VM/ESA CMS Shared
File System

Discussed is work toward satisfying
requirements on the Conversational Monitor
System (CMS) in the areas of data sharing and
physical DASD space sharing. This work
advances the present CMS file system design
that allows only active read sharing among users
on a single VM system, where each user has a
reserved, private allocation of DASD space for
file data. Described in this paper is the CMS
Shared File System (SFS), which was designed to
satisfy the data sharing and physical DASD
space sharing requirements by providing a pool
of DASD space that is shared among multiple
users. DASD space assigned to the pool is easily
extended, and read/write sharing of individual
files is allowed. Also discussed is SFS security,
usage of Virtual Machine/Enterprise Systems
Architecture™ (VM/ESA™) data spaces for single
system performance, and coordinated resource
recovery to provide file data integrity in the
distributed environment.

his paper discusses the Conversational Mon-

itor System (CMS) Shared File System (SFS),
which was introduced in VM/System Product
(vM/SP) Release 6 and has been enhanced in Vir-
tual Machine/Enterprise Systems Architecture™
(VM/ESA™). The CMS SFS was implemented in or-
der to satisfy long-standing VM requirements in
the areas of file sharing, space sharing, security,
data addressing, transparent remote access, and
data integrity. We first present the traditional CMS
file system, known as the minidisk file system,
which preceded SFS and today coexists with SFS.
The focus is on the portions of the design of the
minidisk file system that motivated the work that
led to the SFS. The following sections discuss the
capabilities and advantages of SFS.

52 STONE, NETTLESHIP, AND CURTISS

by R. L. Stone
T. S. Nettleship
J. Curtiss

Some of the design decisions that were made in
order to have SFS as compatible as possible with
the minidisk file system are then described. A ma-
jor goal of SFS is to have applications that were
written for minidisks run successfully when the
data are moved to SFS. Reasons why applications
may need to change are included. Finally, an ex-
ample of an application that uses SFS is described.

Background

The cMS file system consists of two portions: CMS
minidisks and SFS. A minidisk is a contiguous al-
location of a real DASD volume and is owned by
a VM user. Because a minidisk can be a subset of
a real volume, there can be multiple minidisks on
a real volume. VM users generally have one or
more of these minidisks on which to store their
data in the form of ¢MS format files. The minidisk
portion of the CMs file system is for high-perfor-
mance CMS file access; fuller function is provided
by SFS. Therefore, the placement of any partic-
ular file depends on the characteristics of the us-
age of that file. The rest of this section describes
the design of the minidisk file system that led to
the requirements addressd by SFS.

The ¢MS minidisk file system is a flat file system
in that there is only one directory per CMS

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

minidisk, which contains all file names on that
minidisk. There is no subdirectory support, and
files on the minidisk are owned by the minidisk
owner.

CMS minidisk files and space may be shared, but
only with care. The normal situation is that each
CMS user has a private minidisk that is not shared
with other users, which means that each user has
areserved allocation of DASD space. Unused space
on the minidisk is unavailable to other users, even
for temporary files, which can lead to inefficiency
in space utilization. If a user outgrows an alloca-
tion, a system programmer must create a new mini-
disk on a real volume, allocate the minidisk to that
user, copy the user’s files to the new minidisk,
and remove the old minidisk. Such DASD space
management can become time-consuming,.

The owner of a minidisk may authorize other us-
ers to read or write to that minidisk. Authoriza-
tion is given either by creating and giving to the
other users a read or read/write password, or by
authorizing the other users through a security
product such as the Resource Access Control Fa-
cility (RACF). In either case, these authorized us-
ers then use the LINK command (specifying the
password if that method is used) and the ACCESS
command to initialize usage of the minidisk. Note
that, with either passwords or RACF, sharing is on
a minidisk basis. Thus, if a user has read access
to the minidisk, every file on that minidisk can be
read. If the user has write access, any file on the
minidisk can be created, deleted, or modified.
There are exceptions to these rules, such as file-
mode-0files, but it is generally impossible to grant
another user access to a singie file or a particular
subset of files on the disk or to mix authorizations
such that another user can only read file A but can
modify file B.

The danger in minidisk sharing is that the ACCESS
command reads the minidisk directory into the
user’s storage. The directory contains the names
of each file on the minidisk, its file attributes (e.g.,
record length), and its location on the minidisk.
Having this information in storage is extremely
important in achieving the desired performance.
CMS uses this directory to find files and free space.
Therefore, if the owner creates a new file, other
users must ACCESS the disk again, which rereads
the directory, in order to see the new file. If the
owner erases a file, other users—unless they AC-
CESS again—are apt to think that the file still ex-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

ists. Then, if the owner creates a new file that uses
the same space as the erased file, those other us-
ers may see parts or all of the new file. If multiple
users are sharing the minidisk in write mode, each
user’s CMS acts to control the allocation of space
based on its in-storage directory and allocation map.

Another area in which the minidisk file system
could be improved is that of data integrity. CMS
commits the minidisk (or makes all changes to the
minidisk files permanent) when the last file that
was open for write on the minidisk is closed. It
does this by writing the minidisk directory and
allocation information to the minidisk. If a failure
occurs before this is done, the minidisk contains
the data as they were after the previous commit.
This has two implications: (1) If one program,
with a file open for write, calls a second program
that writes data and closes its files, the data are
not committed until the first program closes its
file. (2) If the second program were to close all
files on that minidisk in order to ensure that its
data are committed, the first program’s data are
also committed. There is only one scope of com-
mit on a minidisk, and that is the entire minidisk.
There is no separation between programs that call
one another.

CMS Shared File System server structure

The desire to extend the capabilities of the CMS
minidisk file system led to the design of a file
server through which one user—in this case the
Shared File System—owns the collection of
minidisks and manages both the physical place-
ment and user access to the data on them. Users
come to the SFS server with file requests across an
advanced program-to-program communication
(APPC/VM) connection.

The collection of minidisks—which are owned
and managed by the SFS virtual machine—is
known as a file pool, and the SFS virtual machine
is called an SFS file pool server machine. The file
pool contains files for a number of users who are
enrolled in the file pool. To manage these user
files, each file pool has a certain number of files
and minidisks devoted to control information.
For example, the POOLDEF file contains informa-
tion necessary to locate all the minidisks in the file
pool. Every file pool needs a control minidisk that
keeps track of all data in the file pool. The control
disk contains a map of all the blocks in the file

STONE, NETTLESHIP, AND CURTISS 5§53

Figure 1 File pool structure

pool. (Each minidisk is divided into sections
called blocks, and each block is 4K bytes long.)
The map tells the file pool server machine which
blocks are being used and which are not.

The last item of the control data is the catalog
storage group, or as it is often called, storage
group 1. The catalogs contain information about
files and directories that exist in the file pool, who
owns them, and who is authorized to read and
write them.

To help protect the integrity of the control data as
well as the user data, a server maintains a log.
Two copies of the log are kept on separate
minidisks. In the logs, the server records changes
to the file pool so that if the system fails in the
middle of an operation, the file pool is not cor-

54 STONE, NETTLESHIP, AND CURTISS

rupted. A log is also needed so that applications
have the ability to roll back and undo changes. It
is recommended that the log minidisks reside on
separate volumes for reasons of performance and
integrity.

