Personal systems image
application architecture:
Lessons learned from the
ImagEdit program

Image applications require complex processing on
large amounts of data. The application designer is pre-
sented with difficult challenges that are exacerbated
on personal systems which have limited processor
speed and constrained memory. This paper discusses
the problems relevant to personal systems image ap-
plication architecture and how these problems were
solved in the ImagEdit® program. A virtual array man-
ager (VAM) consisting of a virtual memory manager
(VMM) and an access scheduler was used to solve the
data management problem. The VAM divided each im-
age into segments and transferred them to the VMM
for storage. These segments were swapped between
memory and disk in response to a sequence of access
requests, controlled by the access scheduler using
performance-maximizing heuristics. Object-oriented de-
sign was used to address the functional complexity
problem. The processing functions were divided into
two classes. The data-stream class included scanning,
printing, and filing, with each data-stream function de-
composed into a series of demand-driven pipe objects.
The editing class included cut and paste, textual and
graphical annotation, and freehand drawing.

his paper discusses software design issues that

pertain to personal systems image applications.
The first section defines the category of image appli-
cations that can be controlled effectively by current
hardware and describes the main problems faced by
software designers in creating efficient and functional
applications in this domain. The next section de-
scribes the image types under consideration and
breaks down their processing into high-level and low-

408 rvman

by A. Ryman

level functions. The virtual array manager, which is
the main architectural component, is then discussed.
The final section describes the means by which ob-
ject-oriented design (0OD) can be used as a guiding
principle to organize the diverse collection of image
processing functions.

Image applications on personal systems

The discussion is based on experience gained from
developing the ImagEdit® program, a personal com-
puter image editing application, at the Image Sys-
tems Centre, 1BM Canada Laboratory. Frequent ref-
erences are made to that experience for purposes of
illustration. ImagEdit V1.0 was designed for office
applications and was shipped in 1987. ImagEdit V2.0
included enhancements to support desktop publish-
ing and was shipped in 1988. The user interface of
ImagEdit V2.0 is illustrated in Figure 1.

Characteristics. For purposes of this paper, personal
systems image applications are those that have gen-
eral-purpose personal computer hardware, medium
image size, and low transaction rate.

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1930




Figure 1 ImagEdit V2.0 user interface

I

Target printer...

il Exit
About ImagEdit...

i File Edit Options View Type Lines ] Flx=Help
i New. .. 1-
Open...
| Save Ctrl+s
Save as...
| Export. .. Toolbox]
Revert i
Close image INPZNZImE 4
alojvia
| Get info... Ctrl+l W
o W
4 Scan. .. -
| Source scanner... .
| Brint. .. Ctrl+p N ,

General-purpose personal computer hardware. Sys-
tems that have general-purpose hardware can inte-
grate the image application with other functions, so
that the user has a multitask workstation. Special-
purpose image peripheral equipment, such as scan-
ners and video cameras, are included if they allow
the workstation to be used for (nonimage) purposes.
The image application should work adequately with
standard displays and printers but take advantage of
any higher-resolution equipment that is available.

Medium image size. A medium image size is defined
as approximately one megabyte. Typical images in
this range would be letter-size pages scanned in
bilevel at up to 300 pixels per inch (ppi), or 8- by 10-
inch photographs scanned as gray halftones up to
120 ppi. A bilevel image uses just two levels, black
or white, as in the display of line drawings. Halftone
images display various shades of gray, as in a photo
of a person’s face. From a software design point of
view, the most important thing about the medium-
size range is that it requires more bytes than the
amount of available memory, and less storage than
the amount of available disk space.

Low transaction rate. The expected transaction rate,
meaning capturing, viewing, or editing, is under 10

BM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

images per hour. Although the system may be ca-
pable of higher rates, the user is probably performing
an unstructured task under these circumstances, and
so is not pushing the hardware to its limit.

Examples. Some typical examples of personal sys-
tems image applications include office applications,
desktop publishing, and low-end technical records
handling.

Office applications include image notes and compos-
ite documents. Image notes, which are widely used
in Japan, give users the ability to send and receive
bilevel images from their desktops as if they had a
personal facsimile (FAX) machine. A composite doc-
ument contains a combination of scanned images
with computer-coded word processing documents.
ImagEdit V1.0 was designed to address this domain,
using 1BM's Mixed Object Document Content
Architecture' (MO:DCA) as the carrier data stream for
both notes and composite documents.

Desktop publishing allows the user to lay out text,
images, and graphics in newsletters, brochures, and
other common in-house publications. Here, both
bilevel and halftone images are used. Line drawings
are scanned as bilevel images, photographs as half-

rrvan 409




tone images. The resulting images have to be modi-
fied in size and edited before inclusion in a publica-
tion. ImagEdit V2.0 was designed for this application
domain, using as data streams BM’s Image Object
Content Architecture’ (10cA) and the industry stand-
ards of Tag Image File Format® (TIFF) and Encap-

Image processing is functionally
complex.

sulated PostScript® Format® (EpSF). While 10ca and
TIFF are used for document interchange, EPSF is used
only for exporting documents; its greater complexity
requires a PostScript interpreter (typically a dedi-
cated processor in a printer).

