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Release 1.1 of the Virtual  Machine/Enterprise 
Systems ArchitectureTM (VM/ESATM)  operating 
system introduces a new function called VM  Data 
Spaces, provided through a new virtual-machine 
architecture  called  Enterprise  Systems 
Architecture/Extended  Configuration (ESNXC). 
ESNXC is the strategic VM/ESA virtual-machine 
environment  for  Conversational  Monitor System 
(CMS)  users  and service virtual machines 
requiring large  amounts  of  storage or advanced 
data-sharing  capabilities. ESNXC includes all of 
the facilities of  System/370  Extended Architecture 
(370-XA) that are  used  by CMS or  server 
programs  and is therefore  upward  compatible  for 
CMS or  server  programs currently running in 
370-XA virtual machines.  To this 370-XA  base, 
ESNXC  adds  the  data  space  and  access-register 
addressing  capabilities previously available  only 
under  the Multiple Virtual  Storage/Enterprise 
Systems Architecture (MVS/ESATM) operating 
system.  These  addressing  extensions  can  be 
used to make additional storage  available to 
large,  storage-constrained  applications  and can 
also be  used  by  servers  as  an  efficient  way  of 
sharing data  between  service virtual machines 
and  the  users  that  access  those  servers.  As  an 
introduction to the VM Data  Spaces function, this 
paper describes the ESNXC virtual-machine 
architecture  and  presents  an  overview of the 
VM/ESA services  provided in support of the 
ESNXC architecture. 

T he IBM Enterprise  Systems Architec- 
ture/37OTM' introduced  advanced  address- 

space facilities that  are  exploited by supervisor 
programs  to  provide  application  programs with 
the ability to access many address  spaces  con- 
currently.  These facilities are also  provided by 
the  new  Enterprise  Systems Architecture/390" 
(ESA/390"). The  Enterprise  Systems Architec- 
ture/Extended Configuration (ESAIXC) is a new 
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virtual-machine architecture  that brings this pow- 
erful capability  to  the Virtual Machine/Enterprise 
Systems Architecture" (VM/ESA~~) user in a form 
suitable to  the Conversational  Monitor  System 
(CMS) virtual-machine environment.  This  paper 
serves as an  introduction to ESA/XC, describing 
some of the important  features of the architec- 
ture, its basic  foundation,  and  its useful services, 
and providing a glimpse of the philosophy  under- 
lying the  architecture. 

An address  space is simply a sequence of ad- 
dresses  that  starts  at  zero  and  proceeds  up to a 
value that  varies  according  to the size of the  ad- 
dress  space.  Each  address  designates a byte of 
information. For  example,  when a CMS user logs 
on  to  the  system, CP (the  control program) creates 
for  that  user a virtual machine that  includes, 
among other  things,  "storage." Although the CMS 
user may not generally think of it in  this  way, that 
storage is an  address  space.  To  an  application 
program, an  address  space is storage and is used 
to hold data.  The  nuances of storage  management 
that  are  important  to  the underlying supervisor or 
host  are  not  important to  the application  program. 

The  advanced  address-space facilities of ESA/390 
provide a supervisor with the means by which it 
can  create many address  spaces  and  selectively 
make these  address  spaces  accessible  to  applica- 
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Figure 1 Comparison of ESA/390 address  spaces and ESA/XC address  spaces 

tion programs.  Suitably  coded application pro- 
grams  can  then  enter a mode called the  access- 
register  mode to directly  address  data in these 
address  spaces. Application programs  that  share 
a common  supervisor  can  even  share  these  ad- 
dress  spaces,  thus exchanging information in a 
very efficient manner. 

The intuitive  approach  for making these powerful 
abilities available to  the CMS application program 
might call for  enhancing CMS to  run in an ESA/390 
virtual machine, having it build and maintain ad- 
dress  spaces. Figure 1 compares  address  spaces 
built by operating  systems using ESN390 (Part A) 
with address  spaces built by a hypothetical CMS 
using ESA/390 (Part B). 

In  this  form,  however, ESA/390 would be difficult 
for CMS to exploit.  Consider  the following: 

CMS is a single-user supervisor.  Since  two CMS 
users  do not  share  the  same  supervisor,  they 
cannot  run  application  programs  that  share  the 
same  address  spaces.  The  address  spaces  cre- 
ated by one virtual machine using ESA/390 are 
isolated  from all other  virtual  machines. One of 
the goals of VM/ESA is to  improve  the facilities 
available for  interuser  communication, but CMS 
exploitation of ESA/390 would not  promote  this. 
To allow direct data sharing  between virtual 
machines,  another  approach is necessary. 
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To use the access-register  mode in ESM390, an 
application program  must  run with dynamic  ad- 
dress  translation (DAT) on, something that is not 
supported  today by CMS. Although it would be 
possible to  change CMS to  run with translation 
on, this would undoubtedly  have a negative ef- 
fect  on some existing application  programs. 
CMS runs  application  programs in the supervi- 
sor  state, which gives application  programs full 
access  to all virtual-machine facilities. Many 
application  programs  take  advantage of this  sit- 
uation by performing their  own manipulations 
of the virtual-machine environment.  Since it is 
difficult to  code  such programs so as to antici- 
pate  future  changes in CMS, it is likely that  at 
least  some  application  programs would cease  to 
function  correctly if CMS were to  start running 
with translation  active. 
A  supervisor  that builds address  spaces  must  be 
fairly sophisticated. To manage storage effi- 
ciently,  a  supervisor should keep  track of how 
frequently  data in an  address  space  are  used  and 
should “page out”  data  that  are  infrequently 
accessed.  A  supervisor  that  performs  such pag- 
ing must then  keep  track of where  these  data 
reside on auxiliary storage  devices  such as a 
direct-access  storage  device (DASD) or ex- 
panded  storage,  and be prepared  to  read them 
in again when they are needed  by an application 
program.  Sophisticated  storage-management 
techniques  such as these  require  a  great  deal of 
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code  and would thus significantly increase  the 
size of the CMS nucleus.  Worse  than that, since 
CP pages the  host  address  space  representing 
guest  storage,  two levels of  paging activity 
would be taking place if CMS also paged its ad- 
dress  spaces.  Furthermore,  because CMS relies 
on CP to  be  the  system  resource  manager, it 
does  not  today  need  to manage auxiliary storage 
devices  such as paging DASD, and  thus  does not 
have  access  to  any. 
CP already contains logic to manage address 
spaces.  It  was  mentioned  earlier  that CP creates 
an  address  space  for a user  when  that  user logs 
on  to  the VM/ESA system.  Enhancing  this logic 
in CP is preferable  to duplicating it  in CMS. 

The ESA/XC architecture, a derivative of ESA/390, 
has  been  developed  and  tailored specifically for 

ESA/XC is  derived from ESA/390. 

the  virtual-machine  environment.  A  cooperative 
effort between VM/ESA and  the  machine3 allows 
VM/ESA to  provide a virtual-machine architecture 
that  better satisfies CMS application-program re- 
quirements  than  architectures available on a real 
machine. Significantly, no real machine can op- 
erate in this  architecture  mode; only virtual ma- 
chines  use  this  architecture. 

Highlights of ESA/XC 

The ESA/XC architecture is derived from the 
ESA/390 architecture, which itself has evolved 
from System/370 Extended  Architecture (370-XA). 
Someone familiar with the basic elements of 
370-XA Or ESAl390 should  have no trouble becoming 
familiar with the ESA/XC architecture.  In  fact, be- 
cause it  is an  architecture  intended  for application 
programs of the  type  that  run  under CMS, it  is 
actually simpler than  either 370-XA or ESA/390. 

