CRR default mode of operation.
For most applications, it is sufficient if the sync
point manager waits until the recovery server
completes its request. However, there are some
applications that may use CRR, such as a server
machine, that could overlap activities if CRR al-
lowed other processing to continue before the re-
covery server completes the CRR request. CRR al-
lows this default option to be changed. The
application can request that the CRR sync point
manager allow other processing to continue be-
fore processing with the recovery server is com-
plete and avoid serialization in the application. A
server application, for example, can dispatch
other server work. The sync point operation is
redispatched by the server when CRR indicates its
work has completed.

Heuristic decision when abnormal failure occurs.
In rare cases, an abnormal failure occurs during
CRR commit processing causing CRR to make a
heuristic decision (to backout or to commit). In
cases such as protocol violations between distrib-
uted sync point managers, CRR makes a decision
because the decision maker caused the abnormal
failure. CRR has a default heuristic decision which
is to roll back all changes. The application can
change this predetermined heuristic decision ac-
tion to commit all changes.

Giving help if a failure occurs. CRR commit proc-
essing usually completes without errors. How-
ever, a failure can occur. A failure will cause re-
covery to take place. A failure can occur when the
application developer or the application user is
not available. Depending on where a failure oc-

MASLAK, SHOWALTER, AND SZCZYGIELSKI 83

Figure 9 Resource adapter and resource manager inter-
action with CRR

© APPLICATION CRR
RECOVERY
SERVER

RESOURCE CALL COMMIT

RESOURGE i SYNG POINT
ADAPTER MANAGER

N
kS

VM CONTROL PROGRAM

curred in the CRR processing, objects owned by
protected resource managers may be unavailable
until recovery takes place. Support personnel,
however, may receive requests for manual inter-
vention in the CRR process to make the objects
available again. The application is not involved in
recovery, but to help in the recovery process
when manual intervention is requested, an appli-
cation can give the CRR sync point manager in-
formation to store on the CRR log. This informa-
tion, called a transaction tag, can tell the CRR
support personnel the actions to take for this log-
ical unit of work if a recovery condition occurs.
For more information on transaction tags, see
Reference 3.

Problems during CRR processing. If an applica-
tion issues a commit request to CRR, the commit
may not complete successfully or completely.
Since CRR is a global commit of all protected re-
source managers involved in the logical unit of
work, the return code to the CRR commit and
backout function indicates the result of the coor-
dination of all registered resource managers but
does not give separate indications for each. Some
applications desire additional information about
each protected resource manager. The applica-
tion may use this information to correct the prob-
lem that caused the failure; another use could be
to provide information for support personnel in a
common format and then end the application. CRR
provides a service for an application programmer
to access the CRR error information optionally

84 MASLAK, SHOWALTER, AND SZCZYGIELSKI

provided by each protected resource manager. In
the VM/ESA operating system, both the Shared
File System and APPC/VM protected conversa-
tions provide CRR error information. CRR error
information provided by the VM/ESA operating
system protected resource managers are docu-
mented and a routine to format the content of the
error information is also available. The format of
the error information does not have a defined ar-
chitecture.

Resource managers and CRR

As described earlier, applications invoke pro-
tected resource managers and the protected re-
source managers interact with CRR. CRR provides
the rules and interfaces that resource managers
must follow and use, allowing any resource man-
ager to become protected. The resource manager
implements these rules according to its design and
processing.

As a background to understanding the CRR rules
and interfaces for protected resource managers, it
is important to understand the typical VM/ESA op-
erating system resource manager structure for
which they were designed. Figure 9 shows a user
application, a resource manager, and a CRR re-
covery server. It further shows a functional split
between the resource manager and a piece of its
code that resides in the user’s virtual machine,
called the resource adapter. The application in the
user machine makes a resource request. This re-
quest is handled by the resource adapter, which
sends the request to the resource manager for proc-
essing. The resource adapter returns the result of
the request to the application. Resource managers
that have a different structure can determine how
their resource managers functionally relate to the
one described in Figure 9. The figure further shows
the resource adapter’s interaction with the CRR
sync point manager residing in the application’s vir-
tual machine, where the CRR recovery server inter-
acts with both the CRR sync point manager and the
resource manager. Finally, note the application’s
commit request directly interacts with the CRR sync
point manager.