Technical records handling is potentially a new ap-
plication area. Engineering drawings are typically
scanned as bilevel images at 200 ppi; thus A-size
(8 1/2- by Il-inch) and B-size (11- by 17-inch)
drawings fall within our definition of medium-size
images.

Software design challenges. The job of any software
designer is to create applications that provide timely,
usable, and cost-effective solutions to problems.
Some of the challenges faced are especially acute
when designing image applications for personal sys-
tems. They include large amounts of data, complex
processing functions, evolving industry standards,
new applications, and the technical constraints of
personal computers. These are discussed below.

Large amounts of data. The most obvious challenge
is to efficiently manage the large amount of data
contained by images. Not only does a single image
contain a great deal of data, but many applications
require several images to be in use at the same time.
(For example, editing may involve cut-and-paste
operations between images.) This challenge will in-
crease in severity as new technologies, such as color
scanning and color printing, become commonplace.

Complexity of processing functions. Image processing
is functionally complex. A typical application must

410 mvman

support capture, display, and print for a range of
peripheral equipment, as well as build and parse a
variety of data streams—each with its own compres-
sion and decompression algorithms. The range of
possible editing functions is even more extensive
(these are described later). Organizing this complex-
ity into a coherent software design is a difficult
challenge.

Evolving industry standards. Image applications are
relatively new, and standards are still evolving. For
example, there is no standard method for compress-
ing gray images, and image interchange formats are
also in a state of flux. Consequently, designers must
be prepared to plan for change.

New application domains. As new technologies be-
come available, more power is put on the desktop
and new application domains are made possible. The
challenge is to design an application for reuse, so
that new opportunities can be realized in a timely
fashion.

Memory and speed constraints of personal com-
puters. Even as personal computers become more
powerful, memory and speed constraints remain ma-
jor obstacles. This is because with more power come
more demands and more layers of system software
between the application and the hardware. Applica-
tions will continue to compete with each other and
the operating system for resources. Careful attention
to efficient application design is still required.

Functional specifications

This section describes the type of images under con-
sideration and breaks down their processing into
high-level and low-level functions.

Image types. Images can be described by the char-
acteristics of pixel depth, resolution, and extent.

Pixel depth is defined as the number of bits assigned
to each pixel. Two depths, namely 1 and 8 bits per
pixel are used. Line art and text are normally cap-
tured at 1 bit per pixel, giving two colors (usually
black and white). Photographs and video images are
normally captured at 8 bits per pixel, giving 256
shades of gray. (Although the capture and display
hardware is usually only accurate to 6 or 7 bits, 8
bits are stored to simplify processing.)

Resolution assigns a physical size to the pixels. The

upper end of the resolution range, which is attained
by some phototypesetters, is 2540 ppi. The lower

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990




end of the range is set to be 100 times smaller than
this, namely 25 ppi. Typical bilevel resolutions are
200 ppi for FAX, 240 ppi for office printers, 300 ppi
for desktop publishing, and 1270 or 2450 ppi for
phototypesetters. Common gray resolutions are 60
ppi for desktop publishing, and 100 or 120 ppi for
phototypesetters.

The extent of an image is the number of pixels along
each dimension. Extents are typically on the order
of 1000 pixels. Although an image could consist of
a single pixel, a useful minimum extent is 8§ X 8
pixels. This size is handy for defining repeating pat-
terns used to fill areas. Other useful examples of
small images are 16 X 16 cursors, and 32 X 32 icons.
Images having such small extents are usually handled
by special-purpose applications such as icon editors.
A convenient upper limit for extents is 5100 pixels;
this value was chosen to accommodate a bilevel
tabloid image (17 inches wide) at 300 ppi.

The choice of a maximum extent influences the
design of an application in two ways. First, some
compression and decompression algorithms allocate
working buffers whose size depends on an image’s
horizontal extent: the wider the image, the more
temporary storage is required for compression or
decompression. Second, the data storage scheme
may assume that all pixels in the same row are stored
together. The storage unit size therefore limits the
horizontal extent.

High-level functions. Most image applications will
include some combination of high-level functions,
named file, scan, print, view, and edit. Each is de-
scribed in a subsequent paragraph.

File. Filing consists of moving images between the
temporary working storage used by the application,
and the permanent storage of a file system. Several
file formats exist to ensure that applications can
interchange images. A typical file format contains
the image data and descriptive information about it
such as pixel depth, resolution, and extent. As an
option, the image data may be compressed to reduce
storage requirements.

