Knowledge-based systems
in the AD/Cycle
environment

Knowledge-based systems technology is a branch of
artificial intelligence that deals with the processing of
knowledge, as distinct from other branches of artificial
intelligence that deal with topics such as robotics, vi-
sion systems, and speech recognition. This paper de-
scribes how, over the last decade, knowledge-based
systems have evolved into a viable technology for
building commercial data processing applications, and
how increasing attention has been paid to incorporat-
ing these applications into commercial data process-
ing environments. A logical conclusion of this direction
is the capability to build knowledge-based applications
that are full Systems Application Architecture™ (SAA™)
applications. As this conclusion is approached, a re-
quirement emerges that the knowledge-based develop-
ment process be integrated with the application devel-
opment environment provided by the other SAA lan-
guage and service components. The integrated
environment must provide high customer productivity
in the development of applications that use knowledge-
based technology, and must support a spectrum of
development scenarios, ranging from the most basic
to those involving complex applications and large de-
velopment teams. This paper explores how knowledge-
based products can address these requirements by
integrating their development facilities with
AD/Cycle™.

BM’s AD/Cycle™ is directed at improving pro-

ductivity in the development of Systems Appli-
cation Architecture™ (SAA™) applications and the
management and control of complex application
development projects.

274 +every

by D. M. Hembry

This paper describes the movement of knowledge-
based applications into the mainstream of commer-
cial data processing. It discusses the logical conclu-
sion of this trend as knowledge-based applications
become fully conformant to SAA. The trend and SAA
conformity result in requirements for advanced
knowledge-based development facilities that can be
addressed by the integration of those facilities with a
spectrum of AD/Cycle environments.

The term knowledge-based systems'” distinguishes
artificial intelligence software products that deal with
knowledge about some problem domain from those
that deal with other areas of artificial intelligence,
such as robotics, vision systems, and speech recog-
nition. Knowledge-based systems are tools for build-
ing applications that draw logical inferences from
their stored knowledge of the problem domain. From
its early days, knowledge-based technology was rec-
ognized as being suitable for building applications
that capture the knowledge of a human expert and
deliver that expertise through a computer dialog in
a manner that emulates the expert. These are expert

© Copyright 1990 by International Business Machines Corporation.
Copying in printed form for private use is permitted without
payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copyright
notice are included on the first page. The title and abstract, but no
other portions, of this paper may be copied or distributed royalty
free without further permission by computer-based and other
information-service systems.- Permission to republish any other
portion of this paper must be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 23, NO 2, 1990

systems. Some wel}l—known early examples dealt4with
medical diagnosis” and geological prospecting.” To-

Today, expert systems are being
constructed for a wide range of
application types and industries.

day, expert systems are being constructed for a wide
range of application types and industries.

Increasingly, knowledge-based systems are also being
embedded in conventional applications that appar-
ently provide no clue to the inferencing component
hidden within them. Many problems are more ame-
nable to the knowledge-based inferencing style of
programming than to the conventional (high-level
language) procedural style. An example of this is a
module that deals with tax regulations, where the
multitude of individual regulations are easier to en-
code (and subsequently maintain) as knowledge-
based rules than as procedural code. Such an infer-
encing module that makes tax decisions might be
embedded within a COBOL application programmed
for a payroll. Embedding knowledge-based systems
in conventional applications has enormously in-
creased their potential in commercial data process-
ing, and it has generated new demands to mold
knowledge-based systems into a technology that can
easily be utilized in that environment.

An overview of knowledge-based technology

Most knowledge-based systems are rule-based sys-
tems. The term rule-based systems describes a pro-
gramming paradigm in which discrete pieces of
knowledge are expressed in terms of an expression
that states: WHEN some condition is true, THEN some
conclusion can be drawn or some action performed.
These rules are utilized under control of an inference
engine which traces inference chains through these
rules, either by starting with some known facts and
exercising the rules in a left to right manner until all
possible conclusions have been drawn (termed data-
driven inferencing), or by starting with a goal (a fact
to be determined) and exercising the rules from right

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1980

to left until a set of known facts are identified that
allow that fact to be concluded (termed goal-driven
inferencing). Other, more complex forms exist, such
as opportunistic reasoning, but these are less preva-
lent.

Initially the reason for all the excitement about rule-
driven inferencing may not be obvious. The secret
lies in that the rules provided to the knowledge-based
application are distinct and, in a sense, are inde-
pendent entities. The rules can be created individ-
ually, generally without regard for the sequence in
which they will be chained to accomplish a given
inferencing task. New rules may be added to repre-
sent new pieces of knowledge without worrying
about their positioning relative to existing rules. This
situation has been compared to building a
spreadsheet’ in which cells are defined by the builder
as formulae dependent on other cells. The builder is
aware of the logical dependencies between the cells
being defined, but there is complete freedom to
physically place the cells anywhere on the spread-
sheet and to define them in any convenient order.
The builder does not have to be concerned with
execution order of the cell formulae since the spread-
sheet software automatically sequences the execu-
tion. The rule-driven inferencing paradigm shares
this characteristic and is frequently referred to as
declarative programming to highlight its sequence-
insensitive nature, compared with procedural (or
algorithmic) programming where all the paths
through the program are completely defined by the
programmer.

