Re-engineering software:
A case study

In 1986, the Federal Aviation Administration formed a
contract with three companies to re-engineer a major
portion of the New York terminal approach control
(TRACON) application software—the software that
supports air traffic control in the New York City and
Newark, New Jersey, area. This paper discusses the
techniques used to successfully re-engineer the soft-
ware to run on an IBM System/370™, illustrating that
real-time software can be logically converted from one
computer to another, reliably and cost-effectively.

n 1981, the Federal Aviation Administration

(FaA) issued a plan to upgrade the national air-
space system. An overview of the system is depicted
in Figure 1. The new plan included the host
computer system that would replace the existing
1BM 9020 computers (derivatives of the I1BM
System/360™) in the en route air traffic control
centers, and the advanced automation system that
would upgrade the host computer system and the
terminal approach control (TRACON) and tower fa-
cilities.

In 1986, during the host computer system acquisi-
tion and two years prior to the start of the advanced
automation system acquisition, the FAA awarded a
small contract, of approximately $2.5 million, to
Data Transformation Corporation, International
Business Machines Corporation, and Pailen-John-
son Associates to re-engineer' part of the New York
TRACON software in a high-order language, to run on
an 1BM System/370™ Model 3083.

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

by R. N. Britcher

This paper describes the scope of that project and
the tools and methods the contractors used to re-
engineer the software. The results and conclusions
indicate that re-engineering the software of an exist-
ing system may be preferable to reinventing it. Table
1 is provided to assist the reader in identifying the
terms and abbreviations used frequently in this pa-
per.

The scope of the project

The project was officially entitled “New York
TRACON Demonstration of Program Recoding” and
was aimed at recording the methods used to re-
engineer the (then) current New York TRACON ap-
plication software and verify the equivalence of the
re-engineered version to its source.” The FAA’s state-
ment of work required the contract team to dem-
onstrate and document a logical conversion of the
existing New York TRACON operational software as-
sembler source code (ULTRA™ from UNIVAC™)
into a compiler language. The newly generated soft-
ware had to be functionally identical and directly
traceable to the existing code. The work was to be
completed in nine months and culminate in two
demonstrations: the first demonstration in early

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

grrcHeR 551

Figure 1 Flying through the national airspace system

-

AIR_ROUTE
TRAFFIC
CONTROL. CENTER

\
="

AIR ROUTE
TRAFFIC

CONTROL CENTER

OPERATIONS
OFFICE

TOWER

TERMINAL
APPROACH
CONTROL

AIR ROUTE
TRAFFIC CONTROL
SYSTEM

PREFLIGHT

DEPARTURE

CLIMB OUT

EN ROUTE

FLIGHT PLAN
ENTRY

AIR TRAFFIC
CONTROL
CLEARANCE

FLIGHT
MONITORING

FLIGHT
MONITORING

-PRESTORED

=FLIGHT SERVICE
STATION

-MILITARY BASE
OPERATIONS

- AIRLINE
DISPATCH

- SURFACE
OPERATION

= TAXI ROUTING
AND CONTROL

- TAKE-OFF
CLEARANCE

~ CONFLICT

- TERRAIN
AVOIDANCE

- WEATHER
AVOIDANCE

- IN-TRAIL
SPACING

~CONFLICT

- TERRAIN
AVOIDANCE

~WEATHER
AVOIDANCE

-METERING

APPROACH CONTROL

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

April of 1987, the second in mid-May, the ninth
month. If it were successful, the project would bolster
the idea of improving systems through planned ev-
olution.

The objective in re-engineering. The FAA wanted to
determine if a 20-year-old, real-time system could be
cost-effectively re-engineered onto a commercial
platform—including commercial hardware, com-
mercial tools and languages, and commercial oper-
ating system software—while retaining the behavior
FLIGHT SERVICE of the applications. As a by-product of the re-engi-
PREFLIGHT neering, the architecture of the applications and their
INFORMATION Y L
database would be simplified to eliminate unneces-
sary dependencies, while creating a visible architec-
TERMINAL TOWER OPERATIONS ture. This is in keeping with the long-range objective
OACH OFFICE .
CONTROL of the FAA (and other United States government
agencies) to eliminate customized system compo-
nents and to develop and use application programs
FLGHT FLIGHT ELIGHT PLAN that are reliable and easy to modify and extend.
MONITORING MONITORING CLOSE-OUT Customized components typically require special-
ized training and maintenance and are vulnerable to
- CONFLICT - SPACING changes in a product line or technology. The Na-
tional Bureau of Standards publication in Reference
- TERRAIN - TERRAIN . L .
AVOIDANCE AVOIDANCE 3 lists characteristics of systems that are candidates
- WEATHER -~ LANDING for redesign. Among them are code over seven years
AVOIDANCE CLEARANCE .
SEQUENCING TAX R old, overly complex structure, code written for a
- - OUTING . .
AND SPACING AND CONTROL previous generation of hardware, hard-coded param-
- SURFACE eters, and very large modules. All of these character-
OPERATION N .
istics applied to the New York TRACON system.