1BM office applications use 10CA, while industry ap-
plications in the desktop publishing domain (such as
Aldus PageMaker® and 1BM InterLeaf™) often use
TIFF. Both these formats are easily interpreted by
applications and maintain the image in a form that
can be readily edited. EPSF is used as an image
interchange format when the image is in final form,

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

such as when it is intended to be sent to a printer or
display. An EPsF file may contain text and graphics
in addition to images.

Filing may also involve a number of image conver-
sions. An image in one format may be saved in
another; or the pixel depth, resolution, extent, and
compression may be changed when the image is
saved.

Scan. Scanning consists of capturing an image from
an external source. Scanning hardware includes
video digitizers and flatbed and feed-through docu-
ment scanners. A workstation may have more than
one scanning device; for example, creating a parts
catalog may require a video camera for capturing
actual parts, and a scanner for capturing photographs
of parts. The user must be able to select the source
device.

The user must also be able to control a number of
parameters that govern the capture. For example,
with the 18M 3119 PageScanner™ one can specify the
pixel depth, resolution, extent, gray response curve,
enhancement, and halftoning. The gray response
curve permits compensation for source documents
that are too dark or too light. Enhancement can
bring out detail (sharpen) or eliminate noise
(smooth). Halftoning affects the way a bilevel image
is created: the user can specify thresholding or a
dither matrix.

Print. Printing provides a hard copy of the image.
The user can specify the portion of the image to be
printed, the number of copies, and how the image is
scaled to fit the paper. Most printers can actually
only print black and white; they simulate shades of
gray by halftoning.

The majority of office printers offer a simple interface
for printing images. The image is sent as raster data,
which require the application to convert the resolu-
tion and pixel depth of the image to match that of
the printer. In contrast, desktop publishing printers
usually offer a high-function interface. For example,
the PostScript processor transfers an image device-
independent form; the printer microprocessor con-
verts the pixel depth and resolution. This has the
advantage that a document can be proofed on a low
resolution printer and then printed as camera-ready
copy on a high resolution printer without losing
image quality.

View. Viewing lets the user see all or portions of the
image at various magnifications. It must be possible

aman 411




to move to the area of interest (scroll) and select the
desired magnification (zoom), or see several images
at once.

Scrolling can be handled in a number of ways.
ImagEdit V2.0 offers three: scroll bar controls, a
grabber tool, and an overview window. Scroll bar
controls are standard in most window managers.
Here, two bars are placed along a vertical and a
horizontal edge of the image window, and the rela-
tive position of the window over the image is indi-
cated by movable boxes in the bars. The image can
be moved horizontally or vertically by dragging one
of these scroll boxes. The grabber tool lets the user
reposition any visible part of the image within the
window by simply dragging the part to where it is

Several images can be viewed at
once.

wanted. (This is an example of direct manipulation
in user interface design.) The overview window dis-
plays a reduced view of the image. Here, the user
can center the image window over any point in the
image by clicking the mouse on the corresponding
point in the overview window.

Zooming is controlled by menu commands. (Most
of these have keyboard shortcuts.) High magnifica-
tion views are useful for detailed pixel editing, while
low magnification views are useful for large-scale
cut-and-paste editing.

Several images can be viewed at once. ImagEdit V1.0
directly supports multiple image windows, while
ImagEdit V2.0 uses the multitasking capabilities of
the Microsoft Windows® operating environment.

Edit. Editing is the most complex application area.
Editing operations can be classified as either anno-
tation or block operations. Annotation is associated
with the change and entry of data. This includes text,
graphics, and freehand. Block operations are associ-
ated with the manipulation of portions of pages or
images.

412 rvvan

Text annotation allows paragraphs to be overlaid on
the image, which is useful for labeling diagrams. The
user can select the font, size, leading, alignment,
color, and transparency of the text.

Graphical annotation is useful for diagramming. The
user can draw lines, polylines, rectangles, ellipses,
rounded rectangles, and polygons, have closed
shapes either filled or outlined; and select line color,
width, and style, and fill color.

Freehand editing consists of drawing, painting, and
erasing. Drawing is done with a pencil tool that
creates a stroke one pixel in width. Painting is done
with a paintbrush tool. The user can specify the
shape and size of the brush tip, as well as the paint
color. Erasing is the same as painting except that the
paint color is only black or white. The eraser nor-
mally paints white. This can be changed to black via
a menu command.

Block operations include the following operations:
cut, copy, paste, clear, duplicate, reverse color, gray
response curve, flip, rotate, position, and size. Most
block operations can be applied to the entire image,
to a selected portion of it, or to a clipping.

Cut, copy, and paste functions are handled through
a standard temporary storage area called the clip-
board, which is maintained by the window manager.
The user selects a rectangular area and can clear
(erase) it, or cut or copy it to the clipboard. (Cutting
is a combination of copying and clearing.) The con-
tents of the clipboard can then be pasted anywhere
on the image, or moved between applications. The
user controls how the pasted clipping combines with
the image to produce a variety of special effects.
Images with nonrectangular outlines can be handled
in this way.

