VM Data Spaces
and ESA/XC facilities

Release 1.1 of the Virtual Machine/Enterprise
Systems Architecture™ (VM/ESA™) operating
system introduces a new function called VM Data
Spaces, provided through a new virtual-machine
architecture called Enterprise Systems
Architecture/Extended Configuration (ESA/XC).
ESA/XC is the strategic VM/ESA virtual-machine
environment for Conversational Monitor System
(CMS) users and service virtual machines
requiring large amounts of storage or advanced
data-sharing capabilities. ESA/XC includes all of
the facilities of System/370 Extended Architecture
(370-XA) that are used by CMS or server
programs and ijs therefore upward compatible for
CMS or server programs currently running in
370-XA virtual machines. To this 370-XA base,
ESA/XC adds the data space and access-register
addressing capabilities previously available only
under the Multiple Virtual Storage/Enterprise
Systems Architecture (MVS/ESA™) operating
system. These addressing extensions can be
used to make additional storage available to
large, storage-constrained applications and can
also be used by servers as an efficient way of
sharing data between service virtual machines
and the users that access those servers. As an
introduction to the VM Data Spaces function, this
paper describes the ESA/XC virtual-machine
architecture and presents an overview of the
VM/ESA services provided in support of the
ESA/XC architecture.

he 1BM Enterprise Systems Architec-

ture/370™! introduced advanced address-
space facilities that are exploited by supervisor
programs to provide application programs with
the ability to access many address spaces con-
currently. These facilities are also provided by
the new Enterprise Systems Architecture/390™
(Esa390™).2 The Enterprise Systems Architec-
ture/Extended Configuration (ESA/XC) is a new

14 GDANIEC AND HENNESSY

by J. M. Gdaniec
J. P. Hennessy

virtual-machine architecture that brings this pow-
erful capability to the Virtual Machine/Enterprise
Systems Architecture™ (VM/ESA™) user in a form
suitable to the Conversational Monitor System
(cMs) virtual-machine environment. This paper
serves as an introduction to ESA/XC, describing
some of the important features of the architec-
ture, its basic foundation, and its useful services,
and providing a glimpse of the philosophy under-
lying the architecture.

An address space is simply a sequence of ad-
dresses that starts at zero and proceeds up to a
value that varies according to the size of the ad-
dress space. Each address designates a byte of
information. For example, when a CMS user logs
on to the system, CP (the control program) creates
for that user a virtual machine that includes,
among other things, “storage.” Although the cMS
user may not generally think of it in this way, that
storage is an address space. To an application
program, an address space is storage and is used
to hold data. The nuances of storage management
that are important to the underlying supervisor or
host are not important to the application program.

The advanced address-space facilities of ESA/390
provide a supervisor with the means by which it
can create many address spaces and selectively
make these address spaces accessible to applica-

©Copyright 1991 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and 1BM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 1 Comparison of ESA/390 address spaces and ESA/XC address spaces

VM/ESA HOST

VMZESA HOST

tion programs. Suitably coded application pro-
grams can then enter a mode called the access-
register mode to directly address data in these
address spaces. Application programs that share
a common supervisor can even share these ad-
dress spaces, thus exchanging information in a
very efficient manner.

The intuitive approach for making these powerful
abilities available to the CMS application program
might call for enhancing CMS to run in an ESA/390
virtual machine, having it build and maintain ad-
dress spaces. Figure 1 compares address spaces
built by operating systems using ESA/390 (Part A)
with address spaces built by a hypothetical CMS
using ESA/390 (Part B).

In this form, however, ESA/390 would be difficult
for CMS to exploit. Consider the following:

* CMS is a single-user supervisor. Since two CMS
users do not share the same supervisor, they
cannot run application programs that share the
same address spaces. The address spaces cre-
ated by one virtual machine using ESA/390 are
isolated from all other virtual machines. One of
the goals of VM/ESA is to improve the facilities
available for interuser communication, but CMS
exploitation of ESA/390 would not promote this.
To allow direct data sharing between virtual
machines, another approach is necessary.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

¢ To use the access-register mode in ESA/390, an
application program must run with dynamic ad-
dress translation (DAT) on, something that is not
supported today by CMS. Although it would be
possible to change CMS to run with translation
on, this would undoubtedly have a negative ef-
fect on some existing application programs.
CMS runs application programs in the supervi-
sor state, which gives application programs full
access to all virtual-machine facilities. Many
application programs take advantage of this sit-
nation by performing their own manipulations
of the virtual-machine environment. Since it is
difficult to code such programs so as to antici-
pate future changes in CMS, it is likely that at
least some application programs would cease to
function correctly if CMS were to start running
with translation active.

* A supervisor that builds address spaces must be
fairly sophisticated. To manage storage effi-
ciently, a supervisor should keep track of how
frequently data in an address space are used and
should “page out” data that are infrequently
accessed. A supervisor that performs such pag-
ing must then keep track of where these data
reside on auxiliary storage devices such as a
direct-access storage device (DASD) or ex-
panded storage, and be prepared to read them
in again when they are needed by an application
program. Sophisticated storage-management
techniques such as these require a great deal of

GDANIEC AND HENNESSY 1§

code and would thus significantly increase the
size of the CMS nucleus. Worse than that, since
CP pages the host address space representing
guest storage, two levels of paging activity
would be taking place if CMS also paged its ad-
dress spaces. Furthermore, because CMS relies
on CP to be the system resource manager, it
does not today need to manage auxiliary storage
devices such as paging DASD, and thus does not
have access to any.

* CP already contains logic to manage address
spaces. It was mentioned earlier that CP creates
an address space for a user when that user logs
on to the VM/ESA system. Enhancing this logic
in CP is preferable to duplicating it in CMS.

The ESA/XC architecture, a derivative of ESA/390,
has been developed and tailored specifically for

ESA/XC is derived from ESA/390.

the virtual-machine environment. A cooperative
effort between VM/ESA and the machine® allows
VM/ESA to provide a virtual-machine architecture
that better satisfies CMS application-program re-
quirements than architectures available on a real
machine. Significantly, no real machine can op-
erate in this architecture mode; only virtual ma-
chines use this architecture.

Highlights of ESA/XC

The ESA/XC architecture is derived from the
ESA/390 architecture, which itself has evolved
from System/370 Extended Architecture (370-XA).
Someone familiar with the basic elements of
370-XA or ESA/390 should have no trouble becoming
familiar with the ESA/XC architecture. In fact, be-
cause it is an architecture intended for application
programs of the type that run under CMS, it is
actually simpler than either 370-XA or ESA/390.

Relationship of ESA/XC to ESA/390. As men-
tioned previously, in ESA/390, an application pro-

16 GDANIEC AND HENNESSY

gram must run with dynamic address translation
(DAT) active in order to enter the access-register
mode to reference address spaces. This condition
is not the case in the ESA/XC architecture, and in
fact, the DAT facility does not even exist in
ESA/XC. The many structures described in the
ESA/390 architecture for the management of DAT,
such as DAT tables, ASN translation tables, PC-
number translation tables, linkage tables, and en-
try tables, do not therefore exist in ESA/XC.

The interpretive-execution facility is also not pro-
vided in the ESA/XC architecture. This facility,
which is invoked by the START INTERPRETIVE EX-
ECUTION instruction, is intended to be used by a
host for the emulation of virtual machines. The
ESA/XC architecture is intended for application
programs, not hosts like VM/ESA, so the interpre-
tive-execution facility is not provided in ESA/XC.