Relationship of ESA/XC to ESA/390. As men- 
tioned  previously, in ESA/390, an application pro- 
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gram must run with dynamic  address  translation 
(DAT) active in order  to  enter  the access-register 
mode to  reference  address  spaces.  This  condition 
is not the  case in the ESNXC architecture,  and in 
fact,  the DAT facility does  not  even  exist in 
ESA/XC. The many structures  described in the 
ESA/390 architecture  for  the  management of DAT, 
such as DAT tables, ASN translation  tables, PC- 
number translation  tables, linkage tables,  and  en- 
try  tables, do not  therefore  exist  in ESAIXC. 

The  interpretive-execution facility is  also  not  pro- 
vided in the ESA/XC architecture.  This  facility, 
which is invoked by the START INTERPRETIVE EX- 
ECUTION instruction, is intended  to  be used by a 
host  for the emulation of virtual  machines. The 
ESA/XC architecture is intended  for  application 
programs,  not  hosts like VM/ESA, so the interpre- 
tive-execution facility is not  provided in ESAIXC. 

Several  control  instructions are defined in ESA/390 
for  the use and management of the facilities that 
do not exist in ESA/XC. Since  they are not  needed, 
these  instructions do not  appear in ESA/XC. Some 
of these  instructions are BRANCH AND STACK 
(BAKR), PROGRAM CALL (PC), PROGRAM RETURN 
(PR), LOAD REAL ADDRESS (LRA), and START IN- 
TERPRETIVE EXECUTION (SIE). 

All other  features of ESA/390 and 370-XA continue 
to  exist in ESNXC. For example, I/O operations are 
performed using the  same  instruction  set as in 
ESA/390 and 370-XA, programs still have  the  choice 
between running in 24-bit addressing  mode  and 
31-bit addressing  mode,  and  access  registers are 
still used to  control  direct  references to  address 
spaces. As far  as normal CMS application  pro- 
grams are  concerned,  the ESA/XC architecture is 
upward compatible with ESAl390. 

Basic elements of ESA/XC. The advantage of 
ESAIXC for  a CMS application  program is apparent 
in the new virtual-machine services  provided in 
ESA/XC. These  services will be described in detail 
later  but  are  introduced  here.  They  are  provided 
to: 

Create,  share,  and  otherwise manage address 

Gain and relinquish access  to  an  address  space 
Map data on DASD to pages of an address  space, 
allowing a program to subsequently reference 
data on DASD by instead referencing the address 
space 

spaces 
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Before  describing  these  services in detail, it is 
necessary to describe  some of the  basic  concepts 
related  to  address  spaces in ESA/XC. 

Address spaces. Every  virtual machine running in 
the ESA/XC architecture  owns  at  least  one  address 
space,  the primary address  space, given to  the 
user by CP when  the  user logs on  to  the VM/ESA 
system.  The size of this  address  space is deter- 
mined from the  entry describing that  user in the 
user  directory,  or  from a subsequent DEFINE 
STORAGE command.  After logging on, if autho- 
rized in the user  directory,  a  user may create 
other  address  spaces,  and if desired,  share them 
with other logged-on users.  Address  spaces  cre- 
ated by a program in this  manner are sometimes 
called data  spaces.  A  data  space  exists until it is 
either explicitly destroyed by the  owner  or until 
the owning virtual machine goes through  a virtu- 
al-machine-reset  operation.  Note  that a virtual- 
machine-reset  operation  occurs implicitly during 
the processing of such  commands as IPL (initial 
program load)  and LOGOFF. 

A (DAT-oW CMS program using ESA/XC can  obtain 
concurrent  access  to more storage  than  a CMS 
program using 370-XA or ESA/390. More  storage is 
available  because  an  authorized program using 
ESA/XC can  create many address  spaces,  each of 
which may be  up to  two gigabytes (2G) in size. 
Thus, a DAT-off program using 370-XA or ESA/390 
can  address at most 2G of storage, but a program 
using ESA/XC can  concurrently  address more than 
2G. 

Figure 1 compares  address  spaces built by pro- 
grams using ESA/390 with address  spaces built by 
programs using ESA/XC. Part  A  shows  address 
spaces built by an  operating  system  that exploits 
ESM390. Part  B  shows  those  address  spaces along- 
side  address  spaces built by a hypothetical CMS 
that  exploits ESA/390. Note  that  such  address 
spaces would not be shareable between virtual 
machines.  Part C shows  address  spaces built by 
application  programs  on CMS in virtual machines 
using ESA/XC. Address  spaces built by ESA/390 vir- 
tual  machines are  guest  address  spaces managed 
by the virtual-machine supervisor,  whereas  ad- 
dress  spaces built by ESA/XC virtual machines are 
host address  spaces managed by CP. 

Every ESA/XC address  space  has  the following at- 
tributes: 
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primary address  space of the-virtual machine, 
the  address-space name is assigned by the  own- 
ing program when the  address  space is created, 
and never  changes. CP assigns the name BASE to 
the primary address  space of the virtual ma- 
chine. The full address-space identification of 
an  address  space  consists of a  string  up  to 33 
characters long and is composed of the owning 
userid (the userid that  created  the  address 
space),  a  colon,  and  the  name.  Since  no  two 
address  spaces  owned by the  same  user are per- 
mitted to  have  the  same  name,  and  no  two  users 
logged on to  the same system are permitted to 
have the same userid, no two  address spaces in 
the system can have  the same address-space iden- 
tification. Note, however, that nothing prevents a 
program from destroying an  address  space and 
then creating another with the same name. 

An address-space-identication token-The 33- 
character  address-space identification de- 
scribed above is designed for  easy  interpreta- 
tion by VM/ESA users  and is somewhat unwieldy 
to manipulate in a  program. When an  address 
space is created,  therefore, CP assigns to  the 
address  space an eight-byte  token called the ad- 
dress-space-identification  token, or ASIT. This 
token is returned to  the  owner of the  address 
space  when  the  address  space is created.  The 
ASIT has  these  important  characteristics: 

1. It is a  system-wide  unique value. That  is,  no 
two  address  spaces in the  system, including 
those  created by other  users, will have  the 
same ASIT. 

2. It is nonrepeating for  the life of the  current 
system IPL. In  other  words,  once  an ASIT is 
assigned to  an  address  space,  that same ASIT 
will never be assigned to  another  address 
space,  even  after  the  address  space  to which 
it was first assigned is d e ~ t r o y e d . ~  

3.  An address  space  has only one ASIT associ- 
ated with it.  Every  user  refers  to  the  same 
address  space using the  same ASIT.  ASITs 
that are equal  designate  the  same  address 
space; ASITS that  are not  equal  designate dif- 
ferent  address  spaces. 

The combination of these characteristics al- 
lows an application program to use the ASIT as  the 
principal  identification of an  address space. 
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space of a virtual machine can beused as a unique 
designation of a particular instance of a particular 
userid being logged on to  the system. That  is, if a 
user logs off and then back on, his or her userid 
is the  same,  but  the ASIT corresponding to his or 
her primary address space is different. An  appli- 
cation program that  was to keep track of such 
things  might therefore use the primary ASIT in- 
stead of the userid to identify the virtual machine. 

Size-Within the bounds imposed upon it  in the 
user  directory,  the  creating program chooses 
the size of the  address  space, giving it any size 
between 64 kilobytes and  two  gigabytes. CP will 
round  the size of the  address  space  up  to  the 
nearest 64-kilobyte boundary. 

Private or shareable status-When an address 
space is first created, it  is a private address  space, 
accessible only to  the owning virtual machine. 
Similarly, when a user first  logs on, the primary 
address space of the virtual machine is private. If 
the owning  program chooses, and if it  is autho- 
rized to  do so, it can grant another virtual machine 
permission to  access  an address space that it 
owns, including its primary address space. The 
address space is then shareable and remains so 
until  it is destroyed, until the  owner goes through 
a virtual-machine-reset operation, or until the 
owner requests that the  address space be again 
isolated from other virtual machines. 