With color reversal, the user can interchange the
color of every selected pixel, reversing black and
white or dark gray and light gray. Using the gray
response curve, every pixel can also be mapped to a
new color.

A selection can be rotated by any multiple of 90° or
flipped along a horizontal, vertical, or diagonal axis.
It can also be positioned and sized anywhere over
the image. The user controls target position and size
numerically or interactively and can also control
how the clipping is converted prior to pasting. This
may involve smoothing if the resolution needs to be
changed, or halftoning if a gray image is pasted on a
bilevel image.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 19980




All high-level functions described above are built up
from combinations of low-level functions. These are
described below.

Low-level functions. The low-level functions are the
basic building blocks used to create, modify, and
specify new high-level functions.

Building and parsing data streams. Image data are
interchanged in standard formats, which contain the

The resolution and extent of images
are often changed in viewing,
printing, and editing.

data along with descriptive information about the
image such as resolution, extent, and pixel depth.
The image data may be optionally compressed to
reduce storage requirements. ImagEdit V2.0 sup-
ports the formats 10CA, TIFF, and EPSF. These formats
are mainly used to interchange image files between
applications, but may also be used to transmit images
from scanners to applications, and from applications
to printers.

Compression and decompression. Image interchange
formats often support a variety of compression al-
gorithms, especially for bilevel images. ImagEdit
V2.0 supports Modified Modified READ (MMR) in
10CA and Modified Huffman (MH) in TIFF. (Gray
compression standards are currently being defined.)

Magnification and reduction. The resolution and
extent of images are often changed in viewing, print-
ing, and editing. The fastest techniques for doing this
are pixel replication for magnification, and pixel
skipping for reduction. However, while these tech-
niques are usually adequate for viewing, they may
not be satisfactory for editing or printing since they
can create artifacts in the images—replication may
cause staircasing (also referred to as “jaggies”) on
diagonal lines, while skipping may cause thin lines
to disappear. Thus, when image quality is critical,
pixel interpolation is used for magnification and
pixel averaging for reduction.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

Rotations and flips. The rotation and flip functions
are mainly used in editing, but are also useful for
viewing and printing images with landscape orien-
tation. ImagEdit V2.0 supports rotations by right
angles and flips along vertical, horizontal, and diag-
onal axes. Rotation by small angles is useful for
correction of images that are scanned slightly out of
alignment, while rotation by general angles is useful
for advanced editing.

Text, image, and graphics annotation. Annotation
functions are normally provided by an operating
environment kernel such as the Microsoft Windows
Graphical Device Interface. In practice, these kernels
are not tuned for handling large images, so the
application typically has to divide editing tasks into
small pieces. Also, the general-purpose image mag-
nification and reduction algorithms may lack the
necessary performance, and may require replace-
ment by application-supplied routines. This is a
symptom of the relative newness of the image as a
data type. We can expect future operating environ-
ment graphical kernels, such as the 0s/2® Graphics
Programming Interface, to provide much higher im-
age function.

Halfioning and anti-aliasing. Halftoning changes
gray images to bilevel images, while anti-aliasing is
a technique for preserving image quality under re-
duction by converting a high-resolution bilevel im-
age into a low-resolution gray one. These operations
are used for viewing and displaying gray images on
bilevel devices, and for combining images with dif-
ferent pixel depths when editing.

Intensity mapping. Intensity mapping is a useful
technique for enhancing gray images. It can be used
to bring out detail in poorly exposed photographs.
ImagEdit V2.0 supports it in scanning, editing, and
printing.

Digital filtering. Digital filtering is another flexible
image enhancement technique. For example, grain-
iness or noise can be removed with a smoothing
filter, while blurriness can be removed with a sharp-
ening filter. ImagEdit V2.0 only supports digital
filtering when scanning,.

The virtual array manager

As stated previously, one of the main challenges in
the design of image applications is to efficiently
manage large amounts of data within a small amount
of memory. This section describes the main archi-

revan 413




Figure 2 Image segmentation

TILING | [BanDING [

tectural component for achieving this, the virtual
array manager (VAM).

Virtual arrays. Image data may be regarded as defin-
ing a two-dimensional array of pixel values. These
values may be packed eight to a byte for bilevel
images, or one to a byte for gray images. The arrays
are typically large, and the application may require
access to several arrays simultaneously. Therefore,
when the data requirements of the images are com-
bined with the code requirements of the application,
the operating environment, and other resident ap-
plications, the designer must make a decision
whether or not to support configurations in which
all the image data cannot be stored in memory.

For personal systems image applications, it is nor-
mally a requirement to support small memory con-
figurations. This means that the application must
support a disk-based array management architecture.
We refer to disk-based arrays as virtual arrays since
they make use of the same concepts as operating
system (0S) virtual memory.6 However, some of these
concepts need to be altered in order to achieve peak
performance. This will be discussed in more detail
below.