Several control instructions are defined in ESA/390
for the use and management of the facilities that
do not exist in ESA/XC. Since they are not needed,
these instructions do not appear in ESA/XC. Some
of these instructions are BRANCH AND STACK
(BAKR), PROGRAM CALL (PC), PROGRAM RETURN
(PR), LOAD REAL ADDRESS (LRA), and START IN-
TERPRETIVE EXECUTION (SIE).

All other features of ESA/390 and 370-XA continue
to exist in ESA/XC. For example, IO operations are
performed using the same instruction set as in
ESA/390 and 370-XA, programs still have the choice
between running in 24-bit addressing mode and
31-bit addressing mode, and access registers are
still used to control direct references to address
spaces. As far as normal CMS application pro-
grams are concerned, the ESA/XC architecture is
upward compatible with ESA/390.

Basic elements of ESA/XC. The advantage of
ESA/XC for a CMS application program is apparent
in the new virtual-machine services provided in
ESA/XC. These services will be described in detail
later but are introduced here. They are provided
to:

e Create, share, and otherwise manage address
spaces

¢ Gain and relinquish access to an address space

e Map data on DASD to pages of an address space,
allowing a program to subsequently reference
data on DASD by instead referencing the address
space

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Before describing these services in detail, it is
necessary to describe some of the basic concepts
related to address spaces in ESA/XC.

Address spaces. Every virtual machine running in
the ESA/XC architecture owns at least one address
space, the primary address space, given to the
user by CP when the user logs on to the VM/ESA
system. The size of this address space is deter-
mined from the entry describing that user in the
user directory, or from a subsequent DEFINE
STORAGE command. After logging on, if autho-
rized in the user directory, a user may create
other address spaces, and if desired, share them
with other logged-on users. Address spaces cre-
ated by a program in this manner are sometimes
called data spaces. A data space exists until it is
either explicitly destroyed by the owner or until
the owning virtual machine goes through a virtu-
al-machine-reset operation. Note that a virtual-
machine-reset operation occurs implicitly during
the processing of such commands as IPL (initial
program load) and LOGOFF.

A (DAT-off) CMS program using ESA/XC can obtain
concurrent access to more storage than a CMS
program using 370-XA or ESA/390. More storage is
available because an authorized program using
ESA/XC can create many address spaces, each of
which may be up to two gigabytes (2G) in size.
Thus, a DAT-off program using 370-XA or ESA/390
can address at most 2G of storage, but a program
using ESA/XC can concurrently address more than
2G.

Figure 1 compares address spaces built by pro-
grams using ESA/390 with address spaces built by
programs using ESA/XC. Part A shows address
spaces built by an operating system that exploits
ESA/390. Part B shows those address spaces along-
side address spaces built by a hypothetical CMs
that exploits ESA/390. Note that such address
spaces would not be shareable between virtual
machines. Part C shows address spaces built by
application programs on CMS in virtual machines
using ESA/XC. Address spaces built by ESA/390 vir-
tual machines are guest address spaces managed
by the virtual-machine supervisor, whereas ad-
dress spaces built by ESA/XC virtual machines are
host address spaces managed by CP.

Every ESA/XC address space has the following at-
tributes:

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

* A name—An address-space name is a string
from one to 24 characters long. Except for the
primary address space of the virtual machine,
the address-space name is assigned by the own-
ing program when the address space is created,
and never changes. CP assigns the name BASE to
the primary address space of the virtual ma-
chine. The full address-space identification of
an address space consists of a string up to 33
characters long and is composed of the owning
userid (the userid that created the address
space), a colon, and the name. Since no two
address spaces owned by the same user are per-
mitted to have the same name, and no two users
logged on to the same system are permitted to
have the same userid, no two address spaces in
the system can have the same address-space iden-
tification. Note, however, that nothing prevents a
program from destroying an address space and
then creating another with the same name.

¢ An address-space-identification token—The 33-
character address-space identification de-
scribed above is designed for easy interpreta-
tion by VM/ESA users and is somewhat unwieldy
to manipulate in a program. When an address
space is created, therefore, CP assigns to the
address space an eight-byte token called the ad-
dress-space-identification token, or ASIT. This
token is returned to the owner of the address
space when the address space is created. The
ASIT has these important characteristics:

1. Itis a system-wide unique value. That is, no
two address spaces in the system, including
those created by other users, will have the
same ASIT.

2. It is nonrepeating for the life of the current
system IPL. In other words, once an ASIT is
assigned to an address space, that same ASIT
will never be assigned to another address
space, even after the address space to which
it was first assigned is destroyed.*

3. An address space has only one ASIT associ-
ated with it. Every user refers to the same
address space using the same ASIT. ASITs
that are equal designate the same address
space; ASITs that are not equal designate dif-
ferent address spaces.

The combination of these characteristics al-
lows an application program to use the ASIT as the
principal identification of an address space.

GDANIEC AND HENNESSY 17

Itis interesting to note that with these guarantees,
the ASIT associated with the primary address
space of a virtual machine can be used as a unique
designation of a particular instance of a particular
userid being logged on to the system. That is, if a
user logs off and then back on, his or her userid
is the same, but the ASIT corresponding to his or
her primary address space is different. An appli-
cation program that was to keep track of such
things might therefore use the primary ASIT in-
stead of the userid to identify the virtual machine.

¢ Size—Within the bounds imposed upon it in the
user directory, the creating program chooses
the size of the address space, giving it any size
between 64 kilobytes and two gigabytes. CP will
round the size of the address space up to the
nearest 64-kilobyte boundary.

® Private or shareable status—When an address
space is first created, it is a private address space,
accessible only to the owning virtual machine.
Similarly, when a user first logs on, the primary
address space of the virtual machine is private. If
the owning program chooses, and if it is autho-
rized to do so, it can grant another virtual machine
permission to access an address space that it
owns, including its primary address space. The
address space is then shareable and remains so
until it is destroyed, until the owner goes through
a virtual-machine-reset operation, or until the
owner requests that the address space be again
isolated from other virtual machines.

o List of permitted users—Every ESA/XC address
space is accessible to some set of users on the
system. A private address space is accessible to
only the owning user. Shareable address spaces
are accessible to those users who have been
granted permission by the owner to access the
address space. The owner always has read-
write permission to an address space created by
the owner. Other users have either read-only
access or read-write access to the address
space, depending on what was granted them by
the owner. The owner may grant different users
different types of permission. There is no limit
to the number of users that may be granted per-
mission, and therefore, there is no limit to the
number of users that may concurrently access
the address space.

Access lists. Before a program can actually read or
write data in a nonprimary address space, it must

18 GDANIEC AND HENNESSY

invoke a CP service to add an entry designating
that address space to its access list. Each virtual
configuration has its own access list, whose en-
tries determine which address spaces the virtual
CPUs in that configuration can reference at any
one time. The number of entries in the access list
varies between six and 1022 and is controlled by
information in the user’s directory entry. The de-
fault size is six.

When a program invokes the VM/ESA service to
add an address space to its access list, CP selects
an unused entry in the access list, fills it in as
requested by the program, and returns a four-byte
access-list-entry token (ALET) to the program. As
described later, a program uses this ALET to make
direct references to the address space. The ac-
cess-list entry thus allocated remains allocated
until the program explicitly removes the entry, or
until the virtual machine goes through a virtual-
machine-reset operation.

Every ESA/XC access-list entry has the following
attributes:

* A state—An access-list entry is always in one of
the following states:

An unused access-list entry (ALE) is one that
has never been allocated, one that has become
deallocated by a Remove ALE operation of the
virtual machine, or one that has become de-
allocated because the virtual machine went
through a virtual-machine-reset operation.

