
VM/ESA CMS Shared
File System

Discussed is work toward satisfying
requirements on the Conversational Monitor
System (CMS) in the areas of data sharing and
physical DASD space sharing. This work
advances the present CMS file system design
that allows only active read sharing among users
on a single VM system, where each user has a
reserved, private allocation of DASD space for
file data. Described in this paper is the CMS
Shared File System (SFS), which was designed to
satisfy the data sharing and physical DASD
space sharing requirements by providing a pool
of DASD space that is shared among multiple
users. DASD space assigned to the pool is easily
extended, and readwrite sharing of individual
files is allowed. Also discussed is SFS security,
usage of Virtual Machine/Enterprise Systems
Architecture" (VMIESA") data spaces for single
system performance, and coordinated resource
recovery to provide file data integrity in the
distributed environment.

T his paper discusses the Conversational Mon-
itor System (CMS) Shared File System (SFS),

which was introduced in VM/System Product
(VM/SP) Release 6 and has been enhanced in Vir-
tual Machine/Enterprise Systems ArchitectureTM
(VM/ESATM). The CMS SFS was implemented in or-
der to satisfy long-standing VM requirements in
the areas of file sharing, space sharing, security,
data addressing, transparent remote access, and
data integrity. We first present the traditional CMS
file system, known as the minidisk file system,
which preceded SFS and today coexists with SFS.
The focus is on the portions of the design of the
minidisk file system that motivated the work that
led to the SFS. The following sections discuss the
capabilities and advantages of SFS.

by R. L. Stone
T. S. Nettleship
J. Curtiss

Some of the design decisions that were made in
order to have SFS as compatible as possible with
the minidisk file system are then described. A ma-
jor goal of SFS is to have applications that were
written for minidisks run successfully when the
data are moved to SFS. Reasons why applications
may need to change are included. Finally, an ex-
ample of an application that uses SFS is described.

Background

The CMS file system consists of two portions: CMS
minidisks and SFS. A minidisk is a contiguous al-
location of a real DASD volume and is owned by
a VM user. Because a minidisk can be a subset of
a real volume, there can be multiple minidisks on
a real volume. VM users generally have one or
more of these minidisks on which to store their
data in the form of CMS format files. The minidisk
portion of the CMS file system is for high-perfor-
mance CMS file access; fuller function is provided
by SFS. Therefore, the placement of any partic-
ular file depends on the characteristics of the us-
age of that file. The rest of this section describes
the design of the minidisk file system that led to
the requirements addressd by SFS.

The CMS minidisk file system is a flat file system
in that there is only one directory per CMS

Wopyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

minidisk, which contains all file names on that
minidisk. There is no subdirectory support, and
files on the minidisk are owned by the minidisk
owner.

CMS minidisk files and space may be shared, but
only with care. The normal situation is that each
CMS user has a private minidisk that is not shared
with other users, which means that each user has
a reserved allocation of DASD space. Unused space
on the minidisk is unavailable to other users, even
for temporary files, which can lead to inefficiency
in space utilization. If a user outgrows an alloca-
tion, a system programmer must create a new mini-
disk on a real volume, allocate the minidisk to that
user, copy the user’s files to the new minidisk,
and remove the old minidisk. Such DASD space
management can become time-consuming.

The owner of a minidisk may authorize other us-
ers to read or write to that minidisk. Authoriza-
tion is given either by creating and giving to the
other users a read or read/write password, or by
authorizing the other users through a security
product such as the Resource Access Control Fa-
cility (RACF). In either case, these authorized us-
ers then use the LINK command (specifying the
password if that method is used) and the ACCESS
command to initialize usage of the minidisk. Note
that, with either passwords or RACF, sharing is on
a minidisk basis. Thus, if a user has read access
to the minidisk, every file on that minidisk can be
read. If the user has write access, any file on the
minidisk can be created, deleted, or modified.
There are exceptions to these rules, such as file-
mode-0 files, but it is generally impossible to grant
another user access to a single file or a particular
subset of files on the disk or to mix authorizations
such that another user can only read file A but can
modify file B.

The danger in minidisk sharing is that the ACCESS
command reads the minidisk directory into the
user’s storage. The directory contains the names
of each file on the minidisk, its file attributes (e.g.,
record length), and its location on the minidisk.
Having this information in storage is extremely
important in achieving the desired performance.
CMS uses this directory to find files and free space.
Therefore, if the owner creates a new file, other
users must ACCESS the disk again, which rereads
the directory, in order to see the new file. If the
owner erases a file, other users-unless they AC-
CESS again-are apt to think that the file still ex-

IBM SYSTEMS JOURNAL, VOL 30, NO 1. 1991

ists. Then, if the owner creates a new file that uses
the same space as the erased file, those other us-
ers may see parts or all of the new file. If multiple
users are sharing the minidisk in write mode, each
user’s CMS acts to control the allocation of space
based on its in-storage directory and allocation map.

Another area in which the minidisk file system
could be improved is that of data integrity. CMS
commits the minidisk (or makes all changes to the
minidisk files permanent) when the last file that
was open for write on the minidisk is closed. It
does this by writing the minidisk directory and
allocation information to the minidisk. If a failure
occurs before this is done, the minidisk contains
the data as they were after the previous commit.
This has two implications: (1) If one program,
with a file open for write, calls a second program
that writes data and closes its files, the data are
not committed until the first program closes its
file. (2) If the second program were to close all
files on that minidisk in order to ensure that its
data are committed, the first program’s data are
also committed. There is only one scope of com-
mit on a minidisk, and that is the entire minidisk.
There is no separation between programs that call
one another.

CMS Shared File System server structure

The desire to extend the capabilities of the CMS
minidisk file system led to the design of a file
server through which one user-in this case the
Shared File System-owns the collection of
minidisks and manages both the physical place-
ment and user access to the data on them. Users
come to the SFS server with file requests across an
advanced program-to-program communication
(APPCNM) connection.

The collection of minidisks-which are owned
and managed by the SFS virtual machine-is
known as afile poof, and the SFS virtual machine
is called an SFSjile pool server machine. The file
pool contains files for a number of users who are
enrolled in the file pool. To manage these user
files, each file pool has a certain number of files
and minidisks devoted to control information.
For example, the POOLDEF file contains informa-
tion necessary to locate all the minidisks in the file
pool. Every file pool needs a control minidisk that
keeps track of all data in the file pool. The control
disk contains a map of all the blocks in the file

STONE, NETTLESHIP, AND CURTISS 53

pool. (Each minidisk is divided into sections
called blocks, and each block is 4K bytes long.)
The map tells the file pool server machine which
blocks are being used and which are not.

The last item of the control data is the catalog
storage group, or as it is often called, storage
group 1. The catalogs contain information about
files and directories that exist in the file pool, who
owns them, and who is authorized to read and
write them.

To help protect the integrity of the control data as
well as the user data, a server maintains a log.
Two copies of the log are kept on separate
minidisks. In the logs, the server records changes
to the file pool so that if the system fails in the
middle of an operation, the file pool is not cor-

54 STONE, NEULESHIP, AND CURTISS

person can be assigned an allocation of space in
a particular storage group, and files can be cre-
ated using that space. All the person’s files reside
on one or more of the minidisks assigned to the
storage group. The user’s allocation of space is

Users can now group files into a
directory structure for quicker

access and ease of use.

~ ~~ ~~ ~ ~~

referred to as the user’s file space. The file spaces
of many users can be assigned to a single storage
group. Each user can have, at most, one file space
in a given file pool. There are three kinds of data
stored in a file pool, as shown in Figure 1.

A file space is alogical allocation; that is, no phys-
ical DASD space within the storage group is set
aside for the user. The file pool server allocates
physical disk space as needed until the user
reaches the limit of the allocated file space.