Image segmentation. The vaM is responsible for di-
viding an image into segments. The general method
for doing this is two-dimensional tiling. It is also
appropriate for handling images that are already
tiled, such as large technical drawings. Tiling is very
efficient for random access operations such as view-

414 rvwan

ing, editing, and especially rotations, and this
method was used in ImagEdit V1.0. However, there
is significant processing overhead when opening or
saving an image that is not already tiled. For this
reason, a limiting form of tiling called banding was
used in ImagEdit V2.0. In this method the tiles are
full width, which improves essentially sequential op-
erations such as opening and saving. It reduces the
performance of viewing and editing slightly, and that
of rotations to a greater extent. Tiling and banding
are illustrated in Figure 2.

The virtual memory manager. The VAM passes image
segments to the virtual memory manager (vmm) for
storage. The vMM swaps segments between a region
of memory called the cache, and a disk file called
the spill file in response to access requests. This
architecture is illustrated in Figure 3. When the
application performs an operation on a virtual array,
the vaM must determine which segments are in-
volved and schedule access to these segments. This
algorithm can greatly affect performance.

If the cache is large, the segments stay in memory
and the operations run at full speed. Both ImagEdit
V1.0 and V2.0 let the user increase the cache size by
installing expanded memory. When the cache be-
comes full, segments must be swapped from memory
to disk to make room for new segments. In this
situation, performance depends on disk access speed.

The vMM is based on the same concepts as OS virtual
memory management. Image segments correspond
to memory pages, the cache corresponds to real
memory, and the spill file corresponds to virtual
memory. The strategy used to control swapping be-
tween real and virtual memory affects system per-
formance. The goal here is to minimize the average
number of swaps required to perform typical image
processing operations.

In os virtual memory, swapping between real and
virtual memory is usually controlled by the least
recently used (LRU) algorithm. When a page has to
be swapped from real to virtual memory, the least
recently used page is selected. This means that the
most recently used pages are preferentially retained
in real memory. This algorithm assumes locality of
reference. Roughly, this means that the probability
that a page will be accessed is proportional to how
recently it has been accessed. This often makes sense.
For example, in code, statements in a loop are re-
peatedly accessed. However, it often does not make
sense for image processing.

IBM SYSTEMS JOURNAL, VOL 28, NO 3, 1990




In image processing, the assumption of locality of
reference is often violated. In some operations, every
pixel in the entire image is accessed precisely once.
For example, consider the operation for displaying
an entire image. In this case, the most recently used
pixel is the least likely to be accessed next. If the
entire image is too large to fit in real memory, the
LRU algorithm will lead to disk thrashing, meaning
that every image segment must be swapped each
time the operation is performed. In fact, using the
LRU algorithm leads to worse performance than a
disk-based array management scheme that has no
cache, since the memory devoted to the cache is
unavailable for usefully storing code or data.

Access scheduling. There is a better swapping algo-
rithm than LRuU, one that schedules swapping based
on access requests. We refer to this as the Modified
LRU (MLRU) algorithm. (This technique is sometimes
also called clairvoyant caching because the access
scheduler is given information about what will hap-
pen in the future.) In this approach, the application
makes access requests to the vam that specify a region
of a virtual array and whether it will be read or
written. The vaAM maintains information about the
contents of the cache, including how recently the
segments have been accessed, whether they have
been modified since the last time they were swapped
out to the spill file, and whether or not they are
involved in any pending read or write access re-
quests.

After the application notifies the vAM that it is about
to make a request, it can ask it to recommend which
segment in a given list is the best to process next.
The vaM uses its knowledge of the cache contents to
select the best segment. For example, segments cur-
rently in the cache are given the highest preference,
and of these, modified segments are given preference
to unmodified ones. In general, the vAM assigns a
heuristic “cost” to each element in the list and rec-
ommends the cheapest one. The cost is conceptually
the expected cost to access the segment. The use of
this feature improves the performance of random
access operations (operations that can process the
segments in any order). For example, annotation is
a random access operation since each segment can
be annotated independently. Other operations, such
as writing an image to a disk file, require sequential
access, and so cannot alter the order in which they
process the segments.

If the application requests access to a segment that
is not in the cache, the VAM must swap it in from

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

Figure 3 Virtual array manager

VIEW SCAN PRINT

SWAP SWAP

" OPEN SAVE
IN ouT

IMAGE FILES

SPILLFILE y

the spill file. If the cache is full, it first must select a
segment to swap out. The vaM also maintains a
heuristic cost for swapping out segments, and again
selects the cheapest one. For example, segments in-
volved in pending operations are preferentially re-
tained in the cache.

rrvan 415




The main difference between the vaM and 0s virtual
memory is that the VAM is not transparent to the
application, whereas the 0s is. This means that ap-
plications must be written to explicitly take advan-
tage of vam features. However, this may be a neces-
sary price to pay if performance is a critical require-
ment. Using an LRU-based 0§ virtual memory will
lead to disk thrashing in some circumstances; this
can be avoided by using an MLRU-based vAM.