Early knowledge-based products held the facts with
which they inferenced as simple data elements. More
recently, systems have introduced frames as a more
flexible and powerful way to represent the factual
knowledge about a problem domain.® Frames typi-
cally represent entities in the problem domain. A
single frame contains a number of slots which rep-
resent the attributes of the entity and which are
referenced by the rules. A slot is made up of some
number of facets that identify the attributes of that
slot, one of which is its actual value. Other facets
may identify the default values, constraints, certainty
factors, etc., that apply to the slot. The list of facets
is not fixed, although certain facets are generally
present.

Facets may also contain a reference to a procedural
routine that is automatically invoked under certain
conditions such as update, deletion, or reference.
These routines, often called demons, can be used for

Hemsry 275

such purposes as maintaining referential integrity
between frames. Slots may also reference a proce-
dural routine, called a method, that may be invoked
by sending messages between frames.

Frames support inheritance. A hierarchy of class and
subclass frames may be defined so that slots and
facets, both data and procedures, are inherited by
child frames from parent frames unless overridden
by that slot or facet at the child frame level. Parent
frames are essentially abstract data types that func-
tion as place holders for the default slots and facets
of frame instances at the lower levels. Inheritance
links may be defined at definition time and at exe-
cution time.

The frame structure provides a knowledge-based ap-
plication with a very high degree of flexibility in the
data that can be stored to describe entities, the meta-
data stored to describe the data, and the relationships
that can be represented between the entities.

The rules and the frame definitions in a particular
knowledge-based application are generally referred
to collectively as the knowledge base. This is the
knowledge about a problem domain that, together
with specified goals or a set of starting facts, is
operated on by the inferencing engine of the knowl-
edge-based system.

Knowledge-based applications in commercial
data processing

Early commercial knowledge-based systems. Early
knowledge-based tools were predominantly built in
LisP and ran on specialized LISP workstations. Ap-
plication development was carried out by an artificial
intelligence (A1) professional with an in-depth knowl-
edge of the tool and Al techniques. LISP skills were
typically required, since the LISP of the knowledge-
based tool implementation frequently showed
through to the application. After the initial years of
technological advance, the most successful of these
tools reached a very high level of sophistication in
terms of their support of leading-edge Al techniques.

However, the tools were notably lacking in their
capability to integrate into the hardware, operating
systems, languages, database, and transaction proc-
essing systems typically found in commercial data
processing organizations. In addition, most tools
lacked those qualities loosely called “industrial
strength” qualities, such as sharability, usability (par-
ticularly by large development teams), data integrity,

276 HemBRY

and recoverability, and a skill requirement that did
not restrict their use to a small number of extremely
highly trained A1 professionals.

The result was that commercial applications at this
time were mainly restricted to pilot studies and a
small number of specialized applications where the
financial leverage was strong enough to justify the
specialized hardware and the high skills needed for
implementation. The poor capability to integrate
into commercial environments was typically circum-
vented by building expert systems for problem do-
mains that were self contained, and that did not
demand tight connection to existing commercial
systems.

The movement toward knowledge-based
integration

By the mid-1980s, the limited acceptance of knowl-
edge-based technology in the commercial arena was
sufficiently noticeable to prompt questions in the
media as to whether the early promise of the field
had been exaggerated. At almost the same time, the
crisis was recognized by the knowledge-based system
developers, and there was a collective effort to move
the technology out of the advanced technology world
into the more prosaic, but much wider, commercial
environment. Several key vendors announced their
intention to provide versions of their products to run
on commercial mainframes. Several new products
were introduced that were designed from the begin-
ning to be integrated with commercial data process-
ing. In addition, numbers of small but high-function
expert system shells for personal computers (PCs)
made their appearance. The effects of this change in
direction are presently being felt strongly and are
probably still gathering momentum.

The trend to ever-increasing integration can be seen
in 1BM’s knowledge-based products.

Expert System Environment (ESE)7’8 initially pro-
vided a self-contained environment for non-data
processing professionals to build and consult expert
systems through a terminal interface. The expected
environments for such professional users were time
sharing option (1s0) and conversational monitor
system (cMs), and accordingly these were the envi-
ronments in which ESE operated. ESE allowed the
invocation of external routines written in high-level
languages, and thereby allowed access to DATA-
BASE 2™ (DB2™) or Information Management System
(mms) databases. From its inception, ESE provided a

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

good degree of integration into commercial main-
frame environments.