The server tries to allocate blocks evenly from all
physical DASD volumes in the storage group; that
is, the server uses a few blocks on one volume, a
few on the next, and so on. This helps to balance
the input or output activity to the volumes in the
group. Multiple minidisks on a single volume are
not balanced, but are filled sequentially. Thus the
blocks of a user’s file might be scattered among
several DASD volumes. There is no way for a user
to determine where in the storage group the
blocks of a particular file reside.

Data addressing
The CMS minidisk file system is basically aflatfile
system. A user can organize the files only at the
minidisk level using user-defined file names and
file types to. establish any file structures. The
Shared File System allows users to organize files
within hierarchical directories. Users can now
group files into a directory structure for quicker
access and ease of use. Hierarchical directories
allow the user to organize files in smaller numbers
than on an entire minidisk.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

SFS directory names are as follows:

Up to eight-character file pool name followed

Up to eight-character user ID, corresponding to

Up to eight-subdirectory names from 1-16 char-

by a colon (e.g., VMSYSU:)

the root directory

acters, each separated by a period

The file pool name and user ID may be defaulted
to only a period in many cases. For example, each
of the following is a valid way of referencing the
same directory:

VMSYSU:USERA.FIRSTSUBDIR.SECONDSUBDIR
USERA.FIRSTSUBDIR.SECONDSUBDIR
.FIRSTSUBDIR.SECONDSUBDIR

In order to use the default methods, the SET
FILEPOOL command must be used. It can be
added to a user or system profile; or the default
file pool name can be set in the IPL statement
found in the user’s CP directory.

SFS directories may be accessed by using the
ACCESS command. This allows SFS directories to
be assigned to a CMS file mode letter. Many pro-
grams using the CMS file system can use SFS when
a directory has a file mode associated with it. The
SFS directory is placed in the CMS search order
and operates the same as a CMS minidisk. Even
though SFS has a hierarchical directory structure,
no implicit searching is done within that struc-
ture. The CMS file-mode letter search order is still
the method used to search for files in CMS. In
addition to referencing a file via a CMS file mode
letter, a user may also reference a file using the
directory name along with the file name. Com-

low the user to reference a file directly, without
having to access the directory. New CMS program
functions also allow programs (and execs) to di-
rectly reference SFS files.

Another new concept introduced with SFS is the
use of file aliases. A standard CMS file, that is, a
file containing file data, is known within SFS as a
basefile. AJile alias can be created that is simply
another file name that references the base file
data. No unique data are associated with a file
alias. Aliases are a very powerful tool within SFS.
They allow users to organize their own data bet-
ter. Aliases also allow users to create the means
by which to access other users’ data. For exam-

mands such as ACCESS, RENAME, and ERASE d-

STONE, I UETLESHIP, AND CURTISS 55

ple, if USERB has granted USERA authority to five
execs each in separate directories, USERA would
ordinarily have to ACCESS all five directories in
the CMS search order to have them available at a

To allow greatest concurrency,
SFS acquires locks
only when needed.

given time. Using aliases, USERA can create a di-
rectory, USERA.USERBEXECS, and create five
aliases in that directory that point to USERB’s five

EXECS at one file mode letter, and have all the
execs available.

CMS file sharing

The Shared File System provides CMS users with
the ability to share files and file data without hav-
ing to know when the data were changed or hav-
ing to reaccess the owner’s files. Files are shared
at the file level. That is, there are no conflicts
when users are referencing different files. Also,
multiple users can use the same file concurrently.

Multiple readers and one writer may access a file
at the same time. When a user opens a file with the
intent of reading it, that user obtains a consistent
view of the file, even if another user is writing data
to that file. In this way, the user is not given a
partially updated file. This is of particular impor-
tance when considering users who are sharing a
program such as an exec. Users should not be
executing partially updated copies of execs.

File updates are not seen by readers of a file until
the updates are complete and the writer has com-
mitted those updates to the file system. After the
file system has committed these updates, future
readers of the file then see the new-that is, the
now-current-version. However, if any users
opened the file before the updates were commit-
ted, they continue to see the previous version of
the file. In order to see any new updates, users
must close and then reopen the file. This differs

execs. USERA can then ACCESS USERA.USERB-

56 STONE, NETTLESHIP. AND CURTISS

from the use of the minidisk file system, which
requires a user to reaccess an entire minidisk to
see the file updates.

Once you have given many users authority to ac-
cess your SFS files, you need a way to avoid con-
current updates to those files. In SFS, this is done
by placing locks on a specified file or directory.
There are two categories of locks, implicit and
explicit. An implicit lock is one that SFS acquires
and releases automatically. To allow greatest
concurrency, SFS acquires locks only when
needed and frees them as soon as possible after
they are no longer needed. An implicit lock may
be acquired when a file is opened. The type and
duration depend on the intent of the open (read or
write) and when the file is closed. This process
can prevent other users from updating the file
while it is being updated, but it does not prevent
other users from reading the file.

CMS provides a way to lock files and directories
explicitly, to prevent simultaneous updates.
When a user is actively working with SFS files and
directories, CMS automatically creates and de-
letes implicit locks. With the CREATE LOCK com-
mand, a user can create an explicit lock on a file,
agroup of files, or a directory. One can also select
the type of lock and its duration. There are three
types of explicit locks:

Share lock allows authorized users to read the
contents, but no one can make any changes.
Update lock allows authorized users to read the
contents, but only the lock holder can make
changes.
Exclusive lock allows only the lock holder to
read and make changes.

There are two lock durations:

Session lock lasts until the end of the CMS ses-
sion, or until the connection with the server is
broken, unless the user specifically deletes it.
Lasting lock lasts until it is specifically deleted.

A QUERY LOCK command displays information
about the locks that have been created; a DELETE
LOCK command deletes explicit locks.

In CMS, the IBM System Product Editor, XEDIT,
allows users to edit SFS files in the same manner
as minidisk files. When several users are XEDITing
a file, explicit locking is necessary because XEDIT

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

reads the file into memory, then closes it. Once a

another user could update the file. The new XEDIT
options LOCK and NOLOCK have been added to
control this process; and the default is LOCK.
XEDIT gets an update session lock on the input file
that the user is editing. Other users trying to
XEDIT the same file can see the file, but receive a
warning message saying that the file cannot be
updated. In a sharing environment, it would be

not intend to update the file. Thus one user does
not prevent another from updating the file.

File security

The Shared File System gives users the ability to
assign authorities to individual files. One user
thus gives another user authority to read or write
a file by using the GRANT AUTHORITY command.
The authority is controlled by the owner of the
file, and the owner can grant or revoke another
user’s authority to any file or group of files. The
following are authorities for SFS files:

Read. A user with read authority on a file may

Write. A user with write authority may read and

1 file is closed, the SFS implicit lock is released and

I best to use the NOLOCK option when the user does

only read that file.

write the file.

When granting authority, one user can give au-
thority to another user, a group of users (using
nicknames), or to all users that can connect to the
file pool. For the last case, the original user grants
authority to PUBLIC, thus giving all users the abil-
ity to read or write the file. Like files, the owner
of the directory can grant read or write authority
to other users. Directory authorities are separate
from file authorities. That is, a user who has read
authority on the directory, does not necessarily
have read authority on all the files in that direc-
tory. The directory-level authorities are:

Read. A user with read authority can see the list
of files in that directory. Read does not imply
that the user can read any of these files. This
authority is required to use the ACCESS com-
mand to reference an SFS directory.
Write. A user with write authority can add files
to that directory. The files, after they have been
created in the directory, then belong to the

file is automatically given write authority to the
file.

I owner of the directory, and the creator of the

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

New read. A user with new read authority has
read authority to future files in the directory;
this, however, does not imply that the user has
read authority on the directory or on any ex-
isting files in that directory.
New write. A user with new write authority has
read and write authority to future files in the
directory; this, however, does not imply that
the user has write authority on the directory or
on any existing files in that directory.