APPROACH LANDING POSTFLIGHT

It is essential that all parties involved in a particular
application of re-engineering clarify its meaning and
scope, and define their rationale for doing it. Does
it include designing, coding, specifying, testing?
Houtz,® in writing about how much software im-
provement differs from conventional system devel-
opment, argues convincingly for a precisely docu-
mented software improvement program that would
record which software would be affected; a strategy
ARPORT TOWER for each case such as purging, conversion, or replac-
ing; a cost benefit assessment; and the detailed plan

LOCAL AND for implementing each strategy.
GROUND
CONTROL

\ It was only after beginning the New York TRACON
— demonstration that the FAA and the contract team
[A ' clearly understood the extent and type of re-engi-

neering that would be applied to the TRACON soft-
ware. For example, a recently completed project5
moved the applications of the national airspace en
route system from an 1BM 9020 to an 1BM System/370

1BV SYSTEMS JOURNAL, VOL 29, NO 4, 1990 errcHER 53

Table 1 Terms used frequently in this paper

Term Definition
FAA
ARTS automated radar terminal system
CDR continuous data recording
FAA Federal Aviation Administration
PSRAP preliminary sensor receiver and processor
RETRACK replay radar and controlier data
TRACON terminal approach control
UNIVAC
ARTS IIIA ARTS system coded in ULTRA
UNIVACIOP (input/output) multiprocessor (opera-
tional system)
MPE multiprocessor executive for ARTS IIIA
Sperry 1100 development and support system
ULTRA UNIVAC assembier source
IBM
IBM 3083 demonstration (and target), development
system
VM/SP-HPO virtual machine control program for
3083

host computer system. Isolated portions of the soft-
ware were respecified and redesigned, then coded in
the original source language. The re-engineered sys-
tem was tested by verifying its functional equivalence
to the original 1BM 9020 version. The New York
TRACON demonstration, on the other hand, moved
the applications from a UNIVAC host computer to an
1BM System/370 host, replaced the platform software
(the operating system), redesigned the software ar-
chitecture and top-level design of the applications,
specified the design (but not the system functions),
re-engineered the software in a new target language,
and tested it by verifying functional equivalence.

In both projects the results justified the cost. But
without a well-defined rationale and plan, re-engi-
neering could be at best too expensive, and at worst
the wrong thing to do. For example, Sneed,6 describ-
ing work performed for the Bertelsmann Publishing
Corporation in West Germany, reported that the
work of specifying and retesting, without re-engi-
neering, 232 PL/I programs was grossly underesti-
mated, and that only the judicious use of tools—
such as a static analyzer—made the job feasible: the
cost being two-thirds of the cost of developing the
original software. Sneed also reported that the effort
to find out whether software systems could be eco-
nomically renovated resulted in no new software,
only better documentation and a testbed for future
testing.

554 eriTCHeR

The applications to be re-engineered. The New York
TRACON is the largest terminal and approach control
area in the United States, supporting five major
airports in and around New York City. The auto-
mated radar terminal system that supports TRACONs
around the country (ARTS II1A), was developed in the
early 1970s. The heart of the application software is
the ARTS II1A tracking algorithm. Because it is central
to all air traffic automation, the FAA required that
the contract team re-engineer the tracker as faithfully
as possible. Tracking enables an air traffic controller
to observe an aircraft’s position and speed (and other
important information, such as its transponder code)
at the controller’s workstation, by continually cor-
relating the computer-modeled vector with the digi-
tized radar return, every sweep of the radar. Tracking
is supported by 1) an application program that buff-
ers the digital radar returns, 2) an application that
enables the TRACON to communicate with other fa-
cilities, and 3) an application that supports the con-
troller workstation.

Of the ARTS HIA applications, the FAA and the con-
tract team agreed to re-engineer the tracker, the radar
input program, or PSRAP (for preliminary sensor
receiver and processor), a small portion of the inter-
facility support, and the controller workstation sup-
port. The PSRAP and tracking-algorithms were coded
virtually line for line, so that the FAA and the contract
team could evaluate in some detail the results of re-
engineering a real-time system. Although there were
accommodations to the change in structure of the
applications (the design process is described below)
and to the lexical differences between source and
target languages, the re-engineered software was
traceable to its source without much difficulty. Be-
cause the target hardware and the operating environ-
ment differed from the source system, the other
applications were re-engineered—with FAA ap-
proval—to achieve functional equivalence, but not
necessarily algorithmic equivalence. In particular,
because the prototype situation display used in the
demonstration system was not equivalent to the
TRACON workstation, the applications that support
the data entry and display system were not re-engi-
neered line for line.

Two support programs developed for the ARTS were
key to the demonstration, because of their role in
testing and verifying functional equivalence. The
continuous data recording (CDR) editor reduces the
data recorded by the operational software so that
programmers and analysts can evaluate the func-
tional performance of the system. A simulator,

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

RETRACK, uses the CDR data recorded from a previous
run to feed the operational software, so that testing
need not depend on the availability of live radar and
controller inputs.

The contract team developed one new program: a
CDR conversion program to translate the FAA-pro-
vided cpr file from ULTRA-compatible format to
Pascal/VS records that could be processed by an 1BM
System/370.

The support programs and the conversion program
provided a coherent thread of automation that con-
nected airplanes to the controller monitoring them.
It was enough to give the demonstration the char-
acteristics of a complete system.

The software to build and execute the applications
was provided by the contract team. The estimated
number of lines of source code (in ULTRA) to be re-
engineered was 8000 for the tracker and pSrRAP, 7000
lines to support the workstation, 3000 lines for the
operational database, and about 13 000 lines of sup-
port software, to drive the system and to record and
reduce its outputs. (The actual number of lines con-
verted exceeded the estimate by 66 percent: the
contract team converted 53 000 lines of source code;
the bulk of the 22 000 lines excluded from the esti-
mate was taken up by the database specifications
and the site (such as the location of the radar sensors)
database.