Object-oriented design

While the vaM solves the data management problem,
object-oriented design (0OD) solves that of functional
complexity. This section describes the principles of
00D and how they were used in ImagEdit.

Dynamic binding and inheritance. Software design is
mainly a process of decomposition. There are several
principles that guide the designer in this process, of
which 00D has recently been recognized as an im-
portant set. 00D is based on the proven concepts of
data abstraction, information hiding, and encapsu-
lation, which are embodied in such conventional
programming languages as Ada, and extends these
with two additional concepts: dynamic binding and
inheritance.

Dynamic binding and inheritance are generaliza-
tions of programming techniques that are often used
in the design of operating systems. The following
discussion illustrates these concepts by casting an
example that should be familiar to readers with a
programming background, namely that of file sys-
tems, into the language of 00D. Later it will be shown
how 00D can be applied to image processing.

Dynamic binding is a technique for improving the
generality and reusability of code, by deferring to
run-time the binding of functions to requests. This
is implemented by linking functions to the data on
which they act. For example, when an application
program opens a file, the operating system assigns
an identifier to it. This identifier is sometimes called
a file handle, and all future references to the file are
through its handle. The handle points to a device
driver that implements requests to read, seek, and
write. The actual device is transparent to the appli-
cation. For example, the file could be stored on a
floppy disk, a fixed disk, or a virtual disk, but the
application code is the same in all cases. If a new file
device is added to the computer, the application
program will not have to be changed.

416 rvman

In the language of 00D, the file device drivers are
called classes. When a file is opened, an object (i.e.,
the file handle) belonging to the appropriate class is
created. The requests to read, seek, and write are
called messages, and the functions that implement
these requests are called methods.

Inheritance is a technique for basing new classes on
existing ones. For example, a file device driver to
handle 1.44 MB diskettes might be based on one
that handles 720 KB diskettes. The new class is said
to inherit from its superclass. The inheritance rela-
tion defines a hierarchy on the classes. The complete
class inheritance hierarchy for ImagEdit V2.0 is il-
lustrated in Figure 4, and is described in further
detail below.

Object-oriented programming (OOP) languages, such
as Smalltalk-80™,” C++%,® and Objective-C™,’ sup-
port dynamic binding and inheritance. Smalitalk-80
is a pure OoOP language; here, all data items are
objects. This can lead to performance problems for
some classes of applications. C++ and Objective-C
are hybrid languages; they both add programming
language support for objects to standard C,'° and are
usually implemented by preprocessors that generate
standard C. ImagEdit V2.0 is based on the cOD
model of Objective-C, but was coded directly in
standard C because appropriate language support
was unavailable when development started.

Data-stream classes. Although images are concep-
tually two-dimensional arrays, they can also be re-
garded as one-dimensional, by considering each row
as a one-dimensional stream of bytes and then string-
ing all the rows together. This is how images are
stored in files and created by scanners.

The data-stream (Ds) classes take this view of images,
which lets many image processing functions be de-
composed as a sequence of pipes and filters in the
sense of the UNIX® operating system.ll For example,
consider the operation of reading a compressed bi-
level 10cA image from a disk file into a virtual array.
Each pixel of image data passes through the following
sequence of processing functions:

1. Read the 10cA data stream from the disk file and
parse it to extract the compressed image data.

2. Decompress the image data.

3. Reverse the color of the image data, since bilevel
compression algorithms use 1 for black and O for
white, while displays use 0 for black and 1 for
white.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990




Figure 4 ImagEdit V2.0 class hierarchy

TooiText

ToolPalyline

ToolPlcker ToolPaintbrush

ToolFreehand TooiPencil
ToolEraser

ToolRoundRect

—

ToolDrag

TJoolRectangie

Toollins

ToolArc

ToolMarquee

ToolEllipse

ToolGrabber

EditText

EditSuperimage

EditStretchBit

EditReverseRect

EditRectangle

N

EditRoundRect

L

EditPolyline

EditEllipse

EditMarquee

EditPolygon

EditList

EditLine

EditPaintbrush

EditFreehand

—— EditBrush

EditPencil

EditEraseRect

EditEraser

EditArc

s

EditPie

DSConvert

DSTIFFFromData

—-————l DSTIFFFromimage

DSDataFromTIFF

DSImageFromTIFF

DSimageFromScan

DSDataFromScan

DSinterpoiateVert

DSAverageVert

DSSkipVert

DSReplicateVert

DSScaleHorzGray

OSlInterpolateHorz

DSScaleHorzBW

DSAverageHorz

DSScale

DSReverse

DSMMRFromimage

| DSimageFromMMR

DSMHFromimage

DSImageFrommMH

DSIMDSFromData

———] 0SIMDSFromimage |

DSDataFromiMDS

DSimageFromiMDS

DSGrayFrom8w

DSEPSFFromimage

DSDataFromimage

DSimageFromData

DSBWThreshold

T

DSBWDither

—— psawoithercarry |

DSThruArray

DSBWThreshotdCarry

DSimageFromArray

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

ryman 417




Figure 5 ImagEdit V2.0 toolbox

M| LIA|S

e
A

%
OOy

4. Word-align each row of image data, since graphic
kernels require rows to start on word boundaries.
5. Write the image data into the virtual array.