New read and new write give the directory owner
the ability to grant authority to directories that are
dynamic, without individually granting authori-
ties when each new file is added.

With these file and directory authorities, a user
can give access to a file or group of files to a single
user or a group of users. The GRANT command
allows the owner to give other users authority to
files and directories. If USERA wants to give
USERB the ability to use the ACCESS command to
get to the .DATAFILES directory, USERA would
issue the following command:

GRANT AUTH USERA.DATAFILES TO USERB (READ

This gives USERB read authority to the directory
USERA.DATAFILES. If USERA wants to give USERB
read authority to the file USERA DATA in directory

command:
USERA.DATAFILES, USERA issues the following

GRANT AUTH USERA DATA USERA.DATAFILES TO
USERB (READ

Now suppose USERA wants all the users in a nick-
name file TESTDEPT to have write authority on all
future files in USERA.DATAFILES. USERA issues
the following command:
GRANT AUTH USERA.DATAFILES TO TESTDEPT
(NEWWRITE

The difference between granting file-level author-
ity and directory-level authority depends on the
scope of the data one user wants other users to be
able to see. If the granting user wants to give
another user the ability to reference a file but not
the directory, only file-level authority is appro-
priate. An example of this is granting a user read
authority to execute an exec in a granting user’s
tools directory. What the receiving user com-
monly does is to create an alias in the receiving
directory to this exec. In this way, the receiver
does not need the authority on the directory to

STONE, NETTLESHIP, AND CURTISS 57

reference the file. If, on the other hand, one user
wants another user to be able to execute any exec
or program in that directory, the granting user
gives read authority on all files in the directory
and read authority on the directory. This is an
easier way to handle this situation than creating a
large number of aliases.

Along with the authorities that are provided with
SFS, an external security manager can be used to
determine whether a user has access to an SFS file.
RACF, for example, can be installed so that when
a user tries to access an SFS file, SFS passes the
request to RACF to determine whether the user
has the correct authority. If the user has the re-
quired authority, SFS services the request; if not,
an error message is returned to that user.

Types of SFS directories

There are two types of SFS directories. There is a
Jilecontrol directory that allows users to grant au-
thorities on individual files. All SFS directories in
VM/SP Release 6 are file control directories. The
other SFS directory type is a directory-control di-
rectory, termed dircontrol. This type of directory
resembles a CMS minidisk, and it is new with
VM~ESA Release 1. There are no individual file-
level authorities. If one has read authority on the
directory, that user also has read authority on all
files and all future files in that directory. Also,
only one user can access a dircontrol directory
read-write at a time. All other users receive read-
only access until the user with read-write access
releases the directory.

Another attribute of a dircontrol directory is that
it can be placed in a VM/ESA data space. This func-
tion is available in VM/ESA Release 1.1. The SFS
administrator can assign this attribute to a dir-
control directory. When the directory is ac-
cessed, it is put into a data space by the SFS
server, unless the requester is on a different sys-
tem than the SFS server. When a user references
a file in the data space, CMS obtains the file data
directly from the data space and does not make a
request for data from the SFS server. This can
result in a sizable performance savings. An SFS
directory in a data space can be accessed only in
a read-only mode, similar to a shared segment. If
a user accesses it as a read-write entity, CMS com-
municates with the server in the normal way. Be-
cause a data space can be shared among multiple
virtual machines, a single copy of an SFS directory

58 STONE, NETTLESHIP, AND CURTISS

accessible directly by users. This collection of

located to the file pool can be grouped into dis-
joint groups known as storage groups. A storage
group is the pool of shared storage defined and set
up by an installation to support a specific user
group. Because multiple users are drawing from
the same pool of DASD space, free (i.e., unused)
space is available for use by multiple users, rather
than the fixed allocation of space on an individual

demand in units of 4K-byte blocks. Users do not
hold unused 4K-byte blocks. Unused blocks are
owned by the storage group and thus are available
for other users in that storage group.

The SFS system administrator creates these stor-
age groups. The administrator then gives each
user in that storage group a logical space alloca-

represent the number of 4K-byte blocks that the
user is allowed within the storage group. Actual

needed. The way a file space works can be best
illustrated by an example:

Suppose storage group 2 has a DASD allocation
of 10 000 blocks and 10 users.
Assume that each user has a file space of 2000
blocks. Notice, we can make a logical allocation
that is greater than the number of physical
blocks in the storage group, because as of yet,
no one has used any physical DASD space.
If USERA creates a file that is 500 blocks long,
USERA’S available file space is 1500 blocks, and
the available storage group space is 9500
blocks.

b minidisks is known as the file pool. Minidisks al-

1 minidisk. All DASD space in SFS is allocated on

1 tion known as the user’s file space. File spaces

I DASD space is allocated only when the space is

i

i
1

I

~

A user (USERA) can continue until the 2000-block
file space limit is reached or until all users to-
gether have taken the 10 000 blocks of the storage
group. The SFS system administrator can dynam-
ically increase (or decrease) a user’s file space
and can also add more minidisks to the storage
group to increase the physical storage. Either

i way, this allows an installation much greater flex-
ibility to allocate its system’s DASD resources to

1 users.

I block-long file may be spread over more than one
1 minidisk within the storage group. SFS keeps

Files in SFS are not necessarily contiguous. A ten-

track of where the file blocks are and their proper
order within the file. This management of 4K-byte

IBM SYSTEMS JOURNAL, VOL 30, NO 1. 1991

blocks allows CMS users to have files that are
larger than one minidisk, even larger than one
physical volume. The management of DASD stor-
age by the Shared File System may easily be one
of the greatest benefits to many installations.

Remote access

Files stored in a file pool are shareable across
multiple VM systems. This includes VM systems
connected in a Systems Network Architecture
(SNA) network and VM systems in a Transparent
Services Access Facility (TSAF) collection.

The remote user or application would use the
same interfaces and CMS commands that are
available for local CMS files. The location of the
server being accessed is transparent to the end
user, with the exception of performance delays
that can be encountered with remote access.

Figure 2 illustrates how an SFS server can be ac-
cessed in relation to a TSAF collection and SNA
network. The diagram shows two nodes within a
TSAF collection. Node VMl has three virtual ma-
chines, a CMS application, an SFS server, and a
TSAF virtual machine. Node VM2 also contains a
TSAF virtual machine, another CMS application,
and the components necessary to communicate to
an SNA network. VM SNA communication is dis-
cussed in Reference 1. Figure 2 shows that the SFS
server located in node VMl can be accessed by the
CMS application within VMl. The SFS server also
can be accessed from VM2 through the TSAF vir-
tual machines and from somewhere in the SNA
network.

Some administrative activity is required to make
the user known on the remote system. For local
users and users in the TSAF collection, no special
action is required. For users outside the TSAF col-
lection, the remote user must first be defined to
the local system using APPCNM directory serv-
ices. Once this is done, a user issues the GRANT
command as though the remote user were local.

The Shared File System allows users to share and
access files through any connected VM system,
thereby giving users the ability to operate (e.g.,
XEDIT) on files on remote VM systems. For ex-
ample, if a CMS user on node VM2 wants to access
files contained on an SFS server on node VMl, the
user simply issues the CMS ACCESS command

STONE, NETTLESHIP, AND CURTISS 59

Figure 2 VM connectivity

I
VM SYSTEM VM SYSTEM
WITH AVS IN A TSAF

NON-VM SYSTEM WORKSTATION
SUPPORTING

NON-IBM

AND VTAM COLLECTION LU 6.2 LU 6.2 LU 6.2
SUPPORTING

WITH AVS
AND VTAM

SUPPORTING

specifying the filepool and directory name. TSAF
resolves this resource name and routes the re-
quest to VM1. This is totally transparent to the
user that issued the ACCESS command on VM2.