The remainder of the space in the file pool is for
user data. To allow control over which users have
files on which minidisks, the server uses a con-
cept called storage groups. A storage group is a
collection of minidisks within the file pool. Each
storage group is identified by a number ranging
from 1 to 32 767. Storage group 1 is for catalog
information, and storage groups 2 through 32 767
are for user data.

For a person to use a file pool, the person must be
enrolled in it. When a person is enrolled, that

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

person can be assigned an allocation of space in
a particular storage group, and files can be cre-
ated using that space. All the person’s files reside
on one or more of the minidisks assigned to the
storage group. The user’s allocation of space is

Users can now group files into a
directory structure for quicker
access and ease of use.

referred to as the user’s file space. The file spaces
of many users can be assigned to a single storage
group. Each user can have, at most, one file space
in a given file pool. There are three kinds of data
stored in a file pool, as shown in Figure 1.

A file space is alogical allocation; that is, no phys-
ical DASD space within the storage group is set
aside for the user. The file pool server allocates
physical disk space as needed until the user
reaches the limit of the allocated file space.

The server tries to allocate blocks evenly from all
physical DASD volumes in the storage group; that
is, the server uses a few blocks on one volume, a
few on the next, and so on. This helps to balance
the input or output activity to the volumes in the
group. Multiple minidisks on a single volume are
not balanced, but are filled sequentially. Thus the
blocks of a user’s file might be scattered among
several DASD volumes. There is no way for a user
to determine where in the storage group the
blocks of a particular file reside.

Data addressing

The cMS minidisk file system is basically a flat file
system. A user can organize the files only at the
minidisk level using user-defined file names and
file types to establish any file structures. The
Shared File System allows users to organize files
within hierarchical directories. Users can now
group files into a directory structure for quicker
access and ease of use. Hierarchical directories
allow the user to organize files in smaller numbers
than on an entire minidisk.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

SFS directory names are as follows:

e Up to eight-character file pool name followed
by a colon (e.g., VMSYSU:)

¢ Up to eight-character user ID, corresponding to
the root directory

e Up to eight-subdirectory names from 1-16 char-
acters, each separated by a period

The file pool name and user ID may be defaulted
to only a period in many cases. For example, each
of the following is a valid way of referencing the
same directory:

®* VMSYSU:USERA.FIRSTSUBDIR.SECONDSUBDIR
* USERA.FIRSTSUBDIR.SECONDSUBDIR
® _FIRSTSUBDIR.SECONDSUBDIR

In order to use the default methods, the SET
FILEPOOL command must be used. It can be
added to a user or system profile; or the default
file pool name can be set in the IPL statement
found in the user’s CP directory.

SFS directories may be accessed by using the
ACCESS command. This allows SFS directories to
be assigned to a CMS file mode letter. Many pro-
grams using the cMs file system can use SFS when
a directory has a file mode associated with it. The
SFS directory is placed in the CMS search order
and operates the same as a CMS minidisk. Even
though SFS has a hierarchical directory structure,
no implicit searching is done within that struc-
ture. The cMS file-mode letter search order is still
the method used to search for files in CMS. In
addition to referencing a file via a CMs file mode
letter, a user may also reference a file using the
directory name along with the file name. Com-
mands such as ACCESS, RENAME, and ERASE al-
low the user to reference a file directly, without
having to access the directory. New CMS program
functions also allow programs (and execs) to di-
rectly reference SFS files.

Another new concept introduced with SFS is the
use of file aliases. A standard CMS file, that is, a
file containing file data, is known within SFS as a
base file. A file alias can be created that is simply
another file name that references the base file
data. No unique data are associated with a file
alias. Aliases are a very powerful tool within SFS.
They allow users to organize their own data bet-
ter. Aliases also allow users to create the means
by which to access other users’ data. For exam-

STONE, NETTLESHIP, AND CURTISS 55

ple, if USERB has granted USERA authority to five
execs each in separate directories, USERA would
ordinarily have to ACCESS all five directories in
the CMS search order to have them available at a

To allow greatest concurrency,
SFS acquires locks
only when needed.

given time. Using aliases, USERA can create a di-
rectory, USERA.USERBEXECS, and create five
aliases in that directory that point to USERB’s five
execs. USERA can then ACCESS USERA.USERB-
EXECS at one file mode letter, and have all the
execs available.

CMS file sharing

The Shared File System provides CMS users with
the ability to share files and file data without hav-
ing to know when the data were changed or hav-
ing to reaccess the owner’s files. Files are shared
at the file level. That is, there are no conflicts
when users are referencing different files. Also,
multiple users can use the same file concurrently.

Multiple readers and one writer may access a file
at the same time. When a user opens a file with the
intent of reading it, that user obtains a consistent
view of the file, even if another user is writing data
to that file. In this way, the user is not given a
partially updated file. This is of particular impor-
tance when considering users who are sharing a
program such as an exec. Users should not be
executing partially updated copies of execs.

File updates are not seen by readers of a file until
the updates are complete and the writer has com-
mitted those updates to the file system. After the
file system has committed these updates, future
readers of the file then see the new—that is, the
now-current—version. However, if any users
opened the file before the updates were commit-
ted, they continue to see the previous version of
the file. In order to see any new updates, users
must close and then reopen the file. This differs

BB STONE, NETTLESHIP, AND CURTISS

from the use of the minidisk file system, which
requires a user to reaccess an entire minidisk to
see the file updates.

Once you have given many users authority to ac-
cess your SFS files, you need a way to avoid con-
current updates to those files. In SFS, this is done
by placing locks on a specified file or directory.
There are two categories of locks, implicit and
explicit. An implicit lock is one that SFS acquires
and releases automatically. To allow greatest
concurrency, SFS acquires locks only when
needed and frees them as soon as possible after
they are no longer needed. An implicit lock may
be acquired when a file is opened. The type and
duration depend on the intent of the open (read or
write) and when the file is closed. This process
can prevent other users from updating the file
while it is being updated, but it does not prevent
other users from reading the file.

CMS provides a way to lock files and directories
explicitly, to prevent simultaneous updates.
When a user is actively working with SFS files and
directories, CMS automatically creates and de-
letes implicit locks. With the CREATE LOCK com-
mand, a user can create an explicit lock on a file,
agroup of files, or a directory. One can also select
the type of lock and its duration. There are three
types of explicit locks:

e Share lock allows authorized users to read the
contents, but no one can make any changes.

e Update lock allows authorized users to read the
contents, but only the lock holder can make
changes.

o Exclusive lock allows only the lock holder to
read and make changes.

There are two lock durations:

o Session lock lasts until the end of the CMS ses-
sion, or until the connection with the server is
broken, unless the user specifically deletes it.

o Lasting lock lasts until it is specifically deleted.

A QUERY LOCK command displays information
about the locks that have been created; a DELETE
LOCK command deletes explicit locks.

In cMs, the 1BM System Product Editor, XEDIT,
allows users to edit SFS files in the same manner
as minidisk files. When several users are XEDITing
afile, explicit locking is necessary because XEDIT

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

reads the file into memory, then closes it. Once a
file is closed, the SFS implicit lock is released and
another user could update the file. The new XEDIT
options LOCK and NOLOCK have been added to
control this process; and the default is LOCK.
XEDIT gets an update session lock on the input file
that the user is editing. Other users trying to
XEDIT the same file can see the file, but receive a
warning message saying that the file cannot be
updated. In a sharing environment, it would be
best to use the NOLOCK option when the user does
not intend to update the file. Thus one user does
not prevent another from updating the file.

