
The Image Object
Content Architecture

Technical advances to image processing and the avail-
ability of the resulting technologies at reasonable cost
have helped to promote the use of images in office,
engineering, and scientific environments. As evidence
of this use, a wide variety of applications and products
designed for image processing have been introduced
into the market in recent years. In order to encompass
different applications and products in a single image
processing system and to allow image data to be ex-
changed and interpreted consistently throughout the
system, IBM has introduced the Image Object Content
Architecture (IOCA). This paper discusses require-
ments for the architecture, concepts of the architec-
ture, use of the architecture in the different data
stream environments used by image processing sys-
tems, and the /OCA function sets that have been de-
fined for interchange within Systems Application Archi-
tecture” environments.

I n March 1987, IBM annouyed Systems Applica-
tion Architecture’” (sAA“), a collection of inter-

faces, conventions, and protocols for IBM software to
attain consistency in applications across the
MVS/TSO/E (Multiple Virtual Storage/Time Sharing
Option Extensions), CMSIVM (Conversational Moni-
tor System/Virtual Machine), os/400@ (Operating
System/400°), and os/2@ (Operating System/2’”)
computing environments. One of the three major
elements of this announcement was Common Com-
munications Support (ccs),’ which has the objective
of providing a consistent set of protocols for com-
munications among applications, and for storing,
retrieving, and moving information through a com-
munications network.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

by Y. Hakeda

On May 16, 1989, IBM announced a number of C c s
architectures that enable the interchange of infor-
mation, including images, text, and graphics, within
the Mixed Object Docuyent Content Architecture-
Presentation (~o:DcA-P), Intelligent Printer Dat:
Stream (IPDS), and 3270 Data Stream (3270 DS)
environments. One of the newly announced archi-
tectures was the Image Object Content Architecture
(IOCA).~” The purpose of IOCA is to provide a single
and consistent method for all applications and prod-
ucts involved in image processing to represent im-
ages, particularly when camed within the three data
stream environments.

In this paper, the requirements for the architecture,
the concepts of the architecture, its use within the
data stream environments used by image processing
systems, and the IOCA function sets that have been
defined for interchange within the SAA environments
are described.

Background

Image processing has recently become affordable and
“usable” because of a number of major changes in
the computing environment. Without such changes,

Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems. Permission to republish any other
portion of this paper must be obtained from the Editor.

HAKEDA 333

image processing would still remain an advanced
technology item within the confines of research lab-
oratories.

Image is a data type that often tends to consume
relatively more auxiliary storage and computer
memory in comparison to other commonly known
data types such as text and graphics. One reason for

Performance plays a key role
in determining the feasibility

of image processing.

its use of more ;esources is the need to handle
individual pixels, which comprise the image, as
contrasted to characters, lines, and circles, which are
often symbolized in shorthand form. The pixels form
a progression of horizontal rows and vertical col-
umns which make up the image. As the distance
between, rows and between columns decreases, the
grain of the image becomes finer, and the image
usually becomes sharper. As the size of the image
increases, more rows and columns are often recorded
as a part of the image. Finally, representation of
gray-scale and color images carries the additional
requirement that more bits of data be recorded to
represent each pixel. The end result is often use of
more auxiliary storage and computer memory be-
cause of the amount of space required for each
image. Recent availability of storage devices and
high-speed memory at reasonable costs has therefore
been one of the factors in making image processing
commercially feasible.

Performance also plays a key role in determining the
feasibility of image processing. If the size of the image
itself is large, faster CPUS are required for processing
large amounts of image data at high speeds. Other-
wise, the image processing performance may become
quite intolerable. However, recent trends for faster
processors at affordable prices have helped to make
image processing a viable offering.

334 HAKEDA

Progress in image technology, such as in the area of
image compression, has also helped to pave the way
for the use of images. Without image compression,
each pixel of a black and white image would nor-
mally be represented as a single bit of data. With the
use of image compression techniques that exploit
certain characteristics of the scanned image, multiple
pixels may now be represented as a single bit of data,
decreasing the required size of auxiliary storage or
computer memory for an image typically by a factor
of eight to twenty or more.

The development and commercial use of high-reso-
lution displays and printers has also helped make
images readily available. Only with high-resolution
equipment can an image be displayed or printed at
acceptable quality.