Data integrity

One intent of the SFS design was to remove the
minidisk file system limitation of the minidisk-

level commit. In order to do this, SFS initially
provided the following application functions:

Ability to coordinate the commit of changes to
a user-defined set of files. This set of files is also
known as a commit scope or a CMS work unit
within a single-file pool. The term coordinate
means that either all changes are committed, or
if a failure occurs, all changes are discarded.

60 STONE, NEITLESHIP, AND CURTISS IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

f

Ability to discard (roll back) all uncommitted

Ability to have multiple, concurrent, indepen-
dent work units
This allows an application the flexibility to con-
trol the point at which changes are committed
and to separate its changes from those made by
other programs it may invoke or which invoke
the application.

CMS provides functions for getting and return-
ing work units and for making a particular work
unit the default work unit. The default work unit
is used if the application does not specify a work
unit at the time of the function call. This default
is also used for the FSREADIFSWRITE interface,
which does not allow a work unit specification.

A work unit is not limited to a single set of files

changes to one set of files and commit them, and
then make changes to another set and commit
those changes. A work unit may be used for the
life of the application. VM/SP Release 6 included
the restriction that a commit could not occur
until all files in the work unit were closed.

1 changes in a CMS work unit

I

l or a single commit. An application may make

The following improvements2 have been made in
1 VMIESA:

I
Files need not be closed in order to commit
changes. Changes that have been made to files
in the work unit are committed, and open files
remain open.
Coordinated Resource Recovery allows the
work unit to include multiple file pools.

Shared File System command interfaces

SFS functions are provided through new and en-
hanced CMS commands. Most existing CMS com-
mands work with SFS files, and some also allow
one to reference SFS directories, without access-
ing them as file modes. Commands that can ref-
erence SFS directories now accept a directory ID.
This can be in one of the following formats:

File mode letter of an accessed SFS directory
An SFS directory name
A plus (+) modification to an accessed direc-
tory name

~ IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

The latter format uses a file mode letter of a cur-
rently accessed directory as a shortcut. For ex-
ample, if the directory, VMSYSU:USERA.TOOLS
were to be accessed at file mode letter B, the
directory VMSYSU:USERA.TOOLS.EXECS could be
accessed by issuing the command ACCESS +
B.ExECS C. The directory accessed at file mode B
(USERA.TOOLS) is substituted in the command to
form the full directory name. This allows users
with extensive directory structures to reduce the
amount of typing needed to reference SFS direc-
tories. There is also a minus (-) syntax that
works similarly to the plus format.

All current CMS commands that use file mode let-
ters will work with accessed SFS directories un-
less they are specifically related to minidisks
(e.g., the FORMAT command). Several CMS com-
mands have been enhanced to also accept a di-
rectory ID, as previously described. These are
ERASE, RENAME, ACCESS, RELEASE, SET, and

ified to work on SFS directories as well as files.

New CMS commands that have been added to al-
low users to operate on SFS files and directories
include the following:

CREATE-creates aliases, directories, locks,

QUERY. Both RENAME and ERASE have been mod-

and empty files
DELETE-Deletes locks
GRANT-Grants authorities to files and directories
LISTDIR-Lists SFS directories
RELOCATE-Moves SFS files and directories
REVOKE-Removes granted authorities

The Shared File System may also be accessed by
using many of the productivity aids that are com-
monly used today with CMS minidisks. One of
these is DIRLIST, which is a new productivity aid
that has been added to CMS specifically to allow
users to navigate through their SFS directory
structures. This command will display SFS direc-
tories and their subdirectories in a full-screen for-
mat. An example O f USERA issuing a DIRLIST com-
mand is shown in Figure 3.

In the example of DIRLIST, all the subdirectories
are under the top directory (USERA, in this case).
If a subdirectory was accessed, the file mode let-
ter is displayed in the column labeled Fm. The
command area (Cmd column) allows users to is-
sue commands to be used on these directories, as
in the case of a directory of files. Also, a com-

STONE, NETTLESHIP, AND CURTISS 61

Figure 3 DIRLIST example screen

- SERVER8:USERA.SCRIPTFILES - SERVER8:USERA.SCRIPTFILES.LETTERS - SERVER8:USERA.SCRIPTFILES.MEMOS - SERVER8:USERA.SCRIPTFILES.PROFSDOCUMENTS
B SERVER8:USERA.SESSIONSERVICES - SERVER8:USERA.SESSIONSERVICES.MORETOOLS - SERVER8 : USERA. TEST
- SERVER8:USERA.TOOLS

f
USERA DIRtlST AQ V 319 Truno=319 Size42 Liner1 COl-1

cmd ~m ~iseetory Name - SERVER8 : USERA.
b D SERVER8 :USERA. JOURNAL

- SERVER8:USERA.TOOLS.EXECS - SERVER8:USERA.XXX

1-Help 2=Refresh 3=Quit 4-Sort (fm) 5=Sort(dir) 6=&&h
7-Backward 8=Forward 9= l a = ll=Filelist 12=Cursor

mand or function key allows users to navigate
through the directory structure. Using DIRLIST,
the user can go directly to an SFS directory and
operate on the files within that directory. If the
SFS directory is unaccessed, DIRLIST picks an
available file mode and accesses that directory.
When the user exits, the file mode returns to CMS.

Another function that DIRLIST provides is the
ability to see who has authority to a given direc-
tory. If the cursor is placed on the directory,
USERA.JOURNAL, the authorization listing screen
can be shown as in Figure 4.

In this example, USERA owns the directory, all
read, write, new read, and new write authority.
USERB has read authority to the directory, and
USERC has read authority to the directory and also
to future files in that directory.

The command to access the directory of files
(FILELIST in Figure 5) has also been updated to
display files in SFS directories. Here, the directory
SERVER8:USERA.SESSIONSERVICES (displayed on
the second line) is accessed as file mode letter B.

Except for the directory name on the second line,
this screen looks like the normal file directory
(FILELIST) screen to the user. A new function key
definition was also added for SFS directories;
PFlO (SHARE) displays information concerning
SFS sharing attributes. The new SHARE screen
shown in Figure 6 can be displayed by using PFlO
from the main FILELIST screen, by specifying the
SHARE option on the FILELIST command or by
setting SHARE as a FILELIST default using the
DEFAULTS command.

In this example, the file names are displayed
along with the type of SFS file (base or alias) and
the authorities the user has on these files. There
are also new function key definitions to check
more information, such as authority information
(PF6) and file aliases (PF9). Note also that USERA
has three aliases to execs that are owned by
USERB. One of these execs is named TIMESTAT.
To learn more about this, place the cursor on that
line and use PF9 (alias), which displays the
ALIALIST screen shown in Figure 7. Here, we can
see that the alias TIMESTAT EXEC points to the file
TESTIT EXEC, in USERB’s directory MYTOOLS.