A valid access-list entry is one that has been
allocated by an Add ALE operation of the virtual
machine and designates an address space that
the virtual machine has permission to access.

A revoked access-list entry is one that has been
allocated by an Add ALE operation of the virtual
machine, but that designates an address space
no longer permitted access by the virtual ma-
chine. This condition can happen when the
owner of the address space explicitly isolates
the address space from other users or destroys
the address space. The revoked state is different
from the unused state in that an ALE can enter
the revoked state without any action by the
owner of the access list. It i1s not necessarily a
programming error for an ALE to be in the re-
voked state, and having a separate state pro-

{BM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

vides additional information to the owner of the
access list.

~ A read-only or read-write indication—When the
program adds an address space to its access list,
it stipulates whether accesses using the result-
ing ALET must be read-only accesses or whether
they can be read-write accesses. The program
cannot, of course, obtain read-write access
when the owner has granted it read-only per-
mission, but it can stipulate read-only access to
an address space to which it has been granted
read-write permission. The program may even
add the same address space to its access list
several times, some entries allowing read-write
access, and others merely read-only access.

s~ Synchronous or asynchronous fault resolu-
tion—It was mentioned in the introduction that
to make efficient use of storage, a supervisor or
host might temporarily ““page out” data from an
address space to auxiliary storage. ESA/XC
leaves the storage management of ESA/XC ad-
dress spaces up to CP, the host. In order to make
efficient use of its own storage, CP sometimes
pages out parts of an address space. When an
application program references a paged-out
portion of an address space, CP receives an in-
dication of this action, called a *““page fault.” cp
will then read the data back into storage and
rerun the virtual machine. Except for the slight
time delay involved, the virtual machine is un-
aware of this activity and proceeds normally.

For reasons described later, it is sometimes un-
desirable to delay the execution of the virtual
machine. CP thus provides the program with the
ability to specify, when adding an entry to its
access list, whether page faults should be re-
solved synchronously or asynchronously. A
program that specifies asynchronous page-fault
resolution is not delayed by page faults but must
contain additional logic to complete the ‘*hand-
shaking” necessary to make use of the function.

Figure 2 shows the format of an ESA/XC access-list
entry graphically.

Using the access-register mode. Application pro-
grams using ESA/XC run in one of two address-
space-control modes: primary-space and access-
register (AR) mode. The primary-space mode is
the initial address-space-control mode and the
“normal’’ mode for most CMS applications. The

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 2 A graphic representation of an access-list entry

AN ACOESS-LIST ENTRY IN ESA/XC -
CAN BE THOUGHT OF AS
.~ BEING IN THE FOLLOWING FORMAT:

state ALET | ASIT |RIF

THE FIELDS
ARE DEFINED
AS FOLLOWS:

THE STATE OF
" THE ALE: UNUSED, VALID
" OR'R EVOKED

FOR VALID AND REVOKED ALES,
THE ACCESS-LIST-ENTRY TOKEN
 (ALET) WHICH SELECTS THE ALE

. FOR VALID ALES. THE ASIT OF THE ADDRESS .
SPACE W’!-HGH 8 DESlGNATED BY THE ALE

LA FLAG INDICATING WHETHER THE ALE PERMtTS
. READ—ONLY 'ACCESS OR READ/WRITE AGGESS

' 'A FLAG INDICATING WHETHER PAGE FAULTS - B .
OCGURRING ON REFERENCES THROUGH THE ALE ARE '
o RESO‘LVED SYNGHRONOUSLY OR ASYNGHHONOUSLY

NGTE THAT THE SIZE OF EACH FIELD I8 NOT DEFINED.
- NOR 18 THE OVEHALL SIZE OF THE AOCESS—LIST ENTRY

access-register mode is the address-space-control
mode in which an application program will run to
access data in nonprimary address spaces.

The address-space-control mode of a virtual CPU
is determined by bits in the program status word
(Psw). Such PSW control bits are normally manip-
ulated only by CMS services, but ESA/XC includes
a nonprivileged instruction called SET ADDRESS
SPACE CONTROL (SAC) to be used by an applica-
tion program to switch between the primary-
space mode and the access-register mode.’

Once in the access-register mode, the application
program makes use of 16 registers called access
registers to specify to the machine what address
spaces are to be accessed by what references.
Nonprivileged instructions are provided to allow
the program to manipulate access registers.
These instructions are the same as those defined

GDANIEC AND HENNESSY 19

Tabie 1 Interfaces to basic ESA/XC functions

Function CP Macro CMS CSL
Routine

Create Space ADRSPACE CREATE DMSSPCC

Permit Space =~ ADRSPACE PERMIT DMSSPCP
Isolate Space ADRSPACE ISOLATE DMSSPCI

Destroy Space ADRSPACE DESTROY DMSSPCD

Query Space ADRSPACE QUERY DMSSPCQ
Add ALE ALSERV ADD DMSSPLA
Remove ALE ALSERV REMOVE DMSSPLR

in ESA/390. An access register should either con-
tain zeros or an ALET which was given to the
application program by CP when the application
program added an entry designating an address
space to its access list. Each access register is
associated with the general register of the same
number. When that general register is used as a
“base register” during an instruction, the corre-
sponding access register is examined by the ma-
chine to determine what address space is being
referenced. If the access register contains zeros,
the reference is to the primary address space. If
the access register contains an ALET selecting a
valid access-list entry, the reference is to the ad-
dress space designated by that entry. If the se-
lected ALE is in the unused or revoked state, a
program interruption will result.

The process in the ESA/XC architecture of con-
verting an access-register number into an ad-
dress-space identification is called access-register
translation, or ART. Figure 3 shows the ART proc-
ess graphically.

In this example, a LOAD instruction is executed in
AR mode. The instruction addresses a storage op-
erand using general register 12 as a base register
and general register 3 as an index register. The
effective address is calculated just as in ESA/390
and 370-XA by summing the contents of the base
register, the contents of the index register, and
the displacement, which in this example is 100.
This address is either a 31-bit address or a 24-bit
address, depending on the current addressing
mode of the virtual CpU, indicated by bit 32 of the
pPsw. The effective address is the location in the
address space of the data but does not indicate
what address space is to be used. Since general
register 12 was used as the base register, access
register 12 is the register that determines the ad-
dress space in which the operand resides. The

20 GDANIEC AND HENNESSY

access register contains an ALET. The diagram
shows that if the ALET is zero, the primary ad-
dress space is the affected one. If the ALET is
nonzero, it selects an access-list entry in the ac-
cess list of the virtual machine. The selected
access-list entry, if valid, contains an ASIT, which
selects the affected address space.

Basic ESA/XC services

The ESA/XC virtual-machine architecture is com-
plemented by a collection of VM/ESA services for
creating and managing data spaces and for man-
aging access to address spaces.® This section in-
troduces the basic set of VM/ESA services in-
volved in using the ESA/XC advanced-addressing
capabilities, and through an extended example,
puts the use of these services into context. The
descriptions of the services provided in this sec-
tion are not meant to be exhaustive; for many of
the functions, there are other parameters and op-
tions besides the ones described here.”® Rather,
this section attempts to highlight the major oper-
ations that an application uses in order to exploit
the advanced-addressing functions.