Protected resource managers interact with CRR
for three main functions: registration, coordina-
tion, and recovery. A discussion of each follows
along with discussions of resynchronization, ex-
its, multitasking servers, and support personnel
help.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Registration. As mentioned earlier, when a pro-
tected resource manager is invoked by an appli-
cation, it is the responsibility of the resource man-
ager to interact with CRR. CRR provides a
registration service. Registration is the method
whereby CRR is informed that a resource manager
is protected. Resource managers are required to
register with CRR the first time the protected re-
source manager is invoked by an application and
can unregister when the resource manager is no
longer needed, typically when the application
ends. This registration process is performed by
the resource adapter on behalf of the resource
manager in the virtual machine where the appli-
cation is running,

CRR requires specific information from registering
resource adapters for two purposes. The first is to
know the resource name and the CRR exits for
which the resource manager is to be called when
processing these exits. The second reason for re-
quiring specific information is for recovery if a
failure occurs during CRR commit processing.
Therefore, as part of registration or in subsequent
registration update calls, the resource adapter
supplies information needed by CRR for coordi-
nation and recovery. When CRR processes a
commit request, it writes a log entry that lists all
protected resource managers involved and infor-
mation necessary to contact that resource man-
ager should a failure occur during the commit
process.

To provide for efficient CRR processing, the re-
source adapter indicates if it is updating its re-
source manager and if its resource manager can
support anything besides a two-phase commit.
Normally, a resource adapter indicates it has
made updates (writes) to objects controlled by
this resource manager. If write mode is indicated,
CRR coordination processing performs logging for
this resource adapter, and if a problem occurs
during coordination, recovery will be done. The
design of CRR is also sensitive to resource man-
agers that want the performance benefit of a one-
phase commit call if no other protected resource
manager is registered. CRR allows a resource
adapter that is not representing a protected con-
versation to indicate that it supports a simple
commit call. If this is indicated and there are no
other resource adapters registered for write
mode, CRR coordination calls this registered
adapter with a one-phase commit rather than a
two-phase commit. No logging is done either by

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

CRR or the resource manager. Because no logging
is done in this case, a resource adapter cannot
have a resource manager that distributes resource
requests to another resource manager for the
same logical unit of work.

CRR’s design is also sensitive to resource adapters
working for a back-level resource manager, such
as a VM/SP operating system SFS server, which
does not contain support for a two-phase commit.
In such a case, the resource adapter indicates it
only supports a one-phase commit. (A one-phase
commit indication means no other resource
adapter can be registered for write mode.) If in-
dicated and the resource adapter also indicates
that it is in write mode, CRR will deny the regis-
tration if there are other writers in this unit of
work. CRR will deny subsequent registrations of
other resource adapters if they indicate they are
writers or try to change their write-mode setting.

An alternative approach considered in the CRR
design required all protected resource managers,
which might be accessed by an application, to
register with CRR when the virtual machine first
becomes active and to stay in the list until the
virtual machine becomes inactive. This was
viewed as more costly in terms of performance
since the total registration list had to be scanned
for every call, even if only one resource manager
had been accessed by the application. The design
of CRR did recognize, however, that an applica-
tion may selectively request updates for pro-
tected resource managers’ objects. For example,
an application may update objects in three pro-
tected resource managers, issue a CRR commit;
update two of the same three objects, and issue
another CRR commit. CRR allows most registered
resource adapters to suspend its active participa-
tion in CRR processing until the application up-
dates the protected resource manager’s object
again. At that time the resource adapter can
resume the active registration. This support pro-
vides an efficient method of suspending and re-
suming participation in CRR without going
through the higher overhead of registration and
unregistration. Effective use of this function can
yield better performance.

Resynchronization initialization. As shown in Fig-
ure 9, the resource manager resides in a separate
virtual machine. Resynchronization initialization
takes place between the resource manager virtual
machine and the CRR recovery server virtual

MASLAK, SHOWALTER, AND SZCZYGIELSKI 85

Figure 10 Resource adapter and CRR sync point manager
interaction

RESOURCE
ADAPTER

machine. Resynchronization initialization is a
function initiated by a resource manager after it
becomes available within a processor but before
the first CRR commit is invoked. For later recov-
ery to be possible, the CRR recovery server and
the resource manager must use consistent levels
of log information between them. To ensure con-
sistent log levels between a resource manager and
the CRR recovery server, the resource manager
must exchange log names with the CRR recovery
server where the application invoking the re-
source manager is running. This exchange must
be done before a CRR commit service is re-
quested. To do this, the resource manager needs
information from its resource adapter.