List of permitted users-Every ESAIXC address 
space  is  accessible  to  some  set of users  on  the 
system.  A  private  address  space is accessible  to 
only the owning user.  Shareable  address  spaces 
are accessible  to  those  users  who  have been 
granted  permission  by  the  owner  to  access  the 
address  space.  The  owner  always  has  read- 
write  permission to  an address  space  created by 
the  owner.  Other  users  have  either read-only 
access  or read-write  access  to  the  address 
space,  depending on what was granted  them by 
the  owner.  The  owner may grant different users 
different  types of permission.  There is no limit 
to  the number of users  that may be  granted  per- 
mission,  and  therefore,  there is no limit to  the 
number of users  that may concurrently  access 
the  address  space. 

Access lists. Before a program can  actually read or 
write  data in a  nonprimary  address  space, it must 
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configuration has its own access  list,  whose  en- 
tries  determine which address  spaces  the  virtual 
CPUS in that configuration can  reference  at  any 
one time. The  number of entries in the  access list 
varies  between six and 1022 and  is  controlled by 
information in the  user’s  directory  entry.  The  de- 
fault size is six. 

When a program invokes  the VMIESA service to 
add  an  address  space to its  access  list, CP selects 
an  unused  entry in the  access  list, fills  it in as 
requested by the  program,  and  returns a four-byte 
access-list-entry  token (ALET) to  the program. As 
described  later, a program uses  this ALET to  make 
direct  references to  the  address  space.  The  ac- 
cess-list  entry  thus  allocated  remains  allocated 
until the program explicitly removes  the entry, or 
until the  virtual machine goes  through  a virtual- 
machine-reset  operation. 

Every ESAIXC access-list  entry  has the following 
attributes: 

A state-An access-list  entry is always in one of 
the following states: 

An unused  access-list  entry (ALE) is one  that 
has never  been  allocated,  one that has  become 
deallocated  by  a  Remove ALE operation of the 
virtual machine, or  one  that  has become  de- 
allocated because  the  virtual machine went 
through a  virtual-machine-reset  operation. 

A valid access-list  entry is one that  has  been 
allocated by an Add ALE operation of the virtual 
machine and  designates an  address  space  that 
the virtual machine has permission to  access. 

A revoked access-list  entry is one  that has been 
allocated by an Add ALE operation of the virtual 
machine,  but  that  designates  an  address  space 
no longer permitted  access by the virtual ma- 
chine.  This condition can  happen  when  the 
owner of the  address  space explicitly isolates 
the  address  space from other  users or destroys 
the  address  space.  The  revoked  state is different 
from the unused  state in that  an ALE can enter 
the  revoked  state  without  any  action by the 
owner of the  access  list. It is not  necessarily a 
programming error  for  an ALE to  be in the  re- 
voked state, and having a separate  state  pro- 
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vides additional information to  the  owner of the 
access  list. 

A read-only or read-write indication-When the 
program adds  an  address  space  to its access  list, 
it stipulates  whether  accesses using the result- 
ing ALET must be read-only accesses  or whether 
they  can be read-write  accesses.  The program 
cannot, of course,  obtain  read-write  access 
when the  owner  has  granted it read-only per- 
mission,  but it can  stipulate read-only access  to 
an  address  space  to which it has  been  granted 
read-write  permission. The program may even 
add  the  same  address  space  to  its  access list 
several  times, some entries allowing read-write 
access,  and  others merely read-only access. 

Synchronous  or  asynchronous  fault resolu- 
tion-It was  mentioned in the  introduction  that 
to make efficient use of storage, a supervisor or 
host might temporarily  “page out”  data from an 
address  space  to auxiliary storage. ESA/XC 
leaves the storage management of ESA/XC ad- 
dress  spaces  up  to CP, the  host.  In  order  to make 
efficient use of its  own  storage, CP sometimes 
pages out  parts of an  address  space. When an 
application program references  a paged-out 
portion of an  address  space, CP receives  an in- 
dication of this  action, called a “page  fault.” CP 
will then  read  the  data  back  into  storage  and 
rerun  the virtual machine. Except  for  the slight 
time delay  involved,  the virtual machine is un- 
aware of this  activity  and  proceeds normally. 

For  reasons  described  later, it is sometimes un- 
desirable to delay the  execution of the virtual 
machine. CP thus  provides  the program with the 
ability to  specify,  when adding an  entry  to its 
access  list,  whether page faults should be re- 
solved synchronously or asynchronously. A 
program that specifies asynchronous page-fault 
resolution is not delayed by page faults but must 
contain  additional logic to  complete  the  “hand- 
shaking” necessary  to make use of the  function. 

Figure 2 shows  the  format of an ESA/XC access-list 
entry  graphically. 

Using the  access-register  mode. Application pro- 
grams using ESAiXC run in one of two  address- 
space-control  modes:  primary-space  and  access- 
register (AR) mode.  The  primary-space mode is 
the initial address-space-control mode and  the 
“normal”  mode  for  most CMS applications.  The 
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Figure 2 A graphic representation of an access-list entry 

AN ACCESS-LIST  ENTRY IN ESA/XC 

BEING  IN  THE  FOLLOWING  FORMATS 
CAN BE  THOUGHT  OF  AS 

THE  FIELDS 
ARE  DEFINED 
AS  FOLLOWS: 

THE STATE OF 
THE  ALE8  UNUSED,  VAUD. 
OR RWOKED 

FOR  VALID  AND  REVOKED  ALES, 
THE  ACCESS-LIST-ENTRY  TOKEN 
(ALETI WHEH SELECTS THE ALE 

FOR  VALID ALEs,THE  ASlT OF THE  ADDRESS 
SPACE  WHGH IS DESIGNATED  BY  THE  ALE 

A FLAG  INDICATING  WHETHER  THE  ACE  PERMITS 
READ-ONLY  ACCESS OR REAWWRITE  ACCESS 

A FLAG  INOK;ATINQ  WHETHER  PAGE  FAULTS 
OCCURRING ON REFERENCES  THROUGH  THE  ALE  ARE 
REBCXVED  SYNCHRONOUSLY OR ASMJOHRDNOUSLY 

NOTE  THAT  THE  SIZE OF EAOH  FIELD IS NOT  DEFINED, 
NOR IS THE  OVERALL  SiZE OF THE  ACCESS-LIST ENTW 

access-register  mode is the  address-space-control 
mode in which an  application program will run to 
access  data in nonprimary  address  spaces. 

The  address-space-control mode of a  virtual CPU 
is determined by bits in the  program  status word 
(PSW). Such PSW control bits are normally manip- 
ulated only by CMS services,  but ESA/XC includes 
a nonprivileged instruction called SET ADDRESS 

tion program to switch between  the  primary- 
space mode and  the  access-register  mode.’ 

SPACE CONTROL (SAC) to be used by an  applica- 

Once in the  access-register  mode, the application 
program makes use of  16 registers called access 
registers  to specify to  the machine what  address 
spaces are  to be accessed by what  references. 
Nonprivileged instructions are provided to allow 
the program to manipulate access  registers. 
These  instructions are  the  same  as  those defined 
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Table 1 interfaces  to  basic ESfUXC functions 

Function CP Macro CMS CSL 
Routine 

Create Space ADRSPACE  CREATE DMSSPCC 
Permit Space ADRSPACE  PERMIT DMSSPCP 
Isolate  Space ADRSPACE  ISOLATE DMSSPCI 
Destroy  Space ADRSPACE DESTROY DMSSPCD 
Query  Space ADRSPACE QUERY DMSSPCQ 

Add ALE ALSERV ADD DMSSPLA 
Remove ALE ALSERV  REMOVE DMSSPLR 

in ESA/390. An access  register should either  con- 
tain zeros  or an ALET which was given to  the 
application program by CP when  the application 
program  added an  entry designating an  address 
space  to its  access  list.  Each  access  register is 
associated with the  general  register of the  same 
number. When that  general  register is used as a 
“base register” during an instruction,  the  corre- 
sponding access  register is examined by the ma- 
chine  to  determine  what  address  space is being 
referenced. If the  access  register  contains  zeros, 
the  reference is to  the primary address  space. If 
the  access  register  contains  an ALET selecting a 
valid access-list entry,  the reference is to  the  ad- 
dress  space  designated by that  entry. If the se- 
lected ALE is in the  unused or revoked state, a 
program interruption will result. 