File security

The Shared File System gives users the ability to
assign authorities to individual files. One user
thus gives another user authority to read or write
a file by using the GRANT AUTHORITY command.
The authority is controlled by the owner of the
file, and the owner can grant or revoke another
user’s authority to any file or group of files. The
following are authorities for SFS files:

* Read. A user with read authority on a file may
only read that file.

* Write. A user with write authority may read and
write the file.

When granting authority, one user can give au-
thority to another user, a group of users (using
nicknames), or to all users that can connect to the
file pool. For the last case, the original user grants
authority to PUBLIC, thus giving all users the abil-
ity to read or write the file. Like files, the owner
of the directory can grant read or write authority
to other users. Directory authorities are separate
from file authorities. That is, a user who has read
authority on the directory, does not necessarily
have read authority on all the files in that direc-
tory. The directory-level authorities are:

* Read. A user with read authority can see the list
of files in that directory. Read does not imply
that the user can read any of these files. This
authority is required to use the ACCESS com-
mand to reference an SFS directory.

e Write. A user with write authority can add files
to that directory. The files, after they have been
created in the directory, then belong to the
owner of the directory, and the creator of the
file is automatically given write authority to the
file.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

e New read. A user with new read authority has
read authority to future files in the directory;
this, however, does not imply that the user has
read authority on the directory or on any ex-
isting files in that directory.

* New write. A user with new write authority has
read and write authority to future files in the
directory; this, however, does not imply that
the user has write authority on the directory or
on any existing files in that directory.

New read and new write give the directory owner
the ability to grant authority to directories that are
dynamic, without individuaily granting authori-
ties when each new file is added.

With these file and directory authorities, a user
can give access to a file or group of files to a single
user or a group of users. The GRANT command
allows the owner to give other users authority to
files and directories. If USERA wants to give
USERB the ability to use the ACCESS command to
get to the .DATAFILES directory, USERA would
issue the following command:

GRANT AUTH USERA.DATAFILES TO USERB (READ

This gives USERB read authority to the directory
USERA.DATAFILES. If USERA wants to give USERB
read authority to the file USERA DATA in directory
USERA.DATAFILES, USERA issues the following
command:

GRANT AUTH USERA DATA USERA.DATAFILES TO
USERB (READ

Now suppose USERA wants all the users in a nick-
name file TESTDEPT to have write authority on all
future files in USERA.DATAFILES. USERA issues
the following command:

GRANT AUTH USERA.DATAFILES TO TESTDEPT
(NEWWRITE

The difference between granting file-level author-
ity and directory-level authority depends on the
scope of the data one user wants other users to be
able to see. If the granting user wants to give
another user the ability to reference a file but not
the directory, only file-level authority is appro-
priate. An example of this is granting a user read
authority to execute an exec in a granting user’s
tools directory. What the receiving user com-
monly does is to create an alias in the receiving
directory to this exec. In this way, the receiver
does not need the authority on the directory to

STONE, NETTLESHIP, AND CURTISS §7

reference the file. If, on the other hand, one user
wants another user to be able to execute any exec
or program in that directory, the granting user
gives read authority on all files in the directory
and read authority on the directory. This is an
easier way to handle this situation than creating a
large number of aliases.

Along with the authorities that are provided with
SFS, an external security manager can be used to
determine whether a user has access to an SFS file.
RACF, for example, can be installed so that when
a user tries to access an SFS file, SFS passes the
request to RACF to determine whether the user
has the correct authority. If the user has the re-
quired authority, SFS services the request; if not,
an error message is returned to that user.

Types of SFS directories

There are two types of SFS directories. There is a
filecontrol directory that allows users to grant au-
thorities on individual files. All SFS directories in
VM/SP Release 6 are file control directories. The
other SFS directory type is a directory-control di-
rectory, termed dircontrol. This type of directory
resembles a CMS minidisk, and it is new with
VM/ESA Release 1. There are no individual file-
level authorities. If one has read authority on the
directory, that user also has read authority on all
files and all future files in that directory. Also,
only one user can access a dircontrol directory
read-write at a time. All other users receive read-
only access until the user with read-write access
releases the directory.

Another attribute of a dircontrol directory is that
it can be placed in a VM/ESA data space. This func-
tion is available in VM/ESA Release 1.1. The SFS
administrator can assign this attribute to a dir-
control directory. When the directory is ac-
cessed, it is put into a data space by the SFS
server, unless the requester is on a different sys-
tem than the SFS server. When a user references
a file in the data space, CMS obtains the file data
directly from the data space and does not make a
request for data from the SFS server. This can
result in a sizable performance savings. An SFS
directory in a data space can be accessed only in
a read-only mode, similar to a shared segment. If
auser accesses it as a read-write entity, CMS com-
municates with the server in the normal way. Be-
cause a data space can be shared among multiple
virtual machines, a single copy of an SFS directory

B8 STONE, NETTLESHIP, AND CURTISS

and its files can be shared among many users.
Placing a tools library in a data-space-eligible dir-
control directory allows for sharing among users.
Such a placement of tools also yields performance
benefits because of direct access to the files, be-
cause there is no need to communicate with the

Because multiple users are
drawing from the same DASD
space, free space is available.

server machine. It is also possible to take advan-
tage of other SFS functions such as space man-
agement and SFS authorizations.

The following authorities have implications on
both the directory and the files contained in that
directory:

» Directory read. A user with directory read au-
thority has the same authority on the directory
as if it were a CMS minidisk. This implies that
the user has read authority on the directory, all
existing files within the directory, and all future
files within the directory. This authority may be
used only with directory control (dircontrol) di-
rectories.

Directory write. A user with directory write au-
thority has the same authority on the directory
as if it were a CMS minidisk. This implies that
the user has read and write authority on the
directory, on all existing files within the direc-
tory, and on all future files within the directory.
This authority may be used only with directory
control (dircontrol) directories.

These authorities are mutually exclusive with the
read and write authorities on filecontrol directo-
ries. That is, one cannot grant read authority to a
dircontrol directory, or directory read authority
to a filecontrol directory.

Storage management

In the Shared File System, DASD space is allo-
cated as a collection of CMS minidisks that are
owned by the SFS server machine and are not

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

accessible directly by users. This collection of
minidisks is known as the file pool. Minidisks al-
located to the file pool can be grouped into dis-
joint groups known as storage groups. A storage
group is the pool of shared storage defined and set
up by an installation to support a specific user
group. Because multiple users are drawing from
the same pool of DASD space, free (i.e., unused)
space is available for use by multiple users, rather
than the fixed allocation of space on an individual
minidisk. All DASD space in SFS is allocated on
demand in units of 4K-byte blocks. Users do not
hold unused 4K-byte blocks. Unused blocks are
owned by the storage group and thus are available
for other users in that storage group.

The SFS system administrator creates these stor-
age groups. The administrator then gives each
user in that storage group a logical space alloca-
tion known as the user’s file space. File spaces
represent the number of 4K-byte blocks that the
user is allowed within the storage group. Actual
DASD space is allocated only when the space is
needed. The way a file space works can be best
illustrated by an example:

* Suppose storage group 2 has a DASD allocation
of 10 000 blocks and 10 users.

e Assume that each user has a file space of 2000
blocks. Notice, we can make a logical allocation
that is greater than the number of physical
blocks in the storage group, because as of yet,
no one has used any physical DASD space.