62 STONE, NETLESHIP, AND CURTISS IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 4 AUTHLIST (authorization listing) example screen
~~~ 

" .. . . ." " . "" 

USERB X - - - 
USERC X - X - 

2=Refresh  3=Return  4=S  (Grantee)  5=Sort  (W)  6=Sort (R) 
ll=Sort  (NW)  12=Sort ( N R )  

. ~ / 

Figure 5 FILELIST example  screen 

"" " " \ 

I I i-"" 1 

i I  NQ 

' USERA  FILELIST  A0 V 108 Trunc=108  Size=57  Line-1  Col=l 
! 1 Directory = SERVER8:VSERA.SESSIONSERVICES 
~ j Cmd  Filename  Filetype Fm Format  Lrecl  Records  Blocks  Date  Time 

WMXSCROL  XEDIT B1 V 55 13 1 4/23/90 10:51:13 
WINSETUP  EXEC B1 V 72 240 4  4/16/90 8:02:58 

- - - 3/25/90 9:33:24 
EXEC  B1 F 130 133  5 3/02/90 9:18:22 

WMXCLEAR  XEDIT  B1 V 55 11 1 2/21/90 13:13:07 
WMXPF  XEDIT  B1 V 52 18  1 2/21/90 13:13:06 

QDISK  EXEC B1 V 72 89 1 2/21/90  13:12:29 
SETWIN  EXEC B1 V 114  249 3  2/21/90  13:12:29 

TIMESTAT  EXEC B1 V 65  18 1 2/21/90 13:12:28 
TIMEST2  EXEC B1 V 65 18 1 2/21/90 13:12:28 

QNAME  EXEC B1 V 102 120 1 2/21/90  13:12:27 

QACC  EXEC Bl V 12 81 1  2/21/90  13:12:26 
QCMSPF  EXEC  B1 V 15  46  1  2/21/90  13:12:26 

: I  
I MORETOOLS  B  DIR 

, ,  

' .  

i WINSET2  EXEC  B1 V 12 240  4  2/21/90 13:12:30 
i 
i 
I 
I QFONE  EXEC B6 V 115  611  6  2/21/90  13:12:28 

i QFILES  EXEC B1 V 72 109  2  2/21/90  13:12:27 
; 

' i  SCRL  EXEC  B1 V 58  18 1 2/21/90  13:12:27 

, !  

~ 

j 1-Help 2=Refresh 3=Quit 4=Cancel 5=Sort  (dir) 6=Sort  (size) 
~ -/=Backward 8=Forward 9=FL /n lO=Share ll=XED/FILEL 12=Cursor 

: j  
1 i ====> 

i X  E  D  I  T 1 File 

i \ -  2 
\c 

J ". "" ~ 

IBM SYSTEMS JOURNAL, VOL 30, NO 1. 1991 STONE, NEITLESHIP, AND CURTISS 63 



Figure 6 FILELIST  SHARE example screen 

Directory = SERVER8:USERA.SESSIONSERVICES 
Cmd  Filename Filetype Fm Owner  Type  R w 
USERA FILELIST A0 V 149  Trunc=149  Size=57  Line=l  col=l 

WMXSCROL XEDIT B1  USERA  BASE  X  X 

MORETOOLS 
WINSETUP EXEC Bl  USERA  BASE  X  X 

NQ 
B  USERA  DIR  X  X 

WMXCLEAR  XEDIT  B1  USERB  ALIAS  X - 
EXEC B1 USERB  ALIAS  X - 

WMXPF XEDIT B1  USERA  BASE  X  X 
WINSET2 EXEC B1  USERA  BASE  X  X 
QDISK EXEC B1  USERA  ALIAS  X  X 
SETWIN  EXEC  B1  USERA  BASE  X  X 
QFONE  EXEC 
TIMESTAT EXEC 

B6 USERA BASE X X 
B1 USERB ALIAS X - 

TIMEST2 EXEC B1 USERA BASE X  X 

QNAME  EXEC 
QFILES  EXEC B1 USERA BASE X X 

B1 USERA BASE X  X 
SCRL EXEC B1 USERA BASE X  X 

QCMSPF EXEC B1 USERA BASE X  X 
QACC EXEC B1 USERA ALIAS X  X 

l=Help 
7=Backward  8=Forward  9=Alias  lO=Stats  ll=XED/FILEL  12=Cursor 

2=Refresh  3=Quit  4=Cancel  5=SOrt  (dir)  6=Auth 

"" "" 

X  E  D  I  T 1 File 
c 

Figure 7 ALIALIST example screen 

Alias = TIMESTAT  EXEC SERVER8:USERA.SESSIONSERVICES 
Userid  Num Filename Filetype  Directory 
USERB 1 TESTIT EXEC  .MYTOOLS 

USERA ALIALIST A0 V 190 Trunc=190  Size=l  Line=l  Col=l  Alt=O 

l=Help  2=Refresh  3=Return  $=Sort  (type)  5=Sort  (name)  6=Sort  (dir) 
7=Backward  8=Forward 9=S (user) 10=  11= 12= 

"" ""> 
X E D I  T 1 File 

64 STONE, NETTLESHIP, AND CURTISS IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 



FILELIST also  displays  subdirectories  and files 
within an SFS directory.  The  subdirectory MORE- 
TOOLS is displayed in the FILELIST example 
shown in Figure 5. By placing the  cursor  on  the 
MORETOOLS line and using PF1 I (XEDIFILEL), the 
MORETOOLS directory is displayed in another 
FILELIST screen.  Here, PFl I has a dual  function. 
If the  object is a file, XEDIT is called. If the  object 
is a subdirectory,  a FILELIST is done. FILELIST is 
sensitive  to  the  type of object  the  user is looking 
at and acts accordingly. 

Compatibility 

CMS support  for file sharing  includes  support  de- 
signed to allow existing CMS applications  to work 
on files managed by the  Shared  File  System with 
little or  no change to  the application. Application 
conversion  required  depends  on  interfaces used 
by the  application  and  whether files are actually 
shared. 

Existing CMS applications  that use any of the fol- 
lowing interfaces are supported  for files managed 
by the  Shared File System: 

CMS File  System  macros 
OS and DOS macro simulation 
REXX file system  functions (EXECIO) 

Applications that  do  not  share  data  or  that use 
read-only sharing  and  use only published CMS in- 
terfaces should run  without  change. Changes may 
be  required  for  applications  that  use CMS internal 
control  blocks or CMS internal  functions. If an 
installation wants  to  use existing applications to 
operate  on files that are  to  be shared among mul- 
tiple users with write  authority  to  the files, then 
some  application  changes may be  required. 

There  are  fundamental differences between  the 
way basic file functions  work  under minidisk level 
sharing and the way they work under file  level shar- 
ing. Many existing CMS file system applications 
are written  under  the  assumption  that locking and 
authorization  checking are  done at the minidisk 
level and  that only a single user is authorized  to 
write to  the minidisk. As a result,  such applica- 
tions are  not  prepared  to  deal with exception  con- 
ditions  that  can  occur in a file-level sharing envi- 
ronment  (e.g., when encountering file locks). 

The existing CMS interfaces  have  been modified to 
run  on  both minidisk files and  shared files. Use of 

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 

these existing interfaces  on  shared files protects 
the application from conditions  that might be  true 
with shared files that are not  true in the minidisk 
environment. As a  result,  an  application  written 
to the old interfaces  cannot  take full advantage of 
the CMS Shared  File  System  functions.  It may be 
necessary  to  change the application  to  use  the 
new Shared File System program function  inter- 
face in order  to  take full advantage of file level 
sharing. 

There are several  instances  where CMS tries  to 
protect applications from compatibility prob- 
lems.  First,  the ACCESS command  accesses  an- 
other user’s directory by default in a read-only 
mode,  even though the  user may have  read-write 
authority to  that  directory.  The  reason  for  this is 
to  protect  applications  that  use  static file names. 
An application running simultaneously  on  two 
virtual machines may be accessing  the  same di- 
rectory  and unknowingly at the same time using 
the  same file. Since  the  directory  was  accessed as 
read-only by the  nonowner,  the  application  re- 
ceives  an  error  rather  than  overlaying the file 
data.  This may be bypassed by using the 
FORCERW option  on  the ACCESS command to give 
applications the ability to  access  another  user’s 
directory in a  read-write  mode. 

Another  example of trying to  protect applications 
from compatibility problems is that of using the 
STATE function. If the  user issuing the STATE 
function to  check for the  existence of a file does 
not  have  read  authority  on  the file, STATE will not 
return  a found condition,  even  though the user 
has  read  authority  on  the  directory  and  can  see 
the file name.  The  same is true with STATEW, 
which checks  write  authority to a file. It will not 
find a file  in a  read-write file mode if the  user  has 
only read  authority  to  that file. New  functions in 
CMS are provided  for  applications that need to get 
file and  directory information in a file-sharing 
environment. 

Migration/Coexistence 

Existing applications  that  previously  operated  on 
files on minidisks can now operate on files on 
minidisks or in SFS directories. In some cases, 
this involves changes  to  existing  application pro- 
grams.  The number and  type of changes  depend 
on  the level of sharing of an application’s data. If 
the application is using files on  a  read-write 
minidisk and  the  user  wants  to  transfer  these files 

STONE, NETTLESHIP, AND CURTISS 65 



to a  private  read-write SFS directory,  the number 
and  type of changes (if any) to  the application are 
small. 

Private  read-write  files  and  read-only  sharing. This 