The FAA provided the New York TRACON source
code and listings, specifications and design data,
database definitions, and files containing recorded
radar and air traffic controller inputs that would be
used to drive the system. In addition to providing
contract team members, IBM also provided the lab-
oratory and equipment to develop and demonstrate
the converted software.

The current system architecture

The New York TRACON development and support
system runs on a commercial Sperry™ 1100 proces-
sor under a commercial operating system, but uses
specially-built software to build and reduce data
generated by the operational system. The operational
software can be assembled and linked on either the
Sperry 1100 or on the operational system, UNIVAC’s
Input Output (10P) multiprocessor. Data are reduced
only on the 10P.

The operational system runs on the 10P, a multiproc-
essor developed for the automated radar terminal

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

system (ARTS), and a derivative of the UNIVAC 8300.
It drives the data entry and display subsystem, a
configuration of Texas Instrument’s workstations,
containing neither software nor microcode.

The ARTS 111A is coded in ULTRA, a 16-bit assembler
developed in the 1960s for the UNIVAC processors.
Like the assemblers of its generation, it was devel-
oped to get the most out of the target processor. The
version of ULTRA in use now is not much different
from the original, in that it offers no macro facility
and no structured programming control structures.

The operational software is supervised by a custom-
ized multiprocessor executive (MPE) written for the
ARTS. The rules for concurrent and sequential exe-
cution of the applications are encoded in a lattice
and carried out and enforced by the MPE. Because
the 10P is a multiprocessor, the MPE assigns work—
radar to be buffered and sorted, tracks to be corre-
lated—to the applications in a strict time-sequenced
order. The MPE allocates each work-application pair
to an available processor, the object being to keep
the processors busy.

The application software is organized as tasks. The
application tasks, in general, correspond to the ap-
plications: PSRAP, which processes incoming radar
data; the tracker, consisting of the applications to
support the controller workstation data entry and
display; and the support for interfacility communi-
cations.

The small global database, comprising predomi-
nantly radar returns and tracks and the information
describing the current state of each workstation, is
organized in tables accessible by the applications
without executive supervision.

The target system architecture

The contract team developed and demonstrated the
re-engineered New York TRACON software on an 1BM
System/370 Model 3083. Unlike the UNIVACIOP, the
iBM 3083 is a uniprocessor. It executes at roughly
four times the cycle speed of the 10P and contains 16
megabytes of primary storage. Its channels operate
at about three megabytes per second. Each of its
attached storage devices, both direct and sequential
access, holds gigabytes of data.

The 1BM 3083 drove a prototype situation display
enabling the FAA to observe the display outputs. The
situation display supports a 2048 by 2048 pixel color

grrcHer §H5

Figure 2 Demonstration system hardware configuration

IBM 3180 DISPLAY TERMINAL

1BM 3274 CONTROL UNIT
1BM 3268 DESKTOP PRINTER

| I — |

IBM 3880 STORAGE
CONTROLLER AND 3380
HEAD DISK ASSEMBLIES

raster presentation driven by a state-of-the-art dis-
play generator, and it embeds a workstation proces-
sor. For the demonstration, it was used in a mode
that emulated the current ARTS 111A situation displays
as closely as possible. Figure 2 describes the config-
uration,

The development processor and the demonstration
processor were one unit. 1BM’s virtual machine op-
erating system, VM/SP-HPO, made this possible. It
allows users to run different systems and different
kinds of systems, such as batch systems, interactive
systems, and real-time systems, on a single processor.

The contract team chose Pascal/VS as the target
compiler. The compiler and the operational system

556 enrcHeR

were controlled by Multiple Virtual Storage (Mvs),
whereas the development system was run under the
Conversational Monitoring System (cMS). Both Mvs
and CMS can run concurrently under VM/SP-HPO.
(Although the same processor supported both the
development and the demonstration system, the cus-
tomer demonstrations were given with the demon-
stration system running in native mode, that is, Mvs
interacting directly with the 1BM 3083, without vm/sp-
HPO and the development software, cMs, configured.
The intent was to present the re-engineered system
in an environment as close to operational as possi-
ble.) Figure 3 shows the commercial platform under
which the re-engineered applications were developed
and executed.

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

Figure 3 Development and demonstration system software architecture

¥M/BP-HPO

e r
DOCUMENT 18PF/ PDF
COMPOSITION

FACILITY {SCRIPT)

.

\.

(:

PDF EXTENSION
FOR USER-TAILORED
SCREEN PANELS

. N

-
HIGH-LEVEL
LANGUAGE COMPILER,

'SYSTEM BUILD

AND BATCH UTILITIES

L

- PANEL-~DRIVEN
FILE MANAGEMENT
OF SOFTWARE
AND DOCUMENTS

~INTERACTIVE DOCUMENT
PREPARATION
AND PRODUCTION

- CONTRACT DOCUMENTS
MAINTAINED ON LINE ~-SOURCE CODE
CREATED UNDER CMS
AND AUTOMATICALLY
SENT TO MVS

FOR COMPILATION

~AUTOMATED SOFTWARE
CONFIGURATION
CONTROL TOOLS
PROVIDE TRACEABILITY,
ACCOUNTING,
DEVELOPMENT TRACKING

- SOURCE FILES
COMPILED
UNDER MVS
IN BATCH MODE

-EXECUTABLE LOAD
MODULES GENERATED
FOR REAL~TIME
TRACON SYSTEM

[TRACON
APPLICATIONS

N

- APPLICATIONS RUN
REAL TIME UNDER
MVS-RTX FOR TESTING

Demonstration environment and data flow

The demonstration was run in test mode; no live
inputs were permitted. It lasted about 20 minutes.
The FaA-supplied CDR file, containing recorded ra-
dar, interfacility, and workstation inputs from a live