These VM/ESA services are available as both CP
and cMS interfaces, as shown in Table 1. Since the
structures related to ESA/XC are managed by CP,
the cp interfaces define the basic set of available
operations. The CP interfaces are available as
macros. The CMS interfaces serve as ‘“‘cover”
functions on top of the CP interfaces to make CMS
aware of application-program use of the ad-
vanced-addressing capabilities. This allows CMS
to perform resource cleanup and recovery func-
tions consistent with CMS philosophy. For exam-
ple, CMS can be directed to delete implicitly cer-
tain data spaces after events of which CP is
unaware, such as at end of command or after ab-
normal program termination. The CMS interfaces
are provided as Callable Services Library (CSL)
routines. Although both the CP and CMS interfaces
are fully supported as general programming in-
terfaces, application programs running on CMS are
encouraged to use the CMS interfaces to receive the
benefit of CMS-managed recovery and cleanup.

Creating a data space. To begin the description of
the ESA/XC services, suppose that a program run-
ning in an ESA/XC virtual machine named JMG
wishes to create a data space. It will subsequently
share this data space with other virtual machines
on the same VM/ESA system.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 3 ESA/XC access-register translation: ESA/XC ART converts an access-register number into an address-space
identification to determine the address space to be used for the operand access

ASSEMBLED
INSTRUCTION
(HEXADECIMAL)
e
t DISPLACEMENT /I
TN /"_“J""__'"\
EEEEE——— BASE REGISTER | { INDEX REGISTER
AN / \ 7

ar12 GR12 1— GR3 I—

ALET BASE ADDRESS

4
1\ ALET=0

-t

’ N\ yTTTTITTEET TN
t ALET#0 | | ADDRESS IN SPACE |
N ______],______/

ALET | ASIT flags

PRIMARY SPACE |

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991 GDANIEC AND HENNESSY 21

To create this new data space, JMG invokes the
Create Space function. The Create Space request
specifies the size of the new data space in 4K-byte
pages and an address-space name to be assigned
to the new data space. In this example assume
that the data space is to be named GS3DATA and
will be 8192 pages in size. In response to the Cre-
ate Space request, VM/ESA builds the software
and hardware structures associated with the data
space and then returns to the caller the address-
space-identification token (ASIT) associated with
the newly created data space. For this example,
assume that an ASIT of X‘1234° is assigned to
G53DATA.®

As described earlier in this paper, the ASIT is the
“handle” by which VM/ESA references an address
space. It is required as an input to identify a par-
ticular address space for subsequent function re-
quests, for example, to establish addressability to
the space or to delete it. Therefore, the applica-
tion must preserve the ASIT returned by the Cre-
ate Space function.

Because the control structures and resident data
pages for a data space consume real system stor-
age, the installation has been given control over
the ability of a virtual machine to create data
spaces. The user directory entry for a virtual ma-
chine specifies upper limits on the number of data
spaces and the total amount of data-space storage
that the virtual machine is authorized to own
simultaneously. If a Create Space request would
exceed these limits, it is rejected.

Once a data space has been created, it persists
until its owner explicitly deletes it using the De-
stroy Space function (described later), or until a
virtual-machine reset occurs on the owning vir-
tual machine. If the Create Space function was
invoked via the CMS CSL interface, the data space
may also be deleted implicitly by CMS at end of
command or as part of cleanup for abnormal pro-
gram termination.

Granting access to address spaces. Assume now
that JMG wishes to share data space G53DATA with
a program running in virtual machine JPH and that
JPH is to have read-only access to the data space.
IMG will require read-write access to the same
address space.

JMG indicates that JPH is authorized to access
GS53DATA by invoking the Permit Space function.

22 GDANIEC AND HENNESSY

The Permit Space request includes the ASIT of the
address space for which permission is to be
granted (ASIT X‘1234° for data space GS3DATA in
the example), the identity of the target virtual ma-
chine (userid JPH), and the type of permission:
read-only or read-write. As a result of the Permit
Space request, VM/ESA records that virtual ma-
chine JPH has been authorized for read-only ac-
cess to the address space. Note that Permit Space
authorizes a virtual machine to obtain access to
an address space, but it does not actually estab-
lish that access. The target virtual machine must
subsequently perform the Add ALE function (de-
scribed in the next subsection) to establish ac-
cess.

Figure 4 illustrates the situation after data space
G53DATA has been created and virtual machine
JPH has been permitted to access it.

Since IPH will need to know the ASIT assigned to
G53DATA in order to establish addressability to the
space, JMG would normally inform JPH of the ASIT
after it granted permission. Standard VM/ESA
communication facilities such as advanced pro-
gram-to-program communications/virtual ma-
chine (APPC/VM) or IUCV can be used for this
purpose. Often, these APPC/VM or IUCV commu-
nication paths already exist between the virtual
machines for other reasons, as for example, for
normal communication between a client and a
server, so new paths do not have to be established.

The ability to specify the read-only or read-write
permission separately for each permitted virtual
machine is one of the advantages of using shared
address spaces over shared segments to share
data. Shared segments can be defined as read-
only or read-write, but this attribute is the same
for all virtual machines that share the segment.
Address spaces shared via ESA/XC facilities can
have any combination of read-only and read-write
users. This ability allows structures, for example,
in which one trusted virtual machine is allowed to
write data into an address space that can be only
read by other less-trusted virtual machines.

JMG does not have to use Permit Space to give
itself access to GS3DATA since the owner of an
address space always has read-write permission
to the space. In fact, it would be an error for MG
to try to give itself permission.

The first Permit Space request for a particular
address space transforms that space from a pri-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 4 Creating an address space and authorizing access to it

VIRTUAL MACHINE JMG .

®
.

| CREATE NAME='GS3DATA'

..
‘PERMIT ASIT=X'1234" -
- USERID=UPH', MODE=R/0

] [oam srace as30ATA M

ASIT=X"1234'
| ‘vm/esA
- [JMG's ACCESS LIST | [ASIT X'1234' PERMITTED USERS | | JPH's ACCESS LIST |
ALET ASIT ALET ASIT

JPH - R/0

vate address space into a shareable address
space. The address space remains shareable until
it is isolated or destroyed. Because this transfor-
mation allows other virtual machines to access
the address space, it changes treatment by the
VM/ESA paging subsystem of the address space as
well. When an address space is private, only the
owning virtual machine can reference it, so CPcan
attribute to the owner all reference activity to the
address space. The VM/ESA paging subsystem
therefore manages a private address space in con-
junction with all other private storage owned by
the same user, applying page-selection criteria to
all of these address spaces uniformly, depending
on the reference pattern and activity of that us-
er.'” In contrast, when an address space is share-
able, references to it may be made by any of the
permitted virtual machines, so it is no longer pos-
sible to attribute activity to any particular user.
As a result, the VM/ESA paging subsystem disas-
sociates a shareable address space from the own-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

ing user and, instead, treats the address space as
a form of system-wide shared storage. This treat-
ment results in more global consideration of the
address space for paging purposes. Because use
of the Permit Space function results in this change
in paging treatment, a virtual machine must be
authorized in the user directory to employ it."

The permission to access an address space that is
conferred by Permit Space persists until it is re-
voked by the owner (via the Isolate Space func-
tion described later), until the address space is
deleted, or until a virtual-machine reset occurs on
either the owning or the permitted virtual ma-
chine.

Finally, it is worth noting that although the ex-
ample focuses on sharing a data space, primary
address spaces can be shared as well. Virtual ma-
chine JMG could have given JPH access to its pri-
mary address space in essentially the same man-

GDANIEC AND HENNESSY

23

ner as just described for data space G53DATA. The
only difference is that since the primary space is
not created via the Create Space function, the
virtual machine does not have the ASIT for the
primary space available. However, it can use the
Query Space function to obtain this ASIT.

Establishing addressability. Now that JMG has cre-
ated data space GS3DATA and authorized JPH to
access it, the next step in the process is to estab-
lish addressability for the data space. Since both
JMG and JPH wish to access the data space, this
operation will be performed by both virtual ma-
chines.