Nevertheless, there soon emerged a strong user re-
quirement to extend access to ESE knowledge bases
from terminals to other applications, including ap-
plications running under the Information Manage-
ment System (IMS) or Customer Information Control
System (CICS) transaction management systems.
Thus, a recent release of ESE includes an application
program interface (aP1) which provides this access.’
In addition, Expert System Consultation Environ-
ment/PC (ESCE is the consultation-time component
of ESE) addresses another requirement, to widen the
range of supported environments by allowing the
delivery of ESE applications on a PC running PC/DOS.

KnowledgeTool™ v2,' on the other hand, instead of
being designed with its own terminal interface (like
ESE), was structured from the beginning to integrate
efficiently into a high-level commercial language,
Programming Language/One (PL/1). By providing a
language that can be used in conjunction with pPL/,
KnowledgeTool v2 has enabled users to mix data-
driven inferencing with the full procedural program-
ming power of the PL/ language in any applica-
tion on a System/370 or Application System/400®
(As/400™) platform. A KnowledgeTool v2 application
can use any sAA Common Programming Interface
(cp1) services that are available to pL/1, such as Struc-
tured Query Language (sQL), as well as other inter-
faces such as cics command language statements,
Graphical Data Display Manager (GppM™), Inter-
active System Productivity Facility (ISPF), and IMS
calls. Through the interlanguage communication ca-
pabilities of pL/1, KnowledgeTool v2 can call and be
called by application modules written in C, COBOL,
FORTRAN, Pascal, and assembler language. Know-
ledgeTool v2 applications will run under TSO,
VM/CMS, IMS, CICS, NetView™, and Operating Sys-
tem/400™ (0s/400™).

The marriage of a data driven inferencing capability
and a powerful commercial high-level language in
KrnowledgeTool v2 broke new ground in integrating
knowledge-based technology into the business data
processing environment. Nevertheless, there are re-
quirements to make this function available on the
Operating System/2™ (0s/2®) platform, as well as to
enhance the knowledge-based function provided by
KnowledgeTool v2, for example, to include goal-
driven inferencing and a closer integration of rules
with frames.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

In December 1989, 1BM released 18M Prolog for 370,
a replacement for the existing 1BM VM Programming
in Logic (vM/Prolog). This new Prolog version,
which supports the Edinburgh Syntax as well as the
1BM Prolog syntax with powerful new extensions and
very high performance, will execute under the Vir-
tual Machine/System Product (vM/sP) or Virtual Ma-
chine/Extended Architecture (VM/XA™) operating
systems, It may call and be called from other appli-
cation modules written in /370, Restructured Ex-
tended Executor Language (RExx), VS Cobol II, VS
Fortran, 0s PL/1, or Assembler. In addition it provides
an interface to Structured Query Language/Data
System (SQL/DS™) for relational database function,
and GDDM and ISPF to manage screen displays.

This new version of Prolog, through these interfaces
and with the availability of a run-time environment,
brings to the Prolog language a new capability for
integration into commercial data processing. Re-
maining known requirements to extend this capabil-
ity include the support of Prolog on other sAa plat-
forms and further connectivity with SAA CPI com-
ponents.

Finally, to bring this brief chronology to the present
day, The Integrated Reasoning Shell,"> which 1BM
has identified as the first release of a new strategic
knowledge-based product line, provides forward,
backward, and opportunistic reasoning integrated
with frames. It delivers this function on MVS, VM,
cics, Ms, and 0s/2 platforms of ssA.”” Requirements
associated with the delivery of applications built with
The Integrated Reasoning Shell that remain to be
addressed include the support of the 0s/400 platform,
enhanced connectivity to the saa CPI high-level lan-
guage and service components, and enhancements
to the knowledge-based function of the system (for
example, by providing procedural attachments to
frames).

Knowledge-based applications for SAA. The on-
going direction of integrating of knowledge-based
technology into commercial data processing will re-
sult in tools that build applications that conform
fully to the Systems Application Architecture
(SAA).M‘15 The SAA architecture requires that such
applications have the following characteristics:

e The application is deliverable, with equivalent
results, on each of the defined saa platforms,
namely TSO, VM/CMS, IMS, and CICS on System/370,
0S/2, and 0S/400.

vemery 277

Figure 1 The spectrum of knowledge-based development
environments

- LARGE, COMPLEX, MULTIDEVELOPER
PROJECTS

~ APPLICATION DEVELOPMENT ARCHITECTURE
PROGRAMMABLE WORKSTATION/HOST
COOPERATIVE DEVELOPMENT ENVIRONMENT

- ENHANCED PRODUCTIVITY THROUGH ACCESS
TO OTHER LIFE-CYCLE TOOLS

- SINGLE DEVELOPER OR SMALL TEAM
~ STAND~-ALONE WORKSTATION
~FEW OTHER TOOLS

» The application’s end-user screen interfaces con-
form to the saa Common User Access (CUA)
standards.