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

New York TRACON operation, was read by RETRACK.
RETRACK primed the input buffers of the radar input
program PSRAP, the workstation keyboard and inter-
facility input programs; tracking was executed; and
the resulting data were written to the display. The
applications ran in real time—as if the inputs were

sRTcHER §HT

Figure 4 Demonstration flow

NY TRACON
CDR TAPE

KEYBOARD

RETRACK TRACKING || DispLAY

~ SITUATION
DISPLAY

INTER-
FACILITY

COR -
EXTRACTOR

. g
CDR EDITOR
HARDCOPY 1 1
RECORDINGS

I

CDR - CONTINUOUS DATA RECORDING
PSRAP - PRELIMINARY SENSCR RECEIVER AND PROCESSOR
RETRACK -~ REPLAY RADAR AND CONTROLLER DATA

558 BRITCHER IBM SYSTEMS JOURNAL. VOL 29. NO 4, 1930

live—and recorded their CDR data. After the run was
complete, the newly-generated CDR file was reduced
by the CDR editor and the listing compared with a
New York TRACON test run made using the identical
CDR inputs. (See Figure 4.)

Tools

The tools were critical to the success of the demon-
stration. The development tools were similar to those
1BM used in re-engineering the 1BM 9020 en route
systesrn into the 1BM System/370 host computer sys-
tem.” They consisted of interactive programming
and management tools, built on 1BM commercial
products, executing under cMs. The products in-
cluded an interactive editor and library manager
(ISPF/PDF), an interpretive language that enables pro-
grammers to take advantage of the ISPF/PDF dialog
manager by developing their own panels and exec-
utive software (REXX), a relational database manage-
ment system (SQL/DS), and an automated document
preparation package (Document Composition Facil-
ity). For the host computer system 1BM developed an
automated software development plan to track the
completion of all software and testing milestones
from the level of the module to that of the system;
an automated design issues and trouble report sys-
tem; and an automated software configuration con-
trol and accounting system. These were changed
slightly for the New York TRACON project.

The unifying architecture of the target system in-
creased productivity significantly over that of the
source system. (Growth in productivity might be one
of the factors that would encourage a customer to
re-engineer an old system, if the life span of the
system were long enough.) Because the development
system ran on the same processor as the demonstra-
tion system, a programmer could develop a schedule
for a module, design, code, compile, unit test, repair,
promote, and transmit it—through VM/SP-HPO-—t0
the demonstration system for integration testing in
a single session from the programmer’s interactive
terminal.

A tool that was central to the success of the demon-
stration was a PC-based relational database, hosted
under dBASE 1I®, because it contained a data diction-
ary identifying every variable and constant in the
source system, with the following attributes:

¢ the company responsible for coding the identifier
e the identifier

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

* the name of the table, if any, in which the identifier
resides (in the source system)

* the page number in the New York TRACON coding
specifications where the identifier is described

e the names of the procedures that reference the
identifier

* with each procedure, a value—given here in pa-
rentheses—indicates whether the procedure sets
the variable (1), uses it (2), both (3), or that data
are not yet known (0)

e the type of identifier (e.g., character, Boolean,
array, real)

¢ the new name of the identifier in Ada and Pas-
cal/VS§S

¢ the name of the new design package that would
own the identifier (the re-engineered system was
designed to eliminate global data)

« the page number in the new database design doc-
ument where the identifier is described

Figure 5 illustrates a page of the data dictionary.

The target language, Pascal/VS, and the target op-
erating system, Multiple Virtual Storage/Extended
Architecture (Mvs/xA™), although they were part of
the demonstration system architecture, were also
tools, in that their characteristics facilitate and en-
courage certain methods. Pascal/VS was chosen be-
cause all of the programmers had experience with
some form of Pascal, which is lexically similar to
Ada used to develop the design, and because Pas-
cal/VS runs under Mvs. The FAA had requested that
the demonstration system be coded in Ada. Because
the contract team was not experienced in writing
Ada and the schedule was quite short, all parties
agreed on an Ada design (described in the section on
methods) and a Pascal/VS implementation.

Lexically, the source system and the target system
differed markedly. ULTRA is a 16-bit assembler that
provides very little built-in support for development
(e.g., no macro facility), for execution (no distinction
is made between instruction space and the data
space), or for testing. Because it is almost entirely a
specification for the computer, its nature is lexical—
and mechanical. Pascal/VS, because it is a specifi-
cation for the programmer, provides not only a
lexicon, but an emphasis; one that is mathematical
rather than procedural. For example, variables and
data types are specifications, and are distinguished
from the instructions, which are fabricated of single-
entry, single-exit control structures. Of equal impor-
tance, Pascal/VS implies rules for the development
of programs, and it promotes the decomposition of