Finally, the general availability and use of program-
mable workstations has helped in creating an envi-
ronment now fit for the use of images. Until recently,
all points addressable (APA) displays were only avail-
able at computer centers and used for data entry.
Now, programmable workstations have become in-
expensive and fast and appear on desks within many
business offices, not to mention on the laps of many
traveling business professionals.

These factors are only some of many that have
facilitated the recent surge in the use of images.
Applications now using images are found in bank
check processing, signature verification, and engi-
neering drawings, and in the insurance, medical, and
manufacturing industries, to name a few.

Purpose and objectives

As more and more applications use images, the
exchange of images and the sharing of image data-
bases among different applications begin to play a
key role within an enterprise. If there is no standard
single image architecture, an image application can-
not exchange images with another application with-
out the intermediate step of converting the retrieved
image to a form recognized by the recipient. Con-
version requires knowledge of both the format by
which the image was created and the format recog-
nized by the recipient, as well as what could amount
to a large amount of time and code to perform such
intermediate conversions. As an example, discrep-
ancies between the image format created by an input
device such as a scanner and the image format
recognized by an output device such as a display or

IBM SYSTEMS JOURNAL, VOL 2 9 , NO 3, 1990

a printer often require that the image be decom-
pressed, reformatted, and recompressed prior to the
actual viewing or printing of the image. The same
problems may be encountered when retrieving im-
ages from the database of a particular image appli-
cation and sending the image to yet a different image
application. Both are highly conceivable scenarios
within an enterprise.

One of the main reasons that such problems occur
is that without standardization, applications nor-
mally tailor their data representation to match the
minimal needs of the application. Such data are
usually structured into a form that will provide max-
imum performance to the application by being
stripped of all superfluous constructs, which are
taken for granted when processing. Yet such data
can only be recognized within the realms of a single
application.

It is also likely that different software and hardware
components will contain similar functions, but, hav-
ing been built around different applications, the
components create and recognize only the image
format unique to the application. Therefore, without
having a single format for images as a standard,
exchange of pertinent image information between
different image applications and products is a tre-
mendous chore, requiring much consumption of
time, code, and even human resources to perform
the necessary conversions.

To prevent these potential problems, IBM has intro-
duced the Image Object Content Architecture. The
primary purpose of IOCA is to provide a standard
method by which all IBM image applications and
products involved in image processing can represent
images. This method would provide conventions and
directions-for current as well as future products-
for the processing and interchanging of images
among different applications within and among en-
terprises.

An example of an image processing system with IOCA
is shown in Figure 1.

The key design objectives in the development of the
architecture were application and device indepen-
dence, extendability, intactness in the different data
streams, and a subset/superset relationship of func-
tions. Following is a discussion of each objective:

Provide an architecture that is rich enough to be
capable of representing image information by any

IBM SYSTEMS JOURNAL, VOL 29, NO 3. 1990

image application or image device and yet be
application- and device-independent-An archi-
tecture must be rich enough to provide image
applications and image devices with the necessary
constructs and functions needed for image proc-
essing. It must also accomplish this without incor-
porating application- or device-unique features
recognized only by a particular product.

Provide extendability-As image technologies
progress further, it should be possible to make
additions to the architecture easily and in such a
way so as not to affect the design of the entire
architecture or even a significant portion of the
architecture.

Provide an image description that is flexible
enough to exist intact in the MO:DCA-P, IPDS, and
3270 Data Stream environments-The three data
stream environments used by IBM image products
and systems are MO:DCA-P, IPDS, and the 3270
Data Stream. The MO:DCA-P environment is used
to describe documents that are interchanged
among IBM systems. Each document consists of
one or more pages with each page of the docu-
ment containing an IOCA image, presentation text,
graphics data, or a combination of the three. IPDS
is used to send IOCA images, presentation text, and
graphics data to a printer. The 3270 Data Stream
is used to display IOCA images and graphics data
on a nonprogrammable workstation.

In each of these three data stream environments,
the description of the IOCA image must be struc-
tured such that it will exist intact. Much of the
purpose in having an architecture is wasted if
conversions are necessary when imbedding IOCA
images into the different data streams.

Provide subsets and supersets-Different image
applications require different levels of complexity
to describe images. Quite often, such differences
stem from the exploitation of various image proc-
essing characteristics supported by the application,
such as the ability to handle color images as op-
posed to being able to handle only bilevel (e.g.,
black and white) images. Each function set should
be defined as a subset or superset of other sets,
maximizing the possibility of interchange among
products with different image processing capabil-
ities. Thus all products that support higher-func-
tion sets would be capable of processing images of
lower-function sets. An example of this is the
support of bilevel images in addition to color
images within a higher-function set.