The  process in the ESA/xC architecture of con- 
verting an access-register  number  into an ad- 
dress-space identification is called access-register 
translation, or ART. Figure  3  shows  the ART proc- 
ess  graphically. 

In this  example, a LOAD instruction is executed in 
AR mode.  The  instruction  addresses  a  storage  op- 
erand using general  register 12 as a  base  register 
and  general  register 3 as  an index register.  The 
effective address is calculated just  as in ESA/390 
and 370-XA by summing the  contents of the  base 
register,  the  contents of the  index  register, and 
the  displacement, which in this  example is 100. 
This address is either a 31-bit address  or a 24-bit 
address,  depending  on the  current  addressing 
mode of the virtual CPU, indicated by bit 32 of the 
PSW. The effective address is the  location in the 
address  space of the  data but  does not indicate 
what  address  space is to  be  used.  Since general 
register 12 was used as  the  base  register,  access 
register 12 is the  register  that  determines  the  ad- 
dress  space in which the  operand  resides.  The 
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access  register  contains an ALET. The diagram 
shows  that if the ALET is zero,  the primary  ad- 
dress  space is the affected one. If the ALET is 
nonzero, it selects  an  access-list  entry in the ac- 
cess list of the  virtual  machine.  The  selected 
access-list entry, if valid,  contains an ASIT, which 
selects the affected address  space. 

Basic ESA/XC services 

The ESA/XC virtual-machine architecture is com- 
plemented by a collection of VM/ESA services  for 
creating  and managing data  spaces  and  for man- 
aging access  to  address  spaces.6 This  section in- 
troduces  the  basic  set of VM/ESA services in- 
volved in using the ESA/XC advanced-addressing 
capabilities,  and  through an  extended  example, 
puts  the  use of these  services  into  context.  The 
descriptions of the  services  provided in this  sec- 
tion are not meant to  be  exhaustive;  for many of 
the  functions,  there are  other  parameters  and  op- 
tions besides  the  ones  described here.”*  Rather, 
this section  attempts  to highlight the major oper- 
ations  that an application  uses in order  to exploit 
the  advanced-addressing  functions. 

These VM/ESA services are available as both CP 
and CMS interfaces, as shown in Table 1. Since  the 
structures related to ESA/XC are managed by CP, 
the CP interfaces define the  basic  set of available 
operations.  The CP interfaces are available as 
macros.  The CMS interfaces  serve as “cover” 
functions  on  top of the CP interfaces to make CMS 
aware of application-program use of the  ad- 
vanced-addressing  capabilities.  This allows CMS 
to perform resource  cleanup  and  recovery  func- 
tions consistent with CMS philosophy. For exam- 
ple, CMS can be directed to  delete implicitly cer- 
tain data  spaces  after  events of which CP is 
unaware,  such  as  at  end of command or after  ab- 
normal program termination. The CMS interfaces 
are provided as Callable Services  Library (CSL) 
routines. Although both  the CP and CMS interfaces 
are fully supported as general programming in- 
terfaces, application programs running on CMS are 
encouraged to use the CMS interfaces to receive the 
benefit  of  CMs-managed recovery and cleanup. 

Creating a data space. To begin the description of 
the ESA/xC services,  suppose  that a program run- 
ning  in an ESA/XC virtual machine named JMG 
wishes to  create a data space. It will subsequently 
share  this  data  space with other  virtual  machines 
on  the  same VM/ESA system. 
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Figure 3 ESNXC access-register translation: ESA/XC  ART converts an access-register number into an address-space 
identification to determine the address space to be used for the operand access 
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To  create this new data  space, JMG invokes  the 
Create  Space  function.  The  Create  Space  request 
specifies the size of the  new  data  space in 4K-byte 
pages  and  an  address-space  name  to be assigned 
to  the new data  space.  In  this  example  assume 
that  the  data  space  is  to  be named GSDATA and 
will be 8192 pages in size.  In  response  to  the  Cre- 
ate  Space  request, VM~ESA builds the  software 
and  hardware  structures  associated with the  data 
space  and  then  returns to  the caller the address- 
space-identification token (ASIT) associated with 
the newly created  data  space.  For this example, 
assume  that  an ASIT of X‘1234’ is assigned to 
G53DATA. 

As described  earlier in this paper,  the ASIT is the 
“handle” by which VM/ESA references  an  address 
space. It is required as  an input to identify a par- 
ticular  address  space  for  subsequent  function  re- 
quests,  for example,  to  establish  addressability  to 
the  space  or  to delete  it.  Therefore,  the applica- 
tion must  preserve  the ASIT returned by the Cre- 
ate  Space  function. 

Because  the  control  structures  and  resident  data 
pages  for a data  space  consume  real  system  stor- 
age,  the  installation  has  been given control  over 
the ability of a virtual machine to  create  data 
spaces.  The  user  directory  entry  for  a virtual ma- 
chine specifies upper limits on  the number of data 
spaces  and  the  total  amount of data-space  storage 
that  the  virtual machine is authorized  to own 
simultaneously. If a  Create  Space  request would 
exceed  these  limits, it is rejected. 

Once a data  space  has  been  created, it persists 
until its owner explicitly deletes it using the De- 
stroy  Space  function  (described  later), or until a 
virtual-machine reset  occurs  on  the owning vir- 
tual  machine. If the  Create  Space  function was 
invoked via the CMS CSL interface,  the  data  space 
may also be deleted implicitly by CMS at  end of 
command or  as part of cleanup  for  abnormal pro- 
gram termination. 

Granting  access to address  spaces. Assume now 
that JMG wishes to share  data  space G53DATA with 
a program running in virtual machine JPH and  that 
JPH is to have read-only access  to  the  data  space. 
JMG will require  read-write  access to  the same 
address  space. 

JMG indicates  that JPH is authorized  to  access 
G53DATA by invoking the Permit Space  function. 
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The Permit Space  request  includes  the ASIT of the 
address  space  for which permission is to  be 
granted (ASIT X‘1234’ for  data  space G53DATA in 
the  example),  the  identity of the  target  virtual ma- 
chine (userid JPH), and  the  type of permission: 
read-only or read-write. As a  result of the  Permit 
Space  request, VM/ESA records  that  virtual ma- 
chine JPH has  been  authorized  for read-only ac- 
cess  to  the  address  space.  Note  that Permit Space 
authorizes  a  virtual  machine  to  obtain  access to 
an  address  space,  but it does  not  actually  estab- 
lish that  access.  The  target virtual machine  must 
subsequently perform the Add ALE function (de- 
scribed in the next  subsection) to establish  ac- 
cess. 

Figure 4  illustrates  the  situation  after  data  space 
G53DATA has  been  created  and  virtual machine 
JPH has been  permitted to  access  it. 

Since JPH will need to  know  the ASIT assigned to 
G53DATA in order  to  establish  addressability to  the 
space, JMG would normally inform JPH of the ASIT 
after it granted  permission.  Standard VM/ESA 
communication facilities such as  advanced  pro- 
gram-to-program communications/virtual ma- 
chine (APPCIVM) or IUCV can  be used for  this 
purpose.  Often,  these APPC/VM or I u c v  commu- 
nication paths  already  exist  between  the virtual 
machines for  other  reasons, as for  example,  for 
normal communication  between  a client and a 
server, so new paths do not have to be established. 

The ability to specify the  read-only or read-write 
permission separately  for  each  permitted virtual 
machine is one of the  advantages of using shared 
address  spaces  over  shared  segments  to  share 
data.  Shared  segments  can  be defined as read- 
only or  read-write, but this  attribute is the same 
for all virtual machines that  share  the  segment. 
Address  spaces  shared via EsA/XC facilities can 
have  any  combination of read-only and  read-write 
users.  This ability allows structures,  for  example, 
in which one  trusted virtual machine is allowed to 
write  data  into  an  address  space  that  can be only 
read by other  less-trusted  virtual  machines. 