The Add ALE function is used to obtain access to
an address space. The Add ALE request specifies
the ASIT of the address space and the type of ac-
cess (read-only or read-write) desired. In the ex-
ample, both JMG and JPH invoke the Add ALE
function, specifying the ASIT for G53DATA
(X1234°), since they both want to access this
space. JPH requests read-only access; it would
have been an error if it had requested read-write
access since it only has permission for read-only
access. JMG is the owner of the address space and
is thus free to request either type of access. JIMG
might request read-only access if that is all that is
required, perhaps to eliminate the possibility of
an erroneous store into the address space.

The result of the Add ALE request is that an un-
used entry in the access list associated with the
virtual machine is placed in the valid state and set
to designate the requested address space. The
ALET corresponding to the selected access-list en-
try is returned to the caller. As previously de-
scribed, the collection of valid entries in the ac-
cess list constitutes the set of address spaces that
a virtual machine can reference using the ad-
vanced addressing features provided by ESA/XC.

The ALET returned by Add ALE is the handle used
by the hardware to designate the address space
containing an instruction operand. The ALET des-
ignates a particular entry in the access list asso-
ciated with the virtual machine; the access-list
entry in turn designates the address space. Since
access lists are managed independently for each
virtual machine, the ALET assigned for the ac-
cesses of one virtual machine to an address space
is usually different than the ALET assigned for the
accesses of another virtual machine to the same
space. For example, ALET X‘0022’ may be re-

24 GDANIEC AND HENNESSY

turned for use by IMG, whereas ALET X ‘0008’ may
be returned for JpH.

This example points out an important difference
between ASITs and ALETs. ASITs are managed so
that they have systemwide scope. Both JMG and
JPH used the same ASIT to identify data space
GS3DATA to the system. In contrast, an ALET is
translated through the access list associated with
a virtual machine, so the address space selected
by a particular ALET value depends on the con-
tents of that list. The ALET therefore has only
local scope. If IMG attempts to use the ALET as-
signed to JPH for references to GS3DATA, it is very
likely that either the reference made by IMG will
not succeed (result in a program exception) or will
occur in the wrong address space. Programs that
run in different virtual machines and share ad-
dress spaces must be aware of these differences
between ASITs and ALETs and use the tokens ap-
propriately.

Referencing address spaces. Thus far, all of the
setup operations required to use the ESA/XC ad-
vanced-addressing capabilities have been de-
scribed: creating address spaces, permitting other
virtual machines to access address spaces, and
establishing addressability to address spaces.

To fetch data from or store data in an address
space other than the primary address space, a
program places the appropriate ALETs into the ac-
cess registers that will be used for storage oper-
ands and enters the access-register (AR) mode.
While in this mode, each storage operand is des-
ignated in a space.address form via an access-
and-general register pair: the ALET in the access
register indicates the address space containing
the operand, and the address in the general reg-
ister (possibly modified by a displacement or in-
dex specified in the instruction) indicates the lo-
cation of the operand within the address space.
The access-and-general register pair used to des-
ignate a storage operand corresponds to the base-
register-number field in the instruction for the
storage operand. For instructions such as MOVE
(Mv() that have multiple storage operands, each
operand can be designated by a different access-
and-general register pair, and therefore the oper-
ands can reside in different address spaces. This
process has been described in more detail earlier
in this paper.

As we continue with the example, Figure 5 shows
both virtual machines MG and JPH referencing

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 5 Referencing data in G53DATA

[VIRTUAL MAGHINE JMG

| [oATA SPACE G53DATA |

A/W |

| VIRTUAL MAGHINE JPH -

e
.
L4

ADD ASIT=X'1234', MODE ADD ASIT=X‘1234!, MODE=R/O
H S
L g -
LAM 2,2,ALET LAM 55,ALET
L 2,ADDR ‘L 5ADDR
SAc 512 : | SAC 512
8T 7.0('2) ---“--“;‘-1 -~ - A 3’0('5)
o . .
[.
) . »
B ALET X0022 — ASIT=X'1234' L o ALET: X'0008’
© | AbDR: X1000" ADDR: X'2000"
| vm/EsA
JM@'s ACCESS LIST i [ASIT X*1234' PERMITTED USERS | [UMa's ACCESS LIST |
ALET ASIT ALET ASIT
JPH - R/0
F X'0008’
X'0022' X234’ — o X'1234°

data in data space GS3DATA. The LOAD ACCESS
MULTIPLE (LAM) instruction is used to load ALETs
from storage into access registers, and the SET
ADDRESS SPACE CONTROL (SAC) instruction is
used to switch between the primary-space and AR
modes. Once in the AR mode, the storage oper-
ands of normal CPU instructions such as STORE or
ADD can reside in address spaces other than the
primary space.

Given that the proper setup operations have been
performed, the process of entering AR mode and
referencing data in that mode is accomplished
without intervention by CP or CMS. The address-
ing operations are performed entirely by the ma-
chine. If proper setup has not been performed,
the error condition is reported to the virtual ma-
chine as a program interruption. CMS in turn con-
verts the program interruption into a program ab-
normal end (abend) and drives abend-handling
exits to invoke application cleanup.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

While executing in AR mode, some ART-related
program interruptions may be recognized as a re-
sult of improper setup. For example, an exception
is recognized if a program uses an ALET that des-
ignates an unused or nonexistent access-list en-
try. In addition, a program interruption may be
recognized if a program attempts to reference an
address space for which its access permission has
been revoked. This condition is not due to im-
proper setup, but rather results if the owner of an
address space isolates or destroys the address
space ‘‘out from under” the accessing virtual ma-
chine.

In most cases, it is necessary to make references
to the primary address space while in AR mode,
for example, to move data from the primary space
into or out of a data space. A valid access-list
entry designating the primary space is not re-
quired in order to do this (although there is noth-
ing preventing such an access-list entry from be-

GDANIEC AND HENNESSY 25§

ing established). Rather, the special ALET value of
binary zero has been reserved to designate the
primary space for use in such cases. This ALET
value is translated without using the access list.

Dropping addressability. When access to a par-
ticular address space is no longer needed, a vir-
tual machine can drop addressability to it by using
the Remove ALE function. This function places a
valid (or revoked) access-list entry in the unused
state so that the entry can be used again later. The
access-list entry to be removed is indicated by
specifying the ALET associated with it.

The Remove ALE function affects only current
addressability to the address space; it does not
change permission obtained by a virtual machine
to the address space. So, for example, as long as
JMG does not revoke the access of JPH to data
space GS3DATA, JPH is free to use the Add ALE and
Remove ALE functions to establish and drop ad-
dressability to GS3DATA as often as necessary.

Generally, no penalty is associated with main-
taining addressability to an address space for
longer than required. Thus for most applications,
the Remove ALE function is needed only during
application termination. However, an extremely
complex application may require access to more
address spaces than it has access-list entries. Such
an application must actively manage the contents of
the access list associated with the virtual machine,
temporarily removing addressability to an ad-
dress space to make room in the access list for
addressability to some other space. The Remove
ALE function makes such management possible.

As part of virtual-machine reset, the Remove ALE
function is performed implicitly for each entry in
the access list associated with the virtual ma-
chine. As a result, at the completion of virtual-
machine reset all of the access-list entries are in
the unused state.

Isolating address spaces. The owner of a shared
address space can return it to the private state
through the use of the Isolate Space function.
This function may be useful in preparing to make
widespread changes to an address space, or in-
dicating that a later version of data exists in some
other address space.