HAKEDA 335

Figure 2 Steps in image processing

POSTPROCESSING

IMAGE OBJECT
CONTENT
ARCHITECTURE

MEMORY/STORAGE/ARCHIVAL

_J

1
il h PRINTER

I

I I I I
I 4 _IT r . w H LI 1

I DEVICE DEPENDENT I DEVICE INDEPENDENT ’ DEVICE DEPENDENT I

Scope of the architecture

In order to design an architecture that may be used
by any and all image applications and devices, let us
first look into the steps involved in image processing.

All image applications or image processing systems
must be able to scan, store, retrieve, display, print,
or exchange (send and receive) images within or
across image applications, or perform some combi-
nation of these activities. The activities can be gen-
eralized as create, exchange/store/retrieve, and out-
put. These processes culminate in the term image
processing. A model of image processing is depicted
in Figure 2. Details of each of the five steps defined
by the model are described next.

1. Creation-A scanner or similar input device as
well as a program may be used to create an image.
The creation step is supported by many types of
devices and technologies such as scanners and
video cameras. The resulting image created dur-
ing this step will normally contain device-depen-
dent information.

2. Preprocessing-In the model, preprocessing is the
gateway from the input devices. In this step,
device-dependent information is removed from
the image. For example, if the image was created
by scanning a document, the end-of-scan-line
code that was inserted during the creation step
(step 1) is removed. As a result, an image is
generated with such characteristics as resolution

IBM SYSTEMS JOURNAL, VOL 29. NO 3, 1990 HAKEDA 337

Figure 3 Image representation

. .
REPRESENTATW I

IMAGE

-IMAGE
CHARACTERISTICS

DIMENSION
RESOCUTON
RECORMNQ
COMPRESSON
BITS PER PIXEL
LOOK-UP TABLE

- IMAQE DATA

PIXELS

IMAGE SEGMENT

NAME

I X. Y S17F I
U ~ ~ T M M ~ S U R E
RECORDINQ ALG0RtTHM
COMPRESSION ALGORITHM
IMAGE DATA ELEMENT SIZE
LUT IDENTIFIER

IMAGE DATA ELEMENTS

I I

and size, which do not depend on the method by
which the image was captured.

3. Processing-Processing is performed on the de-
vice-independent image. Processing includes ac-
tions such as storing the image, retrieving the
image, distributing the image, modifying the im-
age, and using the image in an application (e.g.,
character recognition). The image is in an inter-
changeable form where all device characteristics
are absent. Images in this form can be passed to
another image system or environment and inter-
preted consistently.

4. Postprocessing-Postprocessing is the gateway to
applications that support output devices. The re-
quired device-control information is inserted, and
a device-dependent image is generated. There is
one postprocessing step for each type of device.

338 HAKEDA

5. Output-This step presents the image to the user
and is controlled locally by the device. The device
can be a display, printer, or other type of output
device.

The scope of IOCA is bound by step 3. At this step,
the image is free of all application and device-unique
features. It is thus in a universally recognizable form,
unbiased by special features inserted for performance
or for other reasons unique to a particular applica-
tion or device. It is thus in an optimum form for
standardization.

The term IOCA processor may be used to describe the
processing that occurs at this step. All other steps in
the image processing model deal with device-depen-
dent features and are thus called controlling environ-
ments. The IOCA processor can be thought of as
interfacing with the controlling environment via a
data stream, communication line, or 110 device.

Architecture description

The base structure used to represent an image is
called the image segment. The image segment is the
IOCA structure that serves as both input to the IOCA
processor and output from the IOCA processor. It is
also the structure used to represent images that are
passed to other image applications. The structure of
the image segment consists of image data parameters
and image data.

The image data parameters are used to describe the
following image characteristics which are required
for the representation of images (Figure 3):

Image dimension and resolution-It is necessary
to know the number of pixels in the image in both
the horizontal and vertical directions. Recon-
structing the image to its original size also requires
that the distance between pixels in both the hori-
zontal and vertical directions be known. This dis-
tance is the resolution of the image. If an image is
scanned at a resolution of 300 pixels per inch and
is printed by a printer at 240 pixels per inch
without any modification in resolution, the origi-
nal image will be printed pixel for pixel resulting
in an image enlarged by a ratio of 5 4 , which is
the scanning-to-printing resolution ratio. If the
image is to be printed at its original size, the pixels
in the scanned image must be reduced by a ratio
of 45, which is the printing-to-scanning resolution
ratio.