JMG does  not  have  to  use  Permit  Space  to give 
itself access  to G53DATA since  the  owner of an 
address  space  always  has  read-write permission 
to  the  space. In fact, it would be an  error  for JMG 
to try  to give itself permission. 

The first Permit Space  request  for a particular 
address  space  transforms  that  space from a pri- 
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Figure 4 Creating  an  address  space  and  authorizing  access to it 
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vate  address  space  into a shareable  address 
space.  The  address  space  remains  shareable until 
it is  isolated or  destroyed. Because  this  transfor- 
mation allows other virtual machines to  access 
the  address  space, it changes  treatment by the 
VMIESA paging subsystem of the  address  space  as 
well. When an  address  space is private, only the 
owning virtual machine can  reference  it, so CP can 
attribute  to  the  owner all reference  activity  to  the 
address  space.  The VMIESA paging subsystem 
therefore manages a  private  address  space in con- 
junction with all other  private  storage owned by 
the  same user, applying page-selection criteria to 
all of these  address  spaces uniformly, depending 
on  the  reference  pattern  and  activity of that us- 
er. lo In  contrast, when an  address  space is share- 
able,  references  to it  may be made by any of the 
permitted  virtual  machines, so it is no longer pos- 
sible to  attribute activity  to  any  particular  user. 
As a result,  the VMIESA paging subsystem  disas- 
sociates  a  shareable  address  space from the own- 

ing user and,  instead,  treats  the  address  space  as 
a form of system-wide  shared  storage. This treat- 
ment results in more global consideration of the 
address  space  for paging purposes.  Because  use 
of the Permit Space  function  results in this  change 
in  paging treatment,  a virtual machine must be 
authorized in the  user  directory  to employ it. ' I  

The permission to  access an  address  space  that is 
conferred by Permit  Space  persists until it is re- 
voked by the  owner  (via  the  Isolate  Space  func- 
tion described  later), until the  address  space is 
deleted,  or until a virtual-machine  reset  occurs  on 
either  the owning or  the permitted  virtual ma- 
chine. 

Finally, it is worth noting that although the  ex- 
ample focuses  on sharing a data  space, primary 
address  spaces  can be shared as well. Virtual ma- 
chine JMG could have given JPH access  to its pri- 
mary address  space in essentially  the  same man- 
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ner  as  just described  for  data  space G53DATA. The 
only difference is that  since  the primary space  is 
not  created via the  Create  Space  function,  the 
virtual machine does  not  have  the ASIT for  the 
primary space  available.  However, it can  use  the 
Query  Space  function  to  obtain this ASIT. 

Establishing  addressability. Now  that JMG has  cre- 
ated  data  space G53DATA and  authorized JPH to 
access  it,  the  next  step in the  process is to  estab- 
lish addressability  for  the  data  space.  Since both 
JMG and JPH wish to  access  the  data  space, this 
operation will be performed by both virtual ma- 
chines. 

The Add ALE function is used to  obtain  access  to 
an  address  space.  The Add ALE request specifies 
the ASIT of the  address  space  and  the  type of ac- 
cess (read-only or read-write)  desired.  In  the  ex- 
ample,  both JMG and JPH invoke  the Add ALE 
function, specifying the ASIT for G53DATA 
(X'1234'), since  they  both  want  to  access this 
space. JPH requests read-only access; it would 
have  been  an  error if it had requested read-write 
access  since it only has permission for read-only 
access. JMG is the  owner of the  address  space  and 
is thus  free to request  either  type of access. JMG 
might request read-only access if that is all that  is 
required,  perhaps  to  eliminate  the possibility of 
an  erroneous  store  into  the  address  space. 

The result of the Add ALE request is that an un- 
used entry in the  access list associated with the 
virtual machine is placed in the valid state  and  set 
to designate the requested  address  space.  The 
ALET corresponding to  the selected  access-list  en- 
try is returned to  the caller. As previously de- 
scribed,  the  collection of  valid entries in the  ac- 
cess list constitutes  the  set of address  spaces  that 
a virtual machine can  reference using the  ad- 
vanced  addressing  features  provided by ESAIXC. 

The ALET returned by Add ALE is  the  handle  used 
by the  hardware  to  designate  the  address  space 
containing an instruction  operand.  The ALET des- 
ignates a  particular  entry in the  access list asso- 
ciated with the virtual machine;  the  access-list 
entry in turn  designates  the  address  space.  Since 
access  lists  are managed independently  for  each 
virtual  machine,  the ALET assigned for  the  ac- 
cesses of one virtual machine to  an  address  space 
is usually different than  the ALET assigned for  the 
accesses of another  virtual machine to  the same 
space.  For  example, ALET X'OO22' may be  re- 
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turned  for  use by JMG, whereas ALET X'0008' may 
be returned  for JPH. '' 
This example points out an important difference 
between ASITs and ALETs. ASlTs are managed so 
that  they  have  systemwide  scope.  Both JMG and 
JPH used  the  same ASIT to identify data  space 
G53DATA to  the  system.  In  contrast,  an ALET is 
translated  through  the  access list associated with 
a virtual machine, so the  address  space  selected 
by a  particular ALET value  depends  on  the  con- 
tents of that  list.  The ALET therefore  has only 
local scope. If JMG attempts  to use the ALET as- 
signed to JPH for  references to G53DATA, it is very 
likely that  either  the  reference made by JMG will 
not  succeed (result in a program exception) or will 
occur in the wrong address  space.  Programs  that 
run in different virtual  machines and  share  ad- 
dress  spaces  must be aware of these differences 
between ASITS and ALETs and  use  the  tokens  ap- 
propriately. 

Referencing  address  spaces. Thus  far, all of the 
setup  operations  required to use  the ESA/XC ad- 
vanced-addressing capabilities have been de- 
scribed:  creating  address  spaces,  permitting  other 
virtual machines  to  access  address  spaces,  and 
establishing addressability  to  address  spaces. 

To fetch  data from or  store  data in an  address 
space  other  than  the primary address  space, a 
program places  the  appropriate ALETs into  the  ac- 
cess  registers  that will be used for  storage  oper- 
ands  and  enters  the  access-register (AR) mode. 
While  in this  mode,  each  storage  operand is des- 
ignated in a space.address form via an  access- 
and-general register  pair:  the ALET in the  access 
register indicates the  address  space  containing 
the  operand,  and  the  address in the  general reg- 
ister (possibly modified  by a  displacement or in- 
dex specified in the  instruction)  indicates  the lo- 
cation of the  operand within the  address  space. 
The  access-and-general  register  pair  used  to  des- 
ignate a storage  operand  corresponds to  the base- 
register-number field  in the  instruction  for the 
storage  operand.  For  instructions  such  as MOVE 
(MvC) that  have multiple storage  operands,  each 
operand  can be designated by a different access- 
and-general  register  pair,  and  therefore the  oper- 
ands  can  reside in different address  spaces.  This 
process  has been described in more  detail  earlier 
in this  paper. 

As we continue with the  example,  Figure 5 shows 
both  virtual machines JMG and JPH referencing 
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Figure 5 Referencing data in G53DATA 
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data in data  space G53DATA. The LOAD ACCESS 
MULTIPLE (LAM) instruction is used  to load ALETs 
from  storage  into  access  registers,  and  the SET 
ADDRESS SPACE CONTROL (SAC) instruction is 
used to switch  between  the  primary-space  and AR 
modes.  Once in the AR mode,  the  storage  oper- 
ands of normal CPU instructions  such as STORE or 
ADD can  reside in address  spaces  other  than  the 
primary space. 