* Where necessary, the application should use the
defined SAA CPI service components, such as the
SAA database (Structured Query Language), the
SAA Presentation Manager™, the saA Dialog Man-
ager, the SAA query manager, and the SAA com-
munications manager.

* The knowledge-based function within an applica-
tion must be connectable to, or in other words
can invoke and be invoked from, the sAA CpI
language components such as C, COBOL, PL/1, Re-
port Program Generator (RPG), etc., and the SAA
CPI generator component implemented by Cross
System Product (CSP).

o It is desirable that the knowledge-based system
itself should define an sAaA cPi component for
defining the rules and frames and other parts of
the knowledge base, and for access to the inferenc-
ing services of the knowledge base.

The intent and the net result of these SAA architec-
tural requirements is that a knowledge-based appli-
cation will finally have the same ability to integrate
into a commercial SAA data processing environment
as an application built using any of the other saA
components.

278 veverY

Knowledge-based application development for
SAA

Knowledge-based technology’s evolving capability to
deliver applications in commercial data processing
environments has greatly increased its potential in
the commercial world, and the future conformance
of knowledge-based applications with the sAA archi-
tecture is intended to maximize this potential. To
realize the potential, 1BM’s knowledge basel architec-
ture will evolve to integrate knowledge base devel-
opment facilities with the facilities of AD/Cycle. The
following sections of this paper describe the expected
direction of this evolution.

In practice, knowledge-based development facilities
will address a spectrum of commercial development
environments as shown in Figure 1.

At the simple end of this spectrum is the traditional
knowledge-based development shell that is oriented
towards the individual application developer (or
knowledge engineer) or a small development team,
and is focused on the life-cycle phases of building
and testing the knowledge-based application. Typi-
cally, this simple environment will be used for pro-
totyping or to develop small, stand-alone expert
systems. It roughly corresponds in scope to the de-
velopment environment provided today by ESE. At
this end of the spectrum, only a few other application
development products might be used by a developer
in conjunction with the knowledge-based product.

Such a basic development environment for knowl-
edge-based applications is shown in cooperative form
in Figure 2. This development environment can be
recognized as a derivative of the 0s/2 development
environment provided by The Integrated Reasoning
Shell. It utilizes the graphic capabilities of the Per-
sonal System/2® (ps/2®) programmable workstation
(pws) to provide a highly responsive, highly usable
object-oriented editor for the definition and interre-
lationship of rules, frames, procedural routines, and
other objects16 of the knowledge-based application.

Testing of the application is performed with a debug
facility that visualizes information about rule infer-
ence chains, frames, and other knowledge base ob-
jects. Changes to the knowledge base definition are
possible directly from the debug environment, and
incremental compilation techniques are used to pro-
vide a fast iteration around the edit/debug/edit cycle.
If a high-level language debugger is installed, then
the two debuggers will work in a complementary

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 2 A knowledge-based development environment

PROGRAMMABLE WORKSTATION

KNOWLEDGE BASE DEVELOPMENT OBJECT/ACTION DIALOGS

KNOWLEDGE BASE

EDITORS

«—| DEBUG DISPLAY g

KNOWLEDGE BASE
TRANSLATION

PROGRAMMABLE

WORKSTATION FILES

]]
I |
) J
! |
l |
[!
i i
i I
I I
| i
[i
| !
[i
| i
| !
f |
| i
| |
! I
| |
| |
| |
| I
| |
| I
| |
[I
t I
i |
i !
| !
I]
I |
| |

HOST
FILES

v

COMPILE/BUILD

HIGH-LEVEL LANGUAGE

DEBUGGERS

KNOWLEDGE BASE

fashion to present an integrated end-user interface
that supports the debugging of both the inferencing
and procedural parts of an application in a single
debug session.

At this end of the spectrum, the knowledge-based
development process is manually controlled through
dialogs that are based on the object-action principle

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1980

and are consistent with AD/Cycle user interface
standards. The knowledge-based objects that are de-
fined may be stored in private files either on the Pws
or on a host.

This knowledge-based development environment
builds applications to satisfy all the requirements for
SAA applications that were described in the section

remery 279

on knowledge-based applications for saA. The de-
velopment environment runs either on a stand-alone
ps/2 platform to build applications for delivery on
0S/2, or on a cooperative programmable workstation
plus host configuration (System/370 or AS/400)
as shown in Figure 2, to allow the building of ap-
plications targeted for a host environment. In the
latter case, the application is uploaded to the target
environment for the processes of compilation
and debugging, with the programmable worksta-
tion being used for the control and viewing of this
process.

At the other end of the spectrum, shown in Figure
1, is the customer with complex development proj-
ects that consist of mixed knowledge-based and high-
level language or generator components, with large
development teams and the need to integrate the
knowledge-based development process with a range
of other AD/Cycle tools.

For such complex application development environ-
ments, the knowledge-based development facilities
work in conjunction with the other facilities of
AD/Cycle. The specific additional items of integra-
tion with AD/Cycle follow:

¢ The AD information model of AD/Cycle is ex-
tended to include knowledge-based objects (rules,
frames, etc.).