IBM SYSTEMS JOURNAL, VOL 29, NO 3, 1990

Figure 4 image parameters

I x SIZE I
H +I

I

r e I
IMAGE DATA ELEMENT SIZE
(EXAMPLEI 3 BITS/PIXELl

RESOLUTION
(EXAMPLE: 240 PIXELS/INCH)
. 8 m m m m 1 m m 8 9 m m I I I 001

I-> 010

IMAM W E T E I ? B 1
- RESOLUTION (PIXELS/INCH. PIXELS/CENTIMETER)
- HORIZONTAL/VERTICAL PIXELS

- COMPRESSION ALGORITHM - RECORDING ALGORITHM - PIXEL SIZE - LOOK-UP TABLE (LUT)

100

8

0

~

GREEN

Recording sequence-Images are often recorded
from left to right and from top to bottom. How-
ever, implementations may at times record from
left to right but from the bottom up. Such infor-
mation is characterized as a part of the recording
algorithm. Support for both forms of recording is
defined by the architecture.
Compression-Compression is the technique used
to decrease the size of the image data. Without
knowledge of the compression technique used to
compress the data, reconstruction of the image
would be virtually impossible by another applica-
tion or device. The two compression algorithms
currently supported by the architecture are the IBM
Modified CCITT (International Telegraph and Tele-
phone Consultative Fommittee) Modified READ
algorithm (IBM MMR) and tk.ccITT T.6 Group 4
Facsimile Coding Scheme In addition to the
support of uncompressed data.
Bits per pixel-The number of bits that comprise
each pixel may vary, depending on whether the
pixel represents a bilevel, gray-scale, or color im-
age. The “image data element size” is used by this
architecture to determine the number of bits used
to represent each pixel for a particular image
(image data element is synonymous with pixel).
Pixel structure-Two methods exist for represent-
ing color information for a color image. One is

IBM SYSTEMS JOURNAL, VOL a, NO 3, 1993

the interpretation of the color of a pixel based on
the combination of colors represented intrinsically
by the value of the pixel. A particular color model
such as RGB (Red, Green, Blue) is chosen, and a
number of the bits of each pixel are used to define
the intensity of a particular color element (such as
red, green, or blue). The second method is de-
scribed in the next characteristic.
Look-up table-The second method for repre-
senting color information is to use a look-up table
(LUT). The pixel value is interpreted as an index
in a table. The data at the indexed location in the
table is the color value for the pixel. An example
of this method is shown in Figure 4 where a pixel
value of “0 10” represents a “blue” pixel.

Each of the image data parameters and the image
data are embodied in the form of self-identifying,
self-contained structures. Thus, the design of all of
the structures is simple since each proves to be an en-
tity of its own and can easily be extended. The syn-
tax and semantics of each structure are defined by
the architecture, providing consistency of generation
and interpretation by all IOCA supporting products.

As image technologies make further progress, future
expansion of the architecture necessitated by new
requirements may be accomplished by enhancing

HAKEDA 339

340

BEGIN BEGIN IMAGE IMAGE SIZE IMAGE
SEGMENT CONTENT

LUT- IO IMAGE
DATA ENCODING

I MIXED OBJECT DOUMENT CONTENT ARCHITECTURE-PRESENTATION I

of the same IOCA image segment carried within each
of the three data stream environments.

IOCA SAA function sets

IOCA has defined two function sets as a part of SAA.
The function sets have been named Function Set 10
(FS 10) and Function Set 20 (FS 20). Both are
intended for the interchange of images within and
among the four operating environments as defined
in SAA: MVS/TSO/E, CMS/VM, OS/400, and OS/2.

FS 10 enables the interchange of bilevel images. The
two compression algorithms currently supported by
this function set are the IBM Modified CCITT Modified
READ algorithm and the CCITT T.6 Group 4 Facsimile
Coding Scheme in addition to uncompressed data.
This function set is a proper subset of FS 20 and is
currently supported by the ImagePlus" system.