Isolate Space is a global revoke operation for an
address space. It rescinds all permissions to the

206 GDANIEC AND HENNESSY

address space previously granted via the Permit
Space function and cancels any current address-
ability that other virtual machines may have to
the address space. Any addressability that the
owning virtual machine has to the address space
being isolated remains unchanged. The Isolate
Space function performs these operations in such
a way as to make the important guarantee that
when the Isolate Space function completes its op-
eration, only the owning virtual machine is able to
access the address space that was isolated.

Current addressability of other virtual machines
is canceled by changing applicable entries in their
access lists from the valid to the revoked state and
then terminating any in-progress storage accesses
to the address space. In the absence of other com-
munication between the owner and the sharing
virtual machine, the sharing virtual machine will
find out that its access was revoked via a program
interruption on its next attempt to reference the
address space.

Figure 6 continues the example, showing the state
of data space G53DATA and the access lists for
virtual machines JMG and JPH after JMG has iso-
lated GS3DATA.

Because the Isolate Space function returns an ad-
dress space to a state in which only the owner can
access it, all reference activity to the address
space is once again attributable solely to the
owner (as was the case before the first Permit
Space request for the address space). Therefore,
after an Isolate Space operation, the VM/ESA pag-
ing subsystem resumes private-storage treatment
for the address space.

If not performed earlier, an Isolate Space opera-
tion is performed implicitly on each address space
owned by a virtual machine as part of virtual-
machine reset.

Destroying data spaces. When a data space is no
longer needed, the owner of the data space can
destroy it using the Destroy Space function. Since
a data space always consumes some amount of
real system storage, it is good practice to destroy
data spaces when finished with them.

The data space to be destroyed is specified by an
ASIT. The Destroy Space function discards the
current contents of the data space and frees all
control structures used to represent the data

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Figure 6 Isolating an address space

[IRTUAL MACHINE JMa |

[oaa sPace asaomta |

[VIRTUAL MAGHINE JPH |

. -
ISOLATE ASIT= X“1234':‘ R
L3

L
.

X'0022' X'1284' —J

— ASIT=X"1234'
wEsh
[Jma's acoEss LisT] [ASIT X'1234' PERMITTED USERS | [Jpr's ACCESS LIST
ALET ASIT ALET ASIT
X0008" REVOKED

space. If the data space being destroyed is a
shareable address space, an implicit Isolate Space
operation is performed as part of the Destroy
Space operation to terminate the access of other
virtual machines to the data space.

Since the Destroy Space function terminates not
only the accesses of other virtual machines to the
data space, but the owner’s accesses as well, any
entries in the owner’s access list that designate
the data space being destroyed are set to the re-
voked state. If the CMS CSL interface is being
used, CMS implicitly performs the Remove ALE
requests to return those entries to the unused
state, thus making those entries available for re-
use.

If not performed earlier, an implicit Destroy
Space operation is performed on every data space
owned by a virtual machine as part of virtual-
machine reset.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Advanced ESA/XC services

In addition to the basic ESA/XC system functions
described in the preceding section, VM/ESA also
provides a collection of advanced functions for
more sophisticated exploitation of ESA/XC capa-
bilities. These additional functions include serv-
ices for performing data-in-storage mapping
between minidisks and address spaces, hand-
shaking to allow asynchronous processing of page
faults, and a service to optimize system handling
of application data. These functions are described
briefly in the following subsections.

Mapping services. For some applications, data
spaces might be useful as a fast way of referencing
data that are permanently stored on DASD. Tem-
porarily placing the data in data spaces and ref-
erencing the data in those data spaces could im-
prove application performance, particularly if the
same data are used repeatedly. As long as the
data-space pages remained resident in processor

GDANIEC AND HENNESSY 27

Figure 7 Mapping minidisk data into address spaces

| ADDRESS SPACE ALPHA | [MiNIDISKS

PAGE FAULT

FRAME STEAL

storage, access to the data would occur very
quickly.

One way of structuring such an application would
be to load a data space or set of data spaces with
data from DASD at the beginning of the execution
of the application, and to store the changed data
from the data space back in the DASD locations at
the conclusion of the application. Unfortunately,
in many cases such an approach would be inef-
ficient, especially if the application usually only
processed a small, randomly accessed portion of
its data, or if it did not keep track of the specific
data items that were changed, but rather rewrote
all of the data at the conclusion of the application.
The 1/0 operations wasted in loading and storing
the portion of the data that was never accessed or
changed could more than offset the benefit re-
ceived from quick access to the portion that was
needed. The processor storage wasted for un-
needed data could cause a sharp increase in the
paging activity performed by the system, result-
ing in a system-wide performance degradation.

The mapping services provide a way to use data
spaces as a temporary repository for DASD data

28 GDANIEC AND HENNESSY

while minimizing unnecessary I/0 operations or
storage overhead. These services are similar in
nature to the MVS/ESA data-in-virtual services de-
scribed by Rubsam. * Through the mapping serv-
ices, a program can establish an association be-
tween a collection of minidisk blocks (on one or
more minidisks) and a collection of address-space
pages (in one or more address spaces). As shown
in Figure 7, when a mapping exists, an image of
the data that resides on the mapped minidisk
blocks appears in the associated address space
pages without the need to perform application-
requested /O operations to load the data. Instead,
the /0 operations are performed implicitly by the
VM/ESA system as references are made to the
mapped address spaces. In addition, the mapping
services allow a program to save only the changed
mapped data back on the minidisks without keep-
ing track of the specific pages that were changed
(the CP paging subsystem tracks the changes).

The mapping services are provided by the CP
MAPMDISK macro as shown in Table 2; there is
currently no CMS interface for the mapping serv-
ices. However, CMS applications can invoke the
mapping services via the CP interfaces.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

The Identify Pool function is the first mapping
function used by an application. It identifies the
collection of minidisks in the 1/0 configuration of
the virtual machine that will participate in map-
pings. This collection is known as the minidisk
pool. For each block within the minidisk pool, the
Identify Pool request specifies a unique pool-rel-
ative block number to be assigned to the block.
This number is used by the mapping services to
establish the association between address-space
pages and blocks within the minidisk pool.

Once the minidisk pool has been identified, an
application uses the Define Mapping function to
establish mappings between address-space pages
and minidisk blocks. The Define Mapping request
specifies a range of address-space pages to be
mapped and also specifies, for each page in the
range, the pool-relative block number identifying
the minidisk block to be associated with the page.
Immediately upon completion of the Define Map-
ping operation, the data that are contained on the
minidisk blocks are available in the newly
mapped pages. That is, a reference to a mapped
page via a processor instruction such as LOAD will
“see” the data that are on the associated minidisk
block. The mapped data can be changed by sim-
ply changing the appropriate address-space loca-
tions.

Again, even though it is said that the data are
available immediately, actual movement of data
from a minidisk block into the address space is
deferred until the first reference is made to a page.
The Define Mapping operation sets all of the
newly mapped pages such that any reference to
them causes a page fault to occur. When the
mapped page is referenced and the page fault is
generated, the data are read from the minidisk
block by the VM/ESA paging subsystem as part of
the process of resolving the page fault.