environment involves files that  are  not being 
shared  (private) or shared  but not updated  (read- 
only sharing). This SFS environment most closely 
resembles the use of minidisks. This environment 
requires the least number of possible changes for a 
CMS application. An application can work  un- 
changed under any one of the following conditions: 

A file has  no  authorities  granted to  other users. 
No aliases  have been created  for  the file. 
There  are  no  dependencies  on  the  use of 
minidisk addresses. 

If either of the first two  points is false,  then  the 
files are  considered  shared. (This is discussed in 
the following section.)  Existing applications may 
or may not  require  changes. An application must 
change so as not to use CMS minidisk addresses 
and  instead to use SFS directory  names.  This in- 
volves deleting uses of the LINK commands and 
changing the minidisk address  on  the ACCESS 
command  to  the  name of the  appropriate SFS di- 
rectory. If the  applications do not depend on CMS 
minidisk addresses  (i.e.,  use predefined file 
modes) or  do not use file system  internals, no 
changes are  necessary. 

Read-write  sharing. This will be the  most  common 
file-sharing environment.  Typically,  the  owner of 
a file grants  other  users  read  authority  on  the file. 
When an  application  opens a file, it receives  a 
copy of the  last  committed  version of the file. The 
data in the file remain consistent until the file is 
closed and reopened, during which  time the file  is 
updated.  The directory containing this  file does not 
have to be reaccessed in order  to see the changes. 

Files  for  this  application  can  reside  on  either  a 
minidisk or in an SFS directory. Existing applica- 
tions using File System (FS) macros,  as well as 
execs using EXECIO, can  reference files  in SFS di- 
rectories. In this case,  an application used by ei- 
ther  the  reader or writer may encounter  situations 
that  are new in this file sharing  environment. Ap- 
plications may have to change  to  account  for  any 
of the following conditions: 

New CMS return  codes.  There  are  some new 
CMS return  codes  to  indicate  conditions  such  as 

66 STONE, NETTLESHIP, AND CURTISS 

a file being locked. An application may have to 
be aware of this to work  properly in an SFS envi- 
ronment. 
Updated  strategy  for handling temporary files. 
A  common way to  update minidisk files  is to 
create a temporary file, erase  the old file and 
rename  the  temporary file to  the old file name. 
Using SFS, when  the  old file is erased,  the au- 
thorities  and  aliases  associated with the file are 
also  deleted.  Thus,  the new file is created, but 
the  authorities  and  aliases are  lost. When the 
temporary file is created, all users  who  have 
been  granted new read  and  new  write  authority 
on  the  directory  also  have  authority to  the file. 
Minidisk application  assumptions. (1) If one file 
on an  accessed file mode  can  be  written to, all 
files on that file mode can  be written to.  It  is  not 
necessarily true  that  a  user  can  write  to all files 
in a  read-write SFS directory. An SFS directory 
accessed  as  read-write may have  an alias that 
points to a file to which the  issuer  has read-only 
authority.  In  this  case,  an  error could result 
when the user attempts to write to the file through 
the alias name. (2) A particular user can always 
read or write an existing file. A file  may exist but 
be locked. Applications that  check  for  the exist- 
ence of a file, then assume that they have autho- 
rization to read it, may receive CMS return codes 
indicating the file is locked. (3) If the file exists, 
the user knows it has at least one record of data. 
Starting with VMESA Release 1.1, SFS supports 
empty CMS files. This file  will look like a normal 
CMS file, except the number of records and num- 
ber of blocks used  will be zero. 
Applications referencing file system  internals, 
such as file system  control  blocks, may have to 
change. 

Many of the existing CMS applications  that  refer- 
ence minidisk files work with little or no changes 
to  them.  The  number of changes  that  must be 
made for existing applications  depends  on  the lev- 
els of  file sharing as described  previously. If a 
user  wants  an  application to take fuller advantage 
of the capabilities of the Shared  File  System, the 
application should be  updated using the new ap- 
plication interfaces  that  are  described  later in this 
paper. 

Programming  interfaces 

The  enhanced  capabilities of the  Shared File Sys- 
tem can  be  exploited by both  assembler  level and 
high-level language (HLL) applications. A new 

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 



feature of CMS provided in VMISP Release 6 was 
the Callable Services  Library (CSL), which con- 
tains  most  application  interfaces  to  the  Shared 
File  System.  Thus  the CSL interface allows both 
assembler  and high-level languages,  such as FOR- 

The  Shared File System is 
essentially a  server machine that 

manages  many files for many 
VM users. 

TRAN, PLIl, COBOL, c, and REXX, to call these 
services  directly  from  the  application.  In  the past, 
when an application  required a native VM service 
instead of a language-provided service,  a high- 
level language would have to call an  assembler 
subroutine  to  execute  that  service  (such as 
FSOPEN). All  of the SFS programming interfaces 
are contained in a CSL library called VMLIB. This 
library is loaded by the VM system profile exec  at 

I initialization time so that  the  services  are  present 
when needed. 

In  addition to the  standard  open,  close,  read, 
write  functions, SFS provides many new functions 
that  are  not available on  the minidisk file system. 
Some of these  functions include the following: 

Creating directories  and  aliases 
Creating and deleting locks 
Granting and revoking of authorities 
Creating  empty files 
Relocating files and  directories 
Asynchronous  read  and  write 
Committing file data without closing the file 

These  functions are all available through  the CSL 
programming interface.  Another  function of the 
CSL interface is that  an  application  can  front-end 
the IBM-provided programs.  A  user  can  create  a 
CSL routine with the  same name as  the IBM-sup- 
plied routine.  The IBM-supplied routine  can be 
loaded  under a different name.  The  user  routine 
then gains control when called,  takes  the indi- 
cated  actions,  and  then  passes  control  to  the IBM 
routine. For example,  the DMSOPEN CSL routine 

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 

allows programs to  open  an SFS file. This  routine 
can be loaded by the user  under  the  name 
DMSOPENX, and  the  user  can  supply  a DMSOPEN 
routine.  The  user  can now trap a DMSOPEN call 
and take some action  before passing control  to  the 
IBM DMSOPENX routine to actually  open the file. 3,4 

SFS  administration 

The  Shared File System is essentially  a  server 
machine that manages many files for many VM 
users. Given this, it is necessary  to  be  able  to 
administer  the  resources within the SFS file pool. 
Administration authority gives access  to  the  re- 
sources of a file pool. With this  authority,  one  can 
add minidisks to  the file pool,  enroll  and  delete 
users,  and so on.  One need not  be an enrolled user 
to be an administrator.  Administrator  authority 
also gives quasi-ownership of every  object  stored 
in the file pool. The  administrator  automatically 
has write  authority  on all the  base files, aliases, 
and  directories in the file pool and  can  do anything 
with them  that the  owners  can  do. 

An SFS administrator’s primary responsibilities 
include the following: 

Enrolling and deleting users in a file pool 
Controlling the size of  file spaces  for individual 
users. If a user  wants  to  increase  a file space 
(e.g.,  add 500 blocks),  an  administrator  can  do 