Given that  the  proper  setup  operations  have been 
performed,  the  process of entering AR mode  and 
referencing data in that  mode is accomplished 
without  intervention by CP or CMS. The  address- 
ing operations  are  performed  entirely by the ma- 
chine. If proper  setup  has not been  performed, 
the  error  condition is reported  to  the virtual ma- 
chine as a program interruption. CMS in turn  con- 
verts  the  program  interruption  into  a program ab- 
normal end (abend) and  drives abend-handling 
exits  to invoke  application  cleanup. 

While executing in AR mode,  some ART-related 
program interruptions may be  recognized as a  re- 
sult of improper  setup. For  example,  an  exception 
is recognized if a program  uses  an ALET that  des- 
ignates an unused or nonexistent  access-list  en- 
try. In addition,  a program interruption may be 
recognized if a program attempts  to reference  an 
address  space  for which its  access  permission  has 
been revoked.  This  condition  is  not  due  to im- 
proper  setup, but rather  results if the  owner of an 
address  space  isolates  or  destroys  the  address 
space  "out  from  under"  the  accessing virtual ma- 
chine. 

In most cases, it is necessary  to  make  references 
to  the primary address  space while in AR mode, 
for  example,  to  move  data  from  the  primary  space 
into  or  out of a data space. A valid access-list 
entry designating the primary space is not  re- 
quired in order  to  do this  (although  there is noth- 
ing preventing  such  an  access-list  entry  from  be- 
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ing established).  Rather,  the special ALET value of 
binary  zero  has  been  reserved to designate the 
primary space  for  use in such  cases. This ALET 
value is translated  without using the  access list. 

Dropping  addressability. When access  to  a  par- 
ticular  address  space is no longer needed,  a vir- 
tual machine can  drop addressability to it by using 
the  Remove ALE function.  This  function places a 
valid (or revoked)  access-list  entry in the  unused 
state so that  the  entry  can  be  used again later.  The 
access-list  entry to be removed is indicated by 
specifying the ALET associated with it. 

The Remove ALE function affects only current 
addressability to  the  address  space; it does not 
change  permission  obtained by a virtual machine 
to  the  address  space. So, for  example, as long as 
JMG does  not  revoke  the  access of JPH to  data 
space G53DATA, JPH is  free  to  use  the Add ALE and 
Remove ALE functions to establish  and  drop ad- 
dressability to G53DATA as often  as  necessary. 

Generally,  no  penalty  is  associated with main- 
taining addressability to  an  address space  for 
longer than  required.  Thus  for  most  applications, 
the  Remove ALE function is needed only during 
application  termination.  However,  an  extremely 
complex  application may require  access to more 
address spaces than it has access-list entries. Such 
an application must actively manage the contents of 
the  access list associated with the virtual machine, 
temporarily removing addressability  to  an ad- 
dress  space  to make  room in the  access list for 
addressability  to  some  other  space. The Remove 
ALE function  makes  such management possible. 

As part of virtual-machine reset,  the Remove ALE 
function is performed implicitly for  each  entry in 
the  access list associated with the virtual ma- 
chine. As a result, at the  completion of virtual- 
machine  reset all  of the  access-list  entries are in 
the  unused state. 

Isolating  address  spaces. The  owner of a  shared 
address  space  can  return it to  the  private  state 
through  the  use of the  Isolate  Space  function. 
This  function may be useful in preparing  to make 
widespread  changes to  an  address  space,  or in- 
dicating  that a later  version of data  exists in some 
other  address  space. 

Isolate  Space is a global revoke  operation  for an 
address  space.  It  rescinds all permissions  to  the 
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address  space  previously  granted via the Permit 
Space  function  and  cancels any current  address- 
ability that  other  virtual  machines may have to 
the  address  space. Any addressability  that  the 
owning virtual machine has  to  the  address  space 
being isolated remains  unchanged.  The  Isolate 
Space  function  performs  these  operations in such 
a way as to make the  important  guarantee  that 
when the  Isolate  Space  function  completes  its  op- 
eration, only the owning virtual machine is able to 
access  the  address  space  that  was  isolated. l 3  

Current  addressability of other  virtual  machines 
is canceled by changing applicable  entries in their 
access  lists from the valid to  the revoked  state  and 
then terminating any  in-progress  storage  accesses 
to  the  address  space.  In  the  absence of other  com- 
munication between  the  owner  and  the  sharing 
virtual machine,  the sharing virtual machine will 
find out  that  its  access  was  revoked  via a program 
interruption on its  next  attempt to  reference  the 
address  space. 

Figure 6 continues  the  example, showing the  state 
of data  space G53DATA and  the  access  lists  for 
virtual machines JMG and JPH after JMG has iso- 
lated G53DATA. 

Because the Isolate  Space  function  returns an ad- 
dress  space  to  a  state in which only  the  owner  can 
access  it, all reference  activity  to the  address 
space is once again attributable solely to  the 
owner  (as was the  case before the first Permit 
Space  request  for  the  address  space).  Therefore, 
after  an  Isolate  Space  operation, the VM/ESA pag- 
ing subsystem  resumes  private-storage  treatment 
for  the  address  space. 

If not performed earlier, an Isolate  Space  opera- 
tion is performed implicitly on  each  address  space 
owned by a  virtual  machine as  part of virtual- 
machine reset. 

Destroying  data  spaces. When a data  space is no 
longer needed,  the  owner of the  data  space can 
destroy it using the  Destroy  Space  function.  Since 
a data  space  always  consumes  some  amount of 
real  system  storage, it is good practice to  destroy 
data  spaces when finished with them. 

The  data  space  to be destroyed is specified by an 
ASIT. The  Destroy  Space  function  discards  the 
current  contents of the  data  space and  frees all 
control  structures used to  represent  the  data 
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Figure 6 Isolating an address  space 
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space. If the  data  space being destroyed is a 
shareable  address  space, an implicit Isolate  Space 
operation is performed as part of the  Destroy 
Space  operation to terminate  the  access of other 
virtual  machines  to  the  data  space. 

Since  the  Destroy  Space  function  terminates  not 
only the  accesses of other  virtual  machines  to  the 
data  space,  but  the  owner's  accesses  as well, any 
entries in the  owner's  access list that designate 
the  data  space being destroyed  are  set  to  the  re- 
voked state. If the CMS CSL interface is being 
used, CMS implicitly performs the Remove ALE 
requests  to  return  those entries  to  the unused 
state,  thus making those  entries available for  re- 
use. 

If not performed  earlier,  an implicit Destroy 
Space  operation is performed  on  every  data  space 
owned by a virtual machine as part of virtual- 
machine reset. 

Advanced ESNXC services 

In  addition  to  the  basic ESA/XC system  functions 
described in the preceding section, VM/ESA also 
provides a collection of advanced  functions  for 
more sophisticated  exploitation of ESA/XC capa- 
bilities. These  additional  functions include serv- 
ices  for performing data-in-storage mapping 
between minidisks and  address  spaces,  hand- 
shaking to allow asynchronous  processing of page 
faults,  and a service to optimize  system handling 
of application data.  These  functions  are  described 
briefly  in the following subsections. 

Mapping services. For some  applications,  data 
spaces might be useful as a  fast way of referencing 
data  that are permanently  stored  on DASD. Tem- 
porarily placing the  data in data  spaces  and ref- 
erencing the  data in those  data  spaces could im- 
prove application performance, particularly if the 
same data  are used repeatedly. As long as  the 
data-space pages remained resident in processor 
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Figure 7 Mapping  minidisk  data  into  address  spaces 
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storage,  access  to  the  data would occur  very 
quickly. 