After a mapped page is in storage, the VM/ESA
paging subsystem may decide to ‘““steal” the stor-
age frame associated with the mapped page. If the
frame is stolen and has been changed (determined
by inspecting the hardware change bit for the
page), the paging subsystem writes the changed
page back on the associated minidisk block, thus
preserving the changes. If a virtual machine
makes another reference to the mapped page, it
will be reread from the minidisk block.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

Table 2 Interfaces to mapping services

Function CP Macro
Identify Pool MAPMDISK IDENTIFY
Define Mapping MAPMDISK DEFINE
Save MAPMDISK SAVE
Remove Mapping MAPMDISK REMOVE

Although the VM/ESA paging subsystem may
sometimes cause changed, mapped data to be
saved on the minidisks, from the point of view of
a virtual machine it is unpredictable if (and when)
the paging subsystem may perform this action,
and so the application cannot depend upon it. In-
stead, the application can use the Save function to
guarantee that changed, mapped data are stored
back on the minidisks. The Save request initiates
an asynchronous operation that writes to the as-
sociated minidisk blocks any of the pages in a list
of mapped pages that have not been written out
since they were last changed. Pages for which the
minidisk copy is up-to-date are not rewritten.
When completion of the save operation is indi-
cated via an interruption to the requestor, the ap-
plication is guaranteed that the minidisk blocks
contain a current copy of the mapped data.

Finally, when an application is finished referenc-
ing the mapped data, it can eliminate the mapping
association by using the Remove Mapping func-
tion. This function restores the address-space
pages to “‘unmapped” status so that they can be
used as normal virtual-machine storage.

The Structured Query Language/Data System
(SQL/DS) database product and the cMS Shared
File System both use VM/ESA mapping services in
conjunction with the exploitation of data spaces
by those components.

Asynchronous page-fault handling. As was men-
tioned earlier, the address spaces that are avail-
able to ESA/XC virtual machines are managed by
cp. In an effort to make the most efficient use of
the real machine storage, CP makes decisions
about what portions of virtual-machine storage
should and should not be resident in real storage.
If a virtual machine references a portion of an
address space that is not resident in real storage,
a page-fault indication is presented to CP. When
normal, synchronous, page-fault resolution is in
effect, CP responds to the page-fault indication by

GDANIEC AND HENNESSY 29

suspending execution of the virtual machine, per-
forming the paging operation to make the required
pages resident, and resuming execution of the vir-
tual machine when the paging operation is com-
pleted. The page fault and its subsequent resolu-
tion by CP are transparent to the virtual machine
except for the time delay during which the virtual
machine was suspended.

For most applications, the time delay incurred in
synchronous page-fault resolution is not signifi-
cant. However, for certain applications, such as
servers, the delays caused by synchronous reso-
lution can be a problem. These servers perform
functions (for example, database management)
on behalf of many users of a VM/ESA system. Such
a server is usually structured to use a form of
multitasking to maximize server throughput.
Each incoming user request is assigned by the
server to a separate task. When progress on one
task is delayed, for example, to wait for an 1/0
operation to complete, the server switches to
work on another task for which progress can be
made. In doing so, the server makes productive
use of the relatively long time between /O initi-
ation and /0 completion instead of wasting the
time by simply waiting.

Unfortunately, this technique cannot be used to
avoid delays caused by page faults when the
faults are being resolved synchronously. Since CP
suspends the server during the fault-resolution
process, the server does not have an opportunity
to run another task while the page fault is being
resolved for the faulting task. That is, all of the
tasks of the server are delayed while CP is busy
resolving a page fault incurred by just one of
them. As a result, server throughput is degraded.

In contrast, asynchronous page-fault handling al-
lows a server to productively run other tasks
while a page fault is being resolved for an AR-
mode reference made by one task. When a page
fault occurs during an AR-mode reference and
asynchronous resolution is enabled for that ref-
erence, CP initiates the paging operation to make
the required page resident. CP then immediately
resumes execution of the virtual machine, pre-
senting a page-fault-initiation interruption to the
virtual machine as a signal that a page fault has
occurred. The multitasking server in the virtual
machine normally responds to the page-fault-ini-
tiation signal by suspending its current task (the
one that just encountered the page fault) and se-

30 GDANIEC AND HENNESSY

lecting some other task to run. The new task runs
in parallel with the CP paging operation to resolve
the page fault of the original task.

When the CP paging operation is completed and
the required pages are resident, CP presents a sec-
ond signal, a page-fault-completion interruption,
to the virtual machine. This interruption indicates
to the server that the faulting task does not have
to be delayed any longer since the pages it re-
quires are now available in storage.

Multiple instances of asynchronous page-fault
resolution may be outstanding at the same time.
For example, task B, which was run when task A
encountered a page fault, may itself encounter a
page fault before the page-fault-completion signal
is received for task A. The page fault on task B
initiates another instance of asynchronous page-
fault resolution and will result in another pair of
initiation and completion signals, this time for
task B. Because multiple page-fault-completion
signals can be outstanding at the same time, a
method is needed to identify for what task a par-
ticular page-fault-completion signal is intended.

Associating the initiation and completion signals
with the intended task is accomplished by pro-
viding a task-identification token as part of the
signals.”® Before enabling asynchronous page-
fault handling, a server uses the CP PFAULT macro
to specify the location of a word in storage that it
maintains as the task-id token of the current (run-
ning) task. Typically, this word is set by the
server to be the address of the “task control
block” for the current task. When a page fault
occurs, CP obtains the token for the current task
from this server-specified location and supplies
this token in the page-fault initiation and comple-
tion signals for the page fault just encountered.
This action allows the server to process the page-
fault-completion signal without performing any
“task control block” searching. Such searching
would be required if a Cp-generated, rather than
server-supplied, token were used in the signals.

Asynchronous page-fault handling is enabled or
disabled independently for each entry in the ac-
cess list associated with a virtual machine. When
an ALE is established via the Add ALE service, a
parameter on that request indicates the type of
page-fault treatment desired for references made

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

via the ALE. The default is synchronous page-
fault handling. This flexibility allows a server to
use asynchronous page-fault handling for some
types of references, while avoiding it for other
types that cannot tolerate the ‘‘loss of control”
implied by task suspension and resumption.
Asynchronous page-fault handling is not avail-
able for references that do not involve use of an
ALE. That is, references made while in the pri-
mary-space mode or references made with an
ALET of binary zero while in the access-register
mode are always handled synchronously.

Finally, it is worth noting that asynchronous
page-fault handling is normally applied only to
page faults that require CP to perform an /O op-
eration to resolve them. If a page fault can be
handled without an 1/0 operation, for example,
because the required data are available in ex-
panded storage, the fault is almost ailways han-
dled in the synchronous manner. The time to
process such page faults is so short that the extra
overhead involved in asynchronous handling is
not beneficial.

Reference pattern notification. Asynchronous
page-fault handling reduces the system-wide im-
pact of page faults by allowing a multitasking ap-
plication to overlap other processing with the res-
olution of a page fault. But asynchronous page-
fault handling is not the complete solution: The
task that encountered the page fault is still de-
layed, and single-task applications cannot easily
exploit the asynchronous page-fault handiing ca-
pability. An even better approach is to avoid page
faults completely by making virtual-machine stor-
age resident (just) before it is needed.

To this end, CP provides the REFPAGE macro to
allow an application to give hints to the VM/ESA
paging subsystem about the upcoming storage
reference patterns of the application. The refer-
ence pattern may be regular, as might be encoun-
tered during the processing of large arrays. Al-
ternatively, the reference pattern may be
irregular, appearing as a collection of unrelated
references with the overriding pattern being vis-
ible only at a higher level. Such a reference pat-
tern may be encountered during the indexed scan
of data of a database server; the individual ref-
erences appear unrelated, but are in fact predict-
able based on the contents of the index.