erircHeR 5§59

Figure 5 Data dictionary sample records

Record# COMPANY DATANAME DATABASE PAGENUMBR P1 S1 P2 $2 P3 S3 P4 54 P5 35 P6
14 BOTITO BOT 4 TPUR 3 0 0 0 0
15 ABEATI1 CTs 7 0 CRIT 0 DBATM 0 IFI 2 KOF 3
16 ABEAT1 CTS 7 TEDC 3 0 TINIT 3 0 TPUR 3 TPRED
17 ABEAT1 CTs 7 PSBLD 0 RETRACK 1 SMOTH 0 TEDCRS 0 TI 0 TPSEC
18 ABEAT2 CTS 7 TPSEC 3 TCRSS 2 TINIT 3 IFI 3 TPUR 3 TPRED
19 ABEAT3 CTS 7 TEDC 3 TCRSS 2 TINIT 3 IFI 3 TPUR 3 TPRED
20 ABEAT4 CTS 7 TPSEC 3 COMA 3 TINIT 1 0 TPUR 3
21 ABEATS CTS 7 TEDC 3 TCRSS 2 TINIT 3 DOP 3 TPUR 3 SLINK
22 ACTYPT CTS 18 TPRED 0 TPSEC 3 TPUR 3 KOF 3 IFI 1
23 ACTYPT2 CTS 18 TFI 3 0 KOF 3 0 0
24 ALT1 CTS 17 TINIT 3 AUT 2 TPUR 1 ALTRKR 0 CDPR 2 COMA

abstract programs into smaller, less abstract pro-
grams, It also imparts structure to a program and, to
the advantage of large software products, among
programs.

The choice of MvS to be the host for the ARTS
applications was in keeping with the overall ap-
proach: providing a commercial platform for the re-
engineered applications. mvs, unlike the specially-
built supervisor developed for the ARTS IIA (MPE), is
a general-purpose operating system. It supports a
wide range of applications, including both batch and
interactive development, database management sys-
tems, network systems, production systems, and real-
time systems. For example, the contract team used
MVS to support batch compilations, to perform in-
teractive reduction of CDR data using the CDR editor,
and to run the ARTS applications. The last, because
the ARTS executes in real time, required the presence
of a real-time control program. The reai-time control
program used was RTX, developed by IBM to support
the real-time applications for the National Aeronau-
tics and Space Administration (NASA) and United
States Air Force ground control space programs.
Although the demonstration was carried out in a test
environment using simulated inputs, the re-engi-
neered system was designed and implemented as if
it would be run in real time.

Methods

Within the contract team there were three teams,
totaling 25 people, roughly aligned with the three
companies. The first team was responsible for imple-
menting the tools and the new software architecture.
The second team concentrated on re-engineering the
on-line applications. The third team coded RETRACK,
the CDR editor, and the database constants, and

560 sriTorER

conducted system testing. The teams were directed
by a software architect, who developed the program
plan, including the methods and the standards by
which the software would be developed, and the
software architecture. The teams met two or three
days a week to discuss both methods and architec-
ture. Every developer knew the approach, and fre-
quent and formal communication marked the proj-
ect. All project data, plans, standards, design, and
code were on line and easily accessible through a
hierarchy of directories.

A software development plan defined the software
build plan and the standards for designing and de-
veloping the software, for software configuration
control, and for software quality control. The stan-
dards contained templates, such as the gateway pro-
gram that enabled each application to interface with
the application control programs using one standard
protocol. Every rule the developers might need was
defined and in most cases examples were provided.

A formal life cycle, based on the traditional waterfall
life cycle, was strictly adhered to. It was:

¢ Requirements analysis, methods, and architecture
¢ Level-1 software design (in Ada)

e Level-2 software design (in Ada)

¢ Coding, in three increments (in Pascal/VS)

* Software integration and testing

¢ Demonstrations and delivery of documentation

Figure 6 describes the contract team’s approach to
re—engingering. Although no software improvement
program was formally documented, the methods
were defined in detail in the team’s proposal to the
FAA.

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

sé P7 S7 P8 58 P9 S9 P10 S10 TYPE VARNAME DBNAME NEWPGNUM
0 0 0 0 0 E bot_time_ of_ last_correl TRACK 0
0 0 MSAW 0 MTGCT 0 0L last_correl on radar only trk TRACK 0
0 ALTRKR 0 CDR 2 COMA 3 COMB 2 L last_correl_on radar only trk TRACK 0
3 TSUBO 0 TSUBL 0 0 0L last_correl on_radar_ only trk TRACK 0
2 coMa 3 0 0 0L initial correl proc_enabled_trk TRACK 0
2 SLINK 2 TPSEC 3 RETRACK 2 KOF 3 E assigned_beacon_code_trk TRACK 0
0 0 0 0 01 constant_zero_trk TRACK 0
3 IFI 3 TPSEC 1 KOF 3 TPRED 21 beac_code status code trk TRACK 0
0 SCTME 2 TINIT 3 SLINK 0 TEDC 21 aircraft_type_code_trk TRACK 0
0 0 0 0 0cC sp_amen_site ad_alphy TRACK 0
3 coMB 2 KOFB 0 KOFC 0 MSAW 01 rep_altitude trk TRACK 0

The project began in September 1986. Within a
month, two critical milestones were met: the devel-
opment tools were adapted (from the host computer
system) to suit the demonstration. For example,
interactive panels that invoked the Jovial compiler
on the host computer system were modified to in-
voke Pascal/VS, and a set of macros were developed
that enabled RTX and the Pascal/VS run-time soft-
ware to work together in a real-time environment
(Pascal/VS was developed for a batch and interactive
environment and its built-in storage management
and error processing had to be modified).

The contract team did not reinvent the system. The
source system requirements, an English description
of its expected behavior, on the whole were not
changed. To complete the requirements analysis, the
team recorded their intent in the New York TRACON
Demonstration of Program Recoding Requirements
Analysis Document.