¢ The knowledge-based system development envi-
ronment stores knowledge-based objects under the
control of the Repository Manager™ and Library
Services.

* The knowledge-based system development exe-
cutes under the control of AD/Cycle’s work man-
agement facilities.

¢ Access to and the complementary use of other AD
tools in the AD/Cycle environment is enabled.

The following sections describe how these items of
integration with AD/Cycle enhance the knowledge-
based development environment in the areas of
management and control of complex development
projects involving large development teams, and pro-
ductivity in the development of knowledge-based
applications.

Management and control of the knowledge-
based development process

Library control of knowledge-based objects. A
knowledge base is comprised of a variety of objects.
Object classes may include rules, frames, demons,

280 +emsry

and other constructs, or collections of these. Each
object instance is defined individually, using edit
facilities oriented toward each type of object.

A hypothetical set of objects making up a knowledge-
based application is shown in Figure 3. In many
cases, the relationships between these objects are
one-to-many or many-to-many. For example, mul-
tiple rules and more than one knowledge base may
be sensitive to the definition of a particular frame,
or more than one knowledge base may use a partic-
ular rule. In practice, this means that separate devel-
opment teams developing different knowledge bases
within a complex application may be sensitive to the
same objects.

In large application development projects, the
knowledge-based development facilities obtain li-
brary control over the objects by storing them under
the control of the Repository Manager and Library
Services. This control is available during develop-
ment and during the subsequent production and
maintenance phases of the application’s life cycle.
Figure 4 shows the knowledge-based development
environment using the Repository Manager and Li-
brary Services for object storage. The Library Serv-
ices provide functions that are familiar in high-level
language development library systems. Changes to
shared objects by multiple developers are serialized
by locking the objects. Multiple versions of each
object (for example, development, test, and produc-
tion) are recognized and managed. A version of an
object for development or test is obtained from a
higher version of that object and subsequently pro-
moted back to a higher level in a controlled manner.
Library Services provide a build facility, that ensures
that consistent objects are utilized in building an
executable knowledge base, and recognizes the exist-
ence of multiple releases of the application over its
lifetime, where some objects are common to the
different releases and some objects are distinct.

The Library Services support applications consisting
of both high-level language components (for example
a COBOL main program), and the knowledge base
and its constituent objects. Applications may be
either fully host resident or cooperative, involving
both host-resident and ps/2-resident elements.

Automated control of the knowledge-based develop-
ment process. Figure 4 also shows the knowledge-
based development environment with the superim-
position of the AD/Cycle work management facili-
ties over the dialogs.'’

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

Figure 3 Hypothetical model of a knowledge-based application

INVOKES

INHERITS FROM

RELATED

BUSINESS ENTITIES 44—

RELATED
DATABASE VIEWS 4—

PROCEDURAL ATTACHMENTS ¢ 250>

{DOMAINS, METHODS)

RELATED
BUSINESS ATTRIBUTE

RELATED
DATABASE COLUMN

CONTAINS

—» HIGH-LEVEL
LANGUAGE
AND/OR
GENERATOR
COMPONENTS

INVOKES

CONTAINS

REFERENCES

CONTAINS
SENSITIVE TO

A management-related requirement for large devel-
opment projects is for automated control over the
actual process of development. In AD/Cycle, this
requirement will be addressed by an AD/Cycle tool
that provides facilities such as those available today
in the Application Development Project Support
(ADPS) for System/370.18 This AD tool uses a process
model and current status information for the project
to guide the user through the application develop-
ment process. Knowledge-based development facili-
ties will be invocable from the process management
AD tool, and will return status and completion infor-
mation at their termination.

Productivity of the knowledge-based
development process

Higher productivity in application development de-
pends on addressing four areas: reuse, reduced com-

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

plexity, automation of manual tasks, and elimina-
tion of redundant work.

Knowledge-based object reuse. In a knowledge-based
environment, code reuse implies the reuse of the
objects—rules, frames, procedural functions, or
groups of these objects. This is enabled through the
storage of the knowledge-based objects under the
control of the Repository Manager with extensive
cross reference information.

Frames for reuse will be located in the Repository
Manager by searching for frames containing partic-
ular named frame slots (i.e., data items) of interest,
by searching for frames containing certain keywords
in their text descriptions, or by other methods. Es-
sentially the task is to be able to find a frame that is
pertinent to the domain of the application being
designed. Once a candidate frame is located, it and

remery 281

Figure 4 A knowledge-based development environment with the Repository Manager and Library Services

PROGRAMMABLE WORKSTATIO

APPLICATION DEVELOPMENT WORK MANAGEMENT

I
I
S
-1 | KNOWLEDGE BASE
|| DEVELOPMENT DIALOGS

EDITORS

<« 0EBUG DISPLAY |4

KNOWLEDGE BASE
TRANSLAT'ON

v
COMPILE/BUILD

DEBUGGERS

KNOWLEDGE BASE’

b v } 1 A
knowiLeDaE BASE - §__ | _|__| KNOWLEDGE BASE.
OBJECT INFORMATION OBJECT DATA :

SERVIOES .