The resource adapter uses a CRR service to obtain
the name of the CRR log and the name of the CRR
recovery server. This information is sent by the
resource adapter to its resource manager where it
is used to determine when to initialize an ex-
change of log names with CRR (recovery server)
and how to connect to the CRR recovery server for
the log name exchange. This interaction is in the
form of an APPC/VM transaction.

Coordination. Once a protected resource man-
ager is registered with CRR, CRR calls the resource
managers registered for a service when the ser-
vice is invoked by an application or the VM/ESA
operating system. Figure 10 shows this interac-
tion. CRR calls resource managers registered for
specific processing. When invoked by CRR, the
exits provide an opportunity for functional cus-
tomization by registered resource adapters.

86 MASLAK, SHOWALTER, AND SZCZYGIELSKI

The main exits taken are those invoked when an
application requests the CRR commit service.
Recognizing that resource adapters may have
some processing to complete before and after its
two-phase commit processing, CRR provides pre-
coordination and postcoordination exits as well
as coordination exits. A precoordination exit call
gives the resource adapter a chance to do proc-
essing (for example, flush buffers) prior to CRR
invoking registered resource managers for the ac-
tual commit or backout processing. A postcoor-
dination call gives the resource adapter a chance
to do necessary processing (for example, free
buffers) before the application receives control.

The main exits for CRR are for coordination. Both
the resource adapter and resource manager must
follow rules established by CRR. The first coor-
dination exit is for the prepare-to-commit func-
tion. At this time the resource manager is in a
state from which it can either commit or backout
its updates. A resource adapter that is not repre-
senting a protected conversation passes the cur-
rent LUWID provided by CRR to its respective re-
source manager. The resource manager must
write the LUWID and its recovery token (i.e., its
specific recovery information) in its log when in-
voked by the resource adapter for a prepare-to-
commit call. After a positive reply to a prepare-
to-commit call, the resource manager gets either
a commit or a backout call. If it receives a commit
call, the resource adapter signals its resource
manager to commit the changes to the object. If
it receives a backout call, the resource adapter
informs its resource manager to backout the
changes to the object.

Recovery. If a failure occurs during CRR’s commit
processing, CRR automatically invokes recovery
processing. The application program and the re-
source adapter are not involved. Recovery takes
place between the CRR recovery server and the
resource manager. This allows recovery to take
place if the virtual machine where the failure oc-
curred is not active and also allows the virtual
machine to continue active processing if recovery
cannot take place. For protected resource man-
agers, CRR defines a recovery interface and rules
for using that interface. If CRR’s recovery server
processes a failure that occurs during CRR’s co-
ordination processing, the CRR recovery server
starts an APPC/VM transaction with the resource
manager’s recovery program using information
passed on registration by the resource adapter

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

and subsequently written by CRR to its log. The
CRR recovery server passes its log name, the
LUWID (recovery token), and the action CRR
wants the resource manager to perform for that
LUWID—that is, commit or backout. CRR expects
the resource manager to pass back its log name as
well as the action the resource manager actually
performed for the LUWID. Resource managers
can allow operator intervention that manually
forces work in doubt to be committed or backed
out before recovery takes place. The resource
manager must remember what specific operator
action occurred. This action, called a heuristic
decision, must be reported during CRR’s recovery
processing.

Other CRR exits. While the coordination exits are
the main calls from CRR, CRR also calls registered
resource adapters if requested when a backout is
required and when cleanup conditions arise.
When a backout-required condition occurs, com-
mit is not allowed. CRR enforces this. However,
CRR recognizes that a resource adapter might also
want to enforce this condition preventing an ap-
plication from doing unnecessary work. There-
fore, when CRR learns of the backout-required
condition, CRR will inform any resource adapter
registered for this exit. The resource adapter is
free to enforce this condition in a resource-
specific way.

CRR also recognizes that resource adapters might
have special cleanup considerations, such as
deallocating APPC/VM conversations. When in-
formed of a cleanup event, CRR will call any re-
source adapter registered for cleanup activities.
The resource adapter can then perform its
cleanup processing, such as freeing buffers, de-
allocating APPC/VM conversations or unregister-
ing from CRR.