One  way of structuring  such an application would 
be  to load  a  data  space or  set of data  spaces with 
data from DASD at the beginning of the  execution 
of the application,  and to  store  the changed  data 
from  the  data  space back in the DASD locations  at 
the  conclusion of the  application.  Unfortunately, 
in many cases  such  an  approach would be inef- 
ficient, especially if the application usually only 
processed a small,  randomly  accessed  portion of 
its data,  or if it did not  keep  track of the specific 
data  items  that  were  changed,  but  rather  rewrote 
all of the  data  at  the conclusion of the  application. 
The I/o operations  wasted in loading and storing 
the  portion of the  data  that was never  accessed or 
changed could more  than offset the benefit re- 
ceived from quick access  to  the portion  that was 
needed.  The  processor  storage  wasted  for un- 
needed data could  cause a sharp  increase in the 
paging activity  performed by the  system, result- 
ing in a  system-wide  performance  degradation. 

The mapping services  provide  a way to use data 
spaces  as a temporary  repository  for DASD data 

while minimizing unnecessary IIO operations  or 
storage  overhead.  These  services  are similar in 
nature  to the MVS/ESA data-in-virtual  services  de- 
scribed by Rubsam. l4 Through  the mapping serv- 
ices,  a program can  establish an association be- 
tween a collection of minidisk blocks (on one or 
more minidisks) and  a  collection of address-space 
pages (in one  or more address  spaces). As shown 
in Figure 7, when a mapping exists,  an image of 
the  data  that  resides  on  the  mapped minidisk 
blocks appears in the associated  address  space 
pages without  the need to perform  application- 
requested I/O operations to load the  data.  Instead, 
the 1/0 operations are performed implicitly by the 
VM/ESA system as references are made  to  the 
mapped address  spaces.  In  addition,  the mapping 
services allow a program to  save only  the  changed 
mapped data  back on the minidisks without  keep- 
ing track of the specific pages  that  were  changed 
(the CP paging subsystem  tracks the changes). 

The mapping services are provided by the CP 
MAPMDISK macro as shown in Table 2; there  is 
currently no CMS interface for  the mapping serv- 
ices.  However, CMS applications  can  invoke  the 
mapping services via the CP interfaces. 
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The Identify Pool function is the first mapping 
function used by an application.  It identifies the 
collection of minidisks in the I/O configuration of 
the virtual machine that will participate in map- 
pings. This  collection is known as the minidisk 
pool. For  each block within the minidisk pool,  the 
Identify Pool request specifies a  unique pool-rel- 
ative block number to be assigned to  the  block. 
This  number is used by the mapping services  to 
establish the association  between  address-space 
pages and  blocks within the minidisk pool. 

Once the minidisk pool has been identified, an 
application  uses  the Define Mapping function to 
establish mappings between  address-space pages 
and minidisk blocks. The Define Mapping request 
specifies a range of address-space pages to be 
mapped and  also specifies, for  each page in the 
range, the pool-relative block number identifying 
the minidisk block to be associated with the page. 
Immediately  upon  completion of the Define Map- 
ping operation,  the  data  that  are  contained  on  the 
minidisk blocks are available in the newly 
mapped pages.  That  is, a reference  to  a mapped 
page via a processor  instruction  such as LOAD will 
“see”  the  data  that  are  on  the associated minidisk 
block. The mapped data  can be changed by sim- 
ply changing the  appropriate  address-space loca- 
tions. 

Again, even though it is said that  the  data  are 
available immediately,  actual movement of data 
from a minidisk block into  the  address  space is 
deferred until the first reference is made to a page. 
The Define Mapping operation  sets all  of the 
newly mapped pages such  that any reference  to 
them  causes a page fault  to  occur. When the 
mapped page is referenced  and  the page fault is 
generated,  the  data  are  read  from  the minidisk 
block by the VM/ESA paging subsystem as part of 
the  process of resolving the page fault. 

After a mapped page is in storage,  the VM/ESA 
paging subsystem may decide  to  “steal”  the  stor- 
age  frame  associated with the mapped page. If the 
frame is stolen  and  has  been changed (determined 
by inspecting the  hardware  change bit for  the 
page), the paging subsystem  writes  the changed 
page back  on  the  associated minidisk block,  thus 
preserving the changes. If a virtual machine 
makes  another  reference  to  the mapped page, it 
will be  reread  from  the minidisk block. 
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Table 2 interfaces to mapping  services 

Functlon CP Maw0 

Identify Pool MAPMDISK IDENTIFY 
Define Mapping MAPMDISK DEFINE 
Save MAPMDISK SAVE 
Remove Mapping MAPMDISK REMOVE 

Although the VM/ESA paging subsystem may 
sometimes cause  changed, mapped data  to  be 
saved on  the minidisks, from  the point of view of 
a virtual machine it is unpredictable if (and when) 
the paging subsystem may perform  this  action, 
and so the application cannot  depend upon it. In- 
stead,  the application can use the  Save  function  to 
guarantee  that  changed, mapped data  are  stored 
back  on  the minidisks. The  Save  request  initiates 
an  asynchronous  operation  that  writes to  the as- 
sociated minidisk blocks any of the pages in  a list 
of mapped pages that  have  not  been  written out 
since  they  were  last  changed.  Pages  for which the 
minidisk copy is up-to-date are not  rewritten. 
When completion of the  save  operation is indi- 
cated via an interruption  to  the  requestor,  the  ap- 
plication is guaranteed  that the minidisk blocks 
contain a  current  copy of the mapped data. 

Finally, when an application is finished referenc- 
ing the mapped data, it can  eliminate  the mapping 
association by using the Remove Mapping func- 
tion.  This  function  restores the  address-space 
pages to  “unmapped”  status so that  they  can be 
used as normal virtual-machine storage. 

The  Structured  Query  Language/Data  System 
(SQL/DS) database  product  and  the CMS Shared 
File System  both  use vM/ESA mapping services in 
conjunction with the  exploitation of data  spaces 
by those  components. 

Asynchronous  page-fault  handling. As was men- 
tioned earlier,  the  address  spaces  that are avail- 
able to ESA/XC virtual machines are managed by 
CP. In an effort to make the  most efficient use of 
the  real machine storage, CP makes  decisions 
about  what  portions of virtual-machine storage 
should and should not  be  resident in real  storage. 
If a virtual machine references a portion of an 
address  space  that is not  resident in real  storage, 
a page-fault indication is presented  to CP. When 
normal,  synchronous, page-fault resolution is in 
effect, CP responds to  the page-fault indication by 
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suspending  execution of the virtual machine,  per- 
forming the paging operation  to make the required 
pages resident,  and resuming execution of the vir- 
tual machine when the paging operation is com- 
pleted.  The page fault  and  its  subsequent  resolu- 
tion by CP are  transparent  to  the virtual machine 
except  for  the  time  delay during which the virtual 
machine was  suspended. 

For most  applications,  the time delay  incurred in 
synchronous page-fault resolution is not signifi- 
cant.  However,  for  certain  applications,  such  as 
servers,  the  delays  caused by synchronous  reso- 
lution  can  be a problem.  These  servers perform 
functions (for example,  database management) 
on behalf of many users of a VM/ESA system.  Such 
a server is usually structured  to  use  a form of 
multitasking to maximize server  throughput. 
Each incoming user  request is assigned by the 
server  to a separate  task. When progress  on  one 
task is delayed,  for  example,  to wait for  an I/O 
operation  to  complete,  the  server  switches  to 
work  on  another  task  for which progress  can be 
made.  In doing so, the  server  makes  productive 
use of the relatively long time  between I/O initi- 
ation  and 1/0 completion  instead of wasting the 
time by simply waiting. 

Unfortunately,  this  technique  cannot be used to 
avoid  delays  caused by page faults when the 
faults  are being resolved synchronously.  Since CP 
suspends  the  server during the fault-resolution 
process,  the  server  does  not  have  an  opportunity 
to  run  another  task while the page fault is being 
resolved  for  the faulting task.  That  is, all of the 
tasks of the  server  are  delayed while CP is busy 
resolving a page fault  incurred by just  one of 
them. As a  result,  server  throughput is degraded. 