this  on  line,  and  the  space  becomes immediately 
available to  the  user. 
Adding minidisks to  the file pool.  This  becomes 
necessary  as  the physical storage fills up. 
Threshold warnings alert an administrator of 
this  condition. 
Backing up the file pool 
Resolving user  situations.  Having  administra- 
tor  authority allows someone  to  resolve  such 
conditions as a  user’s placing an explicit lasting 
lock on  a file and  then going away  on  vacation. 

For more information on administrating SFS file 
pools,  see  Reference 5 .  

An example of SFS usage 

Growth of the VM development  organization in 
recent  years  has  created a need for  better  and 
more efficient methods of managing code 
changes. With the large number of people  work- 
ing on CP and CMS, an automated  system of code 
control is critical to  the on-time delivery of new 

STONE, NETTLESHIP. AND CURTISS 67 



VM releases. The need  for a code library system 
led to  the development of the IBM Endicott De- 
velopment  Library (EDL), one of the first major 
applications to  be written using the CMS Shared 
File  System.  In  the following, EDL refers  to  the 
code  library  system itself. 

Other  code  libraries are available within IBM, sev- 
eral of which were  considered  for VM code  con- 
trol.  However, during system test, VM develop- 
ment is in the  practice of installing prerelease VM 
on  the IBM Endicott Programming Laboratory 
(EPL) production  systems as soon as  the  code is 
relatively stable.  That  means  any  library  system 
used by VM developers must be  able  to  run on 
code  that is one  to two  releases  ahead of the ver- 
sion available to  customers (and other IBM sites). 
None of the  other library  systems could guarantee 
support  for  that  type of environment.  Because 
VM/SP Release 6 was in system  test  at  the time that 
EDL was  developed,  a  code  control  library was 
the  best  test of a new file system. 

EDL provides  a wide range of functions used in 
code  development.  One of these is named code 
bases.  The  code  base  for  a  release or project is 
kept  on a set of directories.  Each  code  base is 
assigned a name describing what is in it. (For ex- 
ample, CMS6+SRV contains  code  for CMS Release 
6 plus all service  updates.)  This  eliminates  the 
need for  most  developers to know where  the  code 
is kept.  They  can simply tell EDL to  access  the 
code  base  for  them.  Another  function is that of 
editing and  updating facilities. After a code  base 
is accessed, EDL functions allow developers  to 
change  the code using XEDIT. The UPDATE facility 
of XEDIT is used to make incremental  updates in- 
volving distinct pieces of code  to  each of the mod- 
ules. Compiling facilities is a  function by which 
code  updates are applied using the UPDATE com- 
mand, followed by code compilation. The com- 
pile can  be  done in the  developer's virtual ma- 
chine or by a batch machine. System build facilities 
are provided so that after the  code is updated and 
compiled, developers can build a private copy of 
the system and  test  the  code before making the up- 
dates available to others.  Code integration facilities 
make it possible to combine new source  code up- 
dates with the existing base code and previous up- 
dates. When code is integrated, it becomes acces- 
sible to all  of the developers. 

The  Endicott  Development  Library (EDL) oper- 
ating environment  consists of several  parts,  as 

68 STONE, NE'TTLESHIP,  AND CURTISS 

shown in Figure 8. The EDL file pool  contains the 
directories used for  each named code  base  that  is 
defined in EDL. The  directories  that are used  for 
module ownership  control are also  located  there. 
EDL programs  and  tables are kept on  an SFS di- 
rectory  that is accessible to all  developers. 
This directory is also in the EDL file pool.  The 
EDLADMIN service machine is enrolled as an ad- 
ministrator  for  the EDL file pool. It processes  code 
integration requests  and  also  performs  a limited 
number of privileged file pool requests  on behalf 
of developers. 

The  Shared  File  System  function is utilized by 
EDL in a number of ways,  several of which are 
presented in the  sections  that follow. 

SFS is a distributed  file  system. It is very  important 
in the EPL computing  environment to have  dis- 
tributed file handling capability,  because  devel- 
opment  resources are spread  over six computer 
systems: Four systems  run  development-level, 
new-release code;  one  system  runs VM/SP HPO Re- 
lease 5 CP with VM/SP Release 6 CMS; and one 
system  runs VM/XA SP 2. With the  exception of the 
VM/XA system,  developers can  obtain  data  in  the 
EDL file  pool from any of the EPL computer systems 
via transparent services access facility (TSAF). In 
fact, using the facilities provided by APPCNM VTAM 
support (AVS), authorized developers at  other IBM 
sites can also access VM source code. 

SFS provides  better  security. In  addition to allow- 
ing flexibility in accessing  source code, SFS also 
keeps  that  code  secure, in that no one can gain 
access  to  the VM source  code  without first being 
enrolled  in the EDL file pool.  Once  enrolled,  de- 
velopers  can look at any of the  source  code  for VM 
and VM-related products. If there  were a need for 
subdivisions of security, SFS authorization  func- 
tions could be used to  do  that  too.  (For example, 
one might want  to limit access  only  to CMS.) 

SFS allows enforcement of module  ownership. 
With a large number of developers  and  a  large 
amount of new function being added  to  VM, it may 
happen  that  two or  more  developers  need  to  be 
updating a module concurrently. A system of 
module ownership was introduced in EDL that 
helps in this  situation.  Primary  and  secondary 
owners are defined for  each module in the  system. 
By default,  owners  have  authority to integrate 
changes to  the modules  they  own. If a developer 
needs  to  update a module that  that  person  does 

IBM SYSTEMS JOURNAL,  VOL 30, NO 1, 1991 



Figure 8 EDL structure 

EDL  FILE  POOL 

- EDL PRMRAMS 

"fM  SOURCE  CODE 
AND  TABLES 

EDLADMIN  SERVICE  MACHINE 

-COW INTEGRATION 
-PRNILEQED SFS 

COMMANDS 
ADMINISTRATION 

1 -  
ACCESS, 
COPYFILE, 
QUERY  AUTHORITY, 

RELOCATE, 
QUERY LOCK, 

PRANT AUTHORITY, 
REVOKE  AUTHORITY 

ACCESS, 
COPYFILE. 
LOCK, 
QUERY  AUTHORITY 

\ DEVELOPERS  VIRTUAL  MAOHINES 

ON  BEHALF 
OF DEVELOPERS 

f SENDFILE 

not  own,  the  developer  can  ask a module owner 
to grant  the  authority  to  integrate the change.  The 
restricting of unauthorized  changes,  however, is 
not  the main intent of module ownership.  Such 
restriction is merely intended as a formalized 
communications  channel  that allows an  owner  to 
control module updates in an  orderly  fashion, 
without the problems of sequence  errors  or  over- 
laying of existing code. 

The locking functions in SFS also help during con- 
current  development. If a  developer  checks  out  a 
file for  updating,  others  who  try to make changes 
to  the file receive a warning that  someone is up- 
dating the file. Also, SFS locking functions are 
used to  keep two  developers  from integrating 
completed  code  changes  for  the  same module 
simultaneously. 

SFS simplifies  code  integration. The  actual  code 
integration  process  has been greatly improved us- 
ing SFS. Before EDL was  implemented, develop- 
ers would send  their  completed  code changes to 
aperson in the Product  Control  Group (PCG) using 

the SENDFILE command,  then the developer was 
required to deliver to  the PCG a  sheet of paper 
listing what had been sent  and  the  code  base  to 
which it belonged. At major code  checkpoints, 
when a large amount of code  was  integrated  at 
one  time,  this  resulted in a  mountain of paper. 

EDL uses a different approach.  The  developer  cre- 
ates a file that  lists all the  updates  to be integrated 
into  the  system. When the  code is presented  for 
integration, EDL takes  the following actions: 