Functions that generate a data stream as output are
called sources, while those that consume one as input
are called sinks. Functions that are both sources and
sinks are called filters. The communication channel
for passing a data stream between functions is called
a pipe. In the above example, reading the disk file is
a source, writing the virtual array is a sink, and all
the other functions are filters.

In uNix, which is a multitasking operating system,
each function could be implemented as a separate
program that reads from its input pipe and writes to
its output pipe. The operating system would control
the sequence of execution, giving each program a
slice of processing time. Each program is able to
execute write requests freely since these can be buff-
ered by the operating system. However, when a
program makes a read request, its execution may get
suspended if not enough input data are yet available.

This scheme gets modified when it is implemented
by a single-tasking application. In this approach, the
processing is organized as a sequence of demand-
driven functions. Each source or filter becomes a
class that can create a data-stream object, and the
data-stream objects can only respond to read re-
quests. The sink is implemented as a loop that
repeatedly reads its input data stream and disposes
of the data until the data stream is exhausted.

In ImagEdit V2.0, the above example would use the
following data-stream classes:

¢ DSImageFromIMDS—This class transforms an
10cA file into an image data stream that has the
alignment and color interpretation expected by a
virtual array. It links together the required se-
quence of data-stream objects from classes that
perform the elementary operations of parsing, de-
compression, color reversal, and word alignment.

418 rvvan

¢ DSDataFromIMDS—This class parses and ex-
tracts an image data stream from an 10CA file. The
image data may be either bilevel or gray. They
may require further decompression, color reversal,
and/or word-alignment.

¢ DSImageFromMMR—This class decompresses a
bilevel MMR data stream.

s DSReverse—This class reverses the color of an
image data stream.

s DSImageFromData—This class word-aligns an
image data stream.

The remaining data-stream classes handle the follow-
ing functions:

¢ Other image sources (TIFF files, scanners, virtual
arrays)

¢ Other image sinks (I0CA, TIFF, and EPFS files)

o Scaling (replicate, skip, interpolate, average)

 Color conversion (bilevel to gray, halftoning)

Refer to Figure 4 for the complete set of data-stream
classes in ImagEdit V2.0.

Editing classes. Interactive image editing is imple-
mented with two more or less parallel families of
classes. Tool classes handle user interaction, while
Edit classes represent the editing operations created
by the tools. The user selects a tool from a toolbox
(see Figure 5), and uses it to create an edit operation.
Edit classes describe actual edit operations; for ex-
ample, the paintbrush tool is used to draw a stroke.
Here, the paintbrush is an object in the Tool-
Paintbrush class, while the stroke is an object in the
EditPaintbrush class. This application of oo is well
documented in the literature” and is often used as
an example to illustrate the benefits of object-ori-
ented design.

The main benefit of 00D here derives from dynamic
binding, which allows general-purpose functions to
be written for handling generic tools and edit oper-
ations. For example, several edit operations may be
stored together in a queue; then when the queue is
drawn on the display, a draw message is sent to each
object in the queue. Similarly, the queue is used to
control the “Undo” and “Redo” commands. The
queue itself is independent of the type of objects it
contains. If new types of edit operations are added
at a later point in development, the queue manage-
ment functions will not be affected. This feature
makes software more adaptable to changing require-
ments and also provides a sound basis for decom-
posing the system into independently constructible
parts.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990




An additional benefit of 00D comes from inherit-
ance: allowing similar classes to be based on com-
mon pieces of code. The result is less code and more
assured consistency of behavior. For example, con-
sider the user interaction required to draw a rectangle
and an ellipse. In both cases the user presses the
mouse button down at one point, drags the mouse
to another point, and releases the button. The two
points are used to define opposite corners of a box
that is either the border of the rectangle or the
bounding box of the ellipse. This commonality of
user interaction is reflected in the class hierarchy by
making ToolRectangle the superclass of ToolEllipse.
ToolEllipse inherits “MouseButtonDown” and
“MouseMove” methods from ToolRectangle. It
overrides the “MouseButtonUp” method by creating
an EditEllipse object instead of an EditRectangle
object. Similarly, ToolRoundRect (rectangles with
rounded corners) and ToolLine (straight lines) also
inherit from ToolRectangle. (Refer to Figure 4 for
the complete set of Tool and Edit classes in ImagEdit
v2.0.)

Conclusion

The move to operating systems with virtual memory,
such as 0s/2 and AIx®, may solve data management
problems in the short term. However, as capture and
printing technology for new application domains
(such as color and high-end technical records) be-
comes available, the limitations of LRU-based mem-
ory management may become apparent: disk thrash-
ing will occur once image size becomes large enough.
To overcome performance problems, either operat-
ing systems must provide access scheduling func-
tions, or applications must implement their own
virtual array managers.