FS 20 enables the interchange of up to 24 bits-per-
pixel color as well as gray-scale and bilevel images.
Compression is applicable only to bilevel images.
The choice of compression algorithms is the same as
for FS 10.

All products that conform to one of these two IOCA
function sets are also classified as either an IOCA
generator or receiver.

A product that is classified as a generator of a partic-
ular function set accepts only a subset of the IOCA
parameters and values that are defined in the corre-
sponding function set definition and nothing else.
Thus, all accepted or generated parameters and val-
ues remain within the bounds of the defined function
set.

Products that are classified as a receiver of a partic-
ular function set must be capable of accepting any
IOCA image that conforms to the corresponding func-
tion set, although it may use only a subset of those
parameters and values to generate images. A receiver
will therefore have the advantage of being able to
receive any IOCA image that is generated by a gener-
ator of the same function set.

Summary

The need for a single consistent mechanism for
representing images by image processing systems
resulted in the development of Image Object Content
Architecture, as described in this paper. The IOCA
requirements have been discussed, the concepts de-

scribed, its relationship to the data stream environ-
ments used by image processing systems explained,
and the function sets defined for SAA introduced.

IOCA will continue to be enhanced as new technolo-
gies and new requirements for image processing are
encountered by systems that use images.

Acknowledgments

The author wishes to acknowledge all of the archi-
tects and product representatives who contributed to
the development of this architecture. In particular,
special gratitude is owed to those who helped prepare
this paper: Takeharu Mizukoshi for his timely re-
views; Eihiko Tokunaga for his management guid-
ance; Von Tucker, Dave Stone, and Andy Maholick
for providing details on MODCA-P, IPDS, and the 3270
Data Stream, respectively; and Lauren Kingman for
reviewing the drafts and for providing the author
with the opportunity to publish this paper.

Systems Application Architecture, SAA, Operating System/2, and
Imageplus are trademarks, and OS/400, Operating System/400,
and OS/2 are registered trademarks, of International Business
Machines Corporation.

Cited references

1. Systems Application Architecture: An Overview, GC26-434 1,
IBM Corporation; available through IBM branch offices.

2. Systems Application Architecture: Common Communications
Support Summary, GC3 1-68 10, IBM Corporation; available
through IBM branch offices.

3. Mixed Object Document Content Architecture Reference,
SC31-6802, IBM Corporation; available through IBM branch
offices.

4. Intelligent Printer Data Stream Reference, S544-3417, IBM
Corporation; available through IBM branch offices.

5. 3270 Information Display System Data Stream Programmer’s
Reference, GA23-0059, IBM Corporation; available through
IBM branch offices.

6. Image Object Content Architecture Reference, SC3 1-6805,
IBM Corporation; available through IBM branch offices.

7. Architectures for Object Interchange, 6624-3296, IBM Cor-
poration; available through IBM branch offices.

8. R. M. Helms, “Introduction to Image Technology,” IBM
Systems Journal 29, No. 3, 3 13-332 (1990, this issue).

9. K. L. Anderson, F. C. Mintzer, G. Goertzel, J. L. Mitchell,
K. S. Pennington, and W. B. Pennebaker, “Binary-Image-
Manipulation Algorithms in the Image View Facility,” IBM
Journal of Research and Development 31, No. I , 16-3 1 (Jan-
uary 1987).

10. “CCITT Recommendation T.6,” CCITT T Series, Volume
VI1 - Fascicle VII.3, International Telecommunication Union,
Geneva (1985).

Yuji Hakeda IBM World Trade Asia Corporation, 1623-14, Shi-
motsumma, Yamato-shi, Kanagawa-ken 242, Japan. Mr. Hakeda

342 HAKEDA

is a senior associate programmer in the Office and Image Systems
group, Manufacturing and Development, IBM Asia Pacific. He
joined IBM Japan in 1982 as a development programmer and
participated in the development of products such as the IBM 8815
Scanmastet I and the IBM 3 I93 Display Station. In 1984, he
became a member of the architecture group and served as lead
architect in the development of the Image Object Content Archi-
tecture. Since 1989, he has been involved in the design of facsimile
systems and other image-related systems. Mr. Hakeda received his
B.A. in computer science from Columbia College, Columbia Uni-
versity.

Reprint Order No. (3321-5403.

IBM SYSTEMS JOURNAL, VOL 29 NO 3, 1990