Re-engineering the software architecture. The official
name given to the project, “New York TRACON Dem-
onstration of Program Recoding,” is somewhat mis-
leading. A new architectural platform had to be
designed before the applications could be re-engi-
neered. The architecture of the source system is
profoundly different from that of the target. (This
would be the case in re-engineering many old sys-
tems.) Although both are von Neumann machines,
the UNIVAC IOP is a multiprocessor, its storage shared
among processors; the 1BM 3083 is a uniprocessor.
In the 10P, work is distributed among the processors
to meet the system’s demand for service in real time.
The system was designed to get the most out of all
the data processing elements, processors, channels,
storage, and devices. In the 10P system, the work is
moved to the machine. The supervisory software

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

(MPE), schedules tasks from a prefabricated two-
dimensional lattice, a directed graph that specifies
the interdependency, priority, and, in some cases,
the expendability of each unit of work. PSRAP must
run before tracking, tracking must run before dis-
play, and so on. In the 10P system, the application is
aware of its processing constraints. For example,
tracking must execute within a fixed period of time,
or work is flushed from the input queues.

The 1BM System/370 architecture is the inverse where
the machine is moved to the work, at least in the
abstract. The System/370 computer family, of which
the 1BM System/370 Model 3083 is representative, is
event-driven. Work is defined and allocated dynam-
ically. mvs dispatches applications when they are
available, not according to a predefined sequence.
The rules of concurrency, of data coherency, and of
application communications are left to the designer.

The new software architecture centralized the con-
trol program services within its run-time system (that
included mvs, RTX, and Pascal/VS) and a layer of
applications control programs, thereby decoupling
the applications from their processing environment,
and insulating them so that they could be re-engi-
neered free of operating system dependencies. A
single gateway package enabled all the applications
to interface with the control program services.

The architecture was developed as a set of rules and
formally documented as part of a requirements
analysis document. It contained the following:

e Definitions to include names of methods, attri-
butes of behavior, objects (e.g., Ada package, ap-
plication work, conversation, pipeline, process)

srTcHER 561

Figure 6 Overall approach to re-engineering

ARTS IllA SOURCE CODE (ULTRA) LEVEL-182
DESIGN

(Ada)

TOP-DOWN DESIGN
AND BOTTOM-UP
ANALYSIS CONVERGE
IN THE LEVEL-2

TRACEABILITY

———— e e ——— e e o ———— e e)

o e ——————

TEST INPUTS
(READ BY RETRACK)

562 sRiTcHeER IBM SYSTEMS JOURNAL, VOL 29, NO 4. 1990

& Rules for packages and their attributes to define
the five classes of applications and identification
of the applications that fell within each: off line
(O), control (C), interactive (I), pipeline (P), and
data (D), and definition of the rules of behavior
(e.g., pipeline packages shall not converse with
each other)

» Rules for system work to define the units of work
(e.g., radar targets, tracks) and their relationship
to each other

« Rules for system parts and their work to describe
the behavior of the packages with respect to their
attributes (e.g., pipeline)

s Rules for the decomposition of parts to define the
design levels (there were two) and their relation-
ship to one another (e.g., the relationship between
a Level-1 package and its Level-2 packages can be
one-to-one or one-to-many)

s Rules for tasks and concurrency to define the
behavior of the applications as real-time programs

s Rules for the communications between subtasks
to define a message control system that would
enable applications to operate independently, and
send and receive messages to and from one an-
other

s Rules for database and data coherency to define
the rules for data aggregation and acquisition (data
were defined as records in the demonstration sys-
tem, rather than as tables in the source system,
and, because the applications were redesigned as
state machines, there were no global data)

The abstract rules provided a natural specification
for the applications control packages, shown in the
upper left of Figure 7.

Figure 7 describes one dimension of the software
architecture, the Level-1 Ada packages, the attributes
of each, and their interfaces.

Re-engineering the database. The new software ar-
chitecture gave the applications independence, and
as a result, it gave the teams coding them independ-
ence. The data dictionary progressed in parailel. As
the architecture unfolded, developers studied the
source system code and coding specifications of the
applications, without having to worry about the en-
vironment in which they would run. The developers
identified the variables and constants that are set and
used by each application (e.g., PSRAP). By identifying
the data space of the source system and mapping it
to the target system, and recording both the domain
(source) and range (target), the developers reduced
the re-engineering of the applications to a simple

IBM SYSTEMS JOURNAL, VOL 29. NO 4, 1990

mathematical function. The function is the set of
ordered pairs (s,t), where s is the set of identifiers
that define the potential states of the source system
and ¢ is the set of identifiers that define the potential
states of the target system. In many cases the domain
mapped to an empty set: variables were not needed
because the target system excluded capabilities, for
example, the live interface to the PSRAP.

Formally defining the on-line software architecture
and the data space, before elaborating the design of
programs, was central to producing a target system
that met the design and performance constraints
within the short schedule.

Re-engineering the design of the applications. The
design of the applications was re-engineered and
recorded in two levels. The design was predicated on
the methods used by 1BM on all its major software
development projects. The methods treat (computer)
programs as mathematical objects, either functions
or state machines.” A function maps inputs to out-
puts; a state machine is a function with a memory.
Most modules or collections of modules behave as
state machines. Designing a program as a state ma-
chine promotes the use of abstraction, where inter-
faces are specified before modules are fully elabo-
rated, and data hiding. For example, a state machine
implemented as an Ada package would specify the
inputs, outputs, and a private set of state data, ac-
cessible to users of the package only by invoking one
of its collection of procedures. In summary then, the
contract team re-engineered the design of the appli-
cations as a set of communicating state machines.