» If USERA creates a file that is 500 blocks long,
USERA's available file space is 1500 blocks, and
the available storage group space is 9500
blocks.

A user (USERA) can continue until the 2000-block
file space limit is reached or until all users to-
gether have taken the 10 000 blocks of the storage
group. The SFS system administrator can dynam-
ically increase (or decrease) a user’s file space
and can also add more minidisks to the storage
group to increase the physical storage. Either
way, this allows an installation much greater flex-
ibility to allocate its system’s DASD resources to
users.

Files in SFS are not necessarily contiguous. A ten-
block-long file may be spread over more than one
minidisk within the storage group. SFS keeps
track of where the file blocks are and their proper
order within the file. This management of 4K-byte

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

blocks allows CMS users to have files that are
larger than one minidisk, even larger than one
physical volume. The management of DASD stor-
age by the Shared File System may easily be one
of the greatest benefits to many installations.

Remote access

Files stored in a file pool are shareable across
multiple VM systems. This includes VM systems
connected in a Systems Network Architecture
(SNA) network and VM systems in a Transparent
Services Access Facility (TSAF) collection.

The remote user or application would use the
same interfaces and CMS commands that are
available for local cMSs files. The location of the
server being accessed is transparent to the end
user, with the exception of performance delays
that can be encountered with remote access.

Figure 2 illustrates how an SFS server can be ac-
cessed in relation to a TSAF collection and SNA
network. The diagram shows two nodes within a
TSAF collection. Node vM1 has three virtual ma-
chines, a CMS application, an SFS server, and a
TSAF virtual machine. Node vM2 also contains a
TSAF virtual machine, another CMS application,
and the components necessary to communicate to
an SNA network. VM SNA communication is dis-
cussed in Reference 1. Figure 2 shows that the SFS
server located in node VM1 can be accessed by the
CMS application within vM1. The SFS server also
can be accessed from vM2 through the TSAF vir-
tual machines and from somewhere in the SNA
network.

Some administrative activity is required to make
the user known on the remote system. For local
users and users in the TSAF collection, no special
action is required. For users outside the TSAF col-
lection, the remote user must first be defined to
the local system using APPC/VM directory serv-
ices. Once this is done, a user issues the GRANT
command as though the remote user were local.

The Shared File System allows users to share and
access files through any connected VM system,
thereby giving users the ability to operate (e.g.,
XEDIT) on files on remote VM systems. For ex-
ample, if a CMS user on node VM2 wants to access
files contained on an SFS server on node VM1, the
user simply issues the CMS ACCESS command

STONE, NETTLESHIP, AND CURTISS 59

Figure 2 VM connectivity

" NODE VM2
TSAF VTAM
oMs cms oMs cMs oMS acs acs
oP
SNA NETWORK
’
VM SYSTEM VM SYSTEM NON-VM SYSTEM WORKSTATION NON-I8M
WITH AVS IN A TSAF SUPPORTING SUPPORTING SUPPORTING
AND VTAM COLLECTION LU 6.2 LU 6.2 LU 6.2
WITH AVS
AND VTAM

specifying the filepool and directory name. TSAF
resolves this resource name and routes the re-
quest to vM1. This is totally transparent to the
user that issued the ACCESS command on VM2.

Data integrity

One intent of the SFS design was to remove the
minidisk file system limitation of the minidisk-

60 STONE, NETTLESHIP, AND CURTISS

level commit. In order to do this, SFS initially
provided the following application functions:

* Ability to coordinate the commit of changes to
a user-defined set of files. This set of files is also
known as a commit scope or a CMS work unit
within a single-file pool. The term coordinate
means that either all changes are committed, or
if a failure occurs, all changes are discarded.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

e Ability to discard (roll back) all uncommitted
changes in a CMS work unit

e Ability to have multiple, concurrent, indepen-
dent work units

This allows an application the flexibility to con-
trol the point at which changes are committed
and to separate its changes from those made by
other programs it may invoke or which invoke
the application.

CcMS provides functions for getting and return-
ing work units and for making a particular work
unit the default work unit. The default work unit
is used if the application does not specify a work
unit at the time of the function call. This default
is also used for the FSREAD/FSWRITE interface,
which does not allow a work unit specification.

A work unit is not limited to a single set of files
or a single commit. An application may make
changes to one set of files and commit them, and
then make changes to another set and commit
those changes. A work unit may be used for the
life of the application. VM/SP Release 6 included
the restriction that a commit could not occur
until all files in the work unit were closed.

The following improvements? have been made in
VM/ESA:

¢ Files need not be closed in order to commit
changes. Changes that have been made to files
in the work unit are committed, and open files
remain open.

¢ Coordinated Resource Recovery allows the
work unit to include multiple file pools.

Shared File System command interfaces

SFS functions are provided through new and en-
hanced cMS commands. Most existing CMS com-
mands work with SFS files, and some also allow
one to reference SFS directories, without access-
ing them as file modes. Commands that can ref-
erence SFS directories now accept a directory ID.
This can be in one of the following formats:

 File mode letter of an accessed SFS directory

¢ An SFS directory name

e A plus (+) modification to an accessed direc-
tory name

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

The latter format uses a file mode letter of a cur-
rently accessed directory as a shortcut. For ex-
ample, if the directory, VMSYSU:USERA.TOOLS
were to be accessed at file mode letter B, the
directory VMSYSU:USERA.TOOLS.EXECS could be
accessed by issuing the command ACCESS +
B.EXECS C. The directory accessed at file mode B
(USERA.TOOLS) is substituted in the command to
form the full directory name. This allows users
with extensive directory structures to reduce the
amount of typing needed to reference SFS direc-
tories. There is also a minus (—) syntax that
works similarly to the plus format.

All current cMS commands that use file mode let-
ters will work with accessed SFS directories un-
less they are specifically related to minidisks
(e.g., the FORMAT command). Several CMS com-
mands have been enhanced to also accept a di-
rectory ID, as previously described. These are
ERASE, RENAME, ACCESS, RELEASE, SET, and
QUERY. Both RENAME and ERASE have been mod-
ified to work on SFS directories as well as files.

New CcMS commands that have been added to al-
low users to operate on SFS files and directories
include the following:

* CREATE—Creates aliases, directories, locks,
and empty files

DELETE—Deletes locks

GRANT—Grants authorities to files and directories
LISTDIR—L.ists SFS directories
RELOCATE—Moves SFS files and directories
REVOKE—Removes granted authorities

The Shared File System may also be accessed by
using many of the productivity aids that are com-
monly used today with CMS minidisks. One of
these is DIRLIST, which is a new productivity aid
that has been added to CMS specifically to allow
users to navigate through their SFS directory
structures. This command will display SFS direc-
tories and their subdirectories in a full-screen for-
mat. An example of USERA issuing a DIRLIST com-
mand is shown in Figure 3.

In the example of DIRLIST, all the subdirectories
are under the top directory (USERA, in this case).
If a subdirectory was accessed, the file mode let-
ter is displayed in the column labeled Fm. The
command area (Cmd column) allows users to is-
sue commands to be used on these directories, as
in the case of a directory of files. Also, a com-

STONE, NETTLESHIP, AND CURTISS 61

Figure 3 DIRLIST example screen

b

[T T T T TN - IO A O N I - I

iwﬂelp 2=Refresh
7=Backward 8=Forward

, . JOURNAL
SERVERS : USERA,
SERVERS : USERA.
SERVER8 : USERA.
SERVERB:USERA.
SERVERS8:USERA.
SERVERB:USERA.
SERVER8:USERA.
SERVERS8 : USERA.
SERVERS8 :USERA.
SERVER8:USERA.