REPOSITORY MANAGER LIBRARY

b e e e e o ot i i e d

282 +emsry IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

its parent and related frames are displayed graphi-
cally by the frame editor, and the user is permitted
to browse the frame graph and select portions to be
pasted into the frame graph which holds the frame
objects of the new application. Using standard
knowledge-based system edit facilities, the user can
manually create new links between the reused frames
and any other frames in the application. The process
is shown in Figure 4.

Just as candidate frames can be located and reused,
so candidate rules or groups of rules that reference a
frame or particular slots within a frame can be found
via frame-to-rule cross reference information in the
Repository Manager. Such rules encode knowledge
about the entities represented by the frames and are
also candidates for reuse. The rules may be displayed
by the rule editor, evaluated for reuse by the devel-
oper, and if suitable copied into the new application.

Automatic generation of knowledge-based objects. If
reusable frames do not exist, then facilities will be
provided to assist the developer in generating new
frame definitions.

The knowledge-based development environment
shown in Figure 4 is further extended in Figure 5 to
show the automatic building of frame objects from
enterprise model and database descriptor informa-
tion in the Repository Manager.

Typically, frame classes in a knowledge-based appli-
cation represent classes of entities that exist in the
real world and the logic that the applications will use
for reasoning. The entity classes, their attributes, and
the relationships between them may already be de-
scribed as an enterprise model, placed in the Repos-
itory Manager by enterprise analysis tools. Figure 3
shows the relationships between the knowledge-
based objects and some other Repository Manager
data that describe enterprise model entities and at-
tributes (and also database descriptors, which are
referred to below). Skeleton class frame definitions
for a knowledge-based application can be con-
structed automatically from these enterprise model
entities by mapping the entity-relationship model to
a frame model with slots and links. Some enterprise
analysis tools already organize their identified enti-
ties into hierarchic structures, with common prop-
erties abstracted into parent classes for inheritance
by subclasses. Such structures will map to the inher-
itance structure of the frame system.

IBM SYSTEMS JOURNAL, VOL 28, NO 2, 1990

Enterprise model information of interest may be
located by searching the Repository Manager for
entity or entity attribute names (data items) of inter-
est, or for user-supplied keywords in a text descrip-
tion of the entity. The enterprise model entities and
their relationships are displayed graphically, and the
user browses the graph and locates a subset of inter-
est. Those entities, with their attributes and relation-
ships, are transformed into a collection of skeleton
class frames. On return to the knowledge-based
frame editor, the skeleton frames are pasted into the
new application’s frame graph where they can be
further edited and linked to other frames.

Once new frames are constructed in this way they
are automatically placed under control of the Re-
pository Manager, and are related to the other knowl-
edge base objects and the enterprise model from
which they were derived. Generating frames from
the enterprise model in this manner provides the
twin benefits of productivity (by elimination of the
manual definition task) and accuracy (automatic
generation will be more accurate than manual entry).

Another scenario for frame definition occurs when
the intent is to build (or source) frame instances at
run time from data in a database. In this case, it is
necessary to provide a frame class definition to
match some view of the database, and to generate a
sourcing object containing the SQL statements to
perform the database access. The specification of a
sourcing object will require that the table (or view)
name, column name(s) and their mapping to frame
slots, and search arguments are provided. Without
Repository Services these specifications would be
entered manually. The Repository Manager, how-
ever, may contain database descriptions, placed there
either by a database design AD tool or manually by
the database administrator, which allow a skeleton
frame definition and its associated sourcing objects
to be constructed. These frame and sourcing objects
are stored and linked in the Repository Manager to
related knowledge-based objects and also to the da-
tabase descriptions from which they are derived. Like
the generation of frames from enterprise model data,
this automatic frame generation from database de-
scriptions provides the twin benefits of productivity
and accuracy.

Access to other AD tools. As described in the pre-
vious section, knowledge-based application devel-
opment productivity will benefit from the presence
of enterprise modeling tools and database design

Hemery 283

Figure 5 Use of other Repository Manager and Library Services objects by knowledge-based application development

PROGRAMMABLE WORKSTATION

I |
[S
oo o

APPLICATION DEVELOPMENT WORK MANAGEMENT

KNOWLEDGE BASE
DEVELOPMENT DIALOGS

EDITORS

«—| DEBUG DISPLAY ‘o

ENTERPRISE | DATABASE ’;22;?’3‘52%%“‘*35
ANALYSIS TOOL ! %SLGN KNOWLEDGE BASE

A

v
COMPILE/BUILD

DEBUGGERS

KNOWLEDGE BASE

£

{
|
|
|
!
i
|
|
|
|
I
1
|
I
|
|
1
i
1
|
|
|
|
i
i
|
|
I
|

{LIBRARY
CONTROL)
i
i
|
|
i
|
| v y
t
] KNOWLEDGE BASE o | .] KNOWLEDGE BASE
! »| OBJECT INFORMATION OBJECT DATA
i ¥
) \ 3)