In  contrast,  asynchronous page-fault handling al- 
lows  a  server  to  productively  run  other  tasks 
while a page fault is being resolved for  an AR- 
mode  reference  made by one  task. When a page 
fault  occurs during an AR-mode reference and 
asynchronous  resolution is enabled for  that ref- 
erence, CP initiates  the paging operation to make 
the  required page resident. CP then immediately 
resumes  execution of the virtual machine,  pre- 
senting a page-fault-initiation interruption to  the 
virtual machine as a signal that a page fault has 
occurred.  The multitasking server in the virtual 
machine normally responds  to  the page-fault-ini- 
tiation signal by suspending  its  current  task  (the 
one  that  just  encountered  the page fault)  and  se- 
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lecting some other  task  to run. The new task  runs 
in parallel with the CP paging operation  to  resolve 
the page fault of the original task. 

When the CP paging operation is completed  and 
the  required pages are  resident, CP presents a sec- 
ond signal, a page-fault-completion interruption, 
to  the virtual machine. This  interruption  indicates 
to  the  server that  the faulting task  does  not  have 
to be delayed  any longer since the pages it re- 
quires are now available in storage. 

Multiple instances of asynchronous page-fault 
resolution may be outstanding at  the same time. 
For  example,  task  B , which was  run  when  task A 
encountered a page fault, may itself encounter  a 
page fault  before  the page-fault-completion signal 
is received  for  task  A. The page fault  on  task  B 
initiates another  instance of asynchronous page- 
fault  resolution  and will result in another  pair of 
initiation and  completion  signals,  this time for 
task B. Because multiple page-fault-completion 
signals can be outstanding  at the same  time,  a 
method is needed  to identify for  what  task  a  par- 
ticular page-fault-completion signal is intended. 

Associating the initiation and  completion signals 
with the  intended  task is accomplished by pro- 
viding a task-identification token as part of the 
signals. l5 Before enabling asynchronous page- 
fault handling, a  server  uses  the CP PFAULT macro 
to specify the location of a word in storage  that it 
maintains as  the task-id token of the  current  (run- 
ning) task.  Typically,  this word is set by the 
server  to be the  address of the  “task  control 
block”  for  the  current  task. When a page fault 
occurs, CP obtains  the  token  for  the  current  task 
from this server-specified location  and supplies 
this  token in the page-fault initiation and comple- 
tion signals for  the page fault just  encountered. 
This action allows the  server  to  process  the page- 
fault-completion signal without performing any 
“task  control  block”  searching.  Such  searching 
would be required if a CP-generated, rather  than 
server-supplied,  token  were used in the signals. 

Asynchronous page-fault handling is enabled or 
disabled independently  for  each  entry in the ac- 
cess list associated with a  virtual  machine. When 
an ALE is established  via the Add ALE service, a 
parameter  on  that  request  indicates the  type of 
page-fault treatment  desired  for  references made 
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via the ALE. The default is synchronous page- 
fault handling. This flexibility allows a server  to 
use  asynchronous page-fault handling for some 
types of references, while avoiding it for  other 
types  that  cannot  tolerate  the “loss of control” 
implied by task  suspension  and  resumption. 
Asynchronous page-fault handling is not avail- 
able  for  references  that do not involve use of an 
ALE. That  is,  references  made while in the pri- 
mary-space mode or references made with an 
ALET of binary zero while in the  access-register 
mode are always  handled  synchronously. 

Finally, it is worth noting that  asynchronous 
page-fault handling is normally applied only to 
page faults that  require CP to perform an 1/0 op- 
eration to resolve  them. If a page fault  can be 
handled without an I/O operation,  for  example, 
because  the  required  data  are available in ex- 
panded  storage,  the  fault is almost  always han- 
dled in the  synchronous  manner. The time to 
process  such page faults is so short  that  the  extra 
overhead involved in asynchronous handling is 
not beneficial. 

Reference pattern notification. Asynchronous 
page-fault handling reduces  the system-wide im- 
pact of page faults by allowing a multitasking ap- 
plication to  overlap  other  processing with the  res- 
olution of a page fault. But asynchronous page- 
fault handling is not  the  complete solution: The 
task  that  encountered  the page fault is still de- 
layed,  and single-task applications  cannot easily 
exploit  the  asynchronous page-fault handling ca- 
pability. An even  better  approach is to avoid page 
faults  completely by making virtual-machine stor- 
age  resident  (just)  before it is needed. 

To this end, CP provides  the REFPAGE macro to 
allow an application  to give hints  to  the VM/ESA 
paging subsystem  about  the upcoming storage 
reference  patterns of the application. The refer- 
ence  pattern may be  regular, as might be  encoun- 
tered during the  processing of large arrays. Al- 
ternatively,  the  reference  pattern may be 
irregular,  appearing as a collection of unrelated 
references with the overriding pattern being vis- 
ible only at a higher level.  Such  a  reference  pat- 
tern may be  encountered during the indexed scan 
of data of a database  server;  the individual ref- 
erences  appear  unrelated, but are in fact  predict- 
able  based on  the  contents of the  index. 

As a  result of the REFPAGE hints,  the VM/ESA pag- 
ing subsystem  alters  its normal formation of “pag- 
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ing blocks” based on  past  recency of reference to 
instead  form  blocks that  are related to  the  stated 
future  reference  pattern of the  application. When 
a page fault  occurs  on  one page in a paging block, 
the paging subsystem  also  makes  resident  some 
or all  of the other pages within the block (depend- 

Specifying reference hints that 
do not closely match the actual 
reference  pattern can result  in 
unneeded pages  being  made 

resident. 

ing on  system  storage availability). To the  extent 
that  the paging blocks mirror the  reference  pat- 
tern,  this  block-oriented paging eliminates page 
faults on subsequent  references to  other pages. 

As  is the  case  for tuning functions in general, in- 
correct  application of the REFPAGE macro  can  de- 
grade rather  than  improve  performance. Specify- 
ing reference  hints  that do not closely match the 
actual  reference  pattern  can  result in unneeded 
pages being made resident, possibly displacing 
other pages that  were  useful;  this  could  result in 
increased paging. Therefore,  the REFPAGE macro 
should be judiciously  applied. 

Concluding remarks 

IBM’s ESA/390 architecture  was  developed  and re- 
fined after careful consideration of the  require- 
ments of sophisticated  operating  systems manag- 
ing real-machine resources.  It is IBM’s strategic 
architecture  for  such  operating  systems. IBM’s 
new ESA/XC architecture is a  derivative of ESA/390 
and  makes  the  advanced  address-space facilities 
of ESN390 available to  the CMS application  pro- 
gram. ESAIxC has  been  shaped specifically to sat- 
isfy CMS requirements  and is thus IBM’S strategic 
architecture  for  supporting the CMS environment. 

ESA/XC provides an environment  where  programs 
can  create  additional  storage in the form of data 
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virtual-machine  does this without being encum- 
bered by the  chore of maintaining DAT and ART 
tables, or by paging to efficiently use  storage; 
these  are  taken  care of  by CP. Exploiting addi- 
tional address  spaces  provides  better reliability 
through data  separation,  enriched function 
through high-speed and flexible data sharing, and 
increased  capacity  from  the ability to concur- 
rently  address more than 2G of storage. Mapping 
data  on DASD into an address  space likewise pro- 
vides extended capabilities suitable for  a variety 
of purposes. ESA/XC is the next step in the natural 
progression of virtual-machine architectures.  It 
has the  same  advantages  over the System/370 ar- 
chitecture  that 370-XA has,  but  the additional 
ESAlXC-Only services make ESAiXC superior to 
370-XA for CMS applications.  The transition from 
370-XA to ESNXC is much smoother  than was the 
transition  from System/370 to 370-XA. 

ESA/XC is provided by collaboration between 
VM/ESA and  the machine. Many such synergetic 
relationships are possible and could conceivably 
provide further useful function for the CMS pro- 
grammer. ESAlXC is  an  extendable base for such 
improvements. 
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