As aresult of the REFPAGE hints, the VM/ESA pag-
ing subsystem alters its normal formation of *‘pag-

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

ing blocks” based on past recency of reference to
instead form blocks that are related to the stated
future reference pattern of the application. When
a page fault occurs on one page in a paging block,
the paging subsystem also makes resident some
or all of the other pages within the block (depend-

Specifying reference hints that
do not closely match the actual
reference pattern can result in
unneeded pages being made
resident.

ing on system storage availability). To the extent
that the paging blocks mirror the reference pat-
tern, this block-oriented paging eliminates page
faults on subsequent references to other pages.

As is the case for tuning functions in general, in-
correct application of the REFPAGE macro can de-
grade rather than improve performance. Specify-
ing reference hints that do not closely match the
actual reference pattern can result in unneeded
pages being made resident, possibly displacing
other pages that were useful; this could result in
increased paging. Therefore, the REFPAGE macro
should be judiciously applied.

Concluding remarks

IBM’s ESA/390 architecture was developed and re-
fined after careful consideration of the require-
ments of sophisticated operating systems manag-
ing real-machine resources. It is IBM’s strategic
architecture for such operating systems. IBM’s
new ESA/XC architecture is a derivative of ESA/390
and makes the advanced address-space facilities
of ESA/390 available to the cMS application pro-
gram. ESA/XC has been shaped specifically to sat-
isfy CMS requirements and is thus IBM’s strategic
architecture for supporting the CMS environment.

ESA/XC provides an environment where programs
can create additional storage in the form of data

GDANIEC AND HENNESSY 31

spaces and share those data spaces or the primary
address space with other virtual machines. The
virtual machine does this without being encum-
bered by the chore of maintaining DAT and ART
tables, or by paging to efficiently use storage;
these are taken care of by cp. Exploiting addi-
tional address spaces provides better reliability
through data separation, enriched function
through high-speed and flexible data sharing, and
increased capacity from the ability to concur-
rently address more than 2G of storage. Mapping
data on DASD into an address space likewise pro-
vides extended capabilities suitable for a variety
of purposes. ESA/XC is the next step in the natural
progression of virtual-machine architectures. It
has the same advantages over the System/370 ar-
chitecture that 370-XA has, but the additional
ESA/XC-only services make ESA/XC superior to
370-XA for CMS applications. The transition from
370-XA to ESA/XC is much smoother than was the
transition from System/370 to 370-XA.

ESA/XC is provided by collaboration between
VM/ESA and the machine. Many such synergetic
relationships are possible and could conceivably
provide further useful function for the CMS pro-
grammer. ESA/XC is an extendable base for such
improvements.

Virtual Machine/Enterprise Systems Architecture, VM/ESA,
MVS/ESA, Enterprise Systems Architecture/370, Enterprise
Systems Architecture/390, and ESA/390 are trademarks of
International Business Machines Corporation.

Cited references and notes

1. K. E. Plambeck, “Concepts of Enterprise Systems Ar-
chitecture/370,” IBM Systems Journal 28, No. 1, 39-61
(1989).

2. IBM Enterprise Systems Architecture/390 Principles of
Operation, SA22-7201, IBM Corporation; available
through IBM branch offices.

3. D. L. Osisek, K. M. Jackson, and P. H. Gum, “ESA/390
Interpretive-Execution Architecture, Foundation for
VM/ESA,” IBM Systems Journal 30, No. 1, 34-51 (1991,
this issue).

4. A 64-bit token provides, of course, a finite number of
unique values (namely 2%), If a system were to run for-
ever, therefore, it would be impossible to guarantee
uniqueness indefinitely. The algorithm chosen by
VM/ESA does not generate all 2% possible ASIT values
but does provide a sufficient range to allow this guarantee
to be made in practice.

S. A detailed description of SAC and other instructions in
ESA/XC may be found in the document VM/ESA Enter-
prise Systems Architecture/Extended Configuration Prin-
ciples of Operation, SC24-5594, IBM Corporation; avail-
able through IBM branch offices.

32 GDANIEC AND HENNESSY

6. The term data space is used specifically to refer to an
address space created at the request of a virtual machine
via the Create Space function. Many of the operations
described in this section can also be performed against the
primary space of a virtual machine. In such cases, the
more general term address space is used.

7. VMIESA CP Programming Services, SC24-5520, IBM
Corporation; available through IBM branch offices.

8. VM/ESA CMS Application Development Reference,
SC24-5451, IBM Corporation; available through IBM
branch offices.

9. An ASIT is actually eight bytes (16 hexadecimal digits)
long. For brevity, a shorter hypothetical ASIT is being
used in this example.

10. G. O. Blandy and S. R. Newson, “VM/XA Storage Man-
agement,” [BM Systems Journal 28, No. 1, 175-191
(1989).

11. When VM/ESA is operating at the United States Depart-
ment of Defense B1 security level, additional tests must
be passed before a Permit Space operation grants permis-
sion to another virtual machine. Specifically, mandatory
access-control checking is applied to ensure that the per-
mitted virtual machine is at a security level that allows
access to the information contained in the address space.
If the mandatory access-control checking fails, the Permit
Space operation is rejected.

12. An ALET is actually four bytes (eight hexadecimal digits)
long. For brevity, shorter hypothetical ALETSs are shown
here.

13. An obvious omission in the repertoire of ESA/XC serv-
ices of VM/ESA is an individual Revoke-access function
that rescinds permission from particular virtual machines.
Although this is not intuitive, an individual Revoke-ac-
cess function is more difficult to achieve than a global
revoke operation, especially in delivering the necessary
guarantees about synchronization between the “revoker”
and “revokee.”” Because of these difficulties, and the lack
of a strong immediate requirement, the individual Re-
voke-access function is not included in the initial support
of ESA/XC, but is a possible future enhancement.

14. K. G. Rubsam, “MVS Data Services,” IBM Systems
Journal 28, No. 1, 151-164 (1988).

15. The task-id token is not strictly necessary in the page-
fault-initiation signal since that signal is always intended
for the current server task. However, for consistency, the
initiation and completion signals both provide the token.

Joseph M. Gdaniec /BM Data Systems Division, P.O. Box 6,
Endicott, New York 13760-5553. Mr. Gdaniec is a senior pro-
grammer in the VM System Design department. His current
responsibilities include the definition of architecture and VM
support for advanced processor capabilities. He was the lead
designer for the VM Data Spaces function. Mr. Gdaniec
joined IBM in Kingston, New York, in 1982 with an initial
assignment in the Scientific and Engineering Processor Prod-
ucts group. He participated in application enabling and bench-
marking for the IBM 3090 Vector Facility. In addition, he was
coauthor of the VS FORTRAN Program Multitasking Facil-
ity, for which he received an IBM Qutstanding Technical
Achievement Award and a U.S. patent. In 1986, he accepted
his current assignment in VM. Mr. Gdaniec received a B.S. in
computer science from Indiana University of Pennsylvania in
1982, and an M.S. in computer science from Syracuse Uni-
versity in 1989. He is a member of the Association for Com-
puting Machinery and the IEEE Computer Society.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

James P. Hennessy IBM Data Systems Division, P.O. Box
6, Endicott, New York 13760-5553. Mr. Hennessy is an ad-
visory programmer in VM System Design at the IBM Endicott
Programming Laboratory. He received his B.S. in computer
science from Rensselaer Polytechnic Institute in 1982 and
joined IBM and VM development the same year. Since then,
he has been involved in many enhancements to VM/XA and
VM/ESA in the area of real and virtual CPU management and
storage management. Most recently, Mr. Hennessy designed
and implemented a portion of the VM Data Spaces support
available in VM/ESA 1.1.

Reprint Order No. G321-5421.

IBM SYSTEMS JOURNAL, VOL 30, NO 1, 1991

GDANIEC AND HENNESSY 33