SCRIPTFILES
SCRIPTFILES.LETTERS
SCRIPTFILES.MEMOS
SCRIPTFILES.PROFSDOCUMENTS
SESSIONSERVICES
SESSIONSERVICES.MORETOOLS
TEST

TOOLS

TOOLS .EXECS

XXX

3=Quit 4=Sort{fm) 5=Sort{dir) 6=Auth -
9= 10= 1l=Filelist 12=Cursor

mand or function key allows users to navigate
through the directory structure. Using DIRLIST,
the user can go directly to an SFS directory and
operate on the files within that directory. If the
SFS directory is unaccessed, DIRLIST picks an
available file mode and accesses that directory.
When the user exits, the file mode returns to CMS.

Another function that DIRLIST provides is the
ability to see who has authority to a given direc-
tory. If the cursor is placed on the directory,
USERA.JOURNAL, the authorization listing screen
can be shown as in Figure 4.

In this example, USERA owns the directory, all
read, write, new read, and new write authority,
USERB has read authority to the directory, and
USERC has read authority to the directory and also
to future files in that directory.

The command to access the directory of files
(FILELIST in Figure 5) has also been updated to
display files in SFS directories. Here, the directory
SERVERS:USERA.SESSIONSERVICES (displayed on
the second line) is accessed as file mode letter B.

B2 STONE, NETTLESHIP, AND CURTISS

Except for the directory name on the second line,
this screen looks like the normal file directory
(FILELIST) screen to the user. A new function key
definition was also added for SFS directories;
PF10 (SHARE) displays information concerning
SFS sharing attributes. The new SHARE screen
shown in Figure 6 can be displayed by using PF10
from the main FILELIST screen, by specifying the
SHARE option on the FILELIST command or by
setting SHARE as a FILELIST default using the
DEFAULTS command.

In this example, the file names are displayed
along with the type of SFS file (base or alias) and
the authorities the user has on these files. There
are also new function key definitions to check
more information, such as authority information
(PF6) and file aliases (PF9). Note also that USERA
has three aliases to execs that are owned by
USERB. One of these execs is named TIMESTAT.
To learn more about this, place the cursor on that
line and use PF9 (alias), which displays the
ALIALIST screen shown in Figure 7. Here, we can
see that the alias TIMESTAT EXEC points to the file
TESTIT EXEC, in USERB’s directory MYTOOLS.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 4 AUTHLIST (authorization listing) example screen

e ™\
| , o o N
} USERA CAUTHLIST AQ V 165 = Trunc=165 Size=3 Line=1 Col=1 Alt=0
| Directory = SERVERS:USERA.JOURNAL
; Grantee R W NR NW
USERA X X X X
USERB X - = =~
USERC X - X =~
z 1=Help 2=Refresh 3=Return 4=S(Grantee) 5=Sort (W) 6=Sort (R}
: t=Backward 8=Forward 9= 10= 11l=Sort (NW) 12=Sort (NR})
| .) ’ i XEDIT 1 File. }.
N " g 3 RN - T
PR /
Figure 5 FILELIST example screen
£/ o \
)
: USERA FILELIST A0 V 108 Trunc=108 Size=57 Line=1 Col=l -
; Directory = SERVERS:USERA.SESSIONSERVICES
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
WMXSCROL XEDIT Bl V 55 13 1 4/23/90 10:51:13
WINSETUP EXEC Bl V 72 240 4 4/16/90 8:02:58
MORETOOLS B DIR - - - 3/25/90 9:33:2¢4
NQ EXEC Bl F 130 133 5 3/02/90 9:18:22°
WMXCLEAR XEDIT Bl V 55 11 1 2/21/90 13:13:07
WMXPF XEDIT Bl V 52 18 1 2/21/90 13:13:06
WINSET2 EXEC B1 V 72 240 4 2/21/90 13:12:30
QDISK EXEC Bl VvV 72 89 1 2/21/90 13:12:2%
SETWIN EXEC B1 V 114 249 3 2/21/90 13:12:29
QFONE EXEC B6 V 115 611 6 2/21/90 13:12:28
TIMESTAT EXEC Bl V 65 18 1 2/21/90 13:12:28
TIMEST2 EXEC Bl V 65 18 1 2/21/90 13:12:28
QFILES EXEC Bl V 72 109 2 2/21/90 13:12:27
; QNAME EXEC Bl Vv 102 120 1 2/21/90 13:12:27
o SCRL EXEC Bl V 58 18 1 2/21/90 13:12:27
‘ QACC EXEC Bl V 72 81 1 2/21/90 13:12:26
; QCMSPF EXEC Bl V 75 46 1 2/21/80 13:12:26
1=Help 2=Refresh 3=Quit 4=Cancel 5=Sort (dir) 6=Sort (size)
7=Backward 8=Forward 9=FL /n 10=Share 11=XED/FILEL 12=Cursor
e .
§ XEDIT 1,Fi'1ejy
_- . L .

S/

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 STONE, NETTLESHIP, AND CURTISS 63

Figure 6 FILELIST SHARE example screen

r ™
Ve
‘\
USERA FILELIST A0 V 149 Trunc=149 Size=57 Line=1 Col=l
Directory = SERVERS8:USERA.SESSIONSERVICES
Cmd Filename Filetype Fm Owner Type R W
WMXSCROL XEDIT Bl USERA BASE X X
WINSETUP EXEC Bl USERA BASE X X
MORETOOLS B USERA DIR X X
NQ EXEC Bl USERB ALIAS X -
WMXCLEAR XEDIT Bl USERB ALIAS X -
WMXPF XEDIT Bl USERA BASE X X
WINSET2 EXEC Bl USERA BASE X X
QDISK EXEC Bl USERA ALIAS X X
SETWIN EXEC Bl USERA BASE X X
QFONE EXEC B6 USERA BASE X X
TIMESTAT EXEC Bl USERB ALIAS X -~
TIMEST2 EXEC Bl USERA BASE X X
QFILES EXEC Bl USERA BASE X X
QNAME EXEC Bl USERA BASE X X
SCRL EXEC Bl USERA BASE X X
QACC EXEC Bl USERA ALIAS X X
QCMSPF EXEC Bl USERA BASE X X
1=Help 2=Refresh 3=Quit 4=Cancel 5=Sort (dir) 6=Auth
7=Backward B8=Forward 9=Alias 10=Stats 11=XED/FILEL 12=Cursor
mame= >
XEDIT 1 File
-
\.
Figure 7 ALIALIST example screen
4
e R
e N
USERA ALIALIST A0 V 190 Trunc=190 Size=1 Line=1 Col=1 Alt=0
Alias = TIMESTAT EXEC SERVER8:USERA.SESSIONSERVICES
Userid Num Filename Filetype Directory
USERB 1 TESTIT EXEC .MYTOOLS
1=Help 2=Refresh 3=Return 4=Sort (type) 5=Sort (name) 6=Sort(dir)
7=Backward B=Forward 9=S(user) 10= 11= 12=
XEDIT 1 File
/
S

64 STONE, NETTLESHIP, AND CURTISS

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

FILELIST also displays subdirectories and files
within an SFS directory. The subdirectory MORE-
TOOLS is displayed in the FILELIST example
shown in Figure 5. By placing the cursor on the
MORETOOLS line and using PF11 (XED/FILEL), the
MORETOOLS directory is displayed in another
FILELIST screen. Here, PF11 has a dual function.
If the object is a file, XEDIT is called. If the object
is a subdirectory, a FILELIST is done. FILELIST is
sensitive to the type of object the user is looking
at and acts accordingly.