Multitasking servers and CRR. CRR recognizes
that its coordination services might be used by
multitasking dispatchers, but that they need the
capability to dispatch other work while CRR does
its processing. For this reason, CRR allows asyn-
chronous responses by resource adapters to its
exit calls. It also provides multitasking dispatch-
ers (for example, servers) with a replaceable wait
routine that allows them to provide an asynchro-
nous exit from CRR. The multitasking dispatcher
can process other work while CRR waits for re-
source adapter responses to complete their work.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Help for system-support personnel, If the applica-
tion, the system, or the communications fail dur-
ing CRR processing, CRR automatically initiates
recovery or handles a request from a distributed
recovery processor for recovery processing.
However, CRR’s design is sensitive to situations
when manual intervention is needed in this re-
covery process. In this case, the system operator
and possibly the system administrator can inter-
vene using CRR recovery server commands. For
a more detailed description of this support, see
Reference 3.

Follow-on considerations

During the initial design of CRR there was exten-
sive interaction with many architecture, re-
search, and development people who are familiar
with resource recovery. This section outlines
some of the key follow-on considerations that
were discussed. Many of these considerations re-
late to extending the usage of resource recovery.
The others relate to improvements to resource
recovery itself.

Extending the usage. Resource recovery as a sys-
tem service needs to be made available in every
distributed application environment. Thus, for
example, the application developer should be
able to distribute the application between CMS
and Operating System/2® and assume the same
resource recovery benefits.

As an open system service, resource recovery
should be supported for new resource types and
communication application program interfaces.
Potential protected resource manager types are
remote procedure calls, messages, queues, and
distribution service objects such as print and
spool.

The resource recovery system service and com-
munication resource managers should operate
with networks operating under non-I1BM standards
that support resource recovery, such as Open
Systems Interconnection (OSI).

For distributed data management, where one re-
source manager accesses one Or more resource
managers for the application, protected conver-
sations should be used between the application
client and protected resource managers. This ex-
ploitation of resource recovery may save the re-

MASLAK, SHOWALTER, AND SZCZYGIELSKI §7

source managers from the need to implement a
unique resource recovery facility.

Media recovery for compound objects should
support resource recovery. Users should be able
to view an object that is made up of multiple file
segments and database segments. They should be
able to archive or backup an object and recall it
without understanding the underlying structure.
The system should handle the media recovery for
the object and be able to take into consideration
the base recovery mechanisms of heterogeneous
resource managers.

A consistent process model for multitasking is
necessary before there can be an architecture for
resource recovery and multitasking. Without the
model, each system and resource manager will
develop its own resource recovery rules relative
to multitasking.

Improvements to resource recovery. VM imple-
mentation of transaction tags should be added to
the communication application program inter-
faces. See Reference 3 for more information on
transaction tags.

CRR uses the general “‘presumed nothing” two-
phased commit protocol. Improved and applica-
tion-specific commit protocols, like ‘“‘presumed
abort,” should be implemented. These are opti-
mizations to the two-phase commit protocol that
may be made applicable to certain classes of ap-
plications, for example, to an application that
only reads data. (See Reference 4.)

Applications should have access to extended er-
ror passback. This is primarily for system man-
agement applications that could provide extended
recovery. For example, an interactive application
could conceivably react to an error by invoking a
system-management application that does media
recovery for a compound object.

Additional system management follow-on en-
hancements are mentioned in Reference 3.

Summary

This paper presents an overview of CRR. The key
conclusions can be summarized as follows: Data
integrity, application enablement, and uniform
system management together can be extended
from the traditional transaction environments to

88 MASLAK, SHOWALTER, AND SZCZYGIELSKI

a personal computing environment like CMS.
Making resource recovery a system service al-
lows new protected data management or data
communication resource managers to be added to
VM or to other systems. The Systems Network
Architecture for recovery is sufficient to allow the
applications and protected resources to be dis-
tributed among a workstation and multiple het-
erogeneous host systems.

Systems Application Architecture, SAA, Virtual Machine/En-
terprise Systems Architecture, VM/ESA, DB2, MVS/ESA,
CICS/ESA, and CICS/VSE are trademarks, and Operating
System/2 is a registered trademark, of International Business
Machines Corporation.

Cited references and note

1. Full names of the subsystems referred to in the text
are Information Management System/Virtual Storage
(IMS/VS), Customer Information Control System (CICS),
Structured Query Language/Data System (SQL/DS), and
DATABASE 2 (DB2). MVS/ESA stands for Multiple Vir-
tual Storage/Enterprise Systems Architecture, and VSE,
Virtual Storage Extended.

2. C. C. Barnes, A. Coleman, J. M. Showalter, and M. L.
Walker, “VM/ESA Support for Coordinated Recovery of
Files,” IBM Systems Journal 30, No. 1, 107-125 (1991, this
issue).