Our experience with ooD has been positive. It ap-
pears to be a very appropriate paradigm for decom-
posing functionally complex systems, and it should
scale well as applications become larger. The widely
reported benefits of 00D were realized in our use of
it for interactive image editing. In addition, the use
of demand-driven pipe objects greatly simplified
data-stream handling. Finally, we confirmed that the
slight additional overhead incurred by dynamic
binding had no measurable effect on system perform-
ance; memory management continued to be the
most important issue.

Acknowledgments

I am indebted to my former function manager, Ray
Douglas, for supporting the ImagEdit program and

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

for creating an effective work environment. I would
also like to thank the following developers who made
significant technical contributions to the project:
Alan Adamson, lan Ameline, Jack Botner, Alexis
Cheng, Brian Farn, Isao Furukawa, Johann Gurnell,
Dave Ings, Jim Lemke, Jary Martin, John McFall,
Alan Mineault, Howard Nasgaard, Luciano Pedron,
and Ichiro Sayama.

ImagEdit, OS/2, and AIX are registered trademarks, and Page-
Scanner is a trademark, of International Business Machines Cor-
poration.

PostScript is a registered trademark of Adobe Systems, Inc.
PageMaker is a registered trademark of Aldus Corporation.
InterLeaf is a trademark of InterLeaf, Inc.

Microsoft Windows is a registered trademark of Microsoft Cor-
poration.

Smalltalk-80 is a trademark of Xerox, Inc.
C++ and UNIX are registered trademarks of AT&T, Inc.
Objective-C is a trademark of Stepstone, Inc.

Cited references

1. Mixed Object Document Content Architecture, SC31-6802,
IBM Corporation; available through IBM branch offices.

2. Y. Hakeda “The Image Object Content Architecture,” /BM
Systems Journal 29, No. 3, 333-342 (1990, this issue).

3. Tag Image File Format Specification Revision 5.0, Al-
dus/Microsoft Technical Memorandum, Aldus Corporation,
Seattle, WA (1988).

4. PostScript Language Reference Manual, Adobe Systems In-
corporated, Addison-Wesley Publishing Co., Reading, MA
(1986).

5. Microsoft Windows Software Development Kit Version 2.0,
Microsoft Corporation, Redmond, WA (1987).

6. Introduction to Virtual Storage in System/370, GR20-4260-1,
IBM Corporation (1973); available through IBM branch of-
fices.

7. A. Goldberg and D. Robinson, Smalltalk-80: The Language
and Its Implementation, Addison-Wesley Publishing Co.,
Reading, MA (1983).

8. B. Stroustrup, The C++ Programming Language, Addison-
Wesley Publishing Co., Reading, MA (1986).

9. B. 1. Cox, Object-Oriented Programming: An Evolutionary
Approach, Productivity Products International, Addison-Wes-
ley Publishing Co., Reading, MA (1986).

10. B. W. Kernighan and D. M. Ritchie, The C Programming
Language, Prentice-Hall Inc., Englewood Cliffs, NJ (1978).

11. D. M. Ritchie and K. Thompson, “The UNIX Time-Sharing
System,” The Bell System Technical Journal 57, No. 6, Part
2, 1905-1929 (July-August 1987).

General references

IBM ImagFEdit Version 1.0 User’s Guide, 6476113, IBM Corpo-
ration (1987); available from IBM branch offices.
IBM ImagEdit Version 2.0 User’s Guide, 75X3255, IBM Corpo-
ration (1988); available from IBM branch offices.

R. M. Helms, “Introduction to Image Technology,” IBM Systems
Journal 29, No. 3, 313-332 (1990, this issue).

revan 419




Arthur G. Ryman /BM Canada Centre for Advanced Studies, 844
Don Mills Road, North York, Ontario, Canada, M3C 1V7. Dr.
Ryman is currently the associate head of the IBM Canada Centre
for Advanced Studies where he is also the principal investigator of
the Advanced Software Design Technology program. He received
a B.Sc. in physics from York University, Toronto, in 1972, an
M.Sc. in mathematics from the University of London in 1973,
and a Ph.D. in mathematics from Oxford University in 1975,
After performing postdoctoral research in computational atomic
and nuclear physics at York University in Toronto, Memorial
University in St. John’s, and the University of Toronto, he became
a mathematician at the W. P. Dobson Research Laboratory,
Ontario Hydro, in 1979. He joined the IBM Canada Laboratory,
Toronto, in 1982, where he worked on office systems and image
processing. His last development assignment was as the designer
and manager of the ImagEdit program. Dr. Ryman’s current
research interests are in the applications of logic programming and
graphical visualization to systems software design. He is a member
of the Institute of Electrical and Electronics Engineers and the
Association for Computing Machinery.

Reprint Order No. G321-5409.

420 ryman IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990