Compatibility

CMS support for file sharing includes support de-
signed to allow existing CMS applications to work
on files managed by the Shared File System with
little or no change to the application. Application
conversion required depends on interfaces used
by the application and whether files are actually
shared.

Existing CMS applications that use any of the fol-
lowing interfaces are supported for files managed
by the Shared File System:

e CMS File System macros
¢ 0S and DOS macro simulation
e REXX file system functions (EXECIO)

Applications that do not share data or that use
read-only sharing and use only published CMS in-
terfaces should run without change. Changes may
be required for applications that use CMs internal
control blocks or CMS internal functions. If an
installation wants to use existing applications to
operate on files that are to be shared among mul-
tiple users with write authority to the files, then
some application changes may be required.

There are fundamental differences between the
way basic file functions work under minidisk level
sharing and the way they work under file level shar-
ing. Many existing CMS file system applications
are written under the assumption that locking and
authorization checking are done at the minidisk
level and that only a single user is authorized to
write to the minidisk. As a result, such applica-
tions are not prepared to deal with exception con-
ditions that can occur in a file-level sharing envi-
ronment (e.g., when encountering file locks).

The existing CMS interfaces have been modified to
run on both minidisk files and shared files. Use of

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

these existing interfaces on shared files protects
the application from conditions that might be true
with shared files that are not true in the minidisk
environment. As a result, an application written
to the old interfaces cannot take full advantage of
the cMS Shared File System functions. It may be
necessary to change the application to use the
new Shared File System program function inter-
face in order to take full advantage of file level
sharing.

There are several instances where CMS tries to
protect applications from compatibility prob-
lems. First, the ACCESS command accesses an-
other user’s directory by default in a read-only
mode, even though the user may have read-write
authority to that directory. The reason for this is
to protect applications that use static file names.
An application running simultaneously on two
virtual machines may be accessing the same di-
rectory and unknowingly at the same time using
the same file. Since the directory was accessed as
read-only by the nonowner, the application re-
ceives an error rather than overlaying the file
data. This may be bypassed by using the
FORCERW option on the ACCESS command to give
applications the ability to access another user’s
directory in a read-write mode.

Another example of trying to protect applications
from compuatibility problems is that of using the
STATE function. If the user issuing the STATE
function to check for the existence of a file does
not have read authority on the file, STATE will not
return a found condition, even though the user
has read authority on the directory and can see
the file name. The same is true with STATEW,
which checks write authority to a file. It will not
find a file in a read-write file mode if the user has
only read authority to that file. New functions in
cMSs are provided for applications that need to get
file and directory information in a file-sharing
environment.

Migration/Coexistence

Existing applications that previously operated on
files on minidisks can now operate on files on
minidisks or in SFS directories. In some cases,
this involves changes to existing application pro-
grams. The number and type of changes depend
on the level of sharing of an application’s data. If
the application is using files on a read-write
minidisk and the user wants to transfer these files

STONE, NETTLESHIP, AND CURTISS 65

to a private read-write SFS directory, the number
and type of changes (if any) to the application are
small.

Private read-write files and read-only sharing. This
environment involves files that are not being
shared (private) or shared but not updated (read-
only sharing). This SFS environment most closely
resembles the use of minidisks. This environment
requires the least number of possible changes for a
CMS application. An application can work un-
changed under any one of the following conditions:

e A file has no authorities granted to other users.

* No aliases have been created for the file.

¢ There are no dependencies on the use of
minidisk addresses.

If either of the first two points is false, then the
files are considered shared. (This is discussed in
the following section.) Existing applications may
or may not require changes. An application must
change so as not to use CMS minidisk addresses
and instead to use SFS directory names. This in-
volves deleting uses of the LINK commands and
changing the minidisk address on the ACCESS
command to the name of the appropriate SFS di-
rectory. If the applications do not depend on CMS
minidisk addresses (i.e., use predefined file
modes) or do not use file system internals, no
changes are necessary.

Read-write sharing. This will be the most common
file-sharing environment. Typically, the owner of
a file grants other users read authority on the file.
When an application opens a file, it receives a
copy of the last committed version of the file. The
data in the file remain consistent until the file is
closed and reopened, during which time the file is
updated. The directory containing this file does not
have to be reaccessed in order to see the changes.

Files for this application can reside on either a
minidisk or in an SFS directory. Existing applica-
tions using File System (FS) macros, as well as
execs using EXECIO, can reference files in SFS di-
rectories. In this case, an application used by ei-
ther the reader or writer may encounter situations
that are new in this file sharing environment. Ap-
plications may have to change to account for any
of the following conditions:

e New CMS return codes. There are some new
CMS return codes to indicate conditions such as

66 STONE, NETTLESHIP, AND CURTISS

a file being locked. An application may have to
be aware of this to work properly in an SFS envi-
ronment.

* Updated strategy for handling temporary files.
A common way to update minidisk files is to
create a temporary file, erase the old file and
rename the temporary file to the old file name.
Using SFS, when the old file is erased, the au-
thorities and aliases associated with the file are
also deleted. Thus, the new file is created, but
the authorities and aliases are lost. When the
temporary file is created, all users who have
been granted new read and new write authority
on the directory also have authority to the file.

¢ Minidisk application assumptions. (1) If one file
on an accessed file mode can be written to, all
files on that file mode can be written to. It is not
necessarily true that a user can write to all files
in a read-write SFS directory. An SFS directory
accessed as read-write may have an alias that
points to a file to which the issuer has read-only
authority. In this case, an error could result
when the user attempts to write to the file through
the alias name. (2) A particular user can always
read or write an existing file. A file may exist but
be locked. Applications that check for the exist-
ence of a file, then assume that they have autho-
rization to read it, may receive CMS return codes
indicating the file is locked. (3) If the file exists,
the user knows it has at least one record of data.
Starting with VM/ESA Release 1.1, SFS supports
empty CMS files. This file will look like a normal
cMs file, except the number of records and num-
ber of blocks used will be zero.

¢ Applications referencing file system internals,
such as file system control blocks, may have to
change.

Many of the existing CMS applications that refer-
ence minidisk files work with little or no changes
to them. The number of changes that must be
made for existing applications depends on the lev-
els of file sharing as described previously. If a
user wants an application to take fuller advantage
of the capabilities of the Shared File System, the
application should be updated using the new ap-
plication interfaces that are described later in this

paper.
Programming interfaces

The enhanced capabilities of the Shared File Sys-
tem can be exploited by both assembler level and
high-level language (HLL) applications. A new

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

feature of cMs provided in VvM/SP Release 6 was
the Callable Services Library (CSL), which con-
tains most application interfaces to the Shared
File System. Thus the CSL interface allows both
assembler and high-level languages, such as FOR-

The Shared File System is
essentially a server machine that
manages many files for many
VM users.

TRAN, PL/1, COBOL, C, and REXX, to call these
services directly from the application. In the past,
when an application required a native VM service
instead of a language-provided service, a high-
level language would have to call an assembler
subroutine to execute that service (such as
FSOPEN). All of the SFS programming interfaces
are contained in a CSL library called vMLIB. This
library is loaded by the vM system profile exec at
initialization time so that the services are present
when needed.