1. Verifies that all the files listed are in the  de- 
veloper's CMS search  order 

2. Verifies that  there  are no update  locks on any 
of the modules being updated 

3. Verifies that  the  developer  has  authority to in- 
tegrate  the  changes 

4. Copies  the  updates to a staging directory. (All 
developers enrolled in the EDL file pool have 
write authority  to  the staging directory.) 

When the files have all been  copied  successfully, 
the  developer simply presses  a  key  that tells EDL 

IBM  SYSTEMS  JOURNAL,  VOL 30, NO 1, 1991 STONE, NETTLESHIP, AND CURTISS 69 



to  process  the  integration. EDL copies  the  update 
list to the staging directory  and  sends  a message 
to  the EDLADMIN service  machine. EDLADMIN 
reverifies integration  authority,  moves  the files 
into  a  collection  directory,  and  grants PUBLIC 
read  authority  on  the files. Once  the files have 
been moved to  the collection directory,  everyone 
who is using that  code  base  can  see  the  updates 
automatically,  because  the file information for  ac- 
cessed S F S  directories is always  kept  up to  date in 
the  user’s  machine.  From  the collection direc- 
tory, PCG processes  the files, rebuilds the  system, 
and  moves the files to  the  directory  where valid 
updates are  kept.  Each  code  base  uses  a different 
set of directories, so there is never any confusion 
about which updates belong on which base. 

EDL continues  to grow and  evolve.  Used daily by 
nearly every  programmer in the  Endicott Pro- 
gramming Laboratory, it helps developers get 
their jobs  done more efficiently. EDL has provided 
quantitative benefits by decreasing from hours  to 
minutes,  the  amount of time needed to integrate 
a change.  This allows the PCG to provide daily a 
rebuilt system with all new updates  applied.  (The 
process  can be done  twice  a  day if necessary.) 
Testers find fewer  duplicate  problems,  because 
the code-fixes quickly appear in the  next  system 
build. EDL has  provided  qualitative benefits by 
giving developers a consistent  set of easy-to-use 
interfaces  for developing code.  Also, by using 
EDL and  exercising its SFS interfaces during Re- 
lease 6 system test, VM development found and 
fixed several  errors in the new file system.  The 
development  and use of EDL has  contributed  to  a 
greater  understanding within VM development of 
how customers might use SFS and how it can be 
improved in the  future. 

Summary 

The  intent of this  paper is to provide  the  reader 
with an understanding  and  appreciation of the  ca- 
pabilities of the CMS Shared File System (SFS). 
The design adds  to  the  functions available with 
the CMS minidisk file system  and is as compatible 
as  posside with it. 

Specifically, the following areas  were  addressed 
with SFS: 

File sharing is allowed at the file level. Individ- 
ual users may be granted  separate  read  or  read- 

70 STONE, NETTLESHIP, AND CURTISS 

write  authorities  for individual files and  direc- 
tories. 
Space  sharing allows a group of users  to  share 
the  same physical space  and yet have individual 
limits on  the usage of that  space. 
Security  permits the owner of data  to control 
the usage of those data  as regulated by user ID, 
not by the use of a  password. 
Data  addressing allows a user  to  create direc- 
tories and  to organize files  in those  directories. 
Remote  access allows users  on  separate VM sys- 
tems to  share  the  data. 
Data integrity gives the  user  the  assurance  that 
if a failure  occurs the  data will be  at a  pre- 
defined, consistent level when  operations 
resume. 

In  applications  such as  the  Endicott  Development 
Library (EDL), the  Endicott Programming Labo- 
ratory  has realized benefits from  these capabili- 
ties of SFS and is using this  experience  as  one 
source of input  for  future  enhancements. SFS has 
also provided the  laboratory with the ability to 
share files and  documents among design,  devel- 
opment, planning, and  other  organizations. 
Virtual  MachineIEnterprise Systems  Architecture  and 
VMIESA are  trademarks of International  Business Machines 
Corporation. 

Cited references 

1 .  VMIESA  Connectivity  Planning,  Administration,  and  Op- 
eration  Manual, SC24-5448, IBM Corporation; available 
through  IBM branch offices or authorized  dealers. 

2. C.  C.  Barnes,  A.  Coleman, J. M. Showalter,  and  M.  L. 
Walker, “VMIESA Support  for  Coordinated  Recovery of 
Files,”IBMSystems  Journal30, No.  1, 107-125(1991, this 

3 .  VMIESA  CMS  Application  Development  Guide, SC24- 
issue). 

5450-00, IBM Corporation; available through IBM branch 
offices or authorized  dealers. 

4. VMIESA  CMS  Application  Development  Reference, 
SC24-5451-00, IBM Corporation; available  through  IBM 
branch offices or authorized  dealers. 

5 .  VMIESA CMS Planning  and  Administration  Guide, SC24- 
5445, IBM Corporation; available  through  IBM branch of- 
fices or  authorized  dealers. 

Richard L. Stone IBM Data  Systems  Division,  P.O.  Box  6, 
Endicott,  New York 13760. Mr.  Stone  is  currently  an  advisory 
programmer in  VM Product Planning at  the  Endicott  Pro- 
gramming Laboratory.  He  attended  Purdue  University,  West 
Lafayette,  Indiana,  where  he  received his  B.S. degree in 
mathematics. He  joined IBM in Endicott in 1968 as a junior 
programmer in the programming development  area.  Mr.  Stone 
spent several years in the  VSl  supervisor  development  and 
project office groups.  He  was  one of the  lead designers on the 
MVSIOperator  Communication Control  Facility, VMiGroup 

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 



Control  System,  and CMS Shared File System projects. His 
current responsibilities  include product planning for VM file 
and  data  management. 

T. Scott Nettleship IBM Data  Systems  Division, P.O. Box 6 ,  
Endicott,  New York 13760. Mr. Nettleship is a senior associate 
programmer in the CMS  File System Development depart- 
ment in the  Endicott Programming Laboratory.  Mr.  Nettle- 
ship  joined IBM in 1983 in Endicott, New York.  He  has 
worked in the  development of the  Group  Control  System 
(GCS) component of VM. He  has  worked on the development 
of the  Shared File System since  its  inception and continues an 
active roll in its current  development. Mr.  Nettleship is a 
coauthor of a  Technical  Disclosure  Bulletin, “VM GCS Dis- 
patching Program,” IBM (1985). He is a coauthor of the  Tech- 
nical Report GCS Overview  and  Application  Example, IBM 
(1988). Mr.  Nettleship  was  the  CMS  GUIDE  user group  rep- 
resentative  from 1988 to 1990 and is now an IBM repre- 
sentative  to  the  SHARE  user  group.  He received his B.S. 
degree from  Rutgers  University, New  Brunswick, New Jer- 
sey, in 1982 and his  M.S. degree  from  the  State University of 
New York at Binghamton in 1987. 

Jay Curtiss IBM US Marketing & Services, P .O.  Box 81868, 
Lincoln,  Nebraska 68508. Mr. Curtiss received his B.S.  de- 
gree in computer  science  from  the University of Nebraska  at 
Lincoln in 1983. The  same  year,  he  joined the Endicott Pro- 
gramming Laboratory  as a programmer  working on  the  de- 
velopment of VM/GCS (Group  Control  System).  He then 
worked  on performance enhancements in CMS Release 5. In 
1985, Mr. Curtiss  became  an original member of the team that 
designed the  CMS  Shared File System  that was  announced in 
Release 6 of CMS. Since then,  he has  been  involved in many 
enhancements  to  CMS  for  VM/ESA. At the  same time, he was 
a member of the  team  that  developed  the initial versions of the 
Endicott Development Library  (EDL).  He  also served  on  a 
committee assigned to review software invention  disclosures 
submitted from  the IBM Endicott  laboratory. Most recently, 
Mr.  Curtiss  transferred  to  the IBM branch office in Lincoln, 
Nebraska,  where  he is a systems engineer  involved in large 
systems  support. 

Reprint Order  No. (3321-5423. 

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 STONE, NETTLESHIP, AND CURTISS 71 