The team used an Ada process design language to
record the design. Using Ada as a design language
turned out to have several advantages. Ada encour-
ages both the use of abstraction and data hiding, so
itis a good fit for using the concept of state machines;
both the FaA and the contract team learned Ada and
its characteristics, at least as a tool for design; the
FAA is committed to using Ada on its large projects,
and this project increased their confidence; Ada pro-
vided a common vernacular for talking about the
design and the design process.

Three months after the project began, the Level-1
Ada packages were completely specified. All state
machine interfaces, state data (the data owned by
the Level-1 package), and CDR records were classified
by type. The gateway package was specified. The
successor packages, the Level-2 Ada packages that

garcHer 563

Figure 7 Level-1 Ada packages and their relationships

MONITORING PACKAGES

-
i
i
i
1
t
1
1
{
|
1
{
|
|
|
|
|
1
|
|
|
|
t
i
1
1

SEQUENCE OF
TRACK DISPLAY
SPECIFICATIONS
BY CATEGORY:
FULL DATA BLOCK, ...

C-CONTROL

D - DATA

| = INTERACTIVE
O~ OFF LINE

P -PIPELINE

564 srrcreR BM SYSTEMS JOURNAL. VOL 29, NO 4. 1990

would decompose from Level-1, were identified. All
recording was inspected.

Incremental implementation. About a month later,
the first of three software builds was completed and
running. It included the support software, the CDR
conversion program and the CDR editor, the on-line
platform (including Mvs, RTX, the Pascal/VS run-
time support), the application control services (ini-
tialization/termination, timing control, message
control), and the application gateways. The complete
system structure was in place. The first build verified
that records could be read from the converted CDR
file and that messages (internal work) could be trans-
mitted between tasks.

The Level-2 design (the full elaboration of the appli-
cations in the Ada design language) and the conver-
sion of Ada to Pascal/VS proceeded in step with the
build plan. The second build contained all the ap-
plications except tracking and parts of keyboard
processing, both of which were completed in the
third build.

Each Level-2 Ada package was inspected after it was
completed and then converted to Pascal/VS. In writ-
ing the Pascal/VS code, the application programmer
would use the Ada, the ULTRA, the ULTRA coding
specifications, and the database dictionary to ensure
that the re-engineering resulted in a functionally
equivalent system.

The second and third builds were elaborations of the
first. No structural changes were made to the system
after the first build. The applications were laid into
the system as they became available, and then veri-
fied by the software integration and test team.

Testing. During software integration and testing,
formal error reporting and correction procedures and
configuration control procedures were practiced, just
as they would be on a large-scale development proj-
ect.

Each build was tested at the unit and system level.
Pascal/VS provided excellent debugging facilities;
most modules ran in the system environment with-
out error. System testing was performed under vm/SP-
HPO and then natively, with MVs running directly on
the processor. Not allowing enough time to test
natively was a difficulty uncovered in the first dem-
onstration. Errors were masked in the virtual ma-
chine environment, One of the advantages of trans-
porting software, over inventing it, is the cost-effec-
tiveness of testing by comparison. Because the source

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

system and re-engineered system were functionally
equivatent (with predetermined allowances), testing
proved to be inexpensive and incisive. The outputs
of the re-engineered system were compared with the
outputs of the source system. Since both were driven
by the same inputs, errors showed up as markers
(discrepancies) rather than as the object of human
evaluation and judgment, the reliability of which
depends on many complex factors such as interpret-
ing requirements, training, and experience.

The results

The contract team completed the re-engineering of
the New York TRACON applications software and
successfully demonstrated its functional equivalence
in nine months. The budget was met. The team gave
a final presentation and demonstration in May 1987.
The demonstration was given using an FAA-provided
input file, containing the recorded output of a then
current run of the New York TRACON system. The
FAA and the contractors compared the output re-
corded from the demonstration run with the New
York TRACON generated output and found no un-
anticipated discrepancies. The analysis showed that
the re-engineered tracker was functionally equivalent
to the source original. The digitized radar and track
data blocks stepping across the projected airspace on
the modern situation display gave impressive visual
evidence that the system worked.

The team converted over 53 000 lines of ULTRA to
83 000 lines of Pascal/VS (62 percent comments).
The team developed 340 Pascal procedures. One-
hundred-and-fifty-six (156) procedures, mostly in
tracking, were implemented with no deviations from
the original ULTRA. The Pascal/VS was converted
from 47 000 lines of Ada process design language,
including Level-1, Level-2, and commentary. The
source code ratio of ULTRA to Pascal/VS, without
commentary, was 1.6:1. The team identified and
documented 58 design issues; all were resolved
within a week. There were 78 errors found and
corrected during software integration and testing.

Conclusions

The authorized logical conversion and demonstra-
tion of more than a third of the New York TRACON
software, from an UNIVAC IOP ULTRA architecture to
an 1BM System/370 architecture, coded in Pascal/ VS,
is sound evidence that real-time software is trans-
portable, even if the environments of the source and
target system are markedly different.

griTcHER 56H

In the final report delivered to the FAA the following
factors were identified as key contributors to the
success of the project:

o The software development environment, includ-
ing the laboratory and software tools, was available
shortly after the project started and was easy to
learn and use.

o The team used a consistent and proven set of
development methods and followed the standard
software development life cycle, including require-
ments analysis and architecture, two levels of de-
sign, incremental software builds, design and code
inspections, and an independent software integra-
tion and test team.