In addition to the standard open, close, read,
write functions, SFS provides many new functions
that are not available on the minidisk file system.
Some of these functions include the following:

s Creating directories and aliases

& Creating and deleting locks

» Granting and revoking of authorities

~ Creating empty files

» Relocating files and directories

» Asynchronous read and write

» Committing file data without closing the file

These functions are all available through the cSL
programming interface. Another function of the
CSL interface is that an application can front-end
the IBM-provided programs. A user can create a
CSL routine with the same name as the 1BM-sup-
plied routine. The 1BM-supplied routine can be
loaded under a different name. The user routine
then gains control when called, takes the indi-
cated actions, and then passes control to the IBM
routine. For example, the DMSOPEN CSL routine

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

allows programs to open an SFS file. This routine
can be loaded by the user under the name
DMSOPENX, and the user can supply a DMSOPEN
routine. The user can now trap a DMSOPEN call
and take some action before passing control to the
IBM DMSOPENX routine to actually open the file.**

SFS administration

The Shared File System is essentially a server
machine that manages many files for many vm
users. Given this, it is necessary to be able to
administer the resources within the SFS file pool.
Administration authority gives access to the re-
sources of a file pool. With this authority, one can
add minidisks to the file pool, enroll and delete
users, and so on. One need not be an enrolled user
to be an administrator. Administrator authority
also gives quasi-ownership of every object stored
in the file pool. The administrator automatically
has write authority on all the base files, aliases,
and directories in the file pool and can do anything
with them that the owners can do.

An SFS administrator’s primary responsibilities
include the following:

» Enrolling and deleting users in a file pool

» Controlling the size of file spaces for individual
users. If a user wants to increase a file space
(e.g., add 500 blocks), an administrator can do
this on line, and the space becomes immediately
available to the user.

~ Adding minidisks to the file pool. This becomes
necessary as the physical storage fills up.
Threshold warnings alert an administrator of
this condition.

~ Backing up the file pool

» Resolving user situations. Having administra-
tor authority allows someone to resolve such
conditions as a user’s placing an explicit lasting
lock on a file and then going away on vacation.

For more information on administrating SFS file
pools, see Reference 5.

An example of SFS usage

Growth of the VM development organization in
recent years has created a need for better and
more efficient methods of managing code
changes. With the large number of people work-
ing on CP and CMS, an automated system of code
control is critical to the on-time delivery of new

STONE, NETTLESHIP, AND CURTISS §7

VM releases. The need for a code library system
led to the development of the 1BM Endicott De-
velopment Library (EDL), one of the first major
applications to be written using the CMS Shared
File System. In the following, EDL refers to the
code library system itself.

Other code libraries are available within IBM, sev-
eral of which were considered for vM code con-
trol. However, during system test, VM develop-
ment is in the practice of installing prerelease VM
on the 1BM Endicott Programming Laboratory
(EPL) production systems as soon as the code is
relatively stable. That means any library system
used by vM developers must be able to run on
code that is one to two releases ahead of the ver-
sion available to customers (and other IBM sites).
None of the other library systems could guarantee
support for that type of environment. Because
VM/SP Release 6 was in system test at the time that
EDL was developed, a code control library was
the best test of a new file system.

EDL provides a wide range of functions used in
code development. One of these is named code
bases. The code base for a release or project is
kept on a set of directories. Each code base is
assigned a name describing what is in it. (For ex-
ample, CMS6+SRV contains code for CMS Release
6 plus all service updates.) This eliminates the
need for most developers to know where the code
is kept. They can simply tell EDL to access the
code base for them. Another function is that of
editing and updating facilities. After a code base
is accessed, EDL functions allow developers to
change the code using XEDIT. The UPDATE facility
of XEDIT is used to make incremental updates in-
volving distinct pieces of code to each of the mod-
ules. Compiling facilities is a function by which
code updates are applied using the UPDATE com-
mand, followed by code compilation. The com-
pile can be done in the developer’s virtual ma-
chine or by a batch machine. System build facilities
are provided so that after the code is updated and
compiled, developers can build a private copy of
the system and test the code before making the up-
dates available to others. Code integration facilities
make it possible to combine new source code up-
dates with the existing base code and previous up-
dates. When code is integrated, it becomes acces-
sible to all of the developers.

The Endicott Development Library (EDL) oper-
ating environment consists of several parts, as

68 STONE, NETTLESHIP, AND CURTISS

shown in Figure 8. The EDL file pool contains the
directories used for each named code base that is
defined in EDL. The directories that are used for
module ownership control are also located there.
EDL programs and tables are kept on an SFS di-
rectory that is accessible to all developers.
This directory is also in the EDL file pool. The
EDLADMIN service machine is enrolled as an ad-
ministrator for the EDL file pool. It processes code
integration requests and also performs a limited
number of privileged file pool requests on behalf
of developers.

The Shared File System function is utilized by
EDL in a number of ways, several of which are
presented in the sections that follow.

SFS is a distributed file system. It is very important
in the EPL computing environment to have dis-
tributed file handling capability, because devel-
opment resources are spread over six computer
systems: Four systems run development-level,
new-release code; one system runs VM/SP HPO Re-
lease 5 CP with vM/sP Release 6 CMS; and one
system runs VM/XA SP 2. With the exception of the
VM/XA system, developers can obtain data in the
EDL file pool from any of the EPL computer systems
via transparent services access facility (TSAF). In
fact, using the facilities provided by APPC/VM VTAM
support (AVS), authorized developers at other 1BM
sites can also access VM source code.

SFS provides better security. In addition to allow-
ing flexibility in accessing source code, SFS also
keeps that code secure, in that no one can gain
access to the VM source code without first being
enrolled in the EDL file pool. Once enrolled, de-
velopers can look at any of the source code for vM
and vM-related products. If there were a need for
subdivisions of security, SFS authorization func-
tions could be used to do that too. (For example,
one might want to limit access only to CMS.)

SFS allows enforcement of module ownership.
With a large number of developers and a large
amount of new function being added to VM, it may
happen that two or more developers need to be
updating a module concurrently. A system of
module ownership was introduced in EDL that
helps in this situation. Primary and secondary
owners are defined for each module in the system.
By default, owners have authority to integrate
changes to the modules they own. If a developer
needs to update a module that that person does

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 8 EDL structure

EDL FILE POOL

-EDL PROGRAMS
AND TABLES
-VM SOURCE CODE

EDLADMIN SERVICE MACHINE

- CODE INTEGRATION

-PRIVILEGED SFS
ADMINISTRATION
COMMANDS

»

ACCESS,
COPYFILE,

LOCK,
QUERY AUTHORITY

S ON BEHALF
e%‘:!glsl..‘EA OF DEVELOPERS
QUERY AUTHORITY,

QUERY LOCK,
RELOCATE

REVOKE AUTHORITY

DEVELOPER'S VIRTUAL MACHINES

|

SENDFILE

not own, the developer can ask a module owner
to grant the authority to integrate the change. The
restricting of unauthorized changes, however, is
not the main intent of module ownership. Such
restriction is merely intended as a formalized
communications channel that allows an owner to
control module updates in an orderly fashion,
without the problems of sequence errors or over-
laying of existing code.