3. R. B. Bennett, W. J. Bitner, M. A. Musa, and M. K.
Ainsworth, “Systems Management for Coordinated Re-
source Recovery,” IBM Systems Journal 30, No. 1,90-106
(1991, this issue).

4. C. Mohan, B. Lindsay, and R. Obermarck, ““Transaction
Management in the R* Distributed Data Base Management
System,” ACM Transactions on Database Systems 11,
No. 4 (December 1986).

General references

J. Gray, Notes on Data Base Operating Systems, Research
Report RJ-2188, IBM Research Division, 650 Harry Road,
San Jose, CA 95120 (February 3, 1978).

B. Lindsay, L. Haas, C. Mohan, P. Wilms, and R. Yost,
“Computation and Communication in R*: A Distributed Da-
tabase Manager,” Proceedings 9th ACM Symposium on Op-
erating Systems Principles, Bretton Woods (October 1983).
C. Mohan, and B. Lindsay, “Efficient Commit Protocols for
the Tree of Processes Model of Distributed Transactions,”
Proceedings 2nd ACM SIGACT/SIGOPS Symposium on
Principles of Distributed Computing, Montreal, Canada (Au-
gust 1983).

SAA Common Programming Interface Communication Ref-
erence, SC26-4399, IBM Corporation; available through IBM
branch offices.

Systems Network Architecture LU 6.2 Reference: Peer Pro-
tocols, SC31-6808, IBM Corporation; available through IBM
branch offices.

VMI/ESA CMS Administration Reference, SC24-5445, IBM
Corporation; available through IBM branch offices.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

VM/ESA CMS Application Development Guide, SC24-5450,
IBM Corporation; available through IBM branch offices.

VM/ESA CMS Application Development Reference, SC24-
5451, IBM Corporation; available through IBM branch of-
fices.

VM/ESA CMS Planning and Administration Guide, SC24-
5445, IBM Corporation; available through IBM branch of-
fices.

VMIESA General Information, GC24-5440, IBM Corpora-
tion; available through IBM branch offices.

Barbara A. Maslak IBM Data Systems Division, Route 17C
and Glendale Drive, Endicott, New York 13760. Ms. Maslak
received a B.S. in mathematics from Marywood College in
1972 and joined IBM in that year. She was involved in the
development of the OS/Virtual System 1 operating system.
Later she worked on various development projects including
ISQL for SQL/DS on the DOS/VSE and VM operating sys-
tems, and QMF/VSE on the DOS/VSE operating system.
Most recently she was involved with the system design of
Coordinated Resource Recovery on the VM operating sys-
tem. She is currently an advisory programmer in the VM/ESA
System Design organization. Ms. Maslak received a First-
Level Invention Award in 1990.

James M. Showalter IBM Data Systems Division, Route 17C
and Glendale Drive, Endicott, New York 13760. Mr. Sho-
walter received a B.S. in mathematics from Clarkson Univer-
sity in 1967 and joined IBM that year. Subsequently, he re-
ceived an M.S. in computer and information science from
Syracuse University in 1979. He has been involved in
DOS/VSE and OS/Virtual System 1 development, VSAM and
QMF for VSE, and SQL/DS development in VSE and the VM
operating systems. Most recently, he was involved in the
Shared File System and Coordinated Resource Recovery in
the VM operating system. He is currently a senior program-
mer in VM/ESA system design. Mr. Showalter received Di-
vision Awards in 1980 and 1983 and a First-Level Invention
Award in 1990.

Thomas J. Szczygilelski IBM Data Systems Division, Route
17C and Glendale Drive, Endicott, New York 13760. Mr. Szc-
zygielski received an M. A. in mathematics from Wayne State
University in 1968 and joined IBM in that year. He was in-
volved in the development of the job entry subsystem and job
management for OS/Virtual System 1. Later he worked on the
system designs for SQL/DS on the DOS/VSE and VM oper-
ating systems, and for the Shared File System and Coordi-
nated Resource Recovery on the VM operating systems. He
is currently a Senior Technical Staff Member working on the
system design for VM/ESA. Mr. Szczygielski received an
QOutstanding Contribution Award for quality in the develop-
ment of parts of the job entry subsystem in 1973, an Out-
standing Innovation Award in 1981, and Corporate Award in
1987 for SQL/DS architecture and development, and a First-
Level Invention Award in 1990.

Reprint Order No. G321-5424.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 MASLAK, SHOWALTER, AND SZCZYGIELSKI 89