: i i
ENTERPRISE i | DATABASE]
MODEL t | DESCRIP-]

1' TORS V
I -
REPOSITORY MANAGER LIBRARY | SERVICES
T
I
1
1
i
1

e

284 r+emery IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

tools. In addition, AD/Cycle will provide the devel-
oper with access to other AD tools that participate in
that environment. Many of these tools address tasks
that are potentially as relevant to the development
of knowledge-based applications as to conventional
applications.

Cross life-cycle tools are used over all life-cycle
phases of AD/Cycle. They include documentation
tools, project management tools, impact analysis
tools, and query/report tools for the Repository
Manager. “Screen painters” are used for the creation
of text, object, or graphics-oriented dialogs. Other
application-enabling facilities, the high-level lan-
guages or the application generator, are available for
the production of any parts of an application that do
not make use of the knowledge-based system. Tools
are used to automate regression testing (such as IBM’s
Workstation Interactive Test Tool) or to manage the
testing process.

In some cases, such complementary AD tools will be
accessed by the user through the work management
facilities of AD/Cycle. In other cases, they will be
invoked directly from within the knowledge-based
system development facility.

Knowledge acquisition tools. Knowledge acquisition
is the term given to the collection of knowledge about
some problem domain, in a form that allows it to be
used within a knowledge base. In effect, knowledge
acquisition is the analysis and design front-end phase
of knowledge-based technology, and a successful
knowledge acquisition tool will improve develop-
ment productivity.

In its simplest form, knowledge acquisition is simply
manual systems analysis with a pad and pencil (and
perhaps a tape recorder). The term is more often
used, though, to imply special tools or aids, or at
least techniques, that are oriented to the construction
of knowledge base components such as rules and
frames. Well-known examples include repertory grid
analysis and induction. More recently, formal, struc-
tured techniques that are analogous to the structured
analysis techniques of conventional enterprise analy-
sis are beginning to emerge, and it is likely that
integrated methods and supporting tools that address
the requirements of both conventional and knowl-
edge-based application development will evolve over
time.

A review of knowledge acquisition is beyond the
scope of this paper, but the important point is that

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

as such tools become available, they will themselves
be integrated with AD/Cycle and will communicate
their results to the knowledge-based system devel-
opment environment via appropriate data using Re-
pository Services and Library Services.

Library control of knowledge-based objects. The li-
brary control and automated process control de-
scribed in the last section contribute to enhanced
productivity through reduced complexity and auto-
mation of manual tasks. The manual alternatives to
an automated library control system are generally
tedious, time consuming, and error prone.

Knowledge-based assistance of the development
process. This paper has focussed on the integration
of knowledge-based application development into
AD/Cycle, the goal being to use the facilities of
AD/Cycle to enhance the development of knowl-
edge-based applications. However, the paper would
be incomplete without mention of the “mirror im-
age” topic, namely the use of knowledge-based sys-
tems to benefit AD/Cycle by applying an Ar assist
factor to the AD tools and facilities of AD/Cycle.

Leading-edge information engineering tools avail-
able from some non-IBM developers already use
knowledge-based technology extensively. It is ex-
pected that this trend will continue in the future and
will allow AD tool builders (both 1BM and non-IBM)
to implement sophisticated development methodol-
ogies that will permit higher productivities than
could be achieved through conventional designs.

In addition to such truly breakthrough applications
of knowledge-based systems, it is expected that this
technology will become pervasive throughout the
application development environment in a number
of unobtrusive ways, such as “smart” (expert system)
help facilities that are tightly coupled to the execu-
tion of a specific AD tool. Smart defaults may rec-
ommend a course of action or a parameter value to
a developer based on a knowledge of the user and a
history of the development session, and embedded
knowledge bases may perform a variety of (normally)
invisible background tasks, such as checking for
standards conformance. Almost any AD tool or fa-
cility within AD/Cycle is a candidate for one or more
of these types of assistance.

Summary

This paper has briefly reviewed the evolution of
knowledge-based technology, described its current

remery 285

level of integration into mainstream commercial
data processing, and made the point that the logical
end result of this evolution is the full integration of
knowledge-based systems with 1BM’s Systems Appli-
cation Architecture (SAA).

The paper has made the further key point that to
realize the potential of this integration with sAA,
BM’s knowledge-based application development fa-
cilities will also evolve to integrate with AD/Cycle.
The expected direction of such AD/Cycle support
was outlined, and its rationale was described in terms
of the enhanced management control and productiv-
ity of the knowledge-based development process that
will be essential to ensure its acceptance by the
commercial data processing community.