» The software architecture was formally recorded.

* A complete data dictionary mapped ULTRA vari-
ables to the re-engineered system.

« The on-line applications were designed as inde-
pendent items, with no global data, with precisely-
defined interfaces, and without embedding infor-
mation about their operating environment.

« Early in the project, the system inputs were con-
verted to System/370 format; the input records
were defined as Ada data types to ensure consist-
ency throughout the entire software system (the
CDR editor, for example, used the same data types
as RETRACK).

s The software was re-engineered in Pascal/VS,
which made the transition from the Ada process
design language easy, and, because of its rules for
data typing and program construction, Pascal/VS
code proved to be reliable.

The most significant problem, because of the tight
schedule, was the short time allotted to test the
system, in its final demonstration environment. This
was overcome by working considerable overtime. At
that, there were latent faults and errors, discovered
after the final demonstration.

The advantages of re-engineering a software product
or system, over reinventing it, are significant. Re-
engineering avoids 1) the effort of, and the errors
that accrue from, developing new engineering re-
quirements and functional specifications, and 2) the
effort of full-scale verification and validation, the
very activities Sneed® found so expensive. In short,
re-engineering takes advantage of the profound ef-
fects of evolution. It preserves the functional behav-
ior of a system that had been specified, designed,
implemented, repaired, enhanced, verified, vali-
dated, and most importantly, used over years, while
improving its quality. The cost, as demonstrated by
this project, need not be prohibitive.

566 erircHer

Acknowledgments

The performance of the contract team was outstand-
ing, as was the commitment and cooperation of the
FAA and their system integration contractor Martin-
Marietta. The FAA program manager, Dick Bock,
deserves special recognition for his support and en-
couragement throughout the project. Art Smock
from Martin-Marietta was particularly helpful in
providing information about the New York TRACON
system. The work of each member of the team was
critical; in that sense every participant made an
outstanding contribution to the success of the proj-
ect: from Data Transformation Corporation—Bob
Bosworth, Marie Brown, Annette Cabbell, Wai
Cheung, Ben Dennis, Bill Earley, Hussein-Kho-
massi, Eugene Liberman, Stan Mead, Andre Small;
from iBM—Dick Allardyce, Larry Boulia, Stuart Cra-
mer, Jeff Dollyhite, Austin Gallow, Connie Hayes,
Stephan Landau, Michielle Looser, Michele Ich-
niowski, Lana Massung, Margaret McCandless, Barb
Morten, Bob Scheuble, Richard Wei; and from
Pailen-Johnson Associatess—Tom Baxter, Lalitha
Bhat, Clarke Thomason, Stephen Hall, Michael
Gandee, James Atkinson, Marvin Sendrow.

System/360, System/370, and MVS/XA are trademarks of Inter-
national Business Machines Corporation.

ULTRA, UNIVAC, and Sperry are trademarks of Unisys.
dBASE I1I is a registered trademark of Ashton-Tate Company.

Cited references and note

1. In this paper, re-engineering means the authorized logical con-
version of a customized architecture (implemented in assembler
source code) to a commercial architecture (implemented in a
compiler source language). Re-engineering does not include
unauthorized reverse compilation of object code to form source
code as the basis for the derivation of a substitute product,
generally referred to as “reverse engineering.”

2. New York TRACON Demonstration of Program Recoding Sofi-
ware Translation and Verification Methodology Document.
DOT/FAA/CT-87/33. Federal Aviation Administration, U.S.
Department of Transportation (August 1987); available
through the National Technical Information Service, Spring-
field, VA 22161.

3. Guideline on Software Maintenance, Section 5, Federal Infor-
mation Processing Standards Publication 106, National Bureau
of Standards (June 15, 1984), pp. 14-17.

4. C. A. Houtz. “Software Improvement Program: A Treatment
for Software Senility,” Proceedings of the 19th Computer Per-
Sformance Evaluation Users Group, National Bureau of Stan-
dards Special Publication 300-104 (October 1983). pp. 92-107.

5. R. N. Britcher and J. J. Craig, “Using Modern Design Practices
to Upgrade Aging Software Systems,” /EEL Software 3. No. 3.
16-24 (May 1986).

6. H. M. Sneed. “Software Renewal: A Case Study.” IEEE Sofi-
ware 1, No. 3, 53-56 (July 1984).

7. A. B. Ferrentino and H. D. Mills, “State Machines and Their
Semantics in Software Engineering.” Proceedings. 1ELEE Com-

IBM SYSTEMS JOURNAL, VOL 29. NO 4, 1980

puter Society First International Computer Software and Appli-
cations Conference COMPSAC (1977), pp. 242-251.

Robert N. Britcher /BM Federal Sector Division, 9231 Corporate
Boulevard, Rockville, Maryland 20850. Mr. Britcher received a
B.A. in chemistry from Gettysburg College in 1968, and joined
IBM in 1969. He has worked primarily on the automation of air
traffic control systems and is currently assigned to the FAA ad-
vanced automation system (AAS). He has written about several
aspects of software, including design, standards, correctness, size
estimation and metrics, maintenance, and software systems engi-
neering. His articles have appeared in a number of journals and
magazines, including /EEE Sofiware and (IEEE) Computer. Mr.
Britcher’s research interests include program correctness and ver-
ification, and the development and evolution of software systems.
He is a member of the IEEE Computer Society.

Reprint Order No. G321-5418.

IBM SYSTEMS JOURNAL, VOL 29, NO 4, 1990

srrcHer 567