The locking functions in SFS also help during con-
current development. If a developer checks out a
file for updating, others who try to make changes
to the file receive a warning that someone is up-
dating the file. Also, SFS locking functions are
used to keep two developers from integrating
completed code changes for the same module
simultaneously.

SFS simplifies code integration. The actual code
integration process has been greatly improved us-
ing SFS. Before EDL was implemented, develop-
ers would send their completed code changes to
aperson in the Product Control Group (PCG) using

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

the SENDFILE command, then the developer was
required to deliver to the PCG a sheet of paper
listing what had been sent and the code base to
which it belonged. At major code checkpoints,
when a large amount of code was integrated at
one time, this resulted in a mountain of paper.

EDL uses a different approach. The developer cre-
ates a file that lists all the updates to be integrated
into the system. When the code is presented for
integration, EDL takes the following actions:

1. Verifies that all the files listed are in the de-
veloper’s CMS search order

2. Verifies that there are no update locks on any
of the modules being updated

3. Verifies that the developer has authority to in-
tegrate the changes

4. Copies the updates to a staging directory. (All
developers enrolled in the EDL file pool have
write authority to the staging directory.)

When the files have all been copied successfully,
the developer simply presses a key that tells EDL

STONE, NETTLESHIP, AND CURTISS §9

to process the integration. EDL copies the update
list to the staging directory and sends a message
to the EDLADMIN service machine. EDLADMIN
reverifies integration authority, moves the files
into a collection directory, and grants PUBLIC
read authority on the files. Once the files have
been moved to the collection directory, everyone
who is using that code base can see the updates
automatically, because the file information for ac-
cessed SFS directories is always kept up to date in
the user’s machine. From the collection direc-
tory, PCG processes the files, rebuilds the system,
and moves the files to the directory where valid
updates are kept. Each code base uses a different
set of directories, so there is never any confusion
about which updates belong on which base.

EDL continues to grow and evolve. Used daily by
nearly every programmer in the Endicott Pro-
gramming Laboratory, it helps developers get
their jobs done more efficiently. EDL has provided
quantitative benefits by decreasing from hours to
minutes, the amount of time needed to integrate
a change. This allows the PCG to provide daily a
rebuilt system with all new updates applied. (The
process can be done twice a day if necessary.)
Testers find fewer duplicate problems, because
the code-fixes quickly appear in the next system
build. EDL has provided qualitative benefits by
giving developers a consistent set of easy-to-use
interfaces for developing code. Also, by using
EDL and exercising its SFS interfaces during Re-
lease 6 system test, VM development found and
fixed several errors in the new file system. The
development and use of EDL has contributed to a
greater understanding within vM development of
how customers might use SFS and how it can be
improved in the future.

Summary

The intent of this paper is to provide the reader
with an understanding and appreciation of the ca-
pabilities of the CMS Shared File System (SFS).
The design adds to the functions available with
the CMS minidisk file system and is as compatible
as possivle with it.

Specifically, the following areas were addressed
with SFS:

¢ File sharing is allowed at the file level. Individ-
ual users may be granted separate read or read-

70 STONE, NETTLESHIP, AND CURTISS

write authorities for individual files and direc-
tories.

e Space sharing allows a group of users to share
the same physical space and yet have individual
limits on the usage of that space.

e Security permits the owner of data to control
the usage of those data as regulated by user ID,
not by the use of a password.

¢ Data addressing allows a user to create direc-
tories and to organize files in those directories.

e Remote access allows users on separate VM sys-
tems to share the data.

» Data integrity gives the user the assurance that
if a failure occurs the data will be at a pre-
defined, consistent level when operations
resume.

In applications such as the Endicott Development
Library (EDL), the Endicott Programming Labo-
ratory has realized benefits from these capabili-
ties of SFS and is using this experience as one
source of input for future enhancements. SFS has
also provided the laboratory with the ability to
share files and documents among design, devel-
opment, planning, and other organizations.

Virtual Machine/Enterprise Systems Architecture and
VM/ESA are trademarks of International Business Machines
Corporation.

Cited references

1. VM/ESA Connectivity Planning, Administration, and Op-
eration Manual, SC24-5448, IBM Corporation; available
through IBM branch offices or authorized dealers.

2. C. C. Barnes, A. Coleman, J. M. Showalter, and M. L.
Walker, “VM/ESA Support for Coordinated Recovery of
Files,” IBM Systems Journal 30, No. 1, 107-125 (1991, this
issue).

3. VM/IESA CMS Application Development Guide, SC24-
5450-00, IBM Corporation; available through IBM branch
offices or authorized dealers.

4. VM/ESA CMS Application Development Reference,
SC24-5451-00, IBM Corporation; available through IBM
branch offices or authorized dealers.

5. VM/ESA CMS Planning and Administration Guide, SC24-
5445, IBM Corporation; available through IBM branch of-
fices or authorized dealers.

Richard L. Stone IBM Data Systems Division, P.O. Box 6,
Endicott, New York 13760. Mr. Stone is currently an advisory
programmer in VM Product Planning at the Endicott Pro-
gramming Laboratory. He attended Purdue University, West
Lafayette, Indiana, where he received his B.S. degree in
mathematics. He joined IBM in Endicott in 1968 as a junior
programmer in the programming development area. Mr. Stone
spent several years in the VSI1 supervisor development and
project office groups. He was one of the lead designers on the
MV S/Operator Communication Control Facility, VM/Group

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Control System, and CMS Shared File System projects. His
current responsibilities include product planning for VM file
and data management.

T. Scott Nettieship IBM Data Systems Division, P.O. Box 6,
Endicott, New York 13760. Mr. Nettleship is a senior associate
programmer in the CMS File System Development depart-
ment in the Endicott Programming Laboratory. Mr. Nettle-
ship joined IBM in 1983 in Endicott, New York. He has
worked in the development of the Group Control System
(GCS) component of VM. He has worked on the development
of the Shared File System since its inception and continues an
active roll in its current development. Mr. Nettleship is a
coauthor of a Technical Disclosure Bulletin, “VM GCS Dis-
patching Program,” IBM (1985). He is a coauthor of the Tech-
nical Report GCS Overview and Application Example, IBM
(1988). Mr. Nettleship was the CMS GUIDE user group rep-
resentative from 1988 to 1990 and is now an IBM repre-
sentative to the SHARE user group. He received his B.S.
degree from Rutgers University, New Brunswick, New Jer-
sey, in 1982 and his M.S. degree from the State University of
New York at Binghamton in 1987.

Jay Curtiss IBM US Marketing & Services, P.O. Box 81868,
Lincoln, Nebraska 68508. Mr. Curtiss received his B.S. de-
gree in computer science from the University of Nebraska at
Lincoln in 1983. The same year, he joined the Endicott Pro-
gramming Laboratory as a programmer working on the de-
velopment of VM/GCS (Group Control System). He then
worked on performance enhancements in CMS Release 5. In
1985, Mr. Curtiss became an original member of the team that
designed the CMS Shared File System that was announced in
Release 6 of CMS. Since then, he has been involved in many
enhancements to CMS for VM/ESA. At the same time, he was
a member of the team that developed the initial versions of the
Endicott Development Library (EDL). He also served on a
committee assigned to review software invention disclosures
submitted from the IBM Endicott laboratory. Most recently,
Mr. Curtiss transferred to the IBM branch office in Lincoln,
Nebraska, where he is a systems engineer involved in large
systems support.

Reprint Order No. G321-5423.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

STONE, NETTLESHIP, AND CURTISS 71