AD/Cycle, Systems Application Architecture, SAA, DATABASE
2, DB2, KnowledgeTool, AS/400, GDDM, NetView, Operating
System/400, OS/400, Operating System/2, VM/XA, SQL/DS, Ad-
vanced Interactive Executive, AIX, Presentation Manager, and
Repository Manager are trademarks, and Application System/400,
0S/2, Personal System/2, and PS/2 are registered trademarks, of
International Business Machines Corporation.

Cited references and note

1. P. Harmon and D. King, Expert Systems—Artificial Intelli-
gence in Business, Wiley-Interscience Publishers, New York,
NY (1985).

2. D. A. Waterman, 4 Guide to Expert Systems, Addison-Wesley
Publishing Co., Reading, MA (1986).

3. E. H. Shortliffe, Computer-Based Medical Consultations: MY-
CIN, Elsevier, New York (1976).

4. R. Duda, P. E. Hart, N. J. Nilsson, P. Barrett, J. G. Gaschnig,
K. Konolige, R. Reboh, and J. Slocum, Development of the
PROSPECTOR Consultation System for Mineral Explora-
tion, SRI Report, Stanford Research Institute, 333 Ravens-
wood Avenue, Menlo Park, CA (October 1978).

5. M. L Schor, “Declarative Knowledge Programming: Better
than Procedural,” [EEE Expert, IEEE, 345 E. 47th St., New
York (Spring 1986).

6. M. Minsky, “A Framework for Representing Knowledge,” in
The Psychology of Computer Vision, P. Winston, Editor,
McGraw-Hill Book Co., Inc., New York (1975).

7. Expert Systems Development Environment User’s Guide,
SC38-7006, IBM Corporation; available through IBM branch
offices.

8. Expert Systems Consultation Environment User’s Guide,
SC38-7005, IBM Corporation; available through IBM branch
offices.

9. Expert Systems Environment Application Programming
Guide, SC38-7020, IBM Corporation; available through IBM
branch offices.

10. KnowledgeTool, General Information Manual, GH20-9259,
IBM Corporation; available through IBM branch offices.

11. IBM Prolog for 370, General Information Manual, GH21-
1005, IBM Corporation; available through IBM branch offices.

12. The Integrated Reasoning Shell, General Information, GH21-
1005, IBM Corporation; available through IBM branch offices.

13. Support of the AIX platforms by The Integrated Reasoning
Shell is not addressed in this paper.

286 reveRY

14. Systems Application Architecture—An Overview, GC26-4341,
IBM Corporation; available through IBM branch offices.

15. IBM Systems Journal 27, No. 3 (1988, whole issue).

16. Rules, frames, procedural routines, data sources, and various
other components of a knowledge-based application are typi-
cally (and specifically, in The Integrated Reasoning Shell)
referred to as “objects” to reflect the application developer’s
perception of these components. The knowledge-based system
development environment presents the components graphi-
cally as discrete objects that may be individually manipulated
for the purposes of definition and interrelation. In addition a
knowledge-based system may, depending on its design, imple-
ment the knowledge-based application using the object-ori-
ented programming paradigm, with the frames, rules, etc.,
represented by objects in this sense. However, this latter
characteristic is not universal.

17. G. Chroust, H. Goldmann, and O. Gschwandtner, “The Role
of Work Management in Application Development,” IBM
Svystems Journal 29, No. 2, 189-208 (1990, this issue).

18. Application Development Project Support/Application Devel-
opment Model and Application Development Project Sup-
port]Process Mechanism General Information Manual, GH19-
8109, IBM Corporation; available through IBM branch offices.

Douglas M. Hembry [BM Programming Systems, 2800 Sand Hill
Road, Menlo Park, California 94025. Mr. Hembry’s present as-
signment is in the technical office of the knowledge-based systems
development group at IBM’s Menlo Park laboratory. He joined
IBM United Kingdom in 19635 as a systems engineer, and from
1972 to 1975 worked as a data systems specialist at the UK Systems
Center. From 1975 through 1982, he continued the role of data
systems specialist at the International Systems Center (then the
World Trade Systems Center) at Palo Alto, the Western Region
Systems Center of IBM Canada at Vancouver, and the Calgary,
Alberta, branch office where he supported the data systems oper-
ations of a number of large customers. In 1982 he transferred to
the Information Management System (IMS) development group
of the IBM General Products Division in Santa Teresa, California,
where he had planning responsibility for IMS’s high availability
characteristics. Mr. Hembry moved to the technical office of the
knowledge-based systems group in 1987 and has been responsible
for the planning and architecture of IBM’s knowledge-based sys-
tem offerings toward full integration into SAA and AD/Cyc.c. Mr.
Hembry received his B.S. degree from the University of London
in 1964, with first-class honors in physics and mathemetics.

Reprint Order No. G321-5399.

IBM SYSTEMS JOURNAL, VOL 29, NO 2, 1990